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Abstract. It is shown that a smectic A droplet deposited on a solid substrate treated for strong homeotropic
anchoring is faceted at the top in spite of the fact that there are no steps at the free surface, but instead
edge dislocations in the bulk. The radius of the facet and the full profile of the curved part of the droplet
are determined as a function of the temperature in the vicinity of a nematic-smectic A phase transition. It
is shown that the observed profiles do not correspond to the actual equilibrium shape, but to metastable
configurations close to their point of marginal stability. In addition, we predict that the profiles must
be different for a given temperature depending on whether the droplet has been heated or cooled down
to reach this temperature. Finally, we discuss the problem of the formation of giant dislocations in big
droplets (Grandjean terraces).

PACS. 68.03.Cd Surface tension and related phenomena – 61.30.Hn Surface phenomena: alignment, an-
choring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting tran-
sitions, and wetting transitions – 61.30.Jf Defects in liquid crystals

1 Introduction

The equilibrium shape of a crystal is obtained by mini-
mizing its total surface energy. This procedure leads to
the well-known Wulff construction according to which the
equilibrium shape is the pedal of the polar plot of the
surface energy γ(θ, ϕ) (with (θ, ϕ) the angles defining the
orientation of the surface element with respect to the un-
derlying crystal lattice [1,2]). In three-dimensional crys-
tals, this construction leads to faceted shapes, with the
size and the number of facets decreasing when the tem-
perature increases. Such shapes were observed by scanning
electron microscopy in micron-sized crystals of ordinary
metals such as lead [3], silicon [4], or silver [5]. Large He4

crystals (i.e., of centimetric size) are also faceted, with
the advantage of equilibrating much faster than the for-
mer due to their quantum nature (atoms can go through
energy barriers by tunneling effect) [6]. Faceted shapes
were also observed in soft matter, in particular in the Blue
Phases of cholesteric liquid crystals [7–9], in the smectic
B plastic crystals [10,11], and in the cubic phases of the
lyotropic systems [12–15]. Although we are dealing with
monocrystals in all these examples, the real question is al-
ways to know whether the shapes observed experimentally
are at equilibrium (in a stable or a metastable state), or
result from some growth processes. This delicate problem
will be discussed in detail in this article.

a e-mail: Patrick.Oswald@ens-lyon.fr

Fig. 1. Observation in Michelson interferometry of a faceted
droplet of the liquid crystal 8CB placed on a glass slide
treated for homeotropic anchoring (photograph by J. Bech-
hoefer, 1991).

Faceted droplets were also observed in smectic A liquid
crystals which are one-dimensional crystals (the rod-like
molecules form fluid layers which pile up on each other).
In that case, the droplets are deposited on solid substrates
treated for homeotropic anchoring. Although first obser-
vations of faceting in smectic A are old [16–18], precise
determination of droplet profiles as a function of temper-
ature close to a nematic phase or an isotropic liquid is
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relatively recent [19,20]. The main findings of these ex-
perimental studies can be summarized as follows:

1. Each droplet shows a single facet parallel to the sub-
strate (Fig. 1), whose size increases when the temperature
decreases.

2. The curved part of the droplet surface joins tangen-
tially onto the facet.

3. All the attempts to fit the experimental profiles to
a power law of type (ρ − rf )

ν , with ρ the radius in polar
coordinates and rf the facet radius, led to an exponent
ν ranging typically between 1 and 2.5, depending on the
temperature and the “angular window” of the fit. These
large variations suggest that a power law is certainly not
a good choice.

4. For a given temperature, the facet radius depends
on the thermal history of the droplet. More precisely, the
facet is systematically larger after heating than after cool-
ing from the high-temperature phase (i.e., the nematic
phase or the isotropic liquid, depending on the material).

5. Finally, the facet size stabilizes much faster after
cooling (within a few seconds or minutes, typically) than
after heating: in that case, many hours or even days are
necessary to reach a stable shape with a facet generally
larger than that observed by direct cooling from the ne-
matic or the isotropic liquid.

To explain these observations, we used in ref. [21]
the terrace-ledge-kink model (or TLK model) according
to which the layers are strictly parallel to the solid sur-
face and emerge at the free surface by forming steps. This
classical model predicts that a facet forms at the top of
the droplet and matches tangentially the curved part of
the droplet surface. This particular matching comes from
the fact that the steps repulse with a 1/d2-law, which, in
smectic A, is only due to their entropic interactions (d
is the distance between two steps), their elastic interac-
tions being completely negligible because of the fluidity
of the layers. This generic interaction leads to profiles of
type (ρ − rf )

ν , with the universal exponent ν = 3/2, in
profound disagreement with experiments.

In the same article, we developed an alternative model,
in which steps were replaced by bulk dislocations. A direct
consequence was that the top smectic layer was bent par-
allel to the free surface. It turns out that this model was
more reasonable than the TLK model because we know
both theoretically [22] and experimentally (for a review,
see [11]) that in smectic A, edge dislocations are repulsed
by the free surface, a point we detail in reference [23]. On
the other hand, we assumed without any justification, that
the droplet had the shape of a spherical cap. In this arti-
cle, we show that this affirmation was wrong and that this
model can explain as well the existence of faceted droplets.

The plan of the article is as follows. In Section 2, we
recall the basics of the model and calculate the droplet
energy and its general profile. In Section 3, we show the
existence of two facet radii corresponding to two extrema
of the total energy. In Section 4, we demonstrate that
the smaller radius corresponds to the critical radius of
the facet while the other, twice larger, corresponds to
the equilibrium radius of the facet. We also show that all

curved part

z

facet

θ

r f

r g
dislocation

h(ρ)c f

Fig. 2. Droplet configuration.

the droplets whose facet radius is larger than the critical
radius are metastable. We thus conclude that the facet
radius measured experimentally after cooling down the
droplet from the nematic or the isotropic phases is the
critical radius. In Section 5, we calculate the profile of a
droplet at the critical radius as a function of the tem-
perature close to a second-order smectic A-nematic phase
transition and we compare with experiments. We then an-
alyze in Section 6 how the facet radius changes in time
when the temperature is again increased. A criterion of
marginal stability is proposed to explain why the facet ra-
dius again increases in spite of the fact that the droplet
height is blocked. In Section 7, we discuss the stability of
the droplets with respect to the formation of giant disloca-
tions. This mechanism allows us to explain the formation
of the so-called Grandjean terraces in big droplets. Finally,
some concluding remarks are drawn in Section 8.

2 Energy of a faceted droplet and general
surface profile

The droplet configuration is recalled in Figure 2. It has the
circular symmetry around the z-axis perpendicular to the
substrate treated for homeotropic anchoring. Because the
dislocations are repelled by both the substrate and the free
surface, the dislocations are distributed throughout the
bulk in order to accommodate the macroscospic faceted
shape. In the following, we denote by rg the droplet radius
at the substrate, by rf the facet radius, by cf the matching
angle between the facet and the curved part of the droplet
surface, and by V the droplet volume, supposed to be
constant.

In order to calculate the macroscopic droplet profile
h(ρ) (with ρ the radius in polar coordinates), we need
to minimize the total energy e of the droplet. The latter
contains two terms:

1. A surface term coming from the different surface
energies γ, γSL, and γSA between, respectively, the liquid
crystal and the air, the substrate and the liquid crystal,
and the substrate and the air.

2. A bulk term due to the presence of the dislocations,
which roughly sit at mid-distance between the solid and
the free surfaces, as shown in reference [23].

Let Ed be the energy of a dislocation per unit length
and b its Burgers vector (which we assume to be equal
to the layer thickness d for the moment). A straightfor-
ward calculation, similar to that already used to calcu-
late the profile of a meniscus surrounding a free-standing
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film [11,24], yields:

e=2π

∫ rg

0

ρdρ(γSL−γSA)+2πγ

∫ rf

0

ρdρ

+2πγ

∫ rg

rf

ρdρ

√

1+

(

dh

dρ

)2

−2πEd

b

∫ rg

rf

ρ

(

dh

dρ

)

dρ. (1)

In this formula, the first term gives the surface energy on
the substrate, the next two the surface energy between
the droplet and the air, and the fourth one the energy
of the bulk dislocations (with −(1/b)(dh/dρ) representing
the density of dislocations). It is important to note that
in this formula, the free surface of the droplet is assumed
to be smooth at the scale of the distance between dislo-
cations. This is justified in a droplet because the disloca-
tions sit at large distance from the free surface (see refer-
ence [23]), so that their deformation fields strongly overlap
close to the free surface. For that reason, the fourth term
in equation (1) in

√

1 + (dh/dρ)2 may be considered as
the repulsive interaction term between the dislocations.

In practice, the droplets are rather flat (the wetting
angle at the solid substrate is usually less than 15◦). For
that reason, we can reasonably assume that |dh/dρ| ¿ 1,

which allows us to develop the term
√

1 + (dh/dρ)2 to first
order in (dh/dρ)2. This leads to the following, simpler,
expression for the energy:

e ≈ 2πS
∫ rg

0

ρdρ+ πγ

∫ rg

rf

ρdρ

(

dh

dρ

)2

−2πEd

b

∫ rg

rf

ρ

(

dh

dρ

)

dρ, (2)

where S = γSL−γSA+γ is the so-called spreading power.
The following step consists of minimizing the energy

with the constraint that the volume remains constant:

V = 2π

∫ rg

0

ρh(ρ)dρ (3)

This leads to the following differential equation for the
profile (equivalent to the Laplace law):

∆P = −γ 1
ρ

d

dρ

⌊

ρ
dh

dρ

⌋

+
Ed

bρ
, (4)

where ∆P = PL − PA is the pressure difference between
the liquid crystal and the air. Note that ∆P is the La-
grange multiplier associated with condition (3).

The resolution of equation (4) leads to the following
general profile for the droplet:

h(ρ) =
Ed

bγ

(

ρ− rg − rf ln
ρ

rg

)

−∆P

2γ

(

ρ2 − r2
g

2
− r2

f ln
ρ

rg

)

− cfrf ln
ρ

rg
. (5)

This profile satisfies the conditions h(rg) = 0 and
[dh(ρ)/dρ]ρ=rf

= −cf , with cf > 0.

Although we know now the general droplet profile, the
problem is far from being solved because rg, rf , and cf
are still unknown.

Determining these quantities requires to minimize the
total energy. The latter can be calculated by replacing
h(ρ) by its expression (5) in equation (2). This leads to
the following formula for the energy:

e = eo + αcf + βc2f (6)

with

eo =
πγr2

g

2

[

s− g
(

g − prf
) (r2

g − r2
f )

r2
g

+
(prf )

2

8

(

3
r2
f

r2
g

−4+
r2
g

r2
f

)

+
r2
f

2r2
g

(

2g−prf
)2
ln

rg
rf

]

, (7a)

α =
πγrf
2

[

p
(

r2
g − r2

f

)

+ 2rf
(

2g − prf
)

ln
rg
rf

]

, (7b)

β =
(

πγr2
f

)

ln
rg
rf

. (7c)

In these equations we have introduced the following nota-
tions:

g =
Ed

bγ
, s =

2S

γ
, and p =

∆P

γ
. (8)

Note that g and s are dimensionless constants character-
istic of the material and that p (which gives the pressure
difference between the interior of the droplet and the air)
has for dimension [L]−1.

3 Determination of the facet and the droplet
radii

Before minimizing the energy e as a function of rg and rf ,
let us show that cf = 0.

According to equation (7c), β > 0 because rg > rf .
The sign of α is less obvious to determine. Nevertheless
it will be possible to check a posteriori that p > 0 (the
pressure inside the droplet is always larger than the air
pressure). In this case, α > 0 according to equation (7b)
whatever the value of rf < rg. As a result, the energy e
is minimum when cf = 0 and reduces to the simplified
expression eo given by equation (6).

Another remark concerns the droplet profile h(ρ) given
by equation (5) when we impose cf = 0. Indeed, this func-
tion has two extrema given by ρ1 = rf and ρ2 = 2g/p−rf
(Fig. 3). It can be easily checked that the profile is physi-
cally acceptable if ρ2 < ρ1, i.e. if rf ≥ g/p. We will show
in Section 4 that this condition is indeed fulfilled experi-
mentally.

Let us now minimize eo as a function of the two radii
rf and rg. Note that in the expression (7a) of eo, p is also
a function of rf and rg given by the condition of fixed
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curved part of the
droplet

h(ρ)

ρrf rg2g/p−rf0
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h(ρ)

ρrf rg

rf > 2g/prf < 2g/p

0
0

faceth(rf)

(a) (b)

Fig. 3. Typical plots of the function h(ρ) when g/p < rf < 2g/p (a) and rf > 2g/p (b). In both cases, the dashed part of the
curve has no physical meaning.

volume:

V = πr2
fh
(

rf
)

+ 2π

∫ rg

rf

ρh(ρ)dρ =

πr3
g

24
(1− k)2

(

3prg(1 + k)2 − 4g(2 + k)
)

(9)

with k = rf/rg. As a consequence, minimization with re-
spect to rf reads:

∂eo
∂rf

+
∂eo
∂p

∂p

∂rf
= 0. (10)

This equation has two simple solutions:

rf =
g

p
or rf =

Ed

b∆P
(11a)

and

rf =
2g

p
or rf =

2Ed

b∆P
, (11b)

where the pressure p is given by equation (9) as a function
of V and rg.

Minimization of eo with respect to rg reads similarly

∂eo
∂rg

+
∂eo
∂p

∂p

∂rg
= 0. (12)

This equation may be expressed as a function of k
using Mathematica. For the first solution (11a), it reads
explicitly

(1+k)

(

−1+3k−4k2+k4+k5+4s

(

k

g

)2

(1+k)

)

=

8k4 ln k, (13a)

while for solution (11b), k has a simple expression,

k =
g

g +
√
s
. (13b)

In conclusion, the energy eo has two extrema which are
given (for a droplet of a given volume V ) by equations (9,

200
202

204

206

208

0.2

0.31.130

1.131

1.132
k

rg (µm)

eo (10−3 erg)
minimum

saddle point

Fig. 4. 3D plot of the droplet energy eo as a function of k =
rf/rg and rg. The saddle point and the absolute minimum are
indicated by two arrows (8CB, T = 24 ◦C, V = 10−6 cm3).

11a), and (13a) and by equations (9, 11b), and (13b),
respectively.

The problem that now arises is to determine the nature
of these two solutions. To answer this question, we plotted
the energy eo as a function of rf and rg, or equivalently as
a function of k and rg. An example is shown in Figure 4
for a droplet of volume V = 10−6 cm3 and typical values of
the material parameters (corresponding to the liquid crys-
tal 8CB at T = 24 ◦C): γ = 31 erg/cm3 [25], g = 0.073 [26]
and s = 0.0304 (this value corresponds to a wetting angle
θ of 10◦ in the nematic phase, knowing that in that case
s = 2(1−cos θ)). This plot shows that the energy possesses
a saddle point corresponding to the first solution (11a)
and a true minimum corresponding to the second solu-
tion (11b). As a consequence, solution (11b) gives the equi-
librium configuration, whereas solution (11a) is unstable.
This graph also shows that there is a valley joining these
two solutions. More precisely, for each value of k lying be-
tween g/(prg) and 2g/(prg), the energy passes through a
minimum as a function of rg. The question we tackle in
the next section is to determine whether these intermedi-
ate solutions are accessible experimentally and observable
over long time (which would suggest they are metastable).
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4 On the metastability of faceted droplets

To answer this question, the global method developed in
the previous sections is not adequate. A more local ap-
proach is necessary. In this respect, let us consider the
local mechanical equilibrium of the layers at the free sur-
face. At radius ρ, this equation reads:

∆P − σ = γC, (14a)

where C is the local curvature of the surface and σ the
elastic stress normal to the layers. Expressing C as a func-
tion of h(ρ) gives in the curved part of the droplet:

∆P = −γ 1
ρ

d

dρ

⌊

ρ
dh

dρ

⌋

+ σ. (14b)

By comparing equation (4) with equation (14b), we obtain
the following equation, valid in the curved part of the
droplet:

σ
(

ρ > rf
)

=
Ed

bρ
. (15)

This equation expresses the mechanical equilibrium of the
dislocations inside the droplet. Indeed, σ(ρ)b is the Peach
and Koehler force acting on the dislocation of radius ρ,
while Ed/ρ is the line tension force. These two forces equi-
librate, the former tending to grow the dislocation whereas
the latter tends to shrink it.

Under the facet, which is flat, equation (14) becomes

σ
(

ρ < rf
)

= ∆P. (16)

As a consequence, the stress is generally different from
each side of the facet edge. Note that a similar situa-
tion exists in a free-standing smectic film surrounded by
a straight meniscus. In that case, σ = ∆P in the film,
whereas σ = 0 in the meniscus [11,24].

Let us now compare the stress from each side of the
facet edge. According to equations (15) and (16), we have:

σ
(

ρ = r+

f

)

= σ+ =
Ed

brf
(17a)

whereas

σ
(

ρ = r−f

)

= σ− = ∆P. (17b)

These two equations show that σ+ = σ− at rf =
Ed/(b∆P ). This radius corresponds to the saddle point
of the total energy eo, i.e. to the solution given by equa-
tions (11a) and (13a). In the following, we will denote by
rc this particular solution. We immediately see from equa-
tion (17) that if rf < rc, then σ− < σ+. As a consequence
the dislocation which borders the facet collapses and the
facet grows. For that reason, rc corresponds to the critical

radius of the facet.
Let now consider a droplet with a facet of radius rf >

rc. In this particular case, σ
− > σ+. As a consequence the

dislocation bordering the facet will not collapse, except if

the thermal fluctuations (i.e., the external medium) brings
enough energy to overcome the energy barrier

W− =

∫ rc

rf

(

Ed

ρ
−∆Pb

)

2πρdρ =

2πb∆P

∫ rc

rf

(rc − ρ)dρ = πb∆P (rf − rc)
2. (18)

In practice, W− À kBT as long as the facet radius is
a bit larger than the critical radius. To fix ideas, let us
consider the example of Figure 4 which would correspond
to a droplet of 8CB at 24 ◦C of volume V = 10−6 cm3 and
external radius rg ≈ 204µm: in that case, we calculate
rc = 32µm, ∆P ≈ 730 dyn/cm2, which gives W− ≈ 7 ×
10−13 erg ≈ 80kBT for a facet radius rf = 1.02rc.

This simple calculation shows that, in practice, the
facet radius which is measured experimentally after cool-
ing down the droplet from the high-temperature phase
must be very close to the critical radius.

One can also calculate the typical time a droplet needs
to reach its new configuration when the temperature is
decreased. Indeed, let us consider a droplet with a facet
radius larger than the critical radius. The dislocation close
to the facet is unstable and tends to collapse. Indeed, it
experiences three forces: the inward force −Ed/ρ associ-
ated with the line tension Ed and two outward forces, the
Peach and Koehler force of amplitude∆Pb and a frictional
one, proportional to the dislocation velocity and of expres-
sion −(b/m)(dρ/dt), where m is dislocation mobility [11].
Equating these three forces, we have

b

m

dρ

dt
= ∆Pb− Ed

ρ
= ∆Pb

(

1− rc
ρ

)

. (19)

As expected, this equation states that the innermost dis-
location collapses as rf is smaller than rc. Its collapse time
can be calculated from this equation (for the calculation,
see [11], p. 450) and reads:

τcoll=
rc

m∆P

[

ln

(

1

1−x

)

−x

]

=τ

[

ln

(

1

1−x

)

−x

]

. (20)

In this expression, x = rf/rc < 1 and τ = rc/(m∆P )
fixes the time scale. In 8CB, m is of the order of 3 ×
10−7 cm2 sg−1 at 24 ◦C [11]. For a droplet of typical vol-
ume V = 10−6 cm3, we calculated in the previous para-
graph rc ≈ 32µm and ∆P ≈ 730 dyn/cm2, which yields
τ = 15 s. This time fixes the typical equilibration time of
the droplet (for x = 0.98, τcoll ≈ 3τ). We emphasize that
the latter is certainly much shorter in the experiments
cited in references [19,20] because the droplets studied had
smaller volumes (so that rc was smaller and ∆P larger)
and the temperature was higher (4O8 and 8OCB melt
at higher temperatures than 8CB). We thus expect the
dislocation mobility m be larger than 3 × 10−7 cm2 sg−1

in these materials, inasmuch as this quantity is thermally
activated and strongly increases when the temperature in-
creases [11].

This calculation thus explains why the droplets rapidly
reach their critical radii when the temperature is de-
creased.



446 The European Physical Journal E

8 × 10
−2

6

4

2

0

h
 /
 r g

*

1.00.80.60.40.20.0

rg /rg*

33.4

33

31

28

23

Fig. 5. Four normalized profiles calculated at four different
temperatures for the liquid crystal 8CB. The temperature is
given beside each profile. An arrow marks the edge of the facet
on each profile. At 33.4 ◦C, the droplet has the shape of a
spherical cap.

In the following section, we show the temperature evo-
lution of the droplet profile when rf = rc in the vicinity
of a second-order nematic-smectic A phase transition.

5 Evolution of the droplet profile and of the
facet radius at decreasing temperature (i.e.,
when rf = rc)

In order to find the droplet profile at the critical radius, we
need to solve the set of equations (9, 11a), and (13a). More
precisely, equation (13a) gives k. Then, we calculate prg =
g/k from equation (11a), which gives after substitution
into equation (9):

V =
πr3

g

24
g(1− k)2

(

3(1 + k)2/k − 4(2 + k)
)

. (21)

This equation allows us to calculate rg for a given volume
V . As for the droplet profile, it is given by equation (5)
by taking cf = 0.

In practice, the shapes are self-similar, so it is prefer-
able to use as unit length the radius r∗g of the droplet in
the nematic phase. The droplet is then at equilibrium and
has the shape of a spherical cap with a contact angle at the
substrate given by the Young equation: s = 2(1 − cos θ).
As for its volume, it may be simply obtained by making
k → 0 in equations (13a) and (21). We successively ob-
tain g/k = 2

√
s and V = (πr∗3g /8)(g/k), from which we

calculate

r∗g =

(

4V

π
√
s

)1/3

. (22)

Figure 5 shows five profiles (normalized to r∗g) calcu-
lated for the liquid crystal 8CB at four different tem-
peratures: T = TNA = 33.4 ◦C (transition temperature,
spherical cap), T = 33 ◦C, T = 31 ◦C, T = 28 ◦C, and
T = 23 ◦C. As expected, the droplet height decreases due
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Fig. 6. Normalized critical radius as a function of the temper-
ature calculated for the liquid crystal 8CB.
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Fig. 7. a) Experimental profile (crosses) determined from the
photograph shown in Figure 1. The solid line is the best fit
to equation (5) with cf = 0. The arrow marks the facet edge
given by the fit. The latter is pretty far from the last fringe de-
tected experimentally. This shows all the difficulty to measure
the facet radius (the top of the droplet is very flat). b) Same
experimental data fitted to a power law. The size of the facet
is found a bit larger than using the previous fit and the profile
exponent is ν = 2.1.

to the rapid collapse of the inner dislocations and rg in-
creases when the temperature decreases.

Figure 6 shows the normalized critical facet radius
rc as a function of temperature. The latter vanishes
at the transition temperature, in agreement with ex-
periments [19,20]. Note that all the calculations were
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performed using Ed/b = 0.84(33.4 − T )0.446 (in CGS
unit) [26] and by assuming that b, γ, and s are independent
of the temperature (b = 30 Å, γ = 31 erg/cm2 [25], and
s = 0.0304, which corresponds to a contact angle θ = 10◦

when the droplet has a spherical shape).

To conclude this section, let us compare these pre-
dictions with experiments. Figure 1 shows a droplet of
8CB deposited on a glass plate treated with a silane
for homeotropic anchoring. The photograph was taken at
30 ◦C by John Bechhoefer in 1991 using a Michelson in-
terferometer. In this picture, the fringes give a contour
map with λ/2 ≈ 273 nm separating each fringe. An exper-
imental profile obtained by detecting the positions of the
fringes along a diameter is shown in Figure 7a (crosses).

This profile was fitted to equation (5) (with cf = 0) by
using Ed/(bγ), ∆P/(2γ), and the radius of the facet rf as
fit parameters (with the droplet radius rg being known).
We found that the fit is excellent over the whole profile.
The values of the fit parameters obtained from Igor Pro
are Ed/(bγ) = 0.035, ∆P/(2γ) = 34 cm−1, and rf = 5µm
(for a droplet radius rg = 64µm), which gives Ed ≈
3.2 × 10−7 dyn for 8CB at 30 ◦C. This value is in reason-
able agreement with that calculated from formula Ed/b =
0.84(33.4 − T )0.446 given in reference [26] (which gives
Ed ≈ 4.3 × 10−7 dyn). This point is important to justify
the model. In addition, it must be emphasized that the fit
of the curved part of the droplet gives also the value of the
critical radius. Indeed, according to equation (11a), rc =
Ed/(b∆P ), which yields by using the fit parameters: rc =
0.035/(2×34) cm ≈ 5.1µm. We thus conclude that for the
droplet shown in Figure 1, rf = rc within experimental er-
rors. This is direct evidence that we measure the critical
radius instead of the true equilibrium radius, when mea-
surements are performed after cooling down the droplet.

For comparison, we fitted the same data with a power
law of type h(ρ) = hf − $(ρ − rf )

ν . As shown in Fig-
ure 7b, the fit is as good as with equation (5) and gives
hf = 5.1µm, $ = 25 (in CGS units), rf = 5.8µm and
ν = 2.09. We note that the facet size obtained this way is
comparable with that found by using equation (5) (5.8µm
instead of 5.1µm). As for the exponent ν, it is found close
to 2 (the same value was measured in 8OCB and 4O8 close
to the nematic-smectic A transition temperature [19,20]).
Within the framework of the TLK model, such a value of
ν suggests that the droplet is not at equilibrium, but at
its critical radius [2,19]. From this point of view, the two
models lead to the same conclusion.

We nevertheless prefer the present model because it
is now well established from experiments on free-standing
films (for a review, see Chapt. 8 in Ref. [11]) that disloca-
tions are strongly repulsed from the free surface in smectic
A liquid crystals. In addition, this model applies along the
whole profile by construction, contrary to the TLK model,
which is only valid in the vicinal regime (i.e., close to the
facet where steps are well separated).

6 Facet radius and profile evolution at
increasing temperature

Let us now consider a droplet at low temperature obtained
after decreasing the temperature from the nematic phase.
We have shown that its facet radius is given by equa-
tion (11a), which corresponds to the critical radius rc. In
the following we denote by hf the height of the droplet at
this temperature.

The delicate problem we would like to tackle in this
section is the following: what happens if the temperature
is again increased. The droplet is then out of equilibrium
since its profile no longer satisfies the equilibrium equa-
tion (4). So its shape must slowly change (slowly, because
any deformation of the profile implies a redistribution of
the dislocations, which is strongly dissipative).

To fix ideas, let us start from the profile shown in Fig-
ure 5 at Ti = 23

◦C and suppose we increase the temper-
ature of the droplet up to Tf = 33 ◦C. Will the droplet
recover the shape shown in Figure 5 at this temperature?

To reach again the final state described in Figure 5,
dislocation loops must nucleate since the droplet height
must increase. But the nucleation of a dislocation loop
imposes to overcome an energy barrier of height

W+ =

∫ rc

0

(

Ed

ρ
−∆Pb

)

2πρdρ =

2πb∆P

∫ rc

0

(rc − ρ)dρ = πb∆Pr2
c . (23)

A rapid numerical estimate shows thatW+ is always much
larger than kBT in experiments, so nucleation is forbid-
den. The direct consequence is that the droplet cannot
recover its initial shape.

This conclusion (the same was drawn in Ref. [19] from
the TLK model) is in apparent contradiction with exper-
iments. Indeed, experiments show that the shape of the
droplet changes when the temperature is raised. More pre-
cisely, the facet radius slowly decreases for finally stabi-
lizing after many hours (or even days) at a value that is
a bit larger than that corresponding to the critical radius
at the final temperature (given by Eq. (11a) and plotted
in Fig. 6).

To raise the contradiction, let us study how the droplet
shape evolves when the temperature is increased, with
the additional constraint that its total height hf can-
not change. According to equation (5), this last condition
reads

hf = grg(k − 1− ln k)−
p

2
r2
g

(

k2 − 1
2
− k2 ln k

)

, (24)

where p is given by equation (9) as a function of the total
volume V of the droplet (or, equivalently, as a function of
r∗g , the droplet radius in the nematic phase, see Eq. (20)).
Replacing p by its expression in equation (24) leads to
a third-degree equation in rg which can be solved ana-
lytically using Mathematica. This procedure allows us to
express rg as a function of V (or r∗g), hf , and k. The next
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line corresponds to the droplet profile in the nematic phase
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step is to replace rg and p by their respective expressions
in equation (7a). We thus obtain a new expression for the
droplet energy eo(k, s, g, r

∗
g , hf ) at fixed height. The final

step consists of finding the extrema of this function as a
function of k. For each temperature T , this function has
two extrema, the first one (at small k) corresponding to
the critical radius (with the droplet being marginally sta-
ble) and the other (at large k) corresponding to a new
“equilibrium” shape (it being agreed that hf has been
fixed).

The question now is to determine which of these
two solutions the system chooses. At the beginning, the
droplet is marginally stable (and, so, fairly far from its
real equilibrium shape). So we propose as an ansatz that
the droplet remains on this solution branch, i.e. it evolves
while remaining marginally stable. Using this criterion,
we can calculate the new shape of the droplet at the fi-

Fig. 10. Grandjean terraces separated by giant dislocations in
a big droplet. Only a small part of the droplet is visible in this
photograph taken in natural light (from Ref. [27]).

nal temperature. Figure 8 shows the new facet radius r↑c
calculated this way. As expected, and in agreement with
experiments, r↑c > rc. Another prediction (which has not
been checked experimentally) is that the droplet radius
rg must slightly increase, because the droplet approaches
a spherical cap. This is visible on the profiles shown in
Figure 9. Finally, this model predicts that the radius of
curvature measured at the top of the droplet jumps at the
transition temperature toward the nematic phase. This
point would merit to be checked experimentally.

In conclusion, this approach of the problem could ex-
plain why the facet radius slowly decreases when the tem-
perature is raised, in spite of the fact that no new dis-
locations nucleate. In the following section, we treat the
problem of the stability of a droplet with respect to the
formation of giant dislocations.

7 Stability with respect to the formation of
giant dislocations

It was known for a long time that big droplets form Grand-
jean terraces [28]. The latter are separated by giant dislo-
cations of very large Burgers vectors (many tens or even
hundreds of layers) in the thick parts of the droplets. Such
dislocations are shown in Figure 10.

This phenomenon is due to the tendency of the el-
ementary dislocations to group together to reduce their
core energy. Indeed, their elastic energy is proportional to
their Burgers vector b (and not to b2 as in usual solids) [11,
29], a property that was checked experimentally only re-
cently in films [30]. Thus, grouping n dislocations must be
energetically favourable (at least in an infinite medium)
because we do not change the total elastic energy, but we
reduce the core energy (one core, or rather two, instead
of n, if one considers the model shown in Fig. 11). This
property was used to explain the grouping of dislocations
in the menisci bordering free films [31] (in that case the
two surfaces are free).
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b 

+π −π

Fig. 11. Giant dislocation. The core is decomposed into a
pair of (±π)-wedge disclination lines. These two lines have a
singular core. This model was first proposed by Williams and
Kléman [32].

In this section, we analyze by using the same method as
in reference [31] in which conditions the dislocations group
together in a smectic droplet. For the reasons explained
before, we shall assume that the facet radius is equal to
the critical radius and that the droplet profile is still given
by equation (5) with cf = 0.

Let us now consider a set of n elementary dislocations
taken in the radius interval ρ ∈ [δ − d/2, δ + d/2] (with
rf < δ < rg and d ¿ rg). The posed question is to de-
termine in which condition it becomes preferable to group
these n dislocations to form a giant dislocation of Burgers
vector nb at the mean distance δ from the droplet cen-
tre. To answer this question, let us determine the energy
difference between the two possible configurations.

In the case of n elementary dislocations, the energy
Eed of the circular droplet slice of width d reads:

Eed = 2πδ

(

nEd + γ

[

h′(δ)
]2

2
d

)

. (25)

The first term represents the energy of the n elemen-
tary dislocations and the second the increase of surface
energy due to the free surface inclination (with h′(δ) =
(dh(ρ)/dρ)ρ=δ). Because nb ≈ −h′(δ)d, the parameter d
can be eliminated from equation (25) which becomes:

Eed = 2πδn
(

Ed −
γ

2
bh′(δ)

)

. (26)

For a giant dislocation of Burgers vector nb with the
core structure described in Figure 11, the energy can be
written in the form

Egd = 2πδ

{

2Ec +
nb
√
KB

2
+

πK

2
lnn

+
Bλn2b2

8
√

2πλh(δ)

[

2A+
(

1 +A2/3
)3/2

]

}

. (27)

In this expression, 2Ec represents the core energy of the
+π and −π disclinations (in the following, we shall take
2Ec ≈ Ed). The second term corresponds to the elastic
self-energy of the giant dislocation. The third term gives
the curvature energy of the layers associated with the +π
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Fig. 12. Plot of the difference energy Egd−Eed as a function of
n and l = δ/rg calculated for 8CB at T = 24 ◦C. In this graph,
lmin ≈ 0.39 and nmin ≈ 14, while lopt ≈ 0.87 and nopt ≈ 16.

disclination. Finally, the last term corresponds to the elas-
tic interaction energy between the giant dislocation and,
both, the solid substrate and the free surface (for more
details, see Ref. [22]). We recall that K and B are, respec-
tively, the curvature and the compressibility moduli of the
layers, λ =

√

K/B is the so-called penetration length, and

A = (γ −
√
KB)/(γ +

√
KB) is a constant.

The next step is to compare the energy of the giant dis-
location with the energy of the n elementary dislocations.
We thus need to calculate Egd − Eed as a function of the
free parameters n and δ. This difference reads, according
to equations (25) and (27),

Egd − Eed = 2πδ

{

(1− n)Ed − n
γ

2
bh′(δ) +

nb
√
KB

2π

+
πK

2
lnn+

Bλn2b2

8
√

2πλh(δ)

[

2A+
(

1 +A2/3
)3/2

]

}

, (28)

where h(δ) and its derivative h′(δ) can be calculated from
equations (5) and (11a) (in the critical regime). Introduc-
ing the ratio l = δ/rg (with k < l < 1), we calculate from
these two equations

h(δ)
∣

∣

δ=lrg
=

g

4k

[

1 + 4k(l − 1)− l2 − 2k2 ln l
]

rg (28a)

and

h′(δ)
∣

∣

δ=lrg
= −g(k − l)2

2kl
. (28b)

Finally, we can express the energy difference Egd−Eed as
a function of n and l for each temperature T and droplet
radius rg, knowing that Ed(dyn) = 2.52 × 10−7(33.4 −
T )0.446 [26], B(erg/cm3) ≈ 0.665 × 108(33.4 − T )0.328,
λ(cm) ≈ 8.92 × 10−8(33.4 − T )−0.13 and K = Bλ2 ≈
7× 10−7 dyn [11,31]. The function Egd−Eed is plotted in
Figure 12 by taking T = 24 ◦C and rg = 300µm.

This graph shows that Egd − Eed is positive at small
values of l, but can become negative above some mini-
mum value of l denoted by lmin. At the distance lminrg
from the centre of the droplet, a giant dislocation of well-
defined Burgers vector nmin (here, we measure the Burg-
ers vector in number of layers, with nmin > 2) may form
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because it becomes energetically favourable. The quantity
Egd − Eed has also an absolute minimum for some opti-
mal values nopt and lopt of n and l. These quantities are
plotted comparatively as a function of the droplet size rg
in Figure 13 at T = 24 ◦C and T = 33.2 ◦C (i.e., 0.2 ◦C
below TNA = 33.4

◦C), respectively.

We immediately note that lopt is constant in the large
range of radii explored (20µm < rg < 5mm) and is quasi-
independent of the temperature chosen (lopt ≈ 0.87 at
T = 24 ◦C and lopt ≈ 0.89 at T = 33.2 ◦C, Figs. 13a and
b). This result shows that giant dislocations preferentially
form close to the outer edge of the droplets. As for nopt,
it increases both with the temperature (at given radius)

and with the droplet radius (at given temperature) as r
1/2
g

(Figs. 13c and d). By contrast, lmin decreases when rg in-
creases, but the decrease is faster at low temperature than
at high temperature (Figs. 13a and b). In addition, we note
that lmin reaches its minimal possible value k for a droplet
radius r∗g ≈ 3mm at T = 24 ◦C (Fig. 13a). This particular
radius rapidly increases when the temperature increases
and becomes so large close to the transition temperature
that it does make sense to speak about it. In the same
time, nmin increases with temperature (at a given radius)
and with droplet radius as r0.3

g (at a given temperature)
(Figs. 13a and b).

To summarize, giant dislocations form preferentially
in the outer part of the droplet. Their Burgers vectors in-
crease when the temperature increases in spite of the fact

that the curved part of the droplet surface adjacent to the
facet is more stable at high temperature than at low tem-
perature. For that reason, the whole droplet destabilizes
only at low temperature if it is big enough (i.e., if rg > r∗g).

8 Concluding remarks

Our calculations lead to the conclusion that it is almost
impossible to observe a droplet at equilibrium. Neverthe-
less, the shapes observed after cooling down small droplets
from the nematic or the isotropic phase must be repro-
ducible and self-similar, with a facet radius very close to
the critical radius. This result reposes on the fact that
the dislocation loops of smaller radius than rc are unsta-
ble and, thus, rapidly collapse. This is clearly the case in
small droplets in which the elastic force acting on disloca-
tions (proportional to the overpressure ∆P ) is large, being
inversely proportional to rg. On the contrary, shapes ob-
served after a temperature increase change very slowly in
time. In that case, the droplet height is blocked (the nu-
cleation of new dislocations is forbidden), which does not
prevent the facet from slowly decreasing in size. Our feel-
ing is that the droplet evolves while remaining marginally
stable. In that case, the final facet size must be larger than
rc, in agreement with experiments [19].

The problem is more complicated with big droplets
because of the local formation of giant dislocations. The
latter can form spontaneously at different places, resulting
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Fig. 14. Three-dimensional view of a droplet of the chiral
liquid crystal XI/12 obtained by taping mode atomic force mi-
croscopy. The droplet has been deposited in the smectic A
phase at high temperature (about 100 ◦C) and then slowly
cooled down to the room temperature in the SmC∗ phase (from
Ref. [33]).

in various metastable shapes. This is perhaps one of the
reasons why it was so difficult to observe faceted shapes
with big droplets [19,20]. Another problem could come
from wetting hysteresis. Indeed, we have implicitly as-
sumed that the droplet radius can change easily in order to
minimize the total energy, which excludes any hysteretic
effects of the contact angle on the substrate. This is far
from being the case in experiments, where hysteresis al-
ways exists. This can be a serious problem especially with
big droplets in which the driving forces (inversely propor-
tional to r2

g) are weak.

Finally, the model predicts that the curved part of
the droplet matches tangentially the facet, on condition
that the equilibrium equation (4) (which generalizes the
Laplace equation) is globally satisfied. In that case, the
profile is given by equation (5) with cf = 0 whatever the
facet radius (always larger than the critical radius). The
tangential matching is due to the fact that the dislocations
repulse each other to reduce the excess of free surface en-
ergy. Indeed, the term in γ in equation (2) may be seen
as a repulsive interaction term between the dislocations.

For this reason, the model cannot explain the angular
matching observed in certain droplets of the liquid crystal
4O8 close to the smectic B phase transition [20]. In that
case, which remains an exception, it is not excluded that
the elastic constants K and B increase in such a way that
the surface tension γ becomes smaller than

√
KB. The dis-

locations should then glide to the surface to form steps [22,
23] and the TLK model would become applicable. The
explanation given in reference [21] based on finite-size ef-
fects and attractive elastic interactions between steps of
the same sign via the solid substrate is thus perhaps the
solution to this intriguing problem.

Let us still mention interesting unpublished observa-
tions by H. Dumoulin and P. Pieranski of smectic C∗

droplets of a very viscous liquid crystal deposited on mica.

An example is shown in Figure 14. This image was ob-
tained by using Taping Mode Atomic Force Microscopy.
In this droplet, the matching between the facet and the
curved part of the surface is clearly angular (with an an-
gle of 4.5◦ [33]). This result is very surprising because the
elastic modulus B is usually smaller in SmC (or SmC∗)
than in SmA due to the tilt of the molecules inside the
layers [34]. For that reason, dislocations must be repelled
from the free surface and our model should apply. One pos-
sibility for explaining the angle would be that the droplet
has been “photographed” during the collapse of the upper
dislocations, and so is strongly out of equilibrium. This is
very possible inasmuch as steps are still visible on one side
of the facet. In addition, the droplet is surrounded by a
terrace of molecular height, which indicates that the liq-
uid crystal wets mica and that the droplet is spreading (at
least at high temperature). Thus, new and more controlled
experiments are clearly necessary before to conclude about
the existence or the non-existence of an angular matching
at equilibrium in this material.

Finally, we emphasize that our model should apply as
well to lamellar phases of diblock copolymers (like PS-
PBMA). Indeed, the dislocations are strongly repulsed
from the free surfaces in these systems, as was shown
experimentally by electron microscopy [35]. Nevertheless,
the radio rf/rg must be smaller in copolymers than in
usual smectic A because of the smallness of the ratio
Ed/b ≈

√
KB (of the order of 1 dyn/cm [36]). As a con-

sequence, facets should be more difficult to observe in
copolymers than in usual smectic A.

L.L. would like to express his thanks for hospitality of the Ecole
Normale Supérieure of Lyon, where this work was done.
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