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Abstract

Many classical social choice correspondences are resolute only in the case of two alternatives and
an odd number of individuals. Thus, in most cases, they admit several resolute refinements,
each of them naturally interpreted as a tie-breaking rule, satisfying different properties. In
this paper we look for classes of social choice correspondences which admit resolute refinements
fulfilling suitable versions of anonymity and neutrality. In particular, supposing that individuals
and alternatives have been exogenously partitioned into subcommittees and subclasses, we find
out arithmetical conditions on the sizes of subcommittees and subclasses that are necessary and
sufficient for making any social choice correspondence which is efficient, anonymous with respect
to subcommittees, neutral with respect to subclasses and possibly immune to the reversal bias
admit a resolute refinement sharing the same properties.

Keywords: social choice correspondence; resoluteness; anonymity; neutrality; reversal bias; group
theory.

JEL classification: D71.

1 Introduction

Consider a committee having h ≥ 2 members who have to select one or more elements within a set
of n ≥ 2 alternatives. Assume further that the procedure used to make that choice only depends on
committee members’ preferences on alternatives and that such preferences are expressed as linear
orders. Calling preference profile any list of h preferences, each of them associated with one of
the individuals in the committee, the selection procedure can be represented by a social choice
correspondence (scc), that is, a function from the set of preference profiles to the set of nonempty
subsets of the set of alternatives.

∗Daniela Bubboloni was supported by GNSAGA of INdAM.
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In the literature many sccs have been proposed and studied. Most of them satisfy three re-
quirements which are considered strongly desirable by social choice theorists, namely efficiency,
anonymity and neutrality. Recall that a scc is said efficient if, for every preference profile, it does
not select an alternative which is unanimously beaten by another alternative; anonymous if the
identities of individuals are irrelevant to determine the social outcome, that is, it selects the same
social outcome for any pair of preference profiles such that we get one from the other by permuting
individual names; neutral if alternatives are equally treated, that is, for every pair of preference
profiles such that we get one from the other by permuting alternative names, the social outcomes
associated with them coincide up to the considered permutation.

Since in many cases collective decision processes are required to select a unique alternative, an
important role in social choice theory is played by resolute sccs, namely those sccs associating a
singleton with any preference profile. Unfortunately, resoluteness is rarely satisfied by classical sccs.
For instance, as described in Section 3, the Borda, the Copeland, the Minimax and the Kemeny
sccs are all efficient, anonymous and neutral but they are resolute if and only if the number of
alternatives is two and the number of individuals is odd. As a consequence, if the members of
a committee want to use a classical scc to make their collective choice and a unique outcome is
needed, then they also need a tie-breaking rule to apply to the alternatives selected by the chosen
scc.

The concept of tie-breaking rule can be naturally formalized in terms of refinement of a scc. Let
C and C ′ be two sccs. We say that C ′ is a refinement of C if, for every preference profile, the set
of alternatives selected by C ′ is a subset of the set of alternatives selected by C. Thus, refinements
of C can be thought as a way to reduce the ambiguity in the choice made by C. In particular,
resolute refinements of C eliminate any ambiguity leading to a unique winner, so that they can be
identified with tie-breaking rules. Of course, if C is not resolute, then it admits more than one
resolute refinement. Thus, an interesting issue to address is to understand whether it is possible to
find resolute refinements of C which satisfy suitable properties making them more appealing.

In this paper we focus on the properties of efficiency, anonymity and neutrality previously
described as well as on the immunity to the reversal bias. Recall that a scc is said immune to the
reversal bias if it never associates the same singleton both with a preference profile and with the
one obtained by it assuming a complete change in each committee member’s mind about his/her
own ranking of alternatives (that is, the best alternative gets the worst, the second best alternative
gets the second worst, and so on). The immunity to the reversal bias, first introduced by Saari
(1994), has not been widely explored yet and there are actually only a couple of papers completed
devoted to it, namely Saari and Barney (2003) and Bubboloni and Gori (2016) to which we refer
for a wide discussion on the significance of such a property.

It is immediate to understand that any resolute refinement of an efficient scc is efficient. How-
ever, resolute refinements of anonymous [neutral; immune to the reversal bias] sccs are not generally
anonymous [neutral; immune to the reversal bias]. That happens, for instance, for resolute refine-
ments built using two standard methods to break ties. The first method, proposed by Moulin (1988),
is based on a tie-breaking agenda, that is, an exogenously given ranking of the alternatives; the
second one, is instead based on the preferences of one of the individuals appointed as tie-breaker. Of
course, the resolute refinements built through a tie-breaking agenda fail to be neutral while the ones
built through a tie-breaker fail to be anonymous. Note also that an interesting result due to Moulin
(1983) states that the existence of an efficient, anonymous, neutral and resolute scc is equivalent
to the strong condition gcd(h, n!) = 1 (Theorem 6). Thus, in most cases, given an efficient scc, we
cannot get any anonymous and neutral resolute refinement of it. As a consequence, in those cases,
we can only look for sccs satisfying weaker versions of the principles of anonymity and neutrality.

Bubboloni and Gori (2015) propose a possible way to weaken the principle of anonymity by
assuming that individuals are divided into subcommittees and requiring that, within each subcom-
mittee, individuals equally influence the final collective decision, while people in different subcom-
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mittees may have a different decision power. They also propose a weaker version of the principle
of neutrality by assuming that alternatives are divided into subclasses and requiring that within
each subclass alternatives are equally treated, while alternatives in different subclasses may have a
different treatment1. These versions of anonymity and neutrality are certainly natural and actually
used in many practical collective decision processes. That happens, for instance, when a committee
has a president or when a committee evaluates job candidates discriminating on their gender. In
the former example committee members can be thought to be divided in two subcommittees (the
president in the first, all the others in the second) with anonymous individuals within each of them;
in the latter example alternatives can be thought to be divided in two subclasses (the women in
the first, the men in the second) such that no alternative has an exogenous advantage with respect
to the other alternatives in the same subclass.

In this paper, we fist find out arithmetical conditions on the sizes of subcommittees and sub-
classes that are necessary for the existence of a resolute scc which is efficient, anonymous with
respect to subcommittees and neutral with respect to subclasses [and immune to the reversal bias]
(Theorem 7). We then prove that the same conditions assure that any efficient scc which is anony-
mous with respect to subcommittees and neutral with respect to subclasses [and immune to the
reversal bias] admits a resolute refinement having the same properties (Theorem 8). Those results,
among other things, generalize the previously mentioned theorem by Moulin.

While the proof of the first result is simple and natural, the proof of the second one, along with
other interesting results, require a certain amount of work. The arguments are strongly based on
the algebraic approach developed in Bubboloni and Gori (2014, 2015) where, in the framework of
social welfare functions, the notion of action of a group on a set is naturally and fruitfully used
to study problems concerning anonymity and neutrality and weaker versions of them, along with
reversal symmetry. Here we adapt that algebraic reasoning to the framework of sccs by defining
a general and wide-ranging notion of consistency of a scc with respect to a group (Section 2.4),
which includes anonymity with respect to subcommittees, neutrality with respect to subclasses
and immunity to the reversal bias as particular instances. That notion of consistency provides a
unified framework which allows on the one hand to make proofs simpler and more direct, and on
the other hand to obtain very general results (Theorem 15). It is worth noting that the algebraic
approach developed in the paper also provides methods to potentially build all the desired resolute
refinements. In Sections 6.2 and 6.3.1 we discuss some examples that explain how the theoretical
results can be explicitly applied.

2 Preliminary definitions and facts

Throughout the paper, given A, B and C sets and f : A→ B and g : B → C functions, we denote
by gf the right-to-left composition of f and g, that is, the function from A to C defined, for every
a ∈ A, as gf(a) = g(f(a)).

2.1 Groups and permutations

All the results from group theory used in the paper can be found in Jacobson (1974, Chapter 1).
Below, we briefly recall some well known concepts that will be sufficient for a complete comprehen-
sion of the paper until the end of Section 4, where the main theorems of the paper are stated and
commented.

A finite group G is a finite set endowed with a binary operation satisfying associativity, admitting
neutral element 1G and such that every element has inverse. Consider g ∈ G. We set g0 = 1G and,
for every s ∈ N, we denote by gs the product of g by itself s times. We also denote by |g| the order

1It is worth mentioning that some weak versions of the principle of anonymity and neutrality are also introduced
by Campbell and Kelly (2011, 2013).
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of g, that is, the minimum s ∈ N such that gs = 1G. A subset U of G is called a subgroup of G if
U is closed under the operation in G, that is, if for every u1, u2 ∈ U, we have u1u2 ∈ U. If U is a
subgroup of G, we use the notation U ≤ G.

Let X be a nonempty finite set. Then Sym(X) denotes the group of the bijective functions
from X to itself, with product defined, for every σ1, σ2 ∈ Sym(X), by σ1σ2 ∈ Sym(X). The
neutral element of Sym(X) is given by the identity function, denoted by id. Sym(X) is called the
symmetric group on X and its elements are called permutations on X. For every k ∈ N, the group
Sym({1, . . . , k}) is simply denoted by Sk. The elements in Sk are usually written via the standard
representation through disjoint cycles. For instance, ψ = (134)(26) ∈ S6 is the permutation defined
by

ψ(1) = 3, ψ(3) = 4, ψ(4) = 1, ψ(2) = 6, ψ(6) = 2, ψ(5) = 5.

2.2 Preference relations

From now on, let n ∈ N with n ≥ 2 be fixed, and let N = {1, . . . , n} be the set of names of
alternatives.

A preference relation on N is a linear order on N , that is, a complete, transitive and antisym-
metric binary relation. The set of preference relations on N is denoted by L(N). Given q ∈ L(N)
and x, y ∈ N , we usually write x �q y instead of (x, y) ∈ q, as well as x �q y instead of (x, y) ∈ q
and x 6= y, and we say that x is preferred to y according to q if x �q y.

Let q ∈ L(N) be fixed. For every ψ ∈ Sn, we define ψq as the element of L(N) such that, for every
x, y ∈ N , (x, y) ∈ ψq if and only if (ψ−1(x), ψ−1(y)) ∈ q. Consider the order reversing permutation
in Sn, that is, the permutation ρ0 ∈ Sn defined, for every r ∈ {1, . . . , n}, as ρ0(r) = n − r + 1.
Obviously, we have |ρ0| = 2. Note that ρ0 has exactly one fixed point when n is odd and no fixed
point when n is even. For instance, if n = 3, we have ρ0 = (13) and 2 is the only fixed point;
if n = 4, we have ρ0 = (14)(23) and no fixed point. Define Ω = {id, ρ0}, where id ∈ Sn. Note
that Ω ≤ Sn is a commutative group which admits as unique subgroups {id} and Ω. We define
qρ0 ∈ L(N) as the element in L(N) such that, for every x, y ∈ N , (x, y) ∈ qρ0 if and only if
(y, x) ∈ q; q id = q. Note that, by definition, for every x, y ∈ N and ψ ∈ Sn, we have that x �q y
if and only if ψ(x) �ψq ψ(y); x �q y if and only if y �qρ0 x.

The function rankq : N → {1, . . . , n} is defined, for every x ∈ N , by

rankq(x) = |{y ∈ N : y �q x}|.

Such a function is called the rank of x ∈ N in q and is bijective. Note that, for every ψ ∈ Sn,
rankψq(x) = rankq(ψ

−1(x)) and rankqρ0(x) = ρ0(rankq(x)).
Consider now the set of vectors with n distinct components in N given by

V(N) = {(xr)nr=1 ∈ Nn : xr1 = xr2 ⇒ r1 = r2} ,

and think each vector (xr)
n
r=1 ∈ V(N) as a column vector, that is,

(xr)
n
r=1 =

x1

...
xn

 = [x1, . . . , xn]T .

The function f1 : V(N)→ L(N) associating with (xr)
n
r=1 ∈ V(N) the preference relation

{(xr1 , xr2) ∈ N ×N : r1, r2 ∈ {1, . . . , n}, r1 ≤ r2},

and the function f2 : Sn → L(N) associating with σ ∈ Sn the preference relation

{(σ(r1), σ(r2)) ∈ N ×N : r1, r2 ∈ {1, . . . , n}, r1 ≤ r2}
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are bijective, so that, in particular, |Sn| = |V(N)| = |L(N)| = n!. Note that

f−1
1 (q) = {(xr)nr=1 ∈ V(N) : ∀r ∈ {1, . . . , n}, rankq(xr) = r},

f−1
2 (q) = {σ ∈ Sn : ∀r ∈ {1, . . . , n}, rankq(σ(r)) = r}.

Note also that, for every ψ ∈ Sn and ρ ∈ Ω, if f−1
1 (q) = [x1, . . . , xn]T , then

f−1
1 (ψq) = [ψ(x1), . . . , ψ(xn)]T , and f−1

1 (qρ) = [xρ(1), . . . , xρ(n)]
T ;

if f−1
2 (q) = σ, then

f−1
2 (ψq) = ψσ, and f−1

2 (qρ) = σρ.

Thus, by the functions f1 and f2 we are allowed to identify the preference relation q both with the
vector f−1

1 (q) and with the permutation f−1
2 (q), and to naturally interpret the products ψq and qρ

in V(N) and in Sn. For instance, if n = 4 and

q = {(4, 2), (2, 1), (1, 3), (4, 1), (4, 3), (2, 3), (4, 4), (2, 2), (1, 1), (3, 3)} ∈ L({1, 2, 3, 4}),

then q is identified with both f−1
1 (q) = [4, 2, 1, 3]T ∈ V({1, 2, 3, 4}) and f−1

2 (q) = (143) ∈ S4, so
that 4 has rank 1, 2 has rank 2, 1 has rank 3, and 3 has rank 4 in q. Thus, if ψ = (342) ∈ S4, then
we can write

ψq = (342)[4, 2, 1, 3]T = [2, 3, 1, 4]T and qρ0 = [4, 2, 1, 3]T (14)(23) = [3, 1, 2, 4]T ,

as well as
ψq = (342)(143) = (123) and qρ0 = (143)(14)(23) = (132).

On the one hand, identifying preference relations with vectors makes computations easy and intu-
itive. On the other hand, identifying preference relations with permutations allows to transfer the
group properties of Sn to the products between preference relations and permutations. In partic-
ular, by associativity and cancellation laws, for every ψ1, ψ2 ∈ Sn and ρ1, ρ2 ∈ {id, ρ0}, we have
that ψ1q = ψ2q if and only if ψ1 = ψ2; qρ1 = qρ2 if and only if ρ1 = ρ2; (ψ2ψ1)q = ψ2(ψ1q);
q(ρ1ρ2) = (qρ1)ρ2; (ψ1q)ρ1 = ψ1(qρ1). For every ψ ∈ Sn, ρ ∈ Ω and X ⊆ L(N), we define
ψXρ = {ψqρ ∈ L(N) : q ∈ X}. Note that, for every ψ ∈ Sn, ρ ∈ Ω and X ⊆ Y ⊆ L(N),
ψXρ ⊆ ψY ρ so that, in particular, ψL(N)ρ = L(N).

Given now ψ ∈ Sn and ρ ∈ {id, ρ0}, we finally emphasize that the above discussion makes the
products ψq and qρ have interesting interpretations. Indeed, if q represents the preferences of a
certain individual, then ψq represents the preferences that the individual would have if, for every
x ∈ N , alternative x were called ψ(x); qρ represents the preferences that the individual would have
if, for every r ∈ {1, . . . , n}, the alternative whose rank is r is moved to rank ρ(r).

2.3 Preference profiles

From now on, let h ∈ N with h ≥ 2 be fixed, and let H = {1, . . . , h} be the set of names of
individuals. A preference profile is an element of L(N)h. The set L(N)h is denoted by P. If p ∈ P
and i ∈ H, the i-th component of p is denoted by pi and represents the preferences of individual
i. Any p ∈ P can be identified with the n × h matrix whose i-th column is the column vector
representing pi for all i ∈ H.

Let us consider the set G = Sh×Sn×Ω. Note that G is a group through component-wise multi-
plication, that is, defining for every (ϕ1, ψ1, ρ1) ∈ G and (ϕ2, ψ2, ρ2) ∈ G, (ϕ1, ψ1, ρ1)(ϕ2, ψ2, ρ2) =
(ϕ1ϕ2, ψ1ψ2, ρ1ρ2). For every (ϕ,ψ, ρ) ∈ G and p ∈ P, define p(ϕ,ψ,ρ) ∈ P as the preference profile
such that, for every i ∈ H,

(p(ϕ,ψ,ρ))i = ψpϕ−1(i)ρ.
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Thus, the preference profile p(ϕ,ψ,ρ) is obtained by p according to the following rules (to be applied
in any order): for every i ∈ H, individual i is renamed ϕ(i); for every x ∈ N , alternative x is
renamed ψ(x); for every r ∈ {1, . . . , n}, alternatives whose rank is r are moved to rank ρ(r).

For instance, if n = 3, h = 7 and

p =

 3 1 2 3 2 1 1
2 2 1 2 3 3 3
1 3 3 1 1 2 2

 , ϕ = (134)(25), ψ = (12), ρ = ρ0 = (13),

then we have

p(ϕ,id,id) =

 3 2 3 2 1 1 1
2 3 2 1 2 3 3
1 1 1 3 3 2 2

 , p(id,ψ,id) =

 3 2 1 3 1 2 2
1 1 2 1 3 3 3
2 3 3 2 2 1 1

 ,
p(id,id,ρ0) =

 1 3 3 1 1 2 2
2 2 1 2 3 3 3
3 1 2 3 2 1 1

 , p(ϕ,ψ,ρ0) =

 2 2 2 3 3 1 1
1 3 1 2 1 3 3
3 1 3 1 2 2 2

 .
As it is easy to verify, if n = 2, then p(id,ρ0,id) = p(id,id,ρ0) for all p ∈ P; if n ≥ 3, then there do
not exist ϕ ∈ Sh and ψ ∈ Sn such that, for every p ∈ P, p(ϕ,ψ,id) = p(id,id,ρ0). In other words,
top-down reversing preference profiles cannot be reduced, in general, to a change in individuals and

alternatives names. In what follows, we write the i-th component p(ϕ,ψ,ρ) simply as p
(ϕ,ψ,ρ)
i , instead

of (p(ϕ,ψ,ρ))i.

2.4 Social choice correspondences

A social choice correspondence (scc) is a function from P to the set of the nonempty subsets of
N . The set of sccs is denoted by C. Given C ∈ C, we say that C is resolute if, for every p ∈ P,
|C(p)| = 1. We say that C ′ ∈ C is a refinement of C if, for every p ∈ P, C ′(p) ⊆ C(p). Note that
C admits a unique resolute refinement if and only if C is resolute.

Consider now Par ∈ C defined, for every p ∈ P, as

Par(p) = {x ∈ N : ∀ y ∈ N \ {x}, ∃ i ∈ H such that x �pi y}. (1)

Par is called the Pareto scc. Note that Par(p) contains the alternatives ranked first in at least
one pi. In particular, Par(p) 6= ∅.

We say that C ∈ C is efficient if C is a refinement of Par. Thus, an efficient scc never selects an
alternative which is unanimously beaten by another one. Of course, every refinement of an efficient
scc is efficient.

Given a partition2 Y = {Yj}sj=1 of H, where s ∈ N, we define the set

V (Y ) = {ϕ ∈ Sh : ϕ(Yj) = Yj for all j ∈ {1, . . . , s}} ,

and we say that C is anonymous with respect to Y , briefly Y -anonymous, if, for every p ∈ P and
ϕ ∈ V (Y ), we have

C(p(ϕ,id,id)) = C(p).

Thus, interpreting the elements of Y as subcommittees, we have that Y -anonymous sccs attribute
the same decision power to individuals in the same subcommittee. Note that V (Y ) ≤ Sh.

Given now a partition Z = {Zk}tk=1 of N , where t ∈ N, we define the set

W (Z) = {ψ ∈ Sn : ψ(Zk) = Zk for all k ∈ {1, . . . , t}} ,
2A partition of a nonempty set X is a set of nonempty pairwise disjoint subsets of X whose union is X.
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and we say that C is neutral with respect to Z, briefly Z-neutral, if, for every p ∈ P and ψ ∈W (Z),
we have3

C(p(id,ψ,id)) = ψC(p).

Thus, interpreting the elements of Z as subclasses, we have that Z-neutral sccs cannot distinguish
among alternatives in the same subclass. Note that W (Z) ≤ Sn.

Of course, if Y = {H} [Z = {N}], then V (H) = Sh [W (Z) = Sn] so that the classical require-
ment of anonymity [neutrality] corresponds to the one of Y -anonymity [Z-neutrality]. Moreover, C
is anonymous [neutral] if and only if C is Y -anonymous [Z-neutral] for all partition Y of H [Z of
N ].

Following Bubboloni and Gori (2016), we finally say that C is immune to the reversal bias if,
for every p ∈ P with |C(p)| = 1, we have

C(p(id,id,ρ0)) 6= C(p).

In other words, a scc is immune to the reversal bias if it never associates the same unique winner
both with a preference profile p and with the preference profile obtained by p reversing every
individual preference.

3 Analysis of some classical sccs

The Pareto (Par), the Borda (Bor), the Copeland (Cop), the Minimax (Min) and the Kemeny
(Kem) sccs are classical sccs deeply studied in the literature. Recall that Par is defined in (1)
while, for every p ∈ P, we have that4

Bor(p) = argmax
x∈N

h∑
i=1

(n− rankpi(x)) ,

Cop(p) = argmax
x∈N

(∣∣{y ∈ N : wp(x, y) ≥
⌈
h+1

2

⌉}∣∣− ∣∣{y ∈ N : wp(y, x) ≥
⌈
h+1

2

⌉}∣∣) ,
Min(p) = argmax

x∈N
min

y∈N\{x}
wp(x, y),

Kem(p) =
{
x ∈ N : ∃ q∗ ∈ argmax

q∈L(N)

kp(q) with rankq∗(x) = 1
}
.

where, for every p ∈ P, x, y ∈ N and q ∈ L(N), we have set

wp(x, y) = |{i ∈ H : x �pi y}|, kp(q) =
∑
x�qy

wp(x, y).

It is well-known that the following proposition holds true.

Proposition 1. Par, Bor, Cop, Min and Kem are efficient, anonymous and neutral.

In particular, all the considered sccs are anonymous with respect to any partition of H and
neutral with respect to any partition of N . In the next propositions, we find out conditions on
the number of individuals and alternatives which are necessary and sufficient to make those sccs
immune to the reversal bias and resolute.

3In order to simplify the notation, given ψ ∈ Sn and X ⊆ N , we write ψX instead of ψ(X).
4With Borda scc we mean the well-known Borda count. All the other definitions are taken from Fishburn (1977).
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Proposition 2. Par, Bor, Cop and Kem are immune to the reversal bias.

Proof. That fact for the Borda and Copeland sccs is proved in Bubboloni and Gori (2016, Proposi-
tion 3). We are thus left with considering C ∈ {Par,Kem} and showing that if, for some p ∈ P and
x, y ∈ N, we have C(p) = {x} and C(p(id,id,ρ0)) = {y}, then x 6= y. In what follows, for shortness,
for every p ∈ P, we will write pρ0 instead of p(id,id,ρ0).

Assume that Par(p) = {x} and Par(pρ0) = {y} for some p ∈ P and x, y ∈ N . Then, in
particular, we have that rankp1(x) = 1 and rankpρ01 (y) = 1. Thus, rankp1(y) = n 6= 1 = rankp1(x),
which says x 6= y.

Consider now Kem. We start defining, for every p ∈ P, the nonempty subset of L(N)

K(p) = argmax
q∈L(N)

kp(q)

and showing that, for every p ∈ P,
K(pρ0) = K(p)ρ0. (2)

Indeed, given p ∈ P, it is immediately checked that, for every x, y ∈ N , we have wpρ0 (x, y) =
wp(y, x). As a consequence, for every q ∈ L(N), we have that

kpρ0 (qρ0) =
∑

x�qρ0y
wpρ0 (x, y) =

∑
y�qx

wp(y, x) = kp(q).

Given now q̂ ∈ K(p)ρ0, note that q̂ = q∗ρ0 for a suitable q∗ ∈ K(p). Then, for every q ∈ L(N), we
have kp(q

∗) ≥ kp(q) and therefore kpρ0 (q∗ρ0) = kp(q
∗) ≥ kp(q) = kpρ0 (qρ0). Since L(N)ρ0 = L(N),

that means q̂ = q∗ρ0 ∈ K(pρ0). Thus, K(p)ρ0 ⊆ K(pρ0). The same argument applied to pρ0 gives
K(pρ0)ρ0 ⊆ K(p). It follows that K(pρ0) ⊆ K(p)ρ0, which completes the proof of (2).

Assume now that Kem(p) = {x} and Kem(pρ0) = {y} for some p ∈ P and x, y ∈ N . Pick
q∗ ∈ K(p) and note that rankq∗(x) = 1. On the other hand, by (2), q∗ρ0 ∈ K(pρ0), so that
rankq∗ρ0(y) = 1, that is, rankq∗(y) = n. Hence the alternatives x and y are ranked differently by
q∗, which implies x 6= y.

The following result is proved by Bubboloni and Gori (2016, Theorem A).

Proposition 3. Min is immune to the reversal bias if and only if h ≤ 3 or n ≤ 3 or (h, n) ∈
{(4, 4), (5, 4), (7, 4), (5, 5)}.

Proposition 4. Par is not resolute.

Proof. Consider p ∈ P such that rankp1(1) = 1 and rankp2(2) = 1. Then {1, 2} ⊆ Par(p) so that
Par is not resolute.

Proposition 5. Let C ∈ {Bor,Cop,Min,Kem}. Then C is resolute if and only if n = 2 and h is
odd.

Proof. If n = 2 and h is odd, then Bor, Cop, Min and Kem agree with the simple majority so
that they are resolute. We are then left with proving that if h is even or n ≥ 3, then none among
Bor, Cop , Min, Kem is resolute.

Assume at first h even. Define

q1 = [1, 2, (3), . . . , (n)]T , q2 = [2, 1, (3), . . . , (n)]T

and consider any preference profile p ∈ P such that

|{i ∈ H : pi = q1}| = h
2 , |{i ∈ H : pi = q2}| = h

2 .
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It is immediate to verify that Bor(p) = Cop(p) = Min(p) = {1, 2}. Moreover, it can be checked
that

kp(q1) = kp(q2) = max
q∈L(N)

kp(q) = (n2 − n− 1)
h

2
,

so that, since Kem is efficient, Kem(p) = {1, 2}.
Assume now n ≥ 3 and h odd. Then there exist r, t ∈ {0, 1} with t ≤ r and k ∈ N0 such that

h = 3 + 2r + 2t+ 6k. Define

q1 = [1, 2, 3, (4), . . . , (n)]T , q2 = [1, 3, 2, (4), . . . , (n)]T , q3 = [2, 1, 3, (4), . . . , (n)]T ,

q4 = [2, 3, 1, (4), . . . , (n)]T , q5 = [3, 1, 2, (4), . . . , (n)]T , q6 = [3, 2, 1, (4), . . . , (n)]T ,

and consider any preference profile p ∈ P such that

|{i ∈ H : pi = q1}| = 1 + k + r, |{i ∈ H : pi = q2}| = k + t, |{i ∈ H : pi = q3}| = k,

|{i ∈ H : pi = q4}| = 1 + k + t, |{i ∈ H : pi = q5}| = 1 + k, |{i ∈ H : pi = q6}| = k + r.

It is immediate to verify that Bor(p) = Cop(p) = Min(p) = {1, 2, 3}. Moreover, it can be checked
that

kp(q1) = kp(q4) = kp(q5) = max
q∈L(N)

kp(q) = 5 + 3r + 3t+ 9k + (n2 − n− 6)
h

2
,

so that, since Kem is efficient, Kem(p) = {1, 2, 3}.

4 Main problem and results

As shown in the previous section resoluteness is not generally satisfied by classical social choice
correspondences. If a scc C is not resolute, then it admits different resolute refinements, each of
them naturally interpreted as a tie-breaking rule for C. As a consequence, one may wonder whether
it is possible to find resolute refinements having special and desirable properties. An interesting
result about the Pareto scc and the properties of anonymity and neutrality is proved by Moulin
(1983, p.23).

Theorem 6. Par admits an anonymous and neutral resolute refinement if and only if

gcd(h, n!) = 1 (3)

An important consequence of Theorem 6 is that any efficient scc has anonymous and neutral
resolute refinements only if (3). Unfortunately, since (3) is a very strong arithmetical condition on
the number of individuals and the number of alternatives, in most cases, no anonymous and neutral
refinement is available5. When a scc does not have anonymous and neutral resolute refinements, one
may however focus on those resolute refinements satisfying suitable weaker versions of anonymity
and neutrality. Indeed, the present paper is devoted to that type of inquiry. More precisely, having
in mind the properties discussed in Section 2.4, we address the following problem.

Main problem. Given a scc C, a partition Y of individuals and a partition Z of alternatives,
find conditions on C, Y and Z assuring that C admits a resolute refinement which is Y -anonymous
and Z-neutral [and immune to the reversal bias].

The first result we propose provides arithmetical conditions on the structure of the partitions
that are necessary for the existence of resolute refinements of the Pareto scc which are anonymous
and neutral with respect to those partitions [and immune to the reversal bias].

5Mainly under the assumption (3), an analysis of anonymous, neutral and monotonic resolute refinements of sccs
has been recently carried on by Doğan and Giritligil (2015). It is also worth mentioning the contribution of Campbell
and Kelly (2015) who show that if n > h (so that (3) fails) and anonymous, neutral and resolute sccs exist, then
those sccs exhibit even more undesirable behaviours than inefficiency.
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Theorem 7. Let Y = {Yj}sj=1 be a partition of H, and Z = {Zk}tk=1 be a partition of N with
|Zk∗ | = max{|Zk|}tk=1.

(i) If Par admits a resolute refinement which is Y -anonymous and Z-neutral, then

gcd
(
gcd(|Yj |)sj=1, |Zk∗ |!

)
= 1. (4)

(ii) If Par admits a resolute refinement which is Y -anonymous, Z-neutral and immune to the
reversal bias, then

gcd
(
gcd(|Yj |)sj=1, lcm(|Zk∗ |!, 2)

)
= 1. (5)

Proof. (i) Let C be resolute, efficient, Y -anonymous and Z-neutral. Assume by contradiction that
(4) does not hold true. Then there exists a prime number π which divides gcd

(
gcd(|Yj |)sj=1, |Zk∗ |!

)
.

Then, for every j ∈ {1, . . . , s}, π | |Yj | and π ≤ |Zk∗ |. Consider π distinct alternatives x1, . . . , xπ ∈
Zk∗ and denote by y1, . . . , yn−π the remaining alternatives. For every j ∈ {1, . . . , s}, let hj = |Yj |
and ij1, . . . , i

j
hj

be the list of all the elements in Yj . Define

ϕ = (i11 . . . i
1
h1

)(i21 . . . i
2
h2

) . . . (is1 . . . i
s
hs) ∈ Sh (6)

and ψ = (x1 . . . xπ) ∈ Sn. Note that ϕ ∈ V (Y ) and ψ ∈ W (Z). Consider then the preference
relation p0 ∈ L(N) defined by

x1 �p0 . . . �p0 xπ �p0 y1 �p0 . . . �p0 yn−π,

and the preference profile p defined, for every j ∈ {1, . . . , s} and r ∈ {1, . . . , hj}, by pijr = ψr−1p0.
A simple check shows that Par(p) = {x1, . . . , xπ} and that

p = (p(ϕ,id,id))(id,ψ,id).

Let now x∗ ∈ N be such that C(p) = {x∗}. Then

{x∗} = C(p) = C
(

(p(ϕ,id,id))(id,ψ,id)
)

= ψC(p(ϕ,id,id)) = ψC(p) = {ψ(x∗)} ⊆ Par(p).

Thus x∗ is a fixed point of ψ belonging to {x1, . . . , xπ}, a contradiction.
(ii) Let C be resolute, efficient, Y -anonymous, Z-neutral and immune to the reversal bias.

Assume, by contradiction, that (5) does not hold true. Then there exists a prime number π which
divides gcd

(
gcd(|Yj |)sj=1, lcm(|Zk∗ |!, 2)

)
. If π ≥ 3, then we have that, for every j ∈ {1, . . . , s},

π | |Yj | and π ≤ |Zk∗ |. Thus, we proceed exactly as in the proof of (i) and find the contradiction.

If instead π = 2, then, for every j ∈ {1, . . . , s}, hj = |Yj | is even. Let ij1, . . . , i
j
hj

be the list of all

the elements in Yj . Let ϕ defined as in (6) and ψ = id ∈ Sn. Note that ϕ ∈ V (Y ) and ψ ∈ W (Z).
Consider the preference profile p defined, for every j ∈ {1, . . . , s} and r ∈ {1, . . . , hj}, by pijr = ρr−1

0 .
A simple check shows that

p = (p(id,id,ρ0))(ϕ,id,id).

Then
C(p) = C

(
(p(id,id,ρ0))(ϕ,id,id)

)
= C(p(id,id,ρ0)) 6= C(p),

a contradiction.

Note that (5) obviously implies (4), and that (4) and (5) are equivalent if one among the elements
of Z has size greater than 1. Moreover, considering Y = {H} and Z = {N}, both (4) and (5) are
equivalent to (3). As a consequence, Theorem 7(i) implies the “only if” part of Theorem 6.
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Let us present now the main result of the paper. It shows that, considering partitions of
individuals and alternatives satisfying the arithmetical conditions described in Theorem 7, there
exists a resolute refinement which is anonymous and neutral with respect to the given partitions
[and immune to the reversal bias] for any scc having the same properties. Differently from Theorem
7, the proof of this result is quite technical and will be presented in Section 6 as a consequence of
the theory developed in Section 5.

Theorem 8. Let Y = {Yj}sj=1 be a partition of H, and Z = {Zk}tk=1 be a partition of N with
|Zk∗ | = max{|Zk|}tk=1.

(i) If C ∈ C is Y -anonymous and Z-neutral and (4) holds true, then C admits a resolute refine-
ment which is Y -anonymous, Z-neutral.

(ii) If C ∈ C is Y -anonymous, Z-neutral and immune to the reversal bias and (5) holds true, then
C admits a resolute refinement which is Y -anonymous, Z-neutral and immune to the reversal
bias.

Note that if (3) holds true, then (4) and (5) are both satisfied for Y = {H} and Z = {N}. As
a consequence, from Theorem 8 we get that (3) implies that every scc which is anonymous and
neutral [and immune to the reversal bias] admits a resolute refinement which is anonymous and
neutral [and immune to the reversal bias]. That shows, in particular, that Theorem 8(i) implies the
“if” part of Theorem 6.

In order to better understand how Theorem 8 can be applied in concrete situations, let us
consider a committee whose purpose is to select a unique winner among a certain set of candidates.
Assume that the members of a committee have already found an agreement on the use of a certain
scc C with C anonymous and neutral [and immune to the reversal bias]. If C is not resolute,
then the committee members need to determine a tie-breaking rule, that is, a resolute refinement
of C. By Theorem 8, if the characteristics of committee members and candidates naturally suggest
to divide them in groups satisfying (4) [(5)], a resolute refinement of C which is anonymous and
neutral with respect to the considered partitions [and immune to the reversal bias] can be designed.
As a remarkable case, assume that the committee has an individual, say individual i, having a
special role in the committee. That happens, for instance, when the committee has a president. In
that case, it is reasonable to assume that the decision power of the president may be potentially
different from the one of any other member in the committee. That leads to consider the partition
of H given by Y = {{i}, H \ {i}} which determines the groups of people equally influencing the
outcome of the decision process. Considering now the partition Z = {N} of N , that is giving no
exogenous advantage to any alternative, we have that Y and Z satisfy (5) and so also (4). Then
Theorem 8 applies and we know that there exists a resolute refinement of C which is Y -anonymous
and neutral [and immune to the reversal bias].

As a final remark, we stress that, in general, resolute refinements identified by Theorem 8 may
be a lot, so that it can be difficult to discriminate among them. However, the theory developed in
Section 5 provides a method to potentially build and count all those refinements. That makes the
comparison among them much easier. In order to describe how such a method works, in Section
6.2, we build and count all resolute refinements which are anonymous, neutral and immune to the
reversal bias of the Pareto, the Borda, the Copeland, the Minimax and the Kemeny sccs when
individuals are five and alternatives are three. In Section 6.3.1 we consider instead the case with
three individuals and three alternatives and we analyse, for each of the previously mentioned sccs,
all the resolute refinement which are {{1, 2}, {3}}-anonymous, neutral and immune to the reversal
bias. In that example, individual 3 is distinguished from individuals 1 and 2 who instead are
indistinguishable.
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5 General theory

In this large section we develop the general theory behind our results. The concept of action of a
group on a set is the main tool used (see Jacobson, 1974, Section 1.12).

5.1 U-consistent resolute sccs

Let F denote the set of resolute sccs. Clearly F ⊆ C and each resolute sccs can be naturally
identified with a social choice function, that is, a function f from P to N . We will adopt that
identification throughout the rest of the paper.

Let C ∈ C. Denote by CC the set of refinements of C, and by FC the set F ∩ CC of the resolute
refinements of C. Each resolute refinement of C is identified with a social choice function f : P → N
such that, for every p ∈ P,

f(p) ∈ C(p). (7)

Let U be a subgroup of G. We say that C is U -consistent if, for every p ∈ P and (ϕ,ψ, ρ) ∈ U ,

C(p(ϕ,ψ,ρ)) = ψC(p) if ρ = id, (8)

C(p(ϕ,ψ,ρ)) 6= ψC(p) if ρ = ρ0 and |C(p)| = 1. (9)

Note that condition (9) is equivalent to

C(p(ϕ,ψ,ρ)) 6= ψC(p) if ρ = ρ0 and |C(p)| = |C(p(ϕ,ψ,ρ0))| = 1.

The set of U -consistent sccs is denoted by CU ; the set F ∩ CU of U -consistent resolute sccs is
denoted by FU . Each scc in FU is identified with a social choice function f : P → N such that, for
every p ∈ P and (ϕ,ψ, ρ) ∈ U ,

f(p(ϕ,ψ,id)) = ψf(p) if ρ = id,

f(p(ϕ,ψ,ρ0)) 6= ψf(p) if ρ = ρ0.
(10)

We also set CUC = CC ∩ CU and FUC = FC ∩ FU . Each scc in FUC will be called a U -consistent
resolute refinement of C and identified with a social choice function f : P → N such that, for every
p ∈ P, both (7) and (10) hold true.

The concept of consistency of a scc with respect to a subgroup U of G is able to catch interesting
requirements for sccs through a suitable choice of the subgroup U . In particular, for every partition
Y of H, C is Y -anonymous if and only if C ∈ CV (Y )×{id}×{id}; for every partition Z of N , C is
Z-neutral if and only if C ∈ C{id}×W (Z)×{id}; C is immune to the reversal bias if and only if
C ∈ C{id}×{id}×Ω.

5.2 The action of G on the set of preference profiles

The following proposition, proved in Bubboloni and Gori (2015, Proposition 2), shows that any
subgroup U of G naturally acts on the set of preference profiles P. Recall that this means that
there exists a homomorphism from U to Sym.

Proposition 9. Let U ≤ G. Then:

(i) for every p ∈ P and (ϕ1, ψ1, ρ1), (ϕ2, ψ2, ρ2) ∈ U , we have

p (ϕ1ϕ2,ψ1ψ2,ρ1ρ2) = (p (ϕ2,ψ2,ρ2))(ϕ1,ψ1,ρ1); (11)
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(ii) the function α : U → Sym(P) defined, for every (ϕ,ψ, ρ) ∈ U , by

α(ϕ,ψ, ρ) : P → P, p 7→ p(ϕ,ψ,ρ),

is well defined and it is an action of the group U on the set P.

Proposition 10 below is a first interesting consequence of Proposition 9. In particular, it says
that, given a scc C, a partition Y of H and a partition Z of N , we have that C is Y -anonymous
and Z-neutral if and only if C ∈ CV (Y )×W (Z)×{id}; C is Y -anonymous and immune to the reversal
bias if and only if C ∈ CV (Y )×{id}×Ω; C is Z-neutral and immune to the reversal bias if and only
if C ∈ C{id}×W (Z)×Ω; C is Y -anonymous, Z-neutral and immune to the reversal bias if and only if
C ∈ CG.

Before stating Proposition 10, recall that if X is a subset of a group G, the subgroup of G
generated by X is defined as the intersection of all the subgroups of G containing X and it is
denoted by 〈X〉. It is well known that 〈X〉 consists of all the finite products of elements in X. If
X1, X2 are subsets of G, we write 〈X1, X2〉 instead of 〈X1 ∪X2〉. For further details see Jacobson
(1974, Section 1.5).

Proposition 10. For every i ∈ {1, 2}, let Zi ≤ Sh × Sn, Ri ≤ Ω and Ui = Zi × Ri. Then
CU1 ∩ CU2 = C〈U1,U2〉. In particular, FU1 ∩ FU2 = F〈U1,U2〉.

Proof. Since 〈U1, U2〉 ≤ G contains both U1 and U2, we immediately get C〈U1,U2〉 ⊆ CU1 ∩ CU2 . Let
us now fix C ∈ CU1 ∩ CU2 and prove C ∈ C〈U1,U2〉. Define, for every k ∈ N, the set 〈U1, U2〉k of
the elements in 〈U1, U2〉 that can be written as product of k elements of U1 ∪ U2. Then we have
〈U1, U2〉 =

⋃
k∈N〈U1, U2〉k and to get C ∈ C〈U1,U2〉 it is enough to show the two following facts:

(a) for every k ∈ N,

for every p ∈ P and g = (ϕ,ψ, id) ∈ 〈U1, U2〉k, (8) holds true; (12)

(b) for every k ∈ N, p ∈ P and g = (ϕ,ψ, ρ0) ∈ 〈U1, U2〉k, (9) holds true.

First of all, for every g = (ϕ,ψ, ρ) ∈ G, define g = (ϕ,ψ, id) ∈ G. We start showing that, for every
k ∈ N,

g ∈ 〈U1, U2〉k implies g ∈ 〈U1, U2〉k. (13)

If ρ = id, there is nothing to prove. So assume ρ = ρ0. Since, for every i ∈ {1, 2}, we have that
Ui = Zi × Ri with Zi ≤ Sh × Sh and Ri ≤ Ω, then (13) surely holds for k = 1. If k ≥ 2, pick
g = g1 · · · gk = (ϕ,ψ, ρ0) ∈ 〈U1, U2〉k, where g1, . . . , gk ∈ U1 ∪ U2. Since ρ0 has order two, the
number of j ∈ {1, . . . , k} such that the third component of gj is ρ0 is odd. Pick j ∈ {1, . . . , k}
such that gj = (ϕj , ψj , ρ0). By the case k = 1, we have that gj = (ϕj , ψj , id) ∈ U1 ∪ U2, so
that g = g1 . . . gj−1gjgj+1 . . . gk ∈ 〈U1, U2〉k and its first and second components are equal to those
of g. Moreover, the number of factors in g having as third component ρ0 is even, which gives
g = (ϕ,ψ, id).

We now show (a), by induction on k. If k = 1, we have g ∈ 〈U1, U2〉1 = U1 ∪ U2 and so (12)
is guaranteed by C ∈ CU1 ∩ CU2 . Assume (12) up to some k ∈ N and show that it holds also for
k + 1. Let p ∈ P and g = (ϕ,ψ, id) ∈ 〈U1, U2〉k+1. Then there exist g∗ = (ϕ∗, ψ∗, ρ∗) ∈ 〈U1, U2〉k
and g1 = (ϕ1, ψ1, ρ1) ∈ U1 ∪ U2 such that g = g1g∗ = (ϕ1ϕ∗, ψ1ψ∗, ρ1ρ∗). We want to show that
C(pg) = ψ1ψ∗C(p). Note that g = g1g∗ and that, by (13), g∗ ∈ 〈U1, U2〉k and g1 ∈ U1 ∪ U2.
Then, using (11) and applying the inductive hypothesis for (12) both to g1 and to g∗, we get
C(pg) = C(pg1g∗) = C((pg∗)g1) = ψ1C(pg∗) = ψ1ψ∗C(p).

We next show (b). Let k ∈ N, p ∈ P, g = (ϕ,ψ, ρ0) ∈ 〈U1, U2〉k and |C(p)| = 1. We need
to show that C(pg) 6= ψC(p). First of all note that, since 〈U1, U2〉 contains an element with third
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component ρ0, then we necessarily have R1 = Ω or R2 = Ω, so that (id, id, ρ0) ∈ U1∪U2. Moreover,
we can express g as g = g (id, id, ρ0) and, by (13), g ∈ 〈U1, U2〉k. Thus, by (11) and (a), we have
C(pg) = C((p(id,id,ρ0))g) = ψC(p(id,id,ρ0)). On the other hand, since (id, id, ρ0) ∈ U1 ∪ U2 and
C ∈ CU1 ∩ CU2 , we get C(p(id,id,ρ0)) 6= C(p) and so C(pg) = ψC(p(id,id,ρ0)) 6= ψC(p) as required.

Finally, as a consequence of CU1 ∩ CU2 = C〈U1,U2〉, we also have that FU1 ∩FU2 = CU1 ∩CU2 ∩F =
C〈U1,U2〉 ∩ F = F〈U1,U2〉.

As an immediate consequence of Propositions 1, 2, 3 and 10 we get the following result.

Proposition 11. (i) For every C ∈ {Par,Bor, Cop,Min,Kem}, C ∈ C
Sh×Sn×{id}
Par .

(ii) For every C ∈ {Par,Bor, Cop,Kem}, C ∈ CGPar.

(iii) Min ∈ CGPar if and only if one of the following conditions holds true:

(a) h ≤ 3;

(b) n ≤ 3;

(c) (h, n) ∈ {(4, 4), (5, 4), (7, 4), (5, 5)}.

Proposition 9 also allows to use notation and results concerning the action of a group on a set.
We recall the basic facts that we are going to use.

Fix U ≤ G. For every p ∈ P, the set pU = {pg ∈ P : g ∈ U} is called the U -orbit of
p and the subgroup of U defined by StabU (p) = {g ∈ U : pg = p} is called the stabilizer of
p in U . It is well known that the set PU = {pU : p ∈ P} of the U -orbits is a partition of
P. We use PU as set of indexes and denote its elements with j. A vector (pj)j∈PU ∈ ×j∈PUP
is called a system of representatives of the U -orbits if, for every j ∈ PU , pj ∈ j. The set of
the systems of representatives of the U -orbits is denoted by S(U). If (pj)j∈PU ∈ S(U), then,

for every p ∈ P, there exist j ∈ PU and (ϕ,ψ, ρ) ∈ U such that p = pj (ϕ,ψ,ρ). Note that if
pj1 (ϕ1,ψ1,ρ1) = pj2 (ϕ2,ψ2,ρ2) for some j1, j2 ∈ PU and some (ϕ1, ψ1, ρ1), (ϕ2, ψ2, ρ2) ∈ U , then
j1 = j2 and, by (11), (ϕ−1

2 ϕ1, ψ
−1
2 ψ1, ρ

−1
2 ρ1) ∈ StabU (pj1).

The stabilizer of p in U evolves in a natural way through the action. Namely for every p ∈ P
and g ∈ U , we have

StabU (pg) = g StabU (p)g−1.

This implies that if V is a normal subgroup of U and p ∈ P, then StabU (p) ≤ V if and only if
StabU (pg) ≤ V for all g ∈ U . Now, being Sh×Sn×{id} normal in G, by an elementary group theory
result, we have that U ∩ (Sh × Sn × {id}) is normal in U . Thus, the above argument guarantees
that, for every j ∈ PU , exactly one of the two following conditions holds true:

- for every p ∈ j, StabU (p) ≤ Sh × Sn × {id};

- for every p ∈ j, StabU (p) 6≤ Sh × Sn × {id}.

We then define

PU1 =
{
j ∈ PU : ∀p ∈ j, StabU (p) ≤ Sh × Sn × {id}

}
, (14)

PU2 =
{
j ∈ PU : ∀p ∈ j, StabU (p) 6≤ Sh × Sn × {id}

}
. (15)

Of course, PU1 ∪ PU2 = PU and PU1 ∩ PU2 = ∅. In particular, PU1 and PU2 cannot be both empty.
Obviously, if U ≤ Sh × Sn × {id}, then PU2 = ∅ and PU = PU1 6= ∅.

The sets PU1 and PU2 play an important role to check whether two given U -consistent sccs are
equal, as shown by the following results.
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Proposition 12. Let U ≤ Sh × Sn × {id} and C,C ′ ∈ CU . Assume that there exists (pj)j∈PU ∈
S(U) such that C(pj) = C ′(pj) for all j ∈ PU . Then C = C ′.

Proof. Let p ∈ P and show that C(p) = C ′(p). We know there exist j ∈ PU and (ϕ,ψ, id) ∈ U
such that p = pj (ϕ,ψ,id). Then,

C(p) = C(pj (ϕ,ψ,id)) = ψC(pj) = ψC ′(pj) = C ′(pj (ϕ,ψ,id)) = C ′(p). (16)

Proposition 13. Let U ≤ G such that U 6≤ Sh × Sn × {id} and C,C ′ ∈ CU . Assume that
there exist (pj)j∈PU ∈ S(U) and (ϕ∗, ψ∗, ρ0) ∈ U such that C(pj) = C ′(pj) for all j ∈ PU and

C(pj (ϕ∗,ψ∗,ρ0)) = C ′(pj (ϕ∗,ψ∗,ρ0)) for all j ∈ PU1 . Then C = C ′.

Proof. Let p ∈ P and show that C(p) = C ′(p). Let j ∈ PU be the unique orbit such that p ∈ j. If
there exists (ϕ,ψ, id) ∈ U such that p = pj (ϕ,ψ,id), then we get C(p) = C ′(p) operating as in (16).
So, assume that,

for every (ϕ,ψ, ρ) ∈ U such that p = pj (ϕ,ψ,ρ), we have ρ = ρ0. (17)

We show that (17) implies StabU (pj) ≤ Sh×Sn×{id}. Indeed, suppose by contradiction that there
exists (ϕ1, ψ1, ρ0) ∈ StabU (pj). Pick (ϕ,ψ, ρ0) ∈ U such that p = pj (ϕ,ψ,ρ0) and note that, by (11),

p = pj (ϕ,ψ,ρ0) = (pj (ϕ1,ψ1,ρ0))(ϕ,ψ,ρ0) = pj (ϕϕ1,ψψ1,id)

which contradicts (17). As a consequence, j ∈ PU1 and thus C(pj (ϕ∗,ψ∗,ρ0)) = C ′(pj (ϕ∗,ψ∗,ρ0)). Pick
again (ϕ,ψ, ρ0) ∈ U such that p = pj (ϕ,ψ,ρ0) and note that, by (11),

p = pj (ϕ,ψ,ρ0) = (pj (ϕ∗,ψ∗,ρ0))(ϕϕ−1
∗ ,ψψ−1

∗ ,id)

so that, since C and C ′ are U -consistent, we finally obtain

C(p) = C
(

(pj (ϕ∗,ψ∗,ρ0))(ϕϕ−1
∗ ,ψψ−1

∗ ,id)
)

= ψψ−1
∗ C(pj (ϕ∗,ψ∗,ρ0))

= ψψ−1
∗ C ′(pj (ϕ∗,ψ∗,ρ0)) = C ′

(
(pj (ϕ∗,ψ∗,ρ0))(ϕϕ−1

∗ ,ψψ−1
∗ ,id)

)
= C ′(p).

Propositions 12 and 13 indicate that the consistency level of a scc is a tool for identifying it.
Indeed, let C,C ′ ∈ C and suppose that we are interested to know whether C = C ′. Once C and
C ′ are proved to be both in CU for a suitable U ≤ G, it suffices to check whether the equality
C(p) = C ′(p) holds true on a small subset of P, which essentially agrees with a system of U -orbits
representatives. Since the largest is U , the smallest the number of U -orbits is, dealing with the
largest possible U reduces the number of checks to be done.

5.3 Regular subgroups

Bubboloni and Gori (2015) introduce the concept of regular subgroup to deal with symmetric social
welfare functions. A subgroup U of G is said to be regular if, for every p ∈ P,

there exists ψ∗ ∈ Sn conjugate to ρ0 such that

StabU (p) ⊆ (Sh × {id} × {id}) ∪ (Sh × {ψ∗} × {ρ0}) .
(18)

Note that, within our notation, two permutations σ1, σ2 ∈ Sn are conjugate if there exists u ∈ Sn
such that σ1 = uσ2u

−1. The following result, which is proved in Bubboloni and Gori (2015, Theorem
14 and Lemma 17), identifies an interesting and quite large class of regular subgroups of G.
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Theorem 14. Let Y = {Yj}sj=1 be a partition of H, Z = {Zk}tk=1 be a partition of N with
|Zk∗ | = max{|Zk|}tk=1 and R ≤ Ω. Then V (Y )×W (Z)×R is regular if and only if

gcd
(
gcd(|Yj |)sj=1, lcm(|Zk∗ |!, |R|)

)
= 1. (19)

In particular, G is regular if and only if gcd(h, n!) = 1.

Theorem 15 below, which is a corollary of Theorems 18 and 20 proved in the next sections,
clearly shows the importance of concept of regular subgroup in the context of sccs.

Theorem 15. Let U ≤ G be regular. Then each U -consistent scc admits a resolute U -consistent
refinement.

Let us now collect some facts about regular subgroups that we are going to use in the sequel.
Recall that the subsets PU1 and PU2 of PU are defined in (14) and (15) respectively.

Lemma 16. Let U ≤ G be regular.

(i)
PU1 =

{
j ∈ PU : ∀p ∈ j, StabU (p) ≤ Sh × {id} × {id}

}
,

PU2 =
{
j ∈ PU : ∀p ∈ j, StabU (p) 6≤ Sh × {id} × {id}

}
.

(ii) If p ∈ P is such that StabU (p) 6≤ Sh × {id} × {id}, then the permutation ψ∗ ∈ Sn in (18) is
unique.

(iii) If W ≤ U , then W is regular too. In particular, G is regular if and only if each subgroup of
G is regular.

Proof. (i) It is an immediate consequence of the definitions of PU1 and PU2 and of regular subgroup.
(ii) Assume that StabU (p) ⊆ (Sh × {id} × {id}) ∪ (Sh × {ψ∗} × {ρ0}) as well as StabU (p) ⊆

(Sh × {id} × {id})∪ (Sh × {ψ∗∗} × {ρ0}), for suitable ψ∗, ψ∗∗ ∈ Sn and pick (ϕ,ψ, ρ0) ∈ StabU (p).
Then, we have ψ = ψ∗ as well as ψ = ψ∗∗, so that ψ∗ = ψ∗∗.

(iii) Simply observe that, for every p ∈ P, StabW (p) = W ∩ StabU (p).

In the Appendix, under the assumption that U is a regular subgroup of G, we will discuss when
PU1 6= ∅ or PU2 6= ∅.

5.4 Existence of U-consistent resolute refinements for U ≤ Sh × Sn × {id}
In this section we focus on the set FUC , where U is a regular subgroup of G included in Sh×Sn×{id},
and C is a U -consistent scc.

Proposition 17. Let U ≤ Sh × Sn × {id} be regular, (pj)j∈PU ∈ S(U) and C ∈ CU . For every
j ∈ PU , let xj ∈ C(pj). Then there exists a unique f ∈ FUC such that, for every j ∈ PU , f(pj) = xj.

Proof. Let us consider f ∈ F defined, for every p ∈ P, as follows. Given p ∈ P, consider the
unique j ∈ PU such that p ∈ j and the nonempty set Up = {(ϕ,ψ, id) ∈ U : p = pj (ϕ,ψ,id)}.
Pick (ϕ,ψ, id) ∈ Up and let f(p) = ψ(xj). We need to prove that the value of f(p) does not
depend on the particular element chosen in Up. Indeed, let (ϕ1, ψ1, id), (ϕ2, ψ2, id) ∈ Up and recall
that (ϕ−1

2 ϕ1, ψ
−1
2 ψ1, id) ∈ StabU (pj). Since U is regular, that gives ψ1 = ψ2 and, in particular,

ψ1(xj) = ψ2(xj).
We show that f satisfies all the desired properties. First of all, since U ≤ G, we have (id, id, id) ∈

U and thus the definition of f immediately implies f(pj) = xj .
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Let us now prove that f ∈ FU . Consider then p ∈ P and (ϕ,ψ, id) ∈ U and show that
f(p(ϕ,ψ,id)) = ψf(p). Let p = pj (ϕ1,ψ1,id) for suitable j ∈ PU and (ϕ1, ψ1, id) ∈ U . Thus, f(p) =
ψ1(xj) and, by (11), f(p(ϕ,ψ,id)) = f(pj (ϕϕ1,ψψ1,id)) = ψψ1(xj) = ψf(p).

Let us next prove that f ∈ FC . Consider then p ∈ P and show that f(p) ∈ C(p). Let
p = pj (ϕ1,ψ1,id) for suitable j ∈ PU and (ϕ1, ψ1, id) ∈ U . Thus, f(p) = ψ1(xj) and, since C is
U -consistent, ψ1(xj) ∈ ψ1C(pj) = C(pj (ϕ1,ψ1,id)) = C(p).

Finally, in order to prove uniqueness, let f ′ ∈ FUC ⊆ CU such that f ′(pj) = xj for all j ∈ PU .
Then f ′ and f coincides on (pj)j∈PU ∈ S(U) and Proposition 12 applies giving f ′ = f.

Let U ≤ Sh × Sn × {id} be regular, (pj)j∈PU ∈ S(U) and C ∈ CU . Let Φ : ×j∈PUC(pj)→ FUC
be the function which associates with every (xj)j∈PU ∈ ×j∈PUC(pj) the unique f ∈ FUC defined
in Proposition 17. Of course, Φ depends on U , (pj)j∈PU and C but we do not emphasize that
dependence in the notation. Note also that Φ is injective.

Theorem 18. Let U ≤ Sh × Sn × {id} be regular, (pj)j∈PU ∈ S(U) and C ∈ CU . Then

FUC = Φ
(
×j∈PUC(pj)

)
.

Moreover, we have that

|FUC | =
∏
j∈PU

∣∣C(pj)
∣∣

and, in particular, FUC 6= ∅.

Proof. Consider f ∈ FUC and note that, for every j ∈ PU , f(pj) ∈ C(pj) and Φ
(
(f(pj))j∈PU

)
= f .

Then Φ is bijective, so that |FUC | =
∣∣×j∈PUC(pj)

∣∣ =
∏
j∈PU

∣∣C(pj)
∣∣ . Since, for every j ∈ PU ,

C(pj) 6= ∅, it finally follows that FUC 6= ∅.

5.5 Existence of U-consistent resolute refinements for U 6≤ Sh × Sn × {id}
In this section we focus on the set FUC , where U is a regular subgroup of G not included in Sh ×
Sn × {id} and C is a U -consistent scc. We start with some crucial definitions.

Let U ≤ G be regular such that U 6≤ Sh×Sn×{id}, C ∈ CU , (pj)j∈PU ∈ S(U) and (ϕ∗, ψ∗, ρ0) ∈
U . Define, for every j ∈ PU1 , the set

A1
C(pj) = {(y, z) ∈ C(pj)× C(pj (ϕ∗,ψ∗,ρ0)) : z 6= ψ∗(y)}, (20)

and, for every j ∈ PU2 , the set

A2
C(pj) =

{
x ∈ C(pj) : ψj(x) 6= x

}
, (21)

where ψj is the unique element in Sn such that

StabU (pj) ⊆ (Sh × {id} × {id}) ∪ (Sh × {ψj} × {ρ0}). (22)

Note that that uniqueness of ψj is guaranteed by Lemma 16(ii).
Next if PU1 6= ∅, then define

A1
C = ×j∈PU1 A

1
C(pj),

and if PU2 6= ∅, then define
A2
C = ×j∈PU2 A

2
C(pj).

Of course, all the sets above defined depend on U , (pj)j∈PU , (ϕ∗, ψ∗, ρ0) and C but we do not
emphasize that dependence in the notation.
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Proposition 19. Let U ≤ G be regular such that U 6≤ Sh × Sn × {id}, (pj)j∈PU ∈ S(U),
(ϕ∗, ψ∗, ρ0) ∈ U and C ∈ CU . For every j ∈ PU1 , let (yj , zj) ∈ A1

C(pj) and, for every j ∈ PU2 , let
xj ∈ A2

C(pj). Then there exists a unique f ∈ FUC such that f(pj) = yj and f(pj (ϕ∗,ψ∗,ρ0)) = zj for
all j ∈ PU1 , and f(pj) = xj for all j ∈ PU2 .

Proof. Given j ∈ PU2 , consider the set KU (pj) =
{
σ ∈ Sn : ψj = σρ0σ

−1
}

, where ψj is defined in
(22). Since U is regular, KU (pj) is nonempty so that we can choose an element σj in KU (pj). Note
that, for every j ∈ PU2 and (ϕ,ψ, ρ) ∈ StabU (pj), we have ψ = σjρσ

−1
j .

Let us consider then f ∈ F defined, for every p ∈ P, as follows. Given p ∈ P, consider the
unique j ∈ PU such that p ∈ j and the nonempty set Up = {(ϕ,ψ, ρ) ∈ U : p = pj (ϕ,ψ,ρ)}. Pick
(ϕ,ψ, ρ) ∈ Up and let

f(p) =


ψ(yj) if j ∈ PU1 and ρ = id

ψψ−1
∗ (zj) if j ∈ PU1 and ρ = ρ0

ψσjρσ
−1
j (xj) if j ∈ PU2

(23)

We need to prove that the value of f(p) does not depend on the particular element chosen in Up.
Indeed, let (ϕ1, ψ1, ρ1), (ϕ2, ψ2, ρ2) ∈ Up and recall that (ϕ−1

2 ϕ1, ψ
−1
2 ψ1, ρ

−1
2 ρ1) ∈ StabU (pj).

- If j ∈ PU1 , then (ϕ−1
2 ϕ1, ψ

−1
2 ψ1, ρ

−1
2 ρ1) ∈ StabU (pj) implies ρ2 = ρ1 and ψ1 = ψ2. As a

consequence, if ρ1 = ρ2 = id, then ψ1(yj) = ψ2(yj), while if ρ1 = ρ2 = ρ0, then (ψ1ψ
−1
∗ )(zj) =

(ψ2ψ
−1
∗ )(zj).

- If j ∈ PU2 , then (ϕ−1
2 ϕ1, ψ

−1
2 ψ1, ρ

−1
2 ρ1) ∈ StabU (pj) implies ψ−1

2 ψ1 = σjρ
−1
2 ρ1σ

−1
j , that

is, ψ1σjρ1σ
−1
j = ψ2σjρ2σ

−1
j , as ρ = ρ−1 for all ρ ∈ Ω. Then we get ψ1σjρ1σ

−1
j (xj) =

ψ2σjρ2σ
−1
j (xj).

We show that f satisfies all the desired properties. First of all, since U ≤ G, we have (id, id, id) ∈
U and thus the definition of f immediately implies f(pj) = yj and f(pj (ϕ∗,ψ∗,ρ0)) = zj for all j ∈ PU1 ,
and f(pj) = xj for all j ∈ PU2 .

Let us now prove that f ∈ FU . Consider then p ∈ P and (ϕ,ψ, ρ) ∈ U and show that if ρ = id,
then f(p(ϕ,ψ,ρ)) = ψf(p), while if ρ = ρ0, then f(p(ϕ,ψ,ρ)) 6= ψf(p). Let p = pj (ϕ1,ψ1,ρ1) for suitable
j ∈ PU and (ϕ1, ψ1, ρ1) ∈ U .

- If j ∈ PU1 and ρ1 = id, then f(p) = ψ1(yj). By (11), if ρ = id, then f(p(ϕ,ψ,ρ)) =
f(pj (ϕϕ1,ψψ1,id)) = ψψ1(yj) = ψf(p), while if ρ = ρ0, then f(p(ϕ,ψ,ρ)) = f(pj (ϕϕ1,ψψ1,ρ0)) =
ψψ1ψ

−1
∗ (zj) 6= ψψ1(yj) = ψf(p), since zj 6= ψ∗(yj) because (yj , zj) ∈ A1

C(pj).

- If j ∈ PU1 and ρ1 = ρ0, then f(p) = ψ1ψ
−1
∗ (zj). By (11), if ρ = id, then f(p(ϕ,ψ,ρ)) =

f(pj (ϕϕ1,ψψ1,ρ0)) = ψψ1ψ
−1
∗ (zj) = ψf(p), while if ρ = ρ0, then f(p(ϕ,ψ,ρ)) = f(pj (ϕϕ1,ψψ1,id)) =

ψψ1(yj) 6= ψψ1ψ
−1
∗ (zj) = ψf(p), since zj 6= ψ∗(yj) because (yj , zj) ∈ A1

C(pj).

- If j ∈ PU2 , then f(p) = ψ1σjρ1σ
−1
j (xj) and, by (11), f(p(ϕ,ψ,ρ)) = f(pj (ϕϕ1,ψψ1,ρρ1)) =

ψψ1σjρρ1σ
−1
j (xj). As a consequence, if ρ = id, we get f(p(ϕ,ψ,ρ)) = ψf(p). If instead ρ = ρ0,

we have that f(p(ϕ,ψ,ρ)) 6= ψf(p) if and only if ψψ1σjρ0ρ1σ
−1
j (xj) 6= ψψ1σjρ1σ

−1
j (xj) if and

only if σjρ0σ
−1
j (xj) 6= xj . However, the last relation holds true since σjρ0σ

−1
j = ψj and

ψj(xj) 6= xj because xj ∈ A2
C(pj).

Let us next prove that f ∈ FC . Consider then p ∈ P and show that f(p) ∈ C(p). Let
p = pj (ϕ1,ψ1,ρ1) for suitable j ∈ PU and (ϕ1, ψ1, ρ1) ∈ U .

- If j ∈ PU1 and ρ1 = id, then f(p) = ψ1(yj) and, by the U -consistency of C, ψ1(yj) ∈
ψ1C(pj) = C(pj (ϕ1,ψ1,id)) = C(p).
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- If j ∈ PU1 and ρ1 = ρ0, then f(p) = ψ1ψ
−1
∗ (zj) and, by (11) and the U -consistency of C,

ψ1ψ
−1
∗ (zj) ∈ ψ1ψ

−1
∗ C(pj (ϕ∗,ψ∗,ρ0))

= C
(

(pj (ϕ∗,ψ∗,ρ0))(ϕ1ϕ
−1
∗ ,ψ1ψ

−1
∗ ,id)

)
= C(pj (ϕ1,ψ1,ρ0)) = C(p).

- If j ∈ PU2 and ρ1 = id, then f(p) = ψ1(xj) and, by the U -consistency of C, ψ1(xj) ∈
ψ1C(pj) = C(pj (ϕ1,ψ1,id)) = C(p).

- If j ∈ PU2 and ρ1 = ρ0, then let (ϕ2, ψ2, ρ0) ∈ U be such that pj (ϕ2,ψ2,ρ0) = pj . By (11), we
have

p = pj (ϕ1,ψ1,ρ0) = (pj (ϕ2,ψ2,ρ0))(ϕ1ϕ
−1
2 ,ψ1ψ

−1
2 ,id) = pj (ϕ1ϕ

−1
2 ,ψ1ψ

−1
2 ,id).

Thus, f(p) = ψ1ψ
−1
2 (xj) and, by the U -consistency of C, ψ1ψ

−1
2 (xj) ∈ ψ1ψ

−1
2 C(pj) =

C(pj (ϕ1ϕ
−1
2 ,ψ1ψ

−1
2 ,id)) = C(p).

Finally, in order to prove uniqueness, let f ′ ∈ FUC such that f ′(pj) = yj and f ′(pj (ϕ∗,ψ∗,ρ0)) = zj
for all j ∈ PU1 , and f ′(pj) = xj for all j ∈ PU2 . Then f, f ′ ∈ CU realize f(pj) = f ′(pj) for all j ∈ PU
and f(pj (ϕ∗,ψ∗,ρ0)) = f ′(pj (ϕ∗,ψ∗,ρ0)) for all j ∈ PU1 . Hence, the thesis follows from Proposition
13.

Let U ≤ G be regular such that U 6≤ Sh × Sn × {id}, (pj)j∈PU ∈ S(U), (ϕ∗, ψ∗, ρ0) ∈ U and
C ∈ CU .

- If PU2 = ∅, then let Ψ1 : A1
C → FUC be the function which associates with every (yj , zj)j∈PU1 ∈

A1
C , the unique f ∈ FUC defined in Proposition 19.

- If PU1 = ∅, then let Ψ2 : A2
C → FUC be the function which associates with every (xj)j∈PU2 ∈ A

2
C ,

the unique f ∈ FUC defined in Proposition 19.

- If PU1 6= ∅ and PU2 6= ∅, then let Ψ3 : A1
C ×A2

C → FUC be the function which associates with
every ((yj , zj)j∈PU1 , (xj)j∈PU2 ) ∈ A1

C ×A2
C , the unique f ∈ FUC defined in Proposition 19.

Of course, Ψ1, Ψ2 and Ψ3 depend on U , (pj)j∈PU , (ϕ∗, ψ∗, ρ0) and C but we do not emphasize that
dependence in the notation. Note also that Ψ1, Ψ2 and Ψ3 are injective.

Theorem 20. Let U ≤ G be regular such that U 6≤ Sh×Sn×{id}, (pj)j∈PU ∈ S(U), (ϕ∗, ψ∗, ρ0) ∈
U and C ∈ CU . Then

FUC =

 Ψ1(A1
C) if PU2 = ∅

Ψ2(A2
C) if PU1 = ∅

Ψ3(A1
C ×A2

C) if PU1 6= ∅ and PU2 6= ∅

Moreover, we have that

|FUC | =

 |A
1
C | if PU2 = ∅

|A2
C | if PU1 = ∅

|A1
C | · |A2

C | if PU1 6= ∅ and PU2 6= ∅

and FUC 6= ∅.

Proof. Assume first that PU1 and PU2 are both nonempty. Consider f ∈ FUC and note that(
(f(pj), f(pj (ϕ∗,ψ∗,ρ0)))j∈PU1 , (f(pj))j∈PU2

)
∈ A1

C ×A2
C ,
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and
Ψ3

(
(f(pj), f(pj (ϕ∗,ψ∗,ρ0)))j∈PU1 , (f(pj))j∈PU2

)
= f.

Then Ψ3 is bijective, so that |FUC | = |A1
C ×A2

C | = |A1
C | · |A2

C |. We complete the proof showing that,
for every j ∈ PU1 , A1

C(pj) 6= ∅ and that, for every j ∈ PU2 , A2
C(pj) 6= ∅. The fact that A1

C(pj)
has at least one element for all j ∈ PU1 is an immediate consequence of the U -consistency of C.
Assume now that there exists j ∈ PU2 such that A2

C(pj) = ∅ and consider ψj as defined in (22).
Then, for every x ∈ C(pj), we have that ψj(x) = x. On the other hand, being ψj a conjugate of
ρ0, it has the same number of fixed points of ρ0. Thus, if n is even, then ψj has no fixed point and
so C(pj) = ∅, a contradiction. If instead n is odd, we have that ψj has a unique fixed point x0

and so C(pj) = {x0}. Pick (ϕ1, ψ1, ρ0) ∈ StabU (pj). By the regularity of U , we get ψ1 = ψj and
thus ψ1(x0) = x0. It follows that ψ−1

1 C(pj) = C(pj). Now, by (11) and the U -consistency of C, we
finally deduce that

C(pj (ϕ∗,ψ∗,ρ0)) = C
(

(pj (ϕ1,ψ1,ρ0))(ϕ∗ϕ
−1
1 ,ψ∗ψ

−1
1 ,id)

)
= C(pj (ϕ∗ϕ

−1
1 ,ψ∗ψ

−1
1 ,id)) = ψ∗ψ

−1
1 C(pj) = ψ∗C(pj),

which contradicts (9).
The case PU1 = ∅ and the case PU2 = ∅ are similar and then omitted.

6 Some applications

In this section we mainly apply the general theory about the concept of consistency to study
the properties of anonymity and neutrality with respect to partitions as well as the immunity to
the reversal bias. In particular, we describe some concrete situations involving the classical sccs
considered in Section 3. In what follows we denote by C∗ the set {Par,Bor, Cop,Kem,Min}.

6.1 Proof of Theorem 8

We are going to prove Theorem 8 by proving Theorem 21 below. Indeed, on the basis of the notation
introduced along the paper and Proposition 10, Theorem 21 is nothing but a rephrase of Theorems
7 and 8. More precisely, statement (i) refers to Theorem 7, while statement (ii) refers to Theorem
8. Since statement (i) has been already proved in Section 4, we are left with proving statement (ii)
only.

Theorem 21. Let Y = {Yj}sj=1 be a partition of H, Z = {Zk}tk=1 be a partition of N with
|Zk∗ | = max{|Zk|}tk=1, and R ≤ Ω.

(i) If F
V (Y )×W (Z)×R
Par 6= ∅, then (19).

(ii) If C ∈ CV (Y )×W (Z)×R and (19), then F
V (Y )×W (Z)×R
C 6= ∅.

Proof. (ii) Let U = V (Y )×W (Z)×R and C ∈ CU . By Theorem 14, (19) implies that U is regular.
If R = {id}, then we apply Theorem 18 and we get FUC 6= ∅. If instead R = Ω, then we apply
Theorem 20 and we get again FUC 6= ∅.

6.2 Five individuals and three alternatives

Consider five individuals (h = 5) and three alternatives (n = 3) so that G = S5 × S3 × Ω. Since
gcd(5, 3!) = 1, Theorem 14 guarantees that G is regular. Thus, by Theorem 20, for every C ∈ CG,
we have FGC 6= ∅ and the elements in FGC can be explicitly build and count. Here we determine FGC
for C ∈ C∗. Observe that, being n = 3, Proposition 11 guarantees that C∗ ⊆ CGPar.
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In order to start the concrete construction of the elements in FGC , we first need a system of
representatives of the G-orbits. We choose the system p1, . . . , p26 built in Bubboloni and Gori (2015,
Section 7.2) and, for every j ∈ {1, . . . , 26}, we denote the orbit of pj by j. Thus, PG = {1, . . . , 26}
and a simple but tedious computation shows that

PG1 = {2, 4, 5, 7, 8, 10, 11, 12, 14, 15, 16, 18, 21, 22, 23, 24},

PG2 = {1, 3, 6, 9, 13, 17, 19, 20, 25, 26}.
Next, we choose (ϕ∗, ψ∗, ρ0) = (id, id, ρ0) and, for every C ∈ C∗, we compute C(pj) for all j ∈ PG,
and C(pj (id,id,ρ0)) for all j ∈ PG1 . Doing that, we find out that Kem(pj) = Min(pj) for all
j ∈ PG, as well as Kem(pj (id,id,ρ0)) = Min(pj (id,id,ρ0)) for all j ∈ PG1 . Thus, Proposition 13 gives
Kem = Min. Next we compute, for every j ∈ PG1 , the set A1

C(pj) defined in (20) and, for every
j ∈ PG2 , the set A2

C(pj) defined in (21). Those computations are summarized in Tables 1 and 2,
where

∆ = {1, 2, 3}2∗ = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}. (24)

From those tables, by Theorem 20, we immediately get every element in FGC for all C ∈ C∗. Indeed,
once decided, for every j ∈ {1, . . . , 26}, one of the entries corresponding to pj , we exactly identify
an element in FGC just using the definition given in (23).

In particular, we deduce

FGKem = FGMin, FGKem ( FGBor ( FGPar, FGKem ( FGCop ( FGPar, FGBor 6⊆ FGCop, FGCop 6⊆ FGBor

and
|FGPar| = 220314, |FGBor| = 8, |FGCop| = 4, |FGKem| = |FGMin| = 2.

A1
Par(p

j) A1
Bor(p

j) A1
Cop(p

j), A1
Kem(pj), A1

Min(pj)

p2 (1,3), (2,3) (1,3) (1,3)
p4 (1,3), (2,1), (2,3) (1,3) (1,3)
p5 (1,3), (2,3) (1,3) (1,3)
p7 (1,3), (2,1), (2,3) (2,3) (1,3)
p8 ∆ (1,3) (1,3)
p10 (1,3), (2,1), (2,3) (1,3) (1,3)
p11 ∆ (1,3) (1,3)
p12 ∆ (1,3), (2,3) (1,3)
p14 ∆ (2,3) (2,3)
p15 (1,2), (1,3), (2,3) (1,3) (1,3)
p16 ∆ (2,3) (2,3)
p18 ∆ (2,1), (2,3) (2,1)
p21 ∆ (2,3) (2,3)
p22 ∆ (1,3) (1,3)
p23 ∆ (1,3) (1,3)
p24 ∆ (1,3) (1,3)

Table 1: Computation of A1
C(pj) with C ∈ C∗ and j ∈ PG1 .

Note that the two G-consistent refinements of Kem depend only on which alternative between
1 and 3 is associated with the following preference profile

p25 =

 1 1 3 2 3
2 2 2 3 1
3 3 1 1 2


21



A2
Par(p

j) A2
Bor(p

j) A2
Cop(p

j) A2
Kem(pj), A2

Min(pj)

p1 1 1 1 1
p3 1, 3 1 1 1
p6 1, 3 1 1 1
p9 1 1 1 1
p13 1, 3 1 1 1
p17 1, 2 2 2 2
p19 1, 2 1 1, 2 1
p20 1, 3 1 1 1
p25 1, 3 1, 3 1, 3 1, 3
p26 2, 3 2 2 2

Table 2: Computation of A2
C(pj) with C ∈ C∗ and j ∈ PG2 .

The choice of 3 might be considered more appropriate since the majority of individuals prefer 3 to
1.

6.3 Committees with a distinguished individual

We have observed in Section 4 that, if individual i has a special role in the committee, then
Y = {{i}, H \ {i}} is a natural partition of individuals to deal with. Let C ∈ C and consider
Ci, Ci ∈ C defined, for every p ∈ P, by

Ci(p) = {x ∈ C(p) : ∀y ∈ C(p), x �pi y},

Ci(p) = {x ∈ C(p) : ∀y ∈ C(p), y �pi x}.

Of course, Ci and Ci are resolute refinements of C. Note that Ci is consistent with interpreting
individual i as the president of the committee who has the power to break ties according to his/her
own preferences, while Ci does not seem to have any natural interpretation.

If C is Y -anonymous [neutral], it is easily checked that Ci and Ci are both Y -anonymous
[neutral]. If instead C is immune to the reversal bias, it is not generally guaranteed that Ci and Ci
are immune to the reversal bias too. Indeed, consider, for instance, (h, n) = (5, 4) and the Minimax
scc. Recall that, by Proposition 3, Min is immune to the reversal bias. Given now p, p̂ ∈ P defined
by

p =


4 4 4 2 1
2 3 1 3 2
3 1 2 1 3
1 2 3 4 4

 , p̂ =


1 4 4 2 2
2 3 1 3 2
3 1 2 1 3
4 2 3 4 1


we have that Min(p) = Min(p̂) = {4} and Min(p(id,id,ρ0)) = Min(p̂(id,id,ρ0)) = {1, 3, 4}. Then we
have

Min5(p) = Min5(p(id,id,ρ0)) = Min5(p̂) = Min5(p̂(id,id,ρ0)) = {4},

so that Min5 and Min5 suffers the reversal bias. However, note that, due to Theorem 8, we
know that Min surely admits a resolute refinement which is {{5}, H \{5}}-anonymous, neutral and
immune to the reversal bias.

Remarkably, if C satisfies a suitable stronger version of immunity to the reversal bias, Ci and
Ci can be proved to be immune to the reversal bias. Accordingly to Bubboloni and Gori (2016) we
say that C ∈ C is immune to the reversal bias of type 3 if, for every p ∈ P, C(p)∩C(p(id,id,ρ0)) 6= ∅
implies C(p) = N . Note that if C is resolute then the definitions of immunity to the reversal bias
and immunity to the reversal bias of type 3 coincide.
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Proposition 22. Let i ∈ H and C ∈ C be immune to the reversal bias of type 3. Then Ci and Ci
are immune to the reversal bias.

Proof. Assume by contradiction that there exists p ∈ P and x∗ ∈ N such that

Ci(p) = Ci(p(id,id,ρ0)) = {x∗}.

Then, in particular, x∗ ∈ C(p)∩C(p(id,id,ρ0)) and, since C is immune to the reversal bias of type 3,
we have C(p) = C(p(id,id,ρ0)) = N . Being x∗ ∈ Ci(p) we then have x∗ �pi y for all y ∈ N. On the
other hand, being x∗ ∈ Ci(p(id,id,ρ0)) we also have x∗ �piρ0 y, that is, y �pi x∗ for all y ∈ N . Since
pi is antisymmetric, we then get that x∗ is the only element in N , against n ≥ 2. An analogous
argument works for Ci.

Corollary 23. Let i ∈ H and Y = {{i}, H \ {i}}. Then Bori, Bori, Cop
i and Copi are efficient,

Y -anonymous, neutral and immune to the reversal bias.

Proof. We know that Bor and Cop are efficient, anonymous and neutral. By Proposition 3 in
Bubboloni and Gori (2016), we have that Bor and Cop are immune to the reversal bias of type 3.
Thus, the thesis follows applying Proposition 22 and recalling that any refinement of an efficient
scc is efficient.

6.3.1 Three individuals and three alternatives

Consider now three individuals (h = 3) and three alternatives (n = 3) so that G = S3×S3×Ω. Since
gcd(3, 3!) 6= 1, G is not regular and, by Theorem 7, there exists no resolute, efficient, anonymous
and neutral scc. Thus, FGC = ∅ for all C ∈ C∗.

Consider then the partition Y = {{1, 2}, {3}} of H distinguishing individual 3 and the partition
Z = {N} of N and define U = V (Y ) × W (Z) × Ω. By Theorem 14, U is regular so that, by
Theorem 20, for every C ∈ CU , we have that FUC 6= ∅ and all the elements in FUC can be explicitly
built and counted. Here we determine FUC for all C ∈ C∗. Observe that, being n = 3, Proposition
11 guarantees that C∗ ⊆ CG so that C∗ ⊆ CU .

As a system of representatives of the U -orbits, we consider the system p1, . . . , p13 built in
Bubboloni and Gori (2015, Section 7.1) and, for every j ∈ {1, . . . , 13}, we denote the orbit of pj by
j. Thus, PU = {1, . . . , 13} and a simple computation shows that

PU1 = {3, 4, 8, 9, 10, 11, 12, 13}, PU2 = {1, 2, 5, 6, 7}.

Next, we choose (ϕ∗, ψ∗, ρ0) = (id, id, ρ0) and, for every C ∈ C∗, we compute C(pj) for all j ∈ PU ,
and C(pj (id,id,ρ0)) for all j ∈ PU1 . Doing that, we find out that Cop(pj) = Kem(pj) = Min(pj) for
all j ∈ PU , as well as Cop(pj (id,id,ρ0)) = Kem(pj (id,id,ρ0)) = Min(pj (id,id,ρ0)) for all j ∈ PU1 . Thus,
by Proposition 13, we have Cop = Kem = Min. In particular, those sccs admit the same resolute
refinements.

Next we compute, for every j ∈ PG1 , the set A1
C(pj) defined in (20) and, for every j ∈ PU2 , the

set A2
C(pj) defined in (21). Note that here A2

C(pj) = C(pj) \ {2} because ψj = ρ0 = (13) for all
j ∈ PU2 . Those computations are summarized in Tables 3 and 4, where ∆ is defined by (24). From
those tables, by Theorem 20, we immediately get each element in FUC for all C ∈ C∗ as described in
Section 6.2.

In particular, we deduce

FUCop = FUKem = FUMin, FGCop ( FGBor ( FGPar.

and
|FUPar| = 21035, |FGBor| = 8, |FUCop| = |FUKem| = |FUMin| = 2.
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Note that the two U -consistent refinements of Cop depend only on which alternative between 1
and 3 is associated with the preference profile

p6 =

 2 3 1
3 1 2
1 2 3


Observe that, p6 gives rise to the classical Condorcet cycle. By Corollary 23, Cop3 and Cop3 belong
to FUCop. It is also clear that Cop3 6= Cop3, because a direct computation shows that Cop3(p6) = 1

and Cop3(p6) = 3. Thus, we have that FUCop = {Cop3, Cop3}.

A1
Par(p

j) A1
Bor(p

j) A1
Cop(p

j), A1
Kem(pj), A1

Min(pj)

p3 (1,2), (1,3), (3,2) (1,2), (3,2) (3,2)
p4 (1,2), (1,3) (1,2) (1,2)
p8 (1,3), (2,3) (1,3) (1,3)
p9 (1,3),(1,2), (2,1), (2,3) (1,3),(2,3) (1,3)
p10 ∆ (3,2) (3,2)
p11 ∆ (1,2) (1,2)
p12 ∆ (1,3) (1,3)
p13 (1,3), (2,1), (2,3) (2,3) (2,3)

Table 3: Computation of A1
C(pj) with C ∈ C∗ and j ∈ PU1 .

A2
Par(p

j) A2
Bor(p

j), A2
Cop(p

j), A2
Kem(pj), A2

Min(pj)

p1 1 1
p2 1, 3 3
p5 1, 3 1
p6 1, 3 1, 3
p7 1 1

Table 4: Computation of A2
C(pj) with C ∈ C∗ and j ∈ PU2 .

A Appendix

Given U be a regular subgroup of G, we characterize here when PU1 6= ∅ or PU2 6= ∅. Note that,
obviously, if U is a regular subgroup of G with U ≤ Sh×Sn×{id}, then PU2 = ∅ and PU = PU1 6= ∅.
An example of such a kind of subgroup is Sh × {id} × {id}. On the other hand, there surely exist
regular subgroups of G not contained in Sh × Sn × {id} like, for instance, {id} × {id} × Ω and
〈(ϕ, ρ0, ρ0)〉, where ϕ ∈ Sh is fixed. The following proposition is about subgroups of that type.

Proposition 24. Let U ≤ G be regular and such that U 6≤ Sh × Sn × {id}.

(i) If n = 2, then PU1 6= ∅ if and only if there exists a partition Y = {Y1, Y2} of H such that
Γ ∩ V (Y ) = ∅, where Γ = {ϕ ∈ Sh : (ϕ, ρ0, ρ0) ∈ U} and V (Y ) = {ϕ ∈ Sh : ϕ(Y1) = Y1}.

(ii) If n ≥ 3, then PU1 6= ∅.

(iii) PU2 6= ∅ if and only if there exists (ϕ,ψ, ρ0) ∈ U such that ψ is a conjugate of ρ0.
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Proof. (i) First of all, note that n = 2 gives U ≤ Sh × S2 × Ω, so that, for every p ∈ P and i ∈ H,
pi ∈ S2 = {id, ρ0}. Since the only conjugate of ρ0 in S2 is ρ0, U is regular if and only if, for every
p ∈ P, StabU (p) ⊆ (Sh × {id} × {id}) ∪ (Sh × {ρ0} × {ρ0}) .

Assume that Y = {Y1, Y2} is a partition of H such that Γ∩ V (Y ) = ∅ and prove that PU1 6= ∅.
Consider p ∈ P defined by pi = id for all i ∈ Y1, and pi = ρ0 for all i ∈ Y2. We prove that
StabU (p) ≤ Sh × {id} × {id}. Indeed, assume by contradiction that there exists ϕ ∈ Sh such that
(ϕ, ρ0, ρ0) ∈ StabU (p). Then ϕ ∈ Γ, so that Γ∩ V (Y ) = ∅ guarantees the existence of i1 ∈ Y1 such
that ϕ(i1) ∈ Y2. Moreover, by (ϕ, ρ0, ρ0) ∈ StabU (p), we have pϕ(i) = ρ0piρ0 for all i ∈ H. But, since
S2 is abelian and ρ2

0 = id, that gives pϕ(i) = pi for all i ∈ H. In particular, ρ0 = pϕ(i1) = pi1 = id,
a contradiction.

Assume now that, for every partition Y = {Y1, Y2} of H, we have that Γ ∩ V (Y ) 6= ∅ and
prove that PU1 = ∅. We need to show that, for every p ∈ P, there exists ϕ ∈ Sh such that
(ϕ, ρ0, ρ0) ∈ StabU (p). First of all, note that Γ ∩ V (Y ) 6= ∅ implies Γ 6= ∅. If p ∈ P is constant,
that is pi = pj for all i, j ∈ H, choose any ϕ ∈ Γ and note that, being S2 abelian and ρ2

0 = id, we

have p
(ϕ,ρ0,ρ0)
i = ρ0pϕ−1(i)ρ0 = pϕ−1(i) = pi. If instead p ∈ P is not constant, consider the partition

Y = {Y1, Y2} of H, where Y1 = {i ∈ H : pi = id} and Y2 = {i ∈ H : pi = ρ0}. By assumption, there
exists ϕ ∈ Sh such that (ϕ, ρ0, ρ0) ∈ U and ϕ(Y1) = Y1, so that ϕ(Y2) = Y2 too. It follows that, for

every i ∈ H, we have p
(ϕ,ρ0,ρ0)
ϕ(i) = ρ0piρ0 = pi = pϕ(i), because i and ϕ(i) both belong either to Y1

or to Y2. Thus, (ϕ, ρ0, ρ0) ∈ StabU (p).
(ii) We have to exhibit p ∈ P such that StabU (p) ≤ Sh × {id} × {id}. Consider then p ∈ P

defined by p1 = id and pi = (12), for all i ∈ H \ {1}. In particular, we have p1(1) = 1 and
pi(1) = 2 for all i ∈ H \ {1}, so that in p the individuals rank first different alternatives. Given
now (ϕ,ψ, ρ0) ∈ U , we have that the preference profile p(ϕ,ψ,ρ0) admits one component equal to
ψρ0 and h− 1 components equal to ψ(12)ρ0. Observe that ψρ0(1) = ψ(n) as well as, being n ≥ 3,
ψ(12)ρ0(1) = ψ(12)(n) = ψ(n). Thus, in p(ϕ,ψ,ρ0) each individual ranks first the same alternative
ψ(n), which implies p(ϕ,ψ,ρ0) 6= p.

(iii) If there exists (ϕ,ψ, ρ0) ∈ U such that ψ is a conjugate of ρ0, then there exist σ ∈ Sn such
that ψ = σρ0σ

−1. Consider p ∈ P defined by pi = σ for all i ∈ H. Then, for every i ∈ H, we have

that p
(ϕ,ψ,ρ0)
i = σρ0σ

−1σρ0 = σ = pi so that (ϕ,ψ, ρ0) ∈ StabU (p) and PU2 6= ∅. On the other
hand, if PU2 6= ∅, then there exists p ∈ P and (ϕ,ψ, ρ0) ∈ StabU (p). Thus, by the regularity of U ,
ψ is a conjugate of ρ0.

We emphasize that all the situations described in Proposition 24 can really occur. Indeed, if
U = {id}×{id}×Ω, then PU1 6= ∅ and PU2 = ∅; if U = 〈((12), ρ0, ρ0)〉, then PU1 6= ∅ and PU2 6= ∅;
if U = 〈(id, ρ0, ρ0)〉 and n = 2, then PU1 = ∅ and PU2 6= ∅.
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