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Chapter 1

Introduction

In this dissertation, we study quasirandomness in several contexts, mostly in
quantum information theory. An object is quasirandom if it shares properties with
a random object. What these properties are, depends on the context. Consider,
for example, uniformly random 3-regular graphs. They have the property that
they are likely highly connected, while at the same time the number of edges
is quite small (the graph is “sparse”) [AS04a]. Highly connected refers to the
property that, for example, a random walk on the graph mixes very rapidly:
after a small number of steps, the position of the walker is close to uniformly
random. So when an explicit 3-regular graph has this property as well, we say
that it is quasirandom. Such graphs are also called expanders and they have
several other nice properties and have found many applications in mathematics
and computer science [HLW06].

Other interesting objects are linear maps from matrices to matrices, complex-
valued functions on a finite abelian group, etc. These objects appear in quantum
information theory in the form of quantum channels or the amplitudes of quantum
states for example. Analogous to the graph case, random quantum channels have
the property that they quickly “mix” any quantum state by applying it a small
number of times. That is, the resulting quantum state is close to the “maximally
mixed state” [HL09]. So explicit quantum channels with this property may be
called quasirandom. For quantum states we consider the notion of rank, where
you want to express a quantum state in terms of a minimal number of simpler
states called stabilizer states, this is the stabilizer rank. In this case, random
quantum states have a “high” stabilizer rank.

In most cases, it is then a challenge to show that an explicit object that we
believe is quasirandom, shares a typical property with a truly random object.
Taking again the example of expanders, while it is not hard to show that they
exist (random 3-regular graphs are likely to be expanders through the probabilistic
method), it is considerably more difficult to construct them explicitly. Similarly,
we know that random quantum states have a high stabilizer rank, but it is still

1



2 Chapter 1. Introduction

unknown whether the magic state, an explicit quantum state crucial for universal
quantum computing, has a high stabilizer rank [BBC+19].

The results from this thesis rely heavily on tools from higher-order Fourier
analysis. Higher-order Fourier analysis is a still nascent area of mathematics that
grew out of Gowers’s Fourier-analytic proof of Szemerédi’s theorem on arithmetic
progressions [Gow01]. An arithmetic progression of length k is a sequence of inte-
gers x, x+d, x+2d, . . . , x+(k−1)d for some integers x, d. Here x is called the start-
ing point and d the common difference of the progression. Szemeredi’s theorem
states that any “dense” subset in the interval {1, 2, . . . , N} contains arbitrarily
long arithmetic progressions, provided that N is large enough. This is a fun-
damental result in additive combinatorics that has a number of different proofs,
one of which is Fourier-analytic and which led to the development of higher-order
Fourier analysis. The applications found in this thesis motivate the further study
of tools in higher-order Fourier analysis in the context of quantum information
theory, where they have thus far not been used much. Higher-order Fourier analy-
sis has already found many applications in classical theoretical computer science,
such as in property testing, coding theory, and complexity theory [HHL19]. The
results in this thesis contribute to the development of higher-order Fourier anal-
ysis in quantum information-theoretic settings.

We now give a high-level overview of each topic that we study in this disser-
tation.

Nonlocal games. The framework of nonlocal games studies a fundamental
property of nature, that of nonlocality in quantum mechanics. Entanglement
between spatially separated quantum systems allows for correlations that would
not be possible “classically”, that is, in a hidden variable theory. This statement
was made precise by John Bell in [Bel64] using so-called “Bell tests”. Such a
test, which is a setup of physical systems, can demonstrate the violation of “Bell
inequalities”. In the framework of nonlocal games, the CHSH game [CHSH69]
provides us with a Bell inequality as follows.

The game consists of two players, usually named Alice and Bob, and a referee.
The referee samples two uniformly random bits x, y ∈ {0, 1} and sends x to Alice
and y to Bob. Without communicating, Alice and Bob send answers a, b ∈ {0, 1}
to the referee respectively. They “win” if a + b = xy mod 2. Alice and Bob are
allowed to devise a strategy together before the game starts. Such a strategy tells
the players what bit to answer given the question. Once the referee sends the
questions, they are not allowed to communicate. They are also allowed to use
shared randomness (hidden variables), i.e. coin tosses that they both can see, and
decide what to answer depending on the outcome of the toss and their input. This
will however not help them gain an advantage over deterministic strategies, i.e.
strategies without randomness. Such strategies are also called classical strategies.
It is not hard to show that the best Alice and Bob can do using classical strategies
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is answer correctly 3 out of 4 times, see Section 1.2. In a hidden variable model
of nature, classical strategies are the only possible strategies that can be used to
play the game. Hence, this game provides us with a Bell inequality, meaning that
the probability of winning the CHSH game is at most 3/4.

It is however possible to play better (win with probability higher than 3/4)
when the players are allowed to share a quantum state. In this case, the players
answer according to a measurement performed on their part of the shared en-
tangled state. Such strategies are called quantum strategies. Using a quantum
strategy, it can be shown that the probability that Alice and Bob win, is ap-
proximately 0.85, see Section 1.2. In particular, “the Bell inequality is violated”
which is not possible in a classical world. Experimentally showing this implies
that nature can not be described by a hidden variable theory. This was first done
in [AGR82] and more recently [HBD+15] (in a “loophole-free” way).

It appears to be the case that shared entanglement can provide useful corre-
lations for the players in playing nonlocal games. The following question then
arises naturally: how much advantage can there be in using quantum strategies
in nonlocal games over classical strategies? In this dissertation, we will look at
multiplayer XOR games, a subclass of nonlocal games. These games have the
property that the answers of the players are bits and that the winning condition
of the game only depends on the XOR of the answers. The CHSH game just
discussed is an example. We will see in Section 1.2 that such games are given by
a game tensor which is a map from the questions to {±1}. XOR games have the
property that the winning probability is always at least 1/2, because the players
can always output a random bit. Therefore, we look at the bias of the game,
which measures how much better than the random strategy the game can be
played. For two-player XOR games, it is known that the quantum bias is at most
a constant times the classical bias [Tsi87], which implies that quantum strategies
do not give an arbitrary big advantage over classical. This follows from a deep
theorem in Banach space theory, Grothendieck’s inequality [Gro53], together with
Tsirelson’s Theorem [Tsi87].

In the case of three or more players, less is known about the ratio of quantum
and classical bias. There is a sequence of three-player XOR games for which
this ratio goes to infinity [PGWP+08]. The games for which this happens were
not made explicit, merely its existence was shown. Later in [BV13] this was
quantitatively improved, but the games were still not explicit, as the techniques
used are based on the probabilistic method. These games also have the additional
property that the quantum bias goes to zero. It is an open problem to find an
explicit family of three-player XOR games for which the ratio of quantum and
classical bias diverges. This is another example of the phenomenon that through
the probabilistic method existence of objects (XOR games in this case) can be
shown with certain properties, but explicitly constructing them turns out to be
hard. In Chapter 2 we study the slightly refined problem where we require that
the quantum bias does not go to zero. We rule out certain natural subclasses of
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XOR games for which this might, a priori, be possible. Roughly speaking, we show
that the quantum bias of such games is bounded from above by certain tensor
norms that arise in the combinatorial and Fourier-analytic proofs of Szemerédi’s
theorem, of the game tensor. This implies that if the quantum bias is large, the
norm of the game tensor norm is also large. This in turn implies the existence
of “structure”, the opposite of what we would expect from a random tensor. It
turns out that this structure can be turned into a classical strategy for which the
classical bias is large as well, meaning that the ratio of quantum and classical
bias is bounded.

Quasirandom graphs. In seminal work [CGW89], Chung, Graham, and Wil-
son introduced the notion of quasirandom graphs. They showed that a number of
properties (seven to be precise) that are typical for random graphs are equivalent
for dense graphs. In particular, if an explicit family of dense graphs satisfies one
of the properties, it must simultaneously satisfy all the other properties. This
means that this family of graphs behaves as though it is random, in a number of
different ways, which is why we call it quasirandom. Two of these properties that
we will focus on are (spectral) expansion and uniformity . A family of d-regular
graphs is an expander if the second to largest eigenvalue in absolute value of
the adjacency matrix is bounded away from d. One of the (many) properties of
such graphs is that random walks on these graphs converge rapidly to the uni-
form (limit) distribution. This can for example be used to reduce the amount of
randomness that a probabilistic algorithm uses, as randomness can be quite an
expensive resource [HLW06]. Uniformity on the other hand is a combinatorial
property of the graph. Roughly speaking, a graph is uniform if, for arbitrary
pairs of subsets of the vertex set, the edge density between these two subsets is
approximately the same as the overall edge density of the graph. It is straight-
forward to show that expander graphs are also uniform, showing that expansion
is a stronger property of a graph. Chung, Graham, and Wilson showed that the
converse also holds for dense graphs. That is, if a dense graph is uniform, it also
has to be an expander. In [KS06] it was shown that this is not true in general,
they found counterexamples to this converse in sparse graphs. However, Conlon
and Zhao [CZ17] showed that such a converse holds for vertex-transitive graphs,
surprisingly using Grothendieck’s inequality.

In Chapter 3 we generalize the theory of quasirandom graphs to quantum
information theory. In quantum information theory, the notion of a quantum
channel is central. It is the most general transformation physically realizable
that a quantum state can undergo. In classical information theory, on the other
hand, transition matrices, or Markov chains, are the most general transformations
on probability distributions, i.e. classical information. Classical channels can
therefore be identified with a weighted graph and as such, a natural generalization
of graphs are quantum channels, or superoperators in general.
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We will study the relationship between expansion for quantum channels, a
notion that has already been extensively studied [Has07, BST10], and a natural
generalization of uniformity for quantum channels. We are able to prove quan-
tum analogues of the results of Chung, Graham, and Wilson on quasirandomness
of graphs. We show that expansion and uniformity for “randomizing” quantum
channels [Aub09] are equivalent. We also show that Conlon and Zhao’s result
can be generalized to say that “irreducibly covariant” quantum channels admit
a converse (from uniformity to expansion). Irreducible covariance is an impor-
tant notion for quantum channels relevant to “additivity conjectures” in quantum
information theory [Hol05]. Here we use the noncommutative Grothendieck in-
equality [Haa85] for proving this converse.

Stabilizer rank. According to the Gottesman-Knill Theorem [Got98, NC02]
we can efficiently simulate any quantum circuit consisting of stabilizer operations,
which are Clifford gates and Pauli measurements, on a classical computer. Such
circuits can be promoted to universal quantum computation by adding a non-
Clifford gate to our gate set or if we have access to a “magic state”. It is widely be-
lieved that universal quantum computers cannot be efficiently simulated on classi-
cal computers: state-of-the-art simulators using modern-day supercomputers are
only able to simulate a few dozen qubits [CZH+18, HS17, PGN+17, SSAG16].
The quantum states that we obtain from the canonical all-zero state after apply-
ing Clifford gates are the stabilizer states [Got97]. Then, lower bounds on the
minimal number of terms needed to express the n-qubit magic state as a super-
position of stabilizer states gives a lower bound on the cost of certain simulation
algorithms of stabilizer operations applied to the n-qubit magic state. This min-
imal number of terms is also called the stabilizer rank of, in this case, the magic
state.

Pick a random n-qubit state (from the Haar measure) and with a very high
probability its stabilizer rank is exponential in n, this follows from a dimension
counting argument. But showing that an explicit n-qubit state has an expo-
nentially large stabilizer rank turns out to be hard. Here we have a candidate
explicit n-qubit state, the n-qubit magic state, for which it is expected that its
stabilizer rank is exponential in n [BBC+19]. In [BSS16] it was shown that the
stabilizer rank of the n-qubit magic state has to be at least Ω(

√
n) and recently

this was improved to Ω(n) [PSV21]. A huge gap persists between the hoped-for
lower bound and the best known lower bound, and the techniques used in these
results will not be able to close this gap. In Chapter 4 we take an approach that
is different from the previous two results.

It turns out that the amplitudes of stabilizer states and the n-qubit magic
states are polynomial phase functions (to be precise nonclassical polynomial phase
functions defined on affine subspaces) [DDM03, HDDM05, HV12]. Such objects
are of central importance in higher-order Fourier analysis, a generalization of
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Fourier analysis where instead of studying the correlation of functions with char-
acters, the correlation with polynomial phase functions are studied. In Chapter 4
we use this observation together with tools from higher-order Fourier analysis
[HHL19] to show that the stabilizer rank of the n-qubit magic state is Ω(n),
giving an alternative Fourier-analytic proof of the result in [PSV21].

Decomposition theorems. The final topic in this dissertation concerns a re-
sult in higher-order Fourier analysis, instead of an application of it, relevant to
a certain refinement of Szemerédi’s theorem referred to as Szemerédi’s theorem
with random differences. Before explaining this, recall that Szemerédi’s theorem
states that any “dense” subset of {1, 2, . . . , N}, with N large enough, contains
arbitrarily long arithmetic progressions. In this theorem, there is no restriction
as to what the common difference of the progression can be and one would like
to know if the theorem still holds when the common difference is from certain
special sets. There are some known results in this direction, for example for
k ≥ 2 it is known that any dense subset in {1, 2, . . . , N}, with N large enough,
contains a k-term arithmetic progression x, x+ d, . . . , x+ (k− 1)d with the com-
mon difference d in the squares {12, 22, 32, . . . } [BL96]. Other sets of common
differences known with this property are the shifted primes {p− 1: p prime} and
{p+ 1: p prime} [WZ12]. Frantzikinakis et al. [FLW16] asked if these sets are re-
ally special or that a random subset D ⊂ {1, 2, . . . , N} would satisfy this property
as well. Here, the random subset D is defined by adding each d ∈ {1, 2, . . . , N} to
D with probability ρ > 0. Roughly speaking, we want to know what the small-
est probability ρ is such that with the random subset D, Szemerédi’s theorem
with random differences holds. An avenue for solving this problem is through
decomposition theorems for certain functions called dual functions.

In higher-order Fourier analysis, decomposition theorems play an important
role in understanding counts of linear configurations in subsets of the interval
{1, 2, . . . , N} where N is a large integer [Gow10]. For example, the linear config-
uration might be arithmetic progressions. One usually decomposes the indicator
function of the subset in terms of polynomial phase functions plus an error term
and a quasirandom component that is small in the “Gowers uniformity norm”.
The polynomial part is then easier to analyze, while the error term and quasir-
andom part do not affect the count of the linear configuration that much. In this
way, one obtains a Fourier-analytic proof of Szemerédi’s theorem [Gow01, Tao05].

The types of decomposition theorems we will look at in Chapter 5 are for
more structured functions known as dual functions. Instead of decomposing an
arbitrary function on a finite abelian group, we wish to decompose dual functions
in terms of polynomial phase functions plus an error term. Dual functions can,
for example, count progressions of length three in subsets of {1, 2, . . . , N} with a
given common difference. Let A ⊂ {1, 2, . . . , N} and 1A the indicator function of
A, that is, 1A(x) = 1 if x ∈ A and 0 otherwise. The dual function, in this case,
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is given by

φA : d 7→ 1

N

N∑
x=1

1A(x)1A(x+ d)1A(x+ 2d).

In other words, φA(d) counts the number of progressions of length three in A
with common difference d. The powerful Gowers inverse theorem together with
the Hahn-Banach theorem allows us to decompose these functions such that the
error term is small on “average” [Gow10]. However, if we can decompose dual
functions in such a way that the error term is small everywhere, then this would
imply certain optimality results on Szemerédi’s theorem with random differences,
more on this implication in Section 1.5. However, we show in Chapter 5 that
such a decomposition theorem is not true in general in vectors spaces over finite
fields. Our proof uses breakthrough constructions of error-correcting codes due
to Yekhanin [Yek08].

1.1 Preliminaries

First we will list the basic notation and terminology. Then we will go through
some background information for the upcoming chapters.

Notation. For a finite set S, we write Ex∈S for 1
|S|
∑

x∈S. For integer n ∈ N,

define [n] := {1, 2, . . . , n}. Let S be a set and T ⊂ S a subset. We write T for the
complement of T . We define 1T : S → {0, 1} to be the indicator function of T ,
that is 1T (s) = 1 if and only if s ∈ T . For a complex number z ∈ C we write <(z)
for its real part and =(z) for its imaginary part. Let H be a finite-dimensional
Hilbert space. We denote by L(H) the set of linear maps A : H → H. If K is
another finite-dimensional Hilbert space, their tensor product, denoted by H⊗K,
is again a Hilbert space and is the set of all v ⊗ w for (v, w) ∈ H × K such that
for α ∈ C

• (αv)⊗ w = αv ⊗ w,

• v ⊗ (αw) = αv ⊗ w,

• (v + v′)⊗ w = v ⊗ w + v′ ⊗ w,

• v ⊗ (w + w′) = v ⊗ w + v ⊗ w′.

Let p be a prime. We denote by Fp the field of p elements and T = R/Z . Define
ι : Fp → T to be the map given by

ι : x 7→ |x|/p mod 1,
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where | · | : Fp → {0, 1, . . . , p− 1} is the natural map. We also define this map on
Fnp by | · | : Fnp → Z≥0 : x 7→ |x1| + · · · + |xn|, this is an abuse of notation, but it
should be clear from context what the domain of the map | · | is. The exponential
map e : T→ C is defined to be e(t) := e2πit.

Fourier analysis. We recall now the basics of Fourier analysis over prime fi-
nite fields. In Fourier analysis, the protagonists are the characters of the group
we are looking at. These characters have many nice properties, of which the
orthogonality might be the most important one.

1.1.1. Definition (Characters). Let G be a finite abelian group. Homomor-
phisms χ : G → C∗ are called characters. The set of characters is denoted by
Ĝ.

The set of characters Ĝ is a finite abelian group with pointwise multiplication as
group operation.

1.1.2. Example. Let G = ZN be the cyclic group of order N . One can show
that the map χa : ZN → C : x 7→ e(ax/N) for any a ∈ ZN is a character. The

map a 7→ χa gives an isomorphism G→ Ĝ. Similarly, for prime finite fields they
take the following explicit form. For z ∈ Fnp , the map χz(x) := e(〈z, x〉/p) is
a character. It is not hard to check that z 7→ χz again gives an isomorphism
between Fnp and F̂np .

For two functions f, g : Fnp → C, their inner product is defined by

〈f, g〉 := E
x∈Fnp

f(x)g(x) = p−n
∑
x∈Fnp

f(x)g(x).

Using this inner product, the characters form an orthonormal basis for the space
of functions {f : Fnp → C}.

1.1.3. Proposition (Orthogonality of characters). Let z, z′ ∈ Fnp . Then

〈χz, χz′〉 =

{
1 if z = z′

0 otherwise.

As the characters form an orthonormal basis for the space of functions, any func-
tion f : Fnp → C can be written as a linear combination of characters. This de-
composition is used so often that it has a name: the Fourier transform. Denote
by f̂ the Fourier transform of f , i.e.

f̂(z) = E
x∈Fnp

f(x)χz(−x), z ∈ Fnp .
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The inner product for the Fourier transforms is defined by

〈f̂ , ĝ〉 =
∑
z∈Fnp

f̂(z)ĝ(z).

Denote by ∗ the convolution operator, i.e.

f ∗ g(x) = E
y+z=x

f(y)g(z).

Norms. Norms play an important role in this thesis. In a normed vector space,
the norm gives a notion of how large an object in that space is and also defines a
notion of distance, turning it naturally into a metric space. They can also define
a notion of quasirandomness: an object is quasirandom if it is small in a certain
norm. The spaces in which we consider norms are usually Cn, the space of n× n
matrices or spaces of functions on finite sets. Here we give the definitions of the
norms that we use throughout. Let Mn(C) be the set of n × n matrices with
complex entries. The trace of A ∈Mn(C) is defined to be Tr(A) =

∑
i∈[n] Aii.

• For p ∈ [1,∞), x ∈ Cn the Lp-norm and `p-norm are defined as

‖x‖Lp =
(

E
i∈[n]
|xi|p

)1/p

and ‖x‖`p =
(∑
i∈[n]

|xi|p
)1/p

and ‖x‖L∞ = ‖x‖`∞ = maxi |xi|.

• For A ∈Mn(C), its operator norm, denoted ‖ · ‖op, is defined by

‖A‖op = max
x∈Cn : ‖x‖`2=1

‖Ax‖`2 ,

or equivalently, its largest singular value.

• The Schatten-p norms, denoted by ‖·‖Sp , for p ∈ (0,∞) and A ∈ Mn(C) is
defined to be

‖A‖Sp =
( 1

n
Tr
[
(A∗A)p/2

])1/p

,

and for p =∞ define ‖A‖S∞ = ‖A‖op.

• Let G be a finite abelian group and f : G→ C a complex-valued function on
G. Define the multiplicative derivative ·∆h for any h ∈ G for such functions
as

·∆hf(x) = f(x+ h)f(x).
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We define for any s ≥ 1 the Gowers norm ‖ · ‖Us(G)

‖f‖Us(G) = ( E
h1,...,hs,x∈G

·∆h1 · · · ·∆hsf(x))1/2s . (1.1)

For s = 1 we get the absolute value of the mean of the function

‖f‖U1(G) = ( E
h,x∈G

·∆hf(x))1/2 = | E
x∈G

f(x)|,

so technically it is not a norm, but for s > 1 it is indeed a norm [TV06].
By the recursion

‖f‖2s+1

Us+1(G) = E
h∈G
‖ ·∆hf‖2s

Us(G)

one sees that the expectation in Equation 1.1 is a non-negative real.

Quantum mechanics. We refer to [NC02, dW19] for the basics in quantum
computing and quantum information theory.

We use braket notation for quantum states. A pure quantum state |ψ〉 is a
unit vector in a finite-dimensional complex Hilbert space H, which is isomorphic
to Cn for some n ∈ N. We say that the dimension of |ψ〉 is n. Write 〈ψ|
for the dual of |ψ〉 and 〈ψ|φ〉 for the inner product between |ψ〉 and |φ〉. We
also write |ψ〉〈ψ| for the pure quantum state in density matrix form. A general
quantum state ρ ∈ Mn(C) is a probabilistic mixture of pure quantum states, i.e.
ρ =

∑m
i=1 pi|ψi〉〈ψi| where pi ≥ 0 and

∑m
i=1 pi = 1. If it is not a pure state, we

also say that it is a mixed state. Alternatively, any n× n matrix ρ is a quantum
state if it is positive semi-definite and satisfies Tr(ρ) = 1.

If H1 and H2 describe two quantum systems, then the composite quantum
system is described by the tensor product H1 ⊗ H2. If |ψ〉 ∈ H1 and |φ〉 ∈ H2

are pure states, then |ψ〉 ⊗ |φ〉 ∈ H1 ⊗ H2 is a product state. Note that not all
states in H1 ⊗H2 are product states.

A quantum channel Φ: Mn(C) → Mn′(C) is a linear map that is completely
positive and trace-preserving (CPTP). Trace-preserving refers to the condition
that Tr(Φ(X)) = Tr(X) for any X ∈ Mn(C) and complete positivity requires
that for any m ∈ N the map Φ ⊗ Id : Mn(C) ⊗Mm(C) → Mn′(C) ⊗Mm(C) is
a positive map, where Id is the identity map sending Y ∈ Mm(C) to Y . A gen-
eral linear map Φ: Mn(C) → Mn′(C) is also called a superoperator. Note that
the action of a superoperator is completely determined by its action on quantum
states, since one can form a basis for Mn(C) out of density matrices.

Let |ψ〉 ∈ Cn be a pure quantum state given by |ψ〉 =
∑

i∈[n] αi|i〉, where (|i〉)i∈[n]

is a basis for Cn. When we measure |ψ〉 in the basis (|i〉)i∈[n], the state collapses
to |i〉 with probability |αi|2.
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The most general kind of measurement one can perform on a mixed state
ρ ∈ Mn(C) is a positive operator-valued measure (POVM). It is given by a set
of positive semi-definite matrices F1, . . . , Fm ∈ Mn(C) such that

∑m
i=1 Fi = In,

where In is the n× n identity matrix. The POVM element Fi is associated with
measurement outcome i and obtaining this outcome happens with probability
Tr(ρFi). A projective measurement is a POVM where the operators Fi are pro-
jectors, for example when the Fi are projectors on the i-th basis vector.

Observables are Hermitian matrices H ∈ Mn(C). A special case is when the
eigenvalues are ±1, relevant for XOR games, in which case we write the set of all
such matrices as Obs±(Cn).

Suppose H1 and H2 describe two quantum systems and ρ ∈ L(H1 ⊗ H2) is
a (mixed) quantum state in the composite system. Let F1, . . . , Fm ∈ L(H1) be
a POVM for, say, the first quantum system. To perform this measurement on
the first part of ρ, we apply the POVM given by the operators F1⊗ I, . . . , Fm⊗ I
where I ∈ L(H1) is the identity linear map.

1.2 Nonlocal games

This section serves as motivation and background information for Chapter 2.
Here we follow the paper [CHTW04].

In Chapter 2, we consider nonlocal games with an arbitrary number of players.
But for now we stick with the case of two players, where we call the two players
Alice and Bob (as always). There is also a referee who samples questions from a
known set according to a known probability distribution. The referee sends each
of the players one question and Alice and Bob are not allowed to communicate
once they receive it. In particular, they don’t know each others questions. The
goal of Alice and Bob is to separately send answers back to the referee such that
they satisfy a known predicate, i.e. they win if their combined answer satisfies
some condition. The set of questions, the probability distribution according to
which the referee samples questions, the answer set and the predicate are all
known before the game starts. This means that Alice and Bob can come together
and devise a strategy.

Definitions. Write X and Y for the set of questions for Alice and Bob respec-
tively and let π be a probability distribution on X × Y . Let A and B be the set
of answers that Alice and Bob can answer from and V : A×B×X × Y → {0, 1}
be a predicate. The pair (V, π) defines a nonlocal game G = G(V, π) as follows.
The referee picks a pair of questions (x, y) ∈ X × Y according to π and sends x
to Alice and y to Bob. After receiving the questions, Alice and Bob must return
an answer a ∈ A and b ∈ B without communicating. They are allowed to agree
on a strategy before they receive the questions. Alice and Bob win the game if
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the predicate V evaluates to 1 on the instance (a, b, x, y) and lose if it evaluates
to 0.

The strategy that Alice and Bob agree on before the game starts, can be either
classical or quantum. The classical value of the game is the maximum probability
with which the players can win the game using a classical strategy. A classical
strategy is simply given by two maps a : X → A and b : Y → B, here the map
a dictates Alice what to answer on a given question, similarly the map b deter-
mines what Bob should answer given a question. Such a strategy is deterministic,
meaning that it doesn’t use any source of randomness (shared or private). Then,
the classical value of the game G, denoted by ω(G), is given by the following
expression

ω(G) = max
a,b

∑
(x,y)∈X×Y

π(x, y)V (a(x), b(y)|x, y),

here the maximum is taken over maps a : X → A and b : Y → B. Using more
compact notation, this is also equal to

ω(G) = max
a,b

E
(x,y)∈X×Y

V (a(x), b(y)|x, y),

where the expectation is taken over the probability distribution π. Note that
using shared or private randomness cannot increase the classical value, since the
above maximum can always be achieved by a deterministic strategy.

A quantum strategy for Alice and Bob consists of the following.

• A bi-partite quantum state |ψ〉 ∈ A ⊗ B where A and B are isomorphic
copies of Cn for some n. Alice has the A part of |ψ〉 and Bob the B part.

• Two collections {P a
x : x ∈ X, a ∈ A} and {Qb

y : y ∈ Y, b ∈ B} of n × n
matrices that form a POVM for every fixed x ∈ X and y ∈ Y .

These ingredients turn into a quantum strategy for the game G as follows. When
Alice gets question x, she performs the measurement described by the collection
{P a

x : a ∈ A} on her part of the quantum state |ψ〉. Similarly if Bob gets ques-
tion y, he performs the measurement given by {Qb

y : b ∈ B} on his part of |ψ〉.
The probability that they obtain the pair of answers (a, b) upon measurement
is 〈ψ|P a

x ⊗ Qb
y|ψ〉. Then, the probability that they win the game G using this

strategy is

E
(x,y)∈X×Y

∑
(a,b)∈A×B

〈ψ|P a
x ⊗Qb

y|ψ〉V (a, b|x, y).

The quantum value of the game G, which we denote by ω∗(G), is the supre-
mum of the above expression over all quantum strategies. It is not clear if
one can achieve the supremum using finite-dimensional strategies. Here finite-
dimensionality refers to the dimension of the quantum state |ψ〉. It is entirely
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possible that there exists a sequence of strategies with increasing dimension that
approaches the quantum value, but never reaches it in any finite dimension. In-
deed, it has been shown quite recently in [Slo19] that there exists a nonlocal game
which can be played perfectly (winning probability equals one) using a limit of
finite-dimensional quantum strategies but which cannot be played perfectly using
any finite-dimensional strategy.

1.2.1. Example. The CHSH game is a famous two-player game, based on the
CHSH inequality [CHSH69], for which a quantum strategy does better than any
classical strategy. The set of questions and answers are all equal to {0, 1}. The
distribution on the question set is uniform and the game tensor is given by

V (a, b|x, y) =

{
1 if a⊕ b = x ∧ y
0 otherwise.

The classical value of this game is 3/4. This can be seen by considering the
following table.

x y Alice ⊕ Bob x ∧ y
0 0 a0 ⊕ b0 0
0 1 a0 ⊕ b1 0
1 0 a1 ⊕ b0 0
1 1 a1 ⊕ b1 1

Here, ax is the answer of Alice to question x and by the answer of Bob to question
y. Assuming that there is a perfect strategy, i.e. ax⊕by = x∧y for all x, y ∈ {0, 1},
the sum of the rows of the third and fourth column should be equal. The sum of
the rows of the third column is 0 (mod 2), but for the fourth column it is 1 (mod
2). This is a contradiction, so there cannot be a perfect classical strategy for this
game. The best the players can do is win with probability 3/4. We will show in
a bit that the quantum winning probability is equal to cos2(π/8) ≈ 0.85.

XOR games. Of particular interest in this thesis are multiplayer XOR games.
XOR games are a subclass of nonlocal games where the allowed answers are bits
and the predicate only depends on the XOR of the anwers of the players. A
t-player XOR game G = (f, π) is defined by a function f : X1×· · ·×Xt → {0, 1}
and a probability distribution π over X1 × · · · × Xt where X1, X2, . . . , Xt are
question sets. An input (x1, . . . , xt) ∈ X1 × · · · × Xt is chosen by a referee
according to π, who then gives xi to player i. Without communicating, player i
then outputs a bit ai ∈ {0, 1} with the collective goal of the players being that
a1 ⊕ · · · ⊕ at = f(x1, . . . , xt).

In XOR games, the notion of bias is more interesting than the winning proba-
bility: any XOR game can be won with probability 1/2 and this is achieved when
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the players output a random bit. The bias of a strategy measures the amount
with which we can play better than the “random strategy”.

More precisely, let G be an XOR game and S a classical strategy. The bias of
this strategy, which we denote by β(G,S), is then defined as

β(G,S) := Pr(Win using strategy S)− Pr(Lose using strategy S)

= 2Pr(Win using strategy S)− 1.

The classical bias of a game G, denoted β(G), is then the maximum over all
possible classical strategies S of β(G,S). The quantum bias β∗(G) is defined
similarly, where we replace classical strategies with quantum strategies. An ex-
plicit expression for the bias can be obtained by letting the strategies and the
function f take values in {±1} instead of {0, 1}. More precisely, we apply the
transformation a 7→ (−1)a for a ∈ {0, 1}. The classical bias is then given by

β(G) = max
ai : Xi→{0,1}

E
x∈X1×···×Xt

(−1)
∑t
i=1 ai(xi)+f(x1,...,xt),

where the expectation is taken over the distribution π, this will always be the
case in this setting unless otherwise stated. This follows from the following com-
putation. First define

X = {x ∈ X1 × · · · ×Xt :
t∑
i=1

ai(xi) = f(x1, . . . , xt) mod 2},

then

E
x∈X1×···×Xt

(−1)
∑t
i=1 ai(xi)+f(x1,...,xt) = E

x∈X1×···×Xt
1X (x)− 1X (x)

= Pr(Win)− Pr(Lose).

It is in fact more convenient to immediately assume that the strategies ai are
maps Xi → {±1} and defining T (x1, . . . , xt) := (−1)f(x1,...,xt), so that

β(G) = max
ai : Xi→{±1}

E
x∈X1×···×Xt

T (x1, . . . , xt)
t∏
i=1

ai(xi). (1.2)

This is the form that is most convenient in Chapter 2. The map T is also called
the game tensor .

To obtain a similar expression for the quantum bias, let G = (f, π) be a two-
player XOR game for simplicity. Consider the quantum strategy given by a
shared entangled state |ψ〉 and projective measurements {P 0

x , P
1
x} and {Q0

y, Q
1
y}
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for Alice and Bob. We can assume that their measurements are projective by the
result in [CHTW04]. Then, the bias is given by

Pr(Win)− Pr(Lose) = E
x,y

∑
a,b∈{0,1}

(−1)f(x,y)+a+b〈ψ|P a
x ⊗Qb

y|ψ〉

= E
x,y

(−1)f(x,y)(〈ψ|P 0
x ⊗Q0

y|ψ〉 − 〈ψ|P 0
x ⊗Q1

y|ψ〉 − 〈ψ|P 1
x ⊗Q0

y|ψ〉+ 〈ψ|P 1
x ⊗Q1

y|ψ〉)

= E
x,y

(−1)f(x,y)〈ψ|(P 0
x − P 1

x )⊗ (Q0
y −Q1

y)|ψ〉.

If we define Ax := P 0
x − P 1

x and By := Q0
y −Q1

y, we see that the quantum bias of
this strategy is given by

E
x,y
T (x, y)〈ψ|Ax ⊗By|ψ〉,

where T (x, y) := (−1)f(x,y). The matrices Ax and By are ±1-valued observables
(Hermitian with eigenvalues ±1). To get an expression for the quantum bias of
the game G, we take supremum over all such observables and shared quantum
state |ψ〉. Since the 2-norm of |ψ〉 is 1 and the matrices Ax, By are Hermitian,
the supremum over such states can be neatly replaced by the operator norm, so

β∗(G) = sup
A,B
‖ E
x,y
T (x, y)Ax ⊗By‖op. (1.3)

Here the supremum is taken over mapsA : X → Obs±(CN) andB : Y → Obs±(CN)
and integer N ∈ N, where Obs±(CN) is the set of ±1-valued observables in di-
mension N . Here N is the dimension of the part of the shared quantum state of
Alice and Bob.

In a similar fashion, we can obtain an explicit expression for the quantum
bias for any number of players. Let G = (T, π) be a t-player XOR game given
by a function T : X1 × · · · × Xt → {±1} and π a probability distribution on
X1 × · · · ×Xt. The quantum bias can be conveniently written as

β∗(G) = sup
Ai

‖ E
x∈X1×···×Xt

T (x1, . . . , xt)⊗ti=1 Ai(xi)‖op, (1.4)

where the supremum is over maps Ai : Xi → Obs±(CN) and N ∈ N. Here
Obs±(CN) is the set of ±1-valued observables in dimension N .

1.2.2. Example. Continuing the example of the CHSH game, we will now show
that there is a quantum strategy that wins this game with probablity cos2(π/8) ≈ 0.85.
Let the shared quantum state be |ψ〉 = 1√

2
(|00〉 + |11〉) and the game tensor is

given by T : {0, 1}2 → {±1} : (x, y) 7→ (−1)xy. Let X = ( 0 1
1 0 ) and Y = ( 0 −i

i 0 ).
These matrices are ±1-valued observables. Consider the following strategy: Let
Ax and By be Alice and Bob’s observables be given by A0 = X,A1 = Y and
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B0 = (X −Y )/
√

2, B1 = (X +Y )/
√

2 respectively. By definition of X, Y and |ψ〉
we have

〈ψ|X ⊗X|ψ〉 = 1, 〈ψ|X ⊗ Y |ψ〉 = 0

〈ψ|Y ⊗X|ψ〉 = 0, 〈ψ|Y ⊗ Y |ψ〉 = −1.

It follows that 〈ψ|Ax ⊗ By|ψ〉 = (−1)xy/
√

2 which implies that the bias of this
strategy is

E
x,y

(−1)xy〈ψ|Ax ⊗By|ψ〉 =
1√
2
.

So the winning probability of this strategy is 1
2

+ 1
2
√

2
= cos2(π/8). In particular,

this is strictly better than the classical winning probability 3/4. The fact that the
quantum value of this game is also cos2(π/8) follows from Tsirelson’s inequality
[TC80].

1.2.3. Example. Line games will be discussed in Chapter 2, but here we will
look at a small example that can be obtained from a modification of the famous
three-player Magic Square Game [Mer90, Mer93] which was analyzed in [IKP+08].
Line games can be described by a simple geometric structure: the game is played
over the plane F2

3 where the referee picks a line and sends the three consecutive
points to each player. The predicate only depends on the direction of the line.
In the Magic Square Game in [IKP+08], the referee restricts to horizontal and
vertical lines.

Grothendieck’s inequality and two-player XOR games. There is a sur-
prising connection between Grothendieck’s inequality [Gro53], a fundamental re-
sult from Banach space theory, and the quantum/classical bias of two-player XOR
games.

1.2.4. Definition. The Grothendieck constant KG is the smallest real number
such that for all n ∈ N the following holds. Let M ∈ Rn×n be a real matrix such
that for all a, b ∈ [−1, 1]n the inequality∣∣∣∣∣

n∑
s,t=1

Ms,tasbt

∣∣∣∣∣ ≤ 1

holds. Then for all unit vectors u1, . . . , un, v1, . . . , vn ∈ RN (for any N ∈ N)∣∣∣∣∣
n∑

s,t=1

Ms,t〈us, vt〉

∣∣∣∣∣ ≤ KG.



1.2. Nonlocal games 17

Grothendieck showed that KG does not depend on n. The exact value of KG is
unknown to this day. We do have the following bounds

1.6769... ≤ KG <
π

2 log(1 +
√

2)
≈ 1.7822.

The lower bound is from [Dav84] and independently [Ree91]. The upper bound is
due to Krivine [Kri77] who conjectured that Grothendieck’s constant is equal to
the upper bound. But in [BMMN13], Braverman et al. show that Grothendieck’s
constant is strictly smaller than Krivine’s bound, by some absolute constant.

The following theorem shows that for two-player XOR games, the quantum
bias can be at most a constant factor larger than the classical bias and that this
constant is given by KG. It implies that quantum strategies in the two-player
setting can not have an arbitrary large advantage over classical strategies.

1.2.5. Theorem ([Tsi87]). Let G = (T, π) be a two-player XOR game. Then

β∗(G) ≤ KGβ(G).

Proof:
Assume, without loss of generality, that the question sets X, Y have both size n.
Define the matrix M ∈ Rn×n to be

Mx,y =
1

β(G)
π(x, y)T (x, y).

It follows that for all a, b ∈ {±1}n we have∣∣∣∣∣
n∑

x,y=1

Mx,yaxby

∣∣∣∣∣ ≤ 1.

By convexity, this holds true for all a, b ∈ [−1, 1]n. By Grothendieck’s inequality,
this implies that for all unit vectors u1, . . . , un, v1, . . . , vn ∈ RN (for any N ∈ N)∣∣∣∣Ex,y T (x, y)〈ux, vy〉

∣∣∣∣ ≤ KGβ(G).

Tsirelson’s correspondence [Tsi87] implies that maximizing over all real unit vec-
tors ux, vy ∈ RN for any N ∈ N yields the quantum bias on the left hand side.
The result follows. 2

Multiplayer XOR games. For three-player XOR games, such a result does
not hold. In [PGWP+08] it was shown that there is a family of three-player
XOR games (Gi)i∈N such that β∗(Gi)/β(Gi) → ∞ as i → ∞. Later, this was
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quantitatively improved in [BV13]. Both showed only the existence of such games,
explicitly constructing such games is still an open problem. The games in these
papers have the additional property that both β∗(Gi) and β(Gi) go to zero. In
Chapter 2 we try to answer the question whether there is such a family, but with
the extra condition that β∗(Gi) ≥ c for some c > 0. Such games have implications
in communication complexity, see Chapter 2 for more details.

1.3 Quasirandom graphs

This section serves as motivation and background information for Chapter 3.

In a seminal paper [CGW89] Chung, Graham and Wilson showed that a set
of seemingly different properties of graphs are equivalent for dense graphs. Two
of these properties are expansion and uniformity. We will give the definitions of
these properties and show how they are equivalent for certain classes of graphs. In
Chapter 3 we will generalize these notions and apply them to quantum channels.

Expansion, uniformity and quasirandomness. We follow the survey the
on expander graphs [HLW06] for the basic definitions. All graphs in this section
are simple. Let G = (V,E) be an undirected d-regular graph with vertex set V
and edge set E on |V | = n vertices. By d-regular we mean that each vertex has
exactly d neighbours. For subsets S, T ⊂ V , denote by E(S, T ) the set of edges
between S and T . Also, denote by ∂(S) := E(S, S) the set of outgoing edges from
S to its complement S. The following is a combinatorial definition of expansion.
The edge expansion, denoted h(G) of the graph G is defined to be

h(G) = min
S⊂V : |S|≤n/2

|∂(S)|
|S|

. (1.5)

A large edge expansion h(G) ≥ ε > 0 means that for any S ⊂ V there are many
edges between S and S, at least an ε fraction of the size of S, i.e. the graph is
highly connected. It is possible to define expansion in terms of how many vertices
a set S is connected with in the complement S. This is called vertex expansion,
but we will not consider this in this dissertation.

1.3.1. Definition. A sequence of graphs (Gi)i∈N is a family of expander graphs
if there is an ε > 0 such that for all i ∈ N we have h(Gi) ≥ ε.

Alternatively, one can define expansion in terms of the eigenvalues of the adja-
cency matrix. The (normalized) adjacency matrix of a d-regular graph G, denoted
by A = A(G), has its rows and columns indexed by the vertices v ∈ V and the
(u, v) entry is 1/d if there is an edge between u and v and 0 otherwise. The
adjacency matrix A is real and symmetric, so it has n real eigenvalues which we
denote (and order) by λ1 ≥ λ2 ≥ · · · ≥ λn. We have the following properties.
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• λ1 = 1 with eigenvector e := (1, 1, . . . , 1).

• The graph is connected if and only if λ2 < λ1.

• The graph is bipartite if and only if λn = −λ1.

The first property follows from a small computation, while the second follows
from the Perron-Frobenius theorem. For the third property, if G is a bipartite
graph with left vertex set L and right vertex set R, then the vector with 1 on
coordinates of L and −1 on coordinates of R is an eigenvector of A with eigenvalue
−λ1 = −1. In the other direction, if x ∈ RV is a vector such that Ax = −x, we
see that

0 = 〈x, x〉+ 〈x,Ax〉 =
1

d

∑
(v,w)∈E

(xv + xw)2.

This implies that xv 6= 0 for all v ∈ V , since assuming the existence of v such
that xv = 0 would imply that x = 0. We then define the left vertex set to be
L := {v ∈ V : xv > 0} and R := {v ∈ V : xv < 0}. It can be seen that there are
no edges inside L or R, which means that G is bipartite.

We also refer to the eigenvalues of A as the spectrum of G. An important
quantity of the spectrum is the second largest eigenvalue in absolute value, i.e.
λ(G) := max{|λ2|, |λn|}. We say that G is an (n, d, λ)-graph if λ(G) ≤ λ.

The following theorem relates the spectral gap, defined to be d− λ2, with the
edge expansion of G.

1.3.2. Theorem ([Che70], [Dod84]). Let G be a d-regular graph on n vertices
with spectrum λ1 ≥ λ2 ≥ · · · ≥ λn. Then

d− λ2

2
≤ h(G) ≤

√
d(d− λ2).

In particular, an (n, d, λ)-graph has edge expansion at least dλ/2. A sequence of
graphs (Gi)i∈N is a family of spectral expander graphs if there is a λ > 0 such that
λ(Gi) ≤ λ for each i ∈ N. Such a family is also a family of expanders using the
combinatorial definition of expansion.

Uniformity is a property that captures how random-like the edge distribution
is between any two subsets of vertices. More precisely:

1.3.3. Definition. Let G = (V,E) be a d-regular graph on n vertices and ε > 0.
We say that G is ε-uniform if for all S, T ⊂ V :∣∣∣∣|E(S, T )| − d

n
|S||T |

∣∣∣∣ ≤ εdn.

Denote by ε(G) the smallest such ε.
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Having small uniformity parameter ε(G) implies that for any pair of subsets S, T ,
the number of edges is roughly the same as one would expect from a random
graph with edge density d/n. In this sense, uniform graphs, graphs that have
small uniformity parameter ε(G), are quasirandom. The following result relates
expansion with uniformity, observed by several researchers but appeared first in
print in [AC88], saying that a graph with small expansion parameter λ(G) is
quasirandom in the sense that it is a uniform graph.

1.3.4. Lemma (Expander mixing lemma). Let G = (V,E) be a d-regular graph
on n vertices and set λ = λ(G). Then, for all S, T ⊂ V∣∣∣∣|E(S, T )| − d

n
|S||T |

∣∣∣∣ ≤ λd
√
|S||T |.

In particular, G is λ-uniform.

Proof:
For a subset S ⊂ V , write 1S ∈ RV for the indicator function of S. Let A be the
adjacency matrix of G. Then for S, T ⊂ V

〈1S, A1T 〉 = |E(S, T )|/d.

Expand the vectors 1S and 1T in the orthonormal basis of eigenvectors of A,
i.e. if v1, . . . , vn are the eigenvectors corresponding to the eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn,

1S =
n∑
i=1

αivi and 1T =
n∑
i=1

βivi.

Then

|E(S, T )| = d〈1S, A1T 〉 = d
n∑
i=1

λiαiβi

=
d

n
|S||T |+ d

n∑
i=2

λiαiβi.

We used the orthogonality of the vectors vi and in the last equality the fact that
α1 = 〈1S, e√

n
〉 = |S|√

n
and β1 = 〈1T , e√

n
〉 = |T |√

n
. Recall that λ = max{|λ2|, |λn|}.

So ∣∣∣∣|E(S, T )| − d

n
|S||T |

∣∣∣∣ = d|
n∑
i=2

λiαiβi| ≤ λd

n∑
i=2

|αiβi|

≤ λd

√√√√ n∑
i=2

|αi|2
n∑
i=2

|βi|2

≤ λd‖α‖2‖β‖2 = λd‖1S‖2‖1T‖2

= λd
√
|S||T |.
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2

The Expander mixing lemma tells us that an (n, d, λ)-graph is λ-uniform. The
question then arises whether a λ-uniform graph is also an (n, d, λ′)-graph for,
possibly, a different constant λ′ depending on λ. In [CGW89] it was shown that
such a converse holds for dense graphs, i.e. graphs G = (V,E) on n vertices
such that |E| = Ω(n2). For convenience, we prove this particular result here for
d-regular graphs.

1.3.5. Proposition ([CGW89]). Let G = (V,E) be a d-regular graph on n ver-
tices and let δ = d/n. Then λ(G) ≤ (2ε(G)/δ3)1/4.

Proof:
We prove this in two steps. In [CGW89] it is shown that if the number of 4-
cycles in G is (1 + o(1))d4, then |λ2| = o(1). We use the fact that Tr(A4) counts
the number of 4-cycles in G divided by d4, where A is the normalized adjacency
matrix of G. Let ε > 0 and assume

Tr(A4) = 1 + 2ε/δ3.

Note that δ is constant if G is a dense graph. We have that

Tr(A4) =
n∑
i=1

|λi|4 = 1 +
n∑
i=2

|λi|4.

By assumption

n∑
i=2

|λi|4 ≤ 2ε/δ3,

and it follows that |λ2| ≤ (2ε/δ3)1/4. The next step in the proof is to show that
uniformity of the graph G implies the ‘right’ 4-cycle count. The proof of this is
found at Tim Gowers’s blog [Gow21]. Let ε = ε(G) be the uniformity parameter
of the graph G. We will now show that

Tr(A4) ≤ 1 + 2ε/δ3.

In this case, it is more convenient to work with the unnormalized adjacency
matrix, which we denote by A′. Let v(l) and w(k) be the l-th row and k-th column
of A′ respectively. We have that

〈v(l), A′w(k)〉 ≤ 〈v(l), δJw(k)〉+ εdn = δ
∑
ij

A′liA
′
jk + εdn,
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where J is the all-ones matrix. This follows from the definition of the uniformity
parameter ε. We use this as follows,

d4 Tr(A4) = Tr(A′4) =
∑
ijkl

A′ijA
′
jkA

′
klA
′
li =

∑
kl

A′kl〈v(l), A′w(k)〉

≤
∑
kl

A′kl

(
δ
∑
ij

A′liA
′
jk + εdn

)
= δ

∑
ij

〈v(i), A′w(j)〉+ εdn3

= δ2
∑
ijkl

A′jkA
′
li + 2εdn3

= d4 + 2εdn3.

From this we see that indeed Tr(A4) ≤ 1 + 2ε/δ3. This completes the proof. 2

This shows that we have a converse for dense d-regular graphs, i.e. if δ = Ω(1),
we have that |λ2| = O(ε(G)1/4).

But in [KS06] it was shown that the converse does not hold in general, thereby
answering the question posed in [CG02]. In particular, they constructed a se-
quence of sparse graphs that is o(1)-uniform, but is Ω(1)-expanding. Then, in
[KRS16], it was shown that such a converse does in fact hold for Cayley graphs
over finite abelian groups (even sparse ones) which in turn was generalized to
work for vertex-transitive graphs in [CZ17]. A graph is vertex-transitive if the
automorphism group of the graph acts transitively on the set of vertices. They
also showed that vertex-transitivity is in fact a necessary condition by giving an
example of a sparse graph that is not vertex-transitive such that the converse to
the Expander mixing lemma does not hold.

Generalization to quantum channels. In Chapter 3 we will look at the
relationship between the expansion parameter [Has07, BST10] and uniformity
parameter for quantum channels, or superoperators in general. We will see that
there is an analogue of the Expander mixing lemma in the quantum setting and a
converse for randomizing quantum channels [Aub09]. Irreducible covariant quan-
tum channels will play the role of vertex-transitive graphs in proving a converse
to the Expander mixing lemma.

1.4 Higher-order Fourier analysis

This section serves as background information for Chapter 2 where we use higher-
order Fourier analysis to analyze certain classes of XOR games, in Chapter 4 in the
context of the stabilizer rank of the magic state, and Chapter 5 where we discuss
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decompositions of dual functions. For more detailed information on higher-order
Fourier analysis, we refer to [HHL19].

Higher-order Fourier analysis grew out of the Fourier-analytic proof of Szemerédi’s
theorem by Gowers [Gow01].

1.4.1. Theorem (Szemerédi’s theorem). Let k ≥ 2 a positive integer and δ > 0.
There exists a positive integer N such that any subset A ⊂ [N ] of size at least δN
contains a non-trivial arithmetic progression of length k.

In this section, we will be mainly concerned with arithmetic progressions in sub-
sets of vector spaces over finite fields, the main reason being (non-trivial) techni-
calities that arise in the setting of [N ].

Meshulam’s theorem. Let f, g : Fnp → C be functions. Recall the definition
of the Fourier transform in Section 1.1. We have the following basic properties.

• 〈f, g〉 = 〈f̂ , ĝ〉 (Plancherel),

• ‖f‖2 = ‖f̂‖2 (Parseval, follows directly from Plancherel),

• f̂ ∗ g(z) = f̂(z)ĝ(z) (convolution identity).

These results are already powerful enough to prove Roth’s theorem [Rot53] on
three-term arithmetic progression in subset of [N ]. We will however discuss the
analogous result where we replace [N ] with vector spaces over a finite field [Mes95]
as the proof becomes much more clean.

1.4.2. Theorem (Meshulam’s theorem). Let p be an odd prime and δ > 0. There
is n0 such that if n ≥ n0, any subset A ⊂ Fnp of density |A|/pn ≥ δ contains a
three-term arithmetic progression.

Proof:
We will prove the statement using the “density increment strategy”. Let A ⊂ Fnp .
Note that x, y, z are in arithmetic progression if and only if x + z = 2y. Define
1A2(x) := 1A(x/2). Then, the (normalized) number of three-term arithmetic
progressions is

Λ3(A) := E
x,d
1A(x)1A(x+ d)1A(x+ 2d) = E

x+z=2y
1A(x)1A(y)1A(z).
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Write α := |A|/pn for the density of A in Fnp . Then

Λ3(A) = E
x+z=y

1A(x)1A(y/2)1A(z) = E
y
(1A ∗ 1A)(y)1A(y/2)

= 〈1A ∗ 1A,1A2〉

= 〈1̂A
2
, 1̂A2〉

=
∑
z∈Fnp

1̂A(z)21̂A2(z)

=
∑
z∈Fnp

1̂A(z)21̂A(−2z)

= α3 +
∑
z 6=0

1̂A(z)21̂A(−2z).

From the second to the third line we used Plancherel. Then we used the convo-
lution identity and in the last equality, we used that α = 1̂A(0). What have we
achieved here? The first expression for Λ3(A) was a sum over x, y, z that satisfies a
linear equation, namely x+z = 2y. The last expression is just a sum without any
constraints. This allows us to use another very useful tool: the Cauchy-Schwarz
inequality.

|
∑
z 6=0

1̂A(z)21̂A(−2z)| ≤ max
z 6=0
|1̂A(z)||

∑
z 6=0

1̂A(z)1̂A(−2z)|

≤ max
z 6=0
|1̂A(z)||

∑
z 6=0

1̂A
2
(z)|1/2|

∑
z 6=0

1̂A
2
(−2z)|1/2

= max
z 6=0
|1̂A(z)|‖1̂A‖2

2

= αmax
z 6=0
|1̂A(z)|.

This implies the following lower bound on the normalized count of three-term
progressions in A,

Λ3(A) ≥ α3 − αmax
z 6=0
|1̂A(z)|.

From this it is seen that if the Fourier coefficients of A are all small, for example
that maxz 6=0 |Â(z)| ≤ α2/2, then Λ3(A) ≥ α3/2. In this case we are done: the
number of three-term progressions in A is at least α3n2/2. So assuming that A
does not contain any three-term progression, this implies that A has a large non-
zero Fourier coefficient. In this case, we define the function f(x) := 1A(x) − α
which has the property that for z 6= 0 we have f̂(z) = 1̂A(z). So there is a z 6= 0
such that

|f̂(z)| = |E
x
f(x)χz(−x)| ≥ α2/2.
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Now, let H = {x : 〈z, x〉 = 0} be the kernel of χz. We can write the expectation
as an expectation over hyperplanes H + a on which χz is constant.

α2/2 ≤ |E
x
f(x)χz| = |E

a
E

x∈H+a
f(x)χz| ≤ E

a
| E
x∈H+a

f(x)|.

Since Ex∈Fnp f(x) = 0, we can add this to the right hand side to get

E
a
| E
x∈H+a

f(x)|+ E
x∈H+a

f(x) ≥ α2/2.

By the averaging principle, there exists a ∈ Fnp such that

| E
x∈H+a

f(x)|+ E
x∈H+a

f(x) ≥ α2/2.

Recal that f(x) = 1A(x)− α. This last inequality implies that

E
x∈H+a

1A(x) ≥ α + α2/4,

i.e. on the hyperplane H+a, the set A has a higher density. This is the sought for
density increment. We can continue this argument a constant number of times,
at some point the density will exceed 1 which is of course not possible. 2

Quadratic Fourier analysis. To solve the problem of progressions of length
four, Gowers [Gow98] developed quadratic Fourier analysis. In this case, we need
that the prime p ≥ 5. The main reason why Fourier analysis was useful for
progressions of length three, was the identity

Λ3(f, g, h) := E
x+z=2y

f(x)g(y)h(z)

= E
x,y,z

f(x)g(y)h(z)
∑
r∈Fnp

χr(2y − x− z)

=
∑
r

f̂(r)ĝ(r)ĥ(−2r),

which we proved for f = g = h = 1A. This allowed us to use some basic inequali-
ties that gave information about the Fourier coefficients of A and its relation with
the number of three-term progressions. More explicitly, after Hölder’s inequality
and Cauchy-Schwarz inequality we have

|Λ3(f, g, h)| ≤ max
r
|f̂(r)|‖g‖2‖h‖2.

Such an inequality does not work in the case of progressions of length four.
Consider the following expression.

Λ4(f1, f2, f3, f4) := E
x,d
f1(x)f2(x+ d)f3(x+ 2d)f4(x+ 3d). (1.6)
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This expression can be quite large while at the same time the Fourier coefficients
of the functions f1, f2, f3, f4 are tiny. For an example, consider the functions

f1(x) = ω〈x,x〉, f2(x) = ω−3〈x,x〉, f3(x) = ω3〈x,x〉, f4(x) = ω−〈x,x〉,

where ω is a p-th root of unity. These functions have Fourier coefficients whose
magnitude is p−n/2, but Λ4(f1, f2, f3, f4) = 1.

It seems that we need to find an inequality for Equation (1.6) that is consistent
with the above example. Such an inequality must necessarily detect whether the
functions correlate with quadratic phase functions : functions of the form ωq(x)

where q is a quadratic polynomial over Fnp . If our main tool in bounding the
expression (1.6) is the Cauchy-Schwarz inequality (which was also the case in the
three-term progression case), then there is only one possibility. For this, we need
the Gowers U3-norm which we defined in Definition 1.1.

The following result tells that we can bound (1.6) in terms of the U3-norm of
one of the functions. First, define for functions fi : Fnp → C for i ∈ [s]

Λs(f1, . . . , fs) := E
x,d
f1(x)f2(x+ d) · · · fs(x+ (s− 1)d)

1.4.3. Theorem (Generalized von Neumann inequality [TV06]). Let s ≥ 2 and
fi : Fnp → C for i ∈ [s] be functions that take values of modulus at most 1. Then

|Λs(f1, . . . , fs)| ≤ min
i∈[s]
‖fi‖Us . (1.7)

We now give a sketch of how the proof of progressions of length four goes. For
subset A ⊂ Fnp of density α, define f such that 1A = f + α. If we expand

Λ4(1A) := Λ4(1A,1A,1A,1A) = α4 + 15 other terms,

we get that, besides the α4 term, each term is of the form Λ4(f1, f2, f3, f4) with at
least one of the fi is equal to f . So using the Generalized von Neumann inequality
on these 15 terms, we see that

Λ4(1A) ≥ α4 − 15‖f‖U3 .

We now follow the same strategy as in the three-term progression case. Assuming
‖f‖U3 is small, say smaller than α4/2, then the number of four-term progressions
in A will be at least α4n2/2. Otherwise ‖f‖U3 is large, say ‖f‖U3 > α4/2. In
that case, we would like to say that f correlates with a character, so that we can
apply the same density increment strategy. Unfortunately, it is not clear why this
should be the case. But if we allow a broader class of functions with which f can
correlate, then this is possible again. In this case, they are the quadratic phase
functions. This is made precise in the following theorem.
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1.4.4. Theorem (Gowers inverse theorem for U s [TZ12]). Let p ≥ s be a prime
and f : Fnp → D a function such that ‖f‖Us > c for some c > 0. Then, there
exists a polynomial q ∈ Fp[x1, . . . , xn] of degree at most s− 1 such that

|〈f, ωq〉| ≥ δ,

for some δ = δ(s, p, c) independent of n.

Functions of the form ωq for ω a p-th root of unity and q a polynomial of degree
d are called polynomial phase functions of degree d.

1.4.5. Remark. This theorem is actually true even if p < s, but one has to
consider a larger class of polynomials, namely nonclassical polynomials. We will
go in more detail as to what these objects are in a bit, since we will need it in
analyzing the stabilizer rank of magic states in Chapter 4.

We apply the above for s = 3. So assume that ‖f‖U3 > α4/2 where f = A − α.
By the Gowers inverse theorem, we see that f correlates with some quadratic
phase function ωq. The idea is now to partition Fnp into affine subspaces of large
dimension on which q is constant to get the density increment, analogous to the
three-term progression case.

Nonclassical polynomials. We will now define what nonclassical polynomials
are. To this end, define the additive derivative operation ∆h for any h ∈ Fn2 on
functions P : Fn2 → T to be

∆hP (x) := P (x+ h)− P (x), (1.8)

which we will also call the derivative in direction h.

Now let P ∈ Fp[x1, . . . , xn] be a “classical” polynomial of degree d ≥ 1. One
can show that ∆hP (x) = P (x + h) − P (x) is again a polynomial but of degree
at most d − 1. So after taking d + 1 derivatives, the resulting polynomial will
be the zero polynomial. Using this observation, we can define a broader class
of polynomials as functions that take values in T and satisfy a condition on its
derivatives.

1.4.6. Definition. For an integer d ≥ 1, a map P : Fnp → T is a nonclassical
polynomial of degree at most d if for all h1, . . . , hd+1 ∈ Fnp we have

∆hd+1
· · ·∆h1P (x) = 0. (1.9)

The degree of P is the smallest such d.
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Using the map ι : Fp → T : x→ |x|/p, one can view a polynomial P ∈ Fp[x1, . . . , xn]
as a map ι(P ) : Fnp → T. Nonclassical polynomials that arise in this way are called
classical polynomials and they are a subset of the nonclassical polynomials. Note
that they take values in 1

p
Z/Z. This confusing terminology has unfortunately

become standard in the literature. The following example shows that this con-
tainment of classical polynomials in the set of nonclassical polynomials is indeed
proper.

1.4.7. Example. Consider the map P : Fn2 → T be given by x 7→ |x|/4. This is
a nonclassical polynomial of degree two. To show this, we take derivatives:

|x+ h|/4− |x|/4 = |x|/4 + |h|/4− |x ◦ h|/2− |x|/4 = |h|/4− |x ◦ h|/2 mod 1,

where ◦ is entry-wise product of vectors. Here we used the property that for a, b ∈ F2,

|a+ b| = |a|+ |b| − 2|a||b|. (1.10)

Taking one more derivative

∆h′∆hP (x) = −|x ◦ h+ h′ ◦ h|/2 + |x ◦ h|/2 = −|h′ ◦ h|/2 mod 1.

Indeed, P (x) = |x|/4 is a nonclassical polynomial of degree two. Note that it is
not a classical polynomial since it takes values in 1

4
Z/Z.

In general, the polynomial P (x) = |x|/2k is a nonclassical polynomial of degree
k. We will see later (Section 4.3.1) that for k = 3, this polynomial corresponds
to the n-qubit magic state.

The above is a local definition of nonclassical polynomials. A global defini-
tion of classical polynomials of degree at most d is that they take the form∑

i1+···+in≤d ci1,...,inx
i1
1 · · ·xinn . Similarly, nonclassical polynomials have the follow-

ing global description.

1.4.8. Proposition ([TZ12]). A map P : Fnp → T is a nonclassical polynomial
of degree at most d if and only if it has a representation of the form

P (x1, . . . , xn) = α +
∑

0≤i1,...in≤1;j≥0:
0<i1+···+in≤d−j(p−1)

ci1,...,in,j|x1|i1 · · · |xn|in
pj+1

, (1.11)

for some unique coefficients ci1,...,in,j ∈ {0, 1, . . . , p− 1} and α ∈ T. The maximal
j in this decomposition is called the depth of P .

Note that the depth of a nonclassical polynomial is always at most dd/(p−1)e−1
since at least one of the indices i1, . . . , in must be positive. Using this proposition,
one quickly sees that the polynomial x 7→ |x|/4 for x ∈ Fn2 from the example above
has degree two and depth 1. The polynomial x 7→ |x|/2k has degree k and depth
k − 1.
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1.5 Dual functions and decomposition theorems

In Chapter 5 we will be looking at decomposition theorems for a class of functions
called dual functions . They are important in understanding certain refinements
of Szemerédi’s theorem, which we will define in a moment.

1.5.1. Definition. Let k ≥ 2, i = (i1, . . . , ik) ∈ Zk≥0 and G a finite abelian
group. The associated set of order-k dual functions is given by

∆i = {φ : y 7→ E
x∈G

f1(x+ i1y) · · · fk(x+ iky)|fi : G→ D}.

For example, let G = Fnp , i = (0, 1, 2) ∈ Z3
≥0 and A ⊂ Fnp . Then, the dual function

φ(y) = E
x∈Fnp

1A(x)1A(x+ y)1A(x+ 2y)

gives the normalized count of three term progressions with common difference
equal to y. By a decomposition theorem, we mean to write a certain (complicated)
function as a linear combination of simpler functions plus an error term in a
certain norm. As an example, consider dual functions of order two. For functions
f, g : Fnp → D and i = (i, j) ∈ Z2

≥0, the associated dual function is

φ(y) = E
x∈Fnp

f(x+ iy)g(x+ jy).

It follows after Fourier inversion that

φ(y) =
∑
χ∈F̂np

αχχ((j − i)y),

where the coefficients αχ satisfy ‖α‖`1 =
∑

χ∈F̂np
|αχ| ≤ 1.

The following proposition, provided to us by Shao [Sha20], tells us that we
can write dual functions of any order in terms of polynomial phase functions of
degree one lower than the order of the dual function. In contrast with the order
two case, we have to allow an error term. It follows from an application of the
Hahn-Banach theorem, the Generalized Von Neumann inequality and the Gowers
inverse theorem.

1.5.2. Proposition. Let p ≥ k + 1 be a prime and let G = Fnp . Then, for any
ε > 0 and i ∈ Zk≥0, there is an M = M(ε, k, p) > 0 such that any dual function
φ ∈ ∆i can be decomposed as

φ =
r∑
i=1

αiψi + τ, (1.12)

where α1, . . . , αr ∈ C satisfy |α1| + · · · + |αr| ≤ M , ψ1, . . . , ψr are polynomial
phases of degree at most k − 1 and ‖τ‖L1 ≤ ε.
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Proof:
Define Φ to be the convex hull of ∆i. We can assume without loss of generality
that φ is real-valued: if φ is complex-valued, then <(φ) = (φ + φ)/2 ∈ Φ and
=(φ) = i(φ − φ)/2 ∈ Φ. So once we show that the real and imaginary part of φ
admits an L1-decomposition, then φ itself must admit such a decomposition.

We identify real-valued functions on Fnp as elements in RN with N = pn. Let
ω be a p-th root of unity and let K ⊂ RN be the convex hull generated by the
functions of the form <(ωP (x)) and =(ωP (x)) where P is a polynomial of degree
at most k − 1. Let Kε ⊂ RN be the set of functions whose L1-norm is at most ε.
We wish to show that for a real-valued φ ∈ Φ we have

φ ∈M ·K +Kε,

for some large enough real constant M . Here M · K = {cf : |c| ≤ M, f ∈ K}.
Assume now that this is not possible, then by a corollary of the Hahn-Banach
theorem [Gow10, Corollary 3.3] there is an f ∈ RN such that

• 〈φ, f〉 > 1,

• 〈g, f〉 ≤ 1 for all g ∈M ·K ∪Kε.

By definition of Kε, the second property implies that ‖εf‖∞ ≤ 1. By (a more
general version of) the Generalized Von Neumann inequality [TV06, Lemma 11.4],
we have that

〈φ, εf〉 ≤ ‖εf‖Uk .

So by the first property above, we see that ‖εf‖Uk > ε. Hence, by the Gowers
inverse theorem 1.4.4, there exists a polynomial P of degree at most k − 1 such
that

|〈εf, ωP 〉| ≥ cε,

for some constant cε > 0. Then, for either h = ±<(ωP ) or h = ±=(ωP ) we have

〈εf, h〉 ≥ cε/2.

This contradicts the second property above whenever M > 2ε/cε. The result
follows since <(ωP ) = 1

2
(ωP + ω−P ) and =(ωP ) = 1

2i
(ω−P − ω−P ). 2

In the decomposition theorem that we just proved, the error term was small on
average. Even though such decomposition theorems prove to be useful in higher-
order Fourier analysis (see [Gow10]), a natural finite-field analog of a conjecture
by Frantzikinakis [Fra16] (see also [Alt20]) asks whether such a decomposition is
possible if we require ‖τ‖L∞ ≤ ε.
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1.5.3. Conjecture. Proposition 1.5.2 holds with the error term τ satisfying
‖τ‖L∞ ≤ ε.

Truth of this conjecture has implications for Szemerédi’s theorem with random
differences, which we will now explain.

Does Szemerédi’s theorem 1.4.1 still hold when we restrict the common dif-
ference to be in certain subsets of [N ]? More precisely, let A ⊂ [N ] of density at
least ε > 0 and k ≥ 3. Are there subsets D ⊂ [N ] such that if N is large enough
that A contains a proper k-term arithmetic progression x, x+ d, . . . , x+ (k− 1)d
with d ∈ D? In this setting, there are some known results. For example,
the squares {12, 22, 32, . . . } [BL96] and the shifted primes {p − 1: p prime} and
{p + 1: p prime} [WZ12] satisfy this. Frantzikinakis [FLW12] then asks if these
sparse sets are special or that a random subset of [N ] also satisfies this prop-
erty. We will be only focussing on the finite field setting, for which the problem
statement is as follows.

1.5.4. Definition. Let ρ, ε > 0 and k ≥ 2. Let D ⊂ Fnp be a Bernoulli-ρ
random subset, i.e. each element of Fnp is picked with probability ρ to be in D
independently of the others. Let E be the event that for any subset A ⊂ Fnp of
size at least εpn contains a proper k-term arithmetic progression with common
difference in D. We say that Szemerédi’s theorem with random differences holds
if Pr(E) ≥ 1/2.

1.5.5. problem. In the setting of Definition 1.5.4, what is the smallest ρ > 0
such that Szemerédi’s theorem with random differences hold?

We write ρk for this smallest such ρ and also refer to it as the critical density.
A connection with Locally Decodable Codes (LDC’s) [BG18] shows that this
probability ρk is upperbounded by p−(1−o(1))n/dk/2e. Truth of Conjecture 1.5.3
implies much stronger bounds for the probability ρk, namely [Alt20]

ρk ≤ O(p−nnk−1).

But in Chapter 5 we show that Conjecture 1.5.3 is not true.

In Definition 1.5.4 we can replace the group Fnp with the cyclic group ZN for
N ∈ N and ask the same question as in Problem 1.5.5. In this case, the best
known upper bound on the critical density is N−(1−o(1))/dk/2e [BG18].

In the setting of the cyclic groups, there is an analogous conjecture to 1.5.3,
where instead of decomposing a dual function in terms of polynomial phase func-
tions, we allow for a broader class of function called “nilsequences”. Analogous
to the finite-field setting, if this conjecture is true, it would imply far better
upper bounds on the critical density in Szemerédi’s theorem with random differ-
ences, namely Ok(N

−1 log(N)) [Alt20]. However, this conjecture is again false as
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shown in [BG20]. This means that the strategy of proving good upper bounds on
the critical density, in the finite-field and cyclic setting, through Conjecture 1.5.3
seems to be failing and new ideas are needed to tackle this problem of Szemerédi’s
theorem with random differences.



Chapter 2

Bounding quantum-classical separations
of nonlocal games

This chapter is based on the paper [BBB+19] which is joint work with Tom Ban-
nink, Harry Buhrman, Jop Briët and Troy Lee. We use the notation introduced
in Section 1.2.

2.1 Introduction

The study of multiplayer games has been extremely fruitful in theoretical com-
puter science across diverse areas including the study of complexity classes [BOGKW88],
hardness of approximation [Kho02], and communication complexity [SZ08, LS09,
BBLV13]. They are also a great framework in which to study Bell inequalities
[Bel64] and analyze the nonlocal properties of entanglement. A particularly sim-
ple kind of multiplayer game is an XOR game. Recall that an XOR game G =
(f, π) between t players is defined by a function f : X1×X2×· · ·×Xt → {0, 1} and
a probability distribution π overX1×· · ·×Xt. An input (x1, . . . , xt) ∈ X1×· · ·×Xt

is chosen by a referee according to π, who then gives xi to player i. Without com-
municating, player i then outputs a bit ai ∈ {0, 1} with the collective goal of the
players being that a1 + · · ·+at = f(x1, . . . , xt) mod 2. In an XOR game without
entanglement, the players’ strategies are deterministic. In an XOR game with en-
tanglement, players are allowed to share a quantum state and make measurements
on this state to inform their outputs.

Our motivating question in this chapter is the following:

2.1.1. Question. Is there a family of t-player XOR games (Gn)n∈N such that
β∗(Gn) = 1 and β(Gn)→ 0 as n→∞?

This question has important implications for multi-party communication com-
plexity. For t ≥ 2, in t-party communication complexity, t players have to
compute some function f : X1 × · · ·Xt → {0, 1}. Player i receives xi ∈ Xi

33
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and together they have to compute f(x1, . . . , xt) while communicating as little as
possible. They are allowed to use shared randomness and local computation is
free. Usually, the value f(x1, . . . , xt) will depend on all variables xi, so that com-
munication is necessary. Let R(f) denote the t-party randomized communication
complexity of f , that is the minimal number of bits of communication that is nec-
essary to compute f using shared randomness and local computation. Also, let
R∗(f) denote the t-party randomized communication complexity of f where the
parties are allowed to share entanglement. A positive answer to Question 2.1.1
gives a family of functions (fn)n∈N with R∗(fn) = O(1) and R(fn) = ω(1), i.e. an
unbounded separation between these two communication models.

In the reverse direction, a family of functions (fn)n∈N with R∗(fn) = O(1) and
R(fn) = ω(1) gives a family of games Gn = (fn, πn) with β∗(Gn) ≥ c for some
constant c and β(Gn) → 0 as n → ∞. Thus there is a very close connection
between Question 2.1.1 and the existence of an unbounded separation between
randomized communication complexity with and without entanglement.

As we discussed in Section 1.2, it is known that for two-player XOR games
the answer to Question 2.1.1 is negative. Linial and Shraibman [LS09] and Shi
and Zhu [SZ08] showed that the bias of an XOR game (f, π) can be used to lower
bound the communication complexity of f , both in the randomized setting and
the setting with entanglement. Together with Grothendieck’s inequality they used
this to show that R(f) = O(22R∗(f)) for any partial two-party function f . Thus
in the two-party case an unbounded communication separation is not possible
between the randomized model with and without entanglement. Raz has given
an example of a partial function f with R(f) = 2Ω(R∗(f)) [Raz99], thus the upper
bound of Linial-Shraibman and Shi-Zhu is essentially optimal.

In the case of three or more parties, Question 2.1.1 and the corresponding
question of an unbounded separation between the entangled and non-entangled
communication complexity models remain open. We already saw in Section 1.2
that there is no analogue of Grothendieck’s inequality in the three-player setting.
In particular, Peréz-Garćıa et al. [PGWP+08] showed that there exists an infinite
family of three-player XOR games (Gn)n∈N with the property that the ratio of the
entangled and classical biases of Gn goes to infinity with n. This result was later
quantitatively improved by Briët and Vidick [BV13]. Both results rely crucially
on non-constructive (probabilistic) methods, and in both separating examples the
entangled bias β∗(Gn) also goes to zero with increasing n. These works leave open
the question, posed explicitly in [BV13], of whether there is such a family of games
in which the entangled bias does not vanish with n, but instead stays above a
fixed positive threshold while the classical bias decays to zero. Crucially, having a
separation in XOR bias where β∗(Gn) remains constant is what is needed to also
obtain an unbounded separation between randomized communication complexity
with and without entanglement.
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Our contribution to answering Question 2.1.1 One approach to Ques-
tion 2.1.1 is to look at different classes of games and identify which ones could
possibly lead to a positive answer.

Peréz-Garćıa et al. [PGWP+08] show that in any XOR game where the entan-
gled strategy uses a GHZ state, there is a bounded gap between the classical and
entangled bias: namely, the bias with a GHZ state in a t-player XOR game G is
at most KG(2

√
2)t−1β(G). This bound is essentially tight as there are examples

of t-player XOR games achieving a ratio between the GHZ state bias and classical
bias of π

2
t [Zuk93]. Briët et al. [BBLV13] later extended the Grothendieck- type

inequality of Peréz-Garćıa et al. to a larger class of entangled states called Schmidt
states. Thus any game that can be played perfectly with a strategy where the
players share a Schmidt state cannot give a positive answer to Question 2.1.1.

Watts et al. [WHKN18] recently investigated Question 2.1.1 and found that
a t-player XOR game G that is symmetric, i.e. invariant under the renaming of
players, and where β∗(G) = 1 always has a perfect entangled strategy where the
players share a GHZ state. Thus symmetric games also cannot give a positive
answer to Question 2.1.1. Subsequently, Watts et al. [WH20] showed that in the
3-player setting, the symmetry condition on the game can be dropped.

We rule out other types of games that could positively answer Question 2.1.1
as well. A t-player free XOR game G = (f, π) is a game where π is a product
distribution. For such games we show that β(G) ≥ β∗(G)2t , and thus they cannot
be used for a positive answer to Question 2.1.1.

Another class of XOR games we consider are line games , where the questions
asked to the players are related by a geometric property. An example of a line
game is a slight modification of the Magic Square game [IKP+08]. We show that
line games cannot give a positive answer to Question 2.1.1 either.

In the next subsections, we discuss our results in more detail.

2.1.1 Free XOR games

In this subsection we identify two types of games, namely free games and line
games, for which either the ratio of the entangled and classical biases is small,
or the entangled bias itself is small. Thus these games will not be able to give
a positive answer to Question 2.1.1. Free games are a general and natural class
of games in which the players’ questions are independently distributed. Line
games appear to be less studied (see below for their definition), but turn out
to be relevant in the context of parallel repetition (also see below). The main
idea behind these results is that a large entangled bias implies that the games
are in a sense far from random. This is quantified by the magnitude of certain
norms of the game tensors. The particular norms of interest here are related
to norms used in Gowers’ celebrated hypergraph- and Fourier-analytic proofs of
Szemerédi’s Theorem. A crucial fact of these norms is that they are large if
and only if there is “correlation with structure”, the opposite of what one would
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expect from randomness. We show that this structure can be turned into good
classical strategies, thus establishing a relationship between the entangled and
classical biases.

2.1.2. Theorem (Polynomial bias relation for free XOR games). For integer t ≥
2 and any free t-player XOR game with entangled bias β, the classical bias is at
least β2t.

In free XOR games all questions have a non-zero probability of being asked, so
this result may be considered as an analogue of a well-known result on quantum
query algorithms for total functions: in [BBC+01] it is shown that the bounded-
error quantum and classical query complexities of total functions are polynomially
related.

2.1.2 Line games

Line games are not free, but have a simple geometric structure. For a finite
field F of characteristic at least t and positive integer n, a t-player line game is
given by a map τ : Fn → {0, 1}. In the game, the referee independently samples
two uniformly random points x, y ∈ Fn and sends the point x + (i − 1)y to the
ith player. The players win the game if and only if the XOR of their answers
equals τ(y). In other words, the players’ questions correspond to consecutive
points (or an arithmetic progression) on a random affine line through Fn and the
winning criterion depends only on the direction of the line. Refer to this as a line
game over Fn.

2.1.3. Theorem. For any ε ∈ (0, 1], integer t ≥ 2 and finite field F of character-
istic at least t, there exists a δ(ε, t,F) ∈ (0, 1] such that the following holds. For
any positive integer n and any t-player line game over Fn with entangled bias ε,
the classical bias is at least δ(ε, t,F).

Note that in the above result, the value of the classical bias is independent of
the dimension n of the vector space determining the players’ question sets.

Parallel repetition. While it is not relevant to Question 2.1.1, the proof tech-
niques used for Theorem 2.1.3 allow us to prove a parallel repetition theorem for
a class of games that include line games. The k-fold parallel repetition for k ≥ 1
of a t-player XOR game G = (f, π), which we denote by Gk = (fk, πk), is a game
where t-tuples of questions (qi1, q

i
2, . . . , q

i
t) for i = 1, . . . , k are sampled from the

distribution π and sent to the players all at once. The players have to play the
XOR game G on each t-tuple of questions. To win the game, they have to answer
correctly on each t-tuple of questions.

It is known that the value of free games and so-called anchored games de-
cays exponentially under parallel repetition. Dinur et al. [DHVY16] identified
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a general criterion of multi-player games to behave like this, encompassing free
and anchored games. They showed that it is sufficient for a certain graph that
can be obtained from a game to be expanding, a well-known quasirandom prop-
erty that gives a measure of graph connectivity. Line games do not belong to
this class, as their graphs are not even connected. However, we show that if a
map τ : Fn → {0, 1}n is quasirandom in a different sense, then a line game defined
by τ has exponential decaying value under parallel repetition. More generally,
we show that this is the case for a family of XOR games over an arbitrary finite
abelian group Γ. These games are given by a positive integer m, a family of affine
linear maps ψ0, . . . , ψt : Γm → Γ such that no two are multiples of each other, and
a “game map” ρ : Γ → {0, 1}. In the game, the referee samples a uniform ran-
dom element x from Γm and sends the group element ψi(x) to the ith player. The
winning criterion is given by ρ(ψ0(x)). The relevant notion of quasiranomness is
quantified by the Gowers t-uniformity norm of the map (−1)ρ : x 7→ (−1)ρ(x).

2.1.4. Lemma. Let m, t be positive integers and let Γ be a finite abelian group.
Let ψ0, . . . , ψt : Γm → Γ be affine linear maps such that no two are multiples of
each other and let ρ : Γ→ {0, 1}. Let G be the t-player XOR game given by the
system {ψ0, . . . , ψt, ρ}. Then, for every positive integer k,

ω(Gk) ≤
(1 + ‖(−1)ρ‖Ut

2

)k
.

2.2 Techniques

This section provides an overview of the proof techniques that we use. We give
sketches of the main ideas which are worked out in full detail in later sections.

2.2.1 Norming hypergraphs and quasirandomness

Our main tool for proving Theorem 2.1.2 is a relation between the entangled and
classical biases and a norm on the set of game tensors. For t-tensors, this norm is
given in terms of a certain t-partite hypergraph H. Recall that such a hypergraph
consists of t finite and pairwise disjoint vertex sets V1, . . . , Vt and a collection of
t-tuples E(H) ⊆ V1 × · · · × Vt, referred to as the edge set of H. For a t-tensor
T ∈ Rn1×···×nt , the norm has the following form:

‖T‖H =
(
Eφi:Vi→[ni]

[ ∏
(v1,...,vt)∈E(H)

T
(
φ1(v1), . . . , φt(vt)

)]) 1
|E(H)|

, (2.1)

where the expectation taken with respect to the uniform distribution over all t-
tuples of mappings φi from Vi to [ni]. Expressions such as (2.1) play an important
role in the context of graph homomorphisms [BCL+06]. If T is the adjacency
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matrix of a bipartite graph with left and right node sets [n1] and [n2] respectively,
then each product in (2.1) is 1 if and only if the maps φ1 and φ2 preserve edges. In
other words, the expression in (2.1) counts the number of graph homomorphisms
from the graph to itself.

Criteria for H under which (2.1) defines a norm or a semi-norm were deter-
mined by Hatami [Hat10, Hat09] and Conlon and Lee [CL17]. Famous examples
of graph norms include the Schatten-p norms for even p ≥ 4 (in which case H is
a p-cycle) and a well-known family of hypergraph norms are the Gowers octahe-
dral norms. The latter were introduced for the purpose of quantifying a notion of
quasirandomness of hypergraphs as an important part of Gowers’ graph-theoretic
proof of the multi-dimensional version of Szemerédi’s theorem on arithmetic pro-
gressions [Gow07]. Having large Gowers norm turns out to imply correlation with
structure, as opposed to quasirandomness. This is true also for the norm relevant
for our setting. In particular, it turns out that the structure with which a game
tensor correlates can be turned into a classical strategy for the game. As such,
a large norm of the game tensor implies a large classical bias of the game itself.
At the same time, we show that the entangled bias is bounded from above by the
norm of the game tensor, provided the game is free. Putting these observations
together gives the proof of Theorem 2.1.2, which we give in Section 2.3.

The particular hypergraph norm relevant in our setting was introduced in [CHPS12]
and can be obtained recursively as follows. Starting with a t-partite hypergraphH
with vertex set V1 ∪ · · · ∪ Vt, write dbi(H) for i ∈ [t] for the t-partite hypergraph
obtained by making two vertex-disjoint copies of H and gluing them together so
that the vertices in the two copies of Vi are identified. We obtain our hypergraph
by starting with a single edge e = (v1, . . . , vt) (and vertex sets of size 1), and
applying this operation to all parts, forming the hypergraph db1(db2(. . . dbt(e)))
with vertex sets of size 2t−1 and 2t edges. The fact that this hypergraph defines
a norm via (2.1) was proved in [CL17].

2.2.2 Line games and Gowers uniformity norms

The proof of Theorem 2.1.3 is based on two fundamental results from additive
combinatorics: the generalized von Neumann inequality and the Gowers Inverse
Theorem. The former easily shows that the classical bias of a line game is bounded
from above by the Gowers t-uniformity norm of the game map. We show that in
fact the same upper bound holds for the entangled bias as well. A large entangled
bias thus implies a large uniformity norm for the game map. Analogous to the
above-mentioned octahedral norms for tensors, uniformity norms were introduced
to quantify a notion of quasirandomness for bounded maps over abelian groups
as an important step in Gowers’ other proof of Szemerédi’s Theorem, based on
higher-order Fourier analysis. The highly non-trivial Gowers Inverse Theorem
of Tao and Ziegler [TZ12] establishes that high uniformity norm again implies
correlation with structure. Although structure in this context means something
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quite different than for tensors, we show that it still implies a lower bound on the
classical bias. The above observations together prove Theorem 2.1.3.

2.3 Free XOR games

In this section we will go over the details and techniques needed to prove Theorem
2.1.2. The main lemma that we will prove is a relation between the hypergraph
norm (with respect to a certain hypergraph) of the game tensor of a free XOR
game and its quantum bias. Our main tool is a Cauchy-Schwarz type of inequality
for operators.

2.3.1. Proposition. Let Ai, Bi ∈Mn(C) for i = 1, . . . , k. Then

‖
∑
i∈[k]

AiBi‖ ≤ ‖
∑
i∈[k]

AiA
∗
i ‖1/2 ‖

∑
i∈[k]

B∗iBi‖1/2,

where all the norms are operator norms.

Proof:
Define Eij to be the matrix that has 1 in the (i, j) position of the matrix and 0
everywhere else. Write

A =


A1 A2 · · · Ak
0 0 · · · 0
...

...
...

...
0 0 · · · 0

 and B =


B1 0 · · · 0
B2 0 · · · 0
...

...
...

...
Bk 0 · · · 0

 .
Then we use the properties that for C ∈Mn(C)

‖C ⊗ Eij‖ = ‖C‖ and ‖C‖2 = ‖C∗C‖ = ‖CC∗‖,

to conclude

‖
∑
i∈[k]

AiBi‖ = ‖
∑
i∈[k]

AiBi ⊗ E11‖ = ‖AB‖ ≤ ‖A‖‖B‖

= ‖AA∗‖1/2‖B∗B‖1/2 = ‖
∑
i∈[k]

AiA
∗
i ‖1/2‖

∑
i∈[k]

B∗iBi‖1/2.

2

A t-player free XOR game G is given by finite non-empty sets X1, . . . , Xt, a
product distribution π over X1 × · · · ×Xt and a game tensor

T : X1 × · · · ×Xt → {±1}. (2.2)
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Recall from Section 1.2 that the classical bias of the free XOR game G, which we
denote by β(G) is given by

β(G) = max
ai : Xi→{±1}

| E
(x1,...,xt)∼π

T (x1, . . . , xt)
t∏
i=1

ai(xi)|,

and that the quantum bias, which we denote by β∗(G), is given by the expression

β∗(G) = sup
N∈N,Ai : Xi→Obs±(CN )

‖ E
(x1,...,xt)∼π

T (x1, . . . , xt)⊗ti=1 Ai(xi)‖op. (2.3)

For n ∈ N define

β∗(G, n) := max
N≤n,Ai : Xi→Obs±(CN )

‖ E
(x1,...,xt)∼π

T (x1, . . . , xt)
t∏
i=1

Ai(xi)‖op. (2.4)

The supremum is taken over±-observable valued functionsAi such that [Ai, Aj] = 0
for i 6= j, this corresponds to a quantum strategy of the players in the commuting
operator model. Since the commuting operator model and the tensor product
model for quantum strategies coincide in finite dimension [Tsi06], we have that
limn→∞ β

∗(G, n) = β∗(G). The expectation is taken over the given distribution,
which we will suppress in the notation from here onwards.

Before we go into the details of the proof of Theorem 2.1.2 for any number of
players, we first sketch the core idea of the proof for two players, for which we
do not yet need to resort to hypergraphs. For a two-player game G with game
tensor T , the commuting-operator strategies A,B yield a bias of

η = ‖ E
(x,y)∈X×Y

T (x, y)A(x)B(y)‖.

where the norm is the operator norm. Using Proposition 2.3.1 we peel off the
operator B(y)

η =
∥∥∥ E
y∈Y

(
E
x∈X

T (x, y)A(x)
)
B(y)

∥∥∥. (independent questions)

≤
∥∥∥ E
y∈Y

(
E
x∈X

T (x, y)A(x)
)(

E
x′∈X

T (x′, y)A(x′)
)∗∥∥∥1/2 ∥∥∥ E

y∈Y
B(y)B(y)∗

∥∥∥1/2

≤
∥∥∥ E
y∈Y

E
x,x′∈X

T (x, y)T (x′, y)A(x)A(x′)∗
∥∥∥1/2

. (using ‖B(y)‖ ≤ 1)

Now we apply the inequality again on the sum over (x, x′) to get rid of the A
operator.

η ≤
∥∥∥ E
x,x′∈X

(
E
y∈Y

T (x, y)T (x′, y)
)
A(x)A(x′)∗

∥∥∥1/2

≤
∣∣∣ E
x,x′

(
E
y
T (x, y)T (x′, y)

)(
E
y′
T (x, y′)T (x′, y′)

)∣∣∣ 14 ∥∥∥ E
x,x′

(
A(x)A(x′)∗

)(
A(x)A(x′)∗

)∗∥∥∥ 1
4

≤
∣∣∣ E
x,x′∈X

E
y,y′∈Y

T (x, y)T (x′, y)T (x, y′)T (x′, y′)
∣∣∣1/4. (using ‖A(x)‖ ≤ 1)
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We proceed by rewriting the last expression

η4 ≤
∣∣∣ E

(x′,y′)∈X×Y
T (x′, y′) E

(x,y)∈X×Y
T (x, y)T (x′, y)T (x, y′)

∣∣∣
≤ E

(x′,y′)∈X×Y

∣∣∣ E
(x,y)∈X×Y

T (x, y)T (x′, y)T (x, y′)
∣∣∣. (triangle inequality)

By the averaging principle there must be choices of x′, y′ such that

η4 ≤
∣∣∣ E

(x,y)∈X×Y
T (x, y)T (x′, y)T (x, y′)

∣∣∣,
which is the expression for the bias of the classical strategies a(x) = T (x, y′) and
b(y) = T (x′, y), proving Theorem 2.1.2 for t = 2 players. For t ≥ 3 we can apply
the same idea, peeling off the operators one by one, but the final expression is more
involved. We will now develop the techniques to deal with this. In particular,
we need the notion of hypergraph norms. For our purposes, we only consider
t-partite hypergraphs.

2.3.2. Definition. For t ≥ 2, let V1, . . . , Vt be finite non-empty sets and V :=
V1 × · · · × Vt. Given a subset E ⊂ V , we say that the pair H = (V1 ∪ · · · ∪ Vt, E)
is a t-partite hypergraph with vertex set V1 ∪ · · · ∪ Vt and edge set E. The set V
is the set of vertices and E the set of hyperedges.

Here t-partite refers to the property that the set of vertices can be partitioned
into t parts such that each hyperedge contains exactly one vertex from each part.

2.3.3. Definition. Let t ≥ 2 and X1, . . . , Xt be finite non-empty sets and sup-
pose a product distribution on X := X1 × · · · ×Xt is given. Let T : X → R be
a function and H = (V1 ∪ · · · ∪ Vt, E) be a t-partite hypergraph. We define a
non-negative function ‖ · ‖H on the function T by

‖T‖H :=

∣∣∣∣∣∣ E
φi : Vi→Xi

∏
(v1,...,vt)∈E

T (φ1(v1), . . . , φt(vt))

∣∣∣∣∣∣
1
|E|

, (2.5)

where the expectation is taken with respect to the following distribution: a par-
ticular map φi : Vi → Xi occurs with probability

∏
v∈Vi pi(φi(v)) where pi is the

probability distribution on Xi.

The particular hypergraph which arises naturally when we study the quantum
bias of free XOR games is constructed as follows. Starting with a t-partite hy-
pergraph H, write dbi(H) for the t-partite hypergraph obtained by making two
vertex-disjoint copies of H and gluing them together so that the vertices in the
two copies of Vi are identified. To construct our hypergraph, we start with the
hypergraph given by a single edge e = (v1, . . . , vt) and vertex sets of size 1 and
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apply the doubling operation to all parts, i.e. db1(db2(. . . dbt(e))). We denote
this hypergraph by H(t). A more useful way to define H(t) is as follows. We
will do this first for t = 2 and explain how to do it for any t afterwards. We use
2-bit strings to label vertices. We start with the hypergraph with a single edge
(x00, y00) ∈ V1×V2. As we will start using the doubling operator, we make copies
of the vertex sets. We can use a table to visualize it.

V1 V2

starting position x00 y00

db2 x01 y00

db1 x00 y10

x01 y10

The table may be read as follows; the rows are the edges of the hypergraph and
columns are the vertex sets. In this example we have that V1 = {x00, x01} and V2 =
{y00, y10} and the edge set consists of {(x00, y00), (x01, y00), (x00, y10), (x01, y10)}.
The algorithm for constructing the table is as follows: we start with the starting
position row, which corresponds to the (hyper)graph with a single edge (x00, y00),
and as we apply the doubling operator db2, we add a new row (which corresponds
to making a vertex-disjoint copy) where we increase the second bit in the subscript
of x but leave y alone (so we have a new copy of V1 but not of V2). After this
first step we have a graph with vertex sets V1 = {x00, x01} and V2 = {y00} and
edge set {(x00, y00), (x01, y00)}. Next we apply db1 and we get a new copy of V2,
but leave V1 alone.
For arbitrary t ≥ 2, let viω be a formal variable with i ∈ [t] and ω a t-bit string.
We define for j ∈ [t] an operation ∆j on the formal variable by

∆j(v
i
ω) := viω1,...,ωj+1,...,ωt for j 6= i

∆i(v
i
ω) := viω.

where we add modulo 2. The table then looks like

V1 V2 . . . Vt
starting position v1

0t v2
0t . . . vt0t

dbt ∆t(v
1
0t) ∆t(v

2
0t) . . . ∆t(v

t
0t)

dbt−1 ∆t−1(v1
0t) ∆t−1(v2

0t) . . . ∆t−1(vt0t)
∆t−1(∆t(v

1
0t)) ∆t−1(∆t(v

2
0t)) . . . ∆t−1(∆t(v

t
0t))

. . . . . . . . . . . . . . .

At step k, the algorithm takes all the rows of the previous steps together and
applies ∆t−k+1 on each of the formal variables in the rows. We also write dbi(e)
for the row where we apply ∆i on each variable of the row e. We see in this
way that, for example, the edge set of H(t) has cardinality 2t and the number of
vertices in each Vi is 2t−1. In the following proposition we list some properties of
H(t) which we prove using this description. We will be using the terms row and
edge interchangeably as they mean the same in this context.
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2.3.4. Proposition. The hypergraph H(t) has the following properties: (1) it is
t-partite, (2) it is 2-regular and (3) for all vertices v the following holds: let e, e′

be the unique edges such that v ∈ e, v ∈ e′ and e 6= e′. For w ∈ e \ {v}, denote
by e, e′′ the unique edges such that w ∈ e, w ∈ e′′ and e 6= e′′. Then e′ ∩ e′′ = ∅.

Proof:
(1) follows directly from the algorithm described above using the table. We can
prove (2) as follows. Suppose in column Vi we have a vertex in some row/edge
which we denote by viω, here ω is a t-bit string. First we note that applying dbj
with j 6= i will change ω as it will flip the j-th bit. There are two cases; either
we have already applied dbi in which case viω appears in exactly one more row
above the current row, or we have not applied dbi yet in which case there is no
viω in an earlier row. It will appear exactly once in a later row since applying dbi
will not change ω. For (3), choose again some vertex viω in Vi and denote by e
the row which appears first in the table containing viω. The other row/edge which
contains viω is e′ := dbi(e). Now, let vjτ be a vertex in Vj with j 6= i and vjτ ∈ e,
i.e. it is in the same row as viω. There are two cases; either j > i in which case
e = dbj(e

′′) where e′′ is the other (unique) edge containing vjτ . Or j < i and the
other edge which contains vjτ is e′′ := dbj(e). In either case, a moments thought
shows that e′ ∩ e′′ = ∅. 2

The next ingredient is the following lemma.

2.3.5. Lemma. For a t-player free XOR game G with game tensor T , we have
that

β∗(G) ≤ ‖T‖H(t).

Proof:
For convenience, we write the hypergraph H(t) in a slightly different way. Recall
that the sets X1, . . . , Xt are the set of questions in the the game G and V1∪· · ·∪Vt
is the vertex set of H(t). For i, j ∈ [t], let φi : Vi → Xi and we define an operation
∆j on such maps in the same way as above, i.e.

(∆jφi)(v
i
ω) = φi(∆jv

i
ω) for j 6= i

(∆iφi)(v
i
ω) = φi(v

i
ω).

Also, using the same symbol, we define on functions T : X1 × · · · ×Xt → C

∆jT (φ1(v1
ω1), . . . , φt(v

t
ωt)) := T (φ1(v1

ω1), . . . , φt(v
t
ωt))T

∗((∆jφ1)(v1
ω1), . . . , (∆jφt)(v

t
ωt)),

one could think of this operation as a kind of multiplicative derivative. If T were
an operator-valued map, we still define it in this way. It is then not hard to see
that

∆1 . . .∆tT (φ1(v1
0t), . . . , φt(v

t
0t)) =

∏
(v1
ω1
,...,vt

ωt
)∈E(H(t))

T (φ1(ω1), . . . , φt(ω
t)),
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using the table as a description of H(t). So we can write

‖T‖H(t) = |E∆1 . . .∆tT (φ1(v1
0t), . . . , φt(v

t
0t))|1/|E|,

where the expectation is taken over all maps φi : Vi → Xi with the particular
distribution given in Definition 2.3.3.
Now let us look at the bias of a two-player game G with game tensor T and
finite-dimensional strategies A,B

η = ‖ E
(x,y)∈X×Y

T (x, y)A(x)B(y)‖op.

We will do the example of two players to clarify the idea and will prove it in general
afterwards. First we use Proposition 2.3.1, the Cauchy-Schwarz inequality, to peel
off strategy B

η = ‖ E
y∈Y

(
E
x∈X

T (x, y)A(x)
)
B(y)‖op

≤ ‖E
y

(
E
x
T (x, y)A(x)

)(
E
x
T (x, y)A(x)

)∗‖1/2
op ‖E

y
B(y)∗B(y)‖1/2

op

≤ ‖ E
y,x,x′

T (x, y)T (x′, y)A(x)A(x′)∗‖1/2
op .

In the second inequality we used that operator norm of strategies are smaller or
equal to 1. We will use the Cauchy-Schwarz inequality one more time, now to
peel off strategy A

η ≤ ‖ E
x,x′

(E
y
T (x, y)T (x′, y))A(x)A(x′)∗‖1/2

op

≤ ‖ E
x,x′

(E
y
T (x, y)T (x′, y))(E

y
T (x, y)T (x′, y))∗‖1/4

op ‖ E
x,x′

(A(x)A(x′)∗)∗A(x)A(x′)∗‖1/4
op

≤ | E
x,x′,y,y′

T (x, y)T (x′, y)T (x, y′)T (x′, y′)|1/4.

Now, to see that this last expression is equal to ‖T‖H(2), we write the expectation
in a different way. Instead of writing Ex,x′ we write Eφ : V→X where V = {v0, v1}
is a vertex set, so that x = φ(v0) and x′ = φ(v1). Similarly, instead of Ey,y′ we
write Eψ : W→Y where W = {w0, w1} and we view H(2) to be on this vertex sets.
Then, we evaluate T on the edges of H(2), so

| E
x,x′,y,y′

T (x, y)T (x′, y)T (x, y′)T (x′, y′)|1/4

= | E
φ : V→X,ψ : W→Y

∏
(v,w)∈E(H(2))

T (φ(v), ψ(w))|1/4.
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In general, for t players, the proof is as follows

η :=‖ET (φ1(v1
0t), . . . , φt(v

t
0t))

 ∏
i∈[t−1]

Ai(φi(v
i
0t))

At(φt(v
t
0t))‖op

≤ ‖ET (φ1(v1
0t), . . . , φt(v

t
0t))T (φ1(v1

0t−11), . . . , φt(v
t
0t))

∏
i∈[t−1]

Ai(φi(v
i
0t))Ai(φi(v

i
0t−11))∗‖1/2

op

= ‖E∆tT (φ1(v1
0t), . . . , φt(v

t
0t))

∏
i∈[t−1]

∆tAi(φi(v
i
0t))‖1/2

op .

Now assume that we have applied the Cauchy-Schwarz inequality 1 < n < t times
to peel off the last n operators and we have obtained the expression

η ≤ ‖E∆t−n+1 · · ·∆tT (φ1(v1
0t), . . . , φt(v

t
0t))

∏
i∈[t−n]

∆t−n+1 · · ·∆tAi(φi(v
i
0t))‖1/2n

op .

Now apply Cauchy-Schwarz inequality to remove the operator ∆t−n+1 · · ·∆tAt−n(φi(v
i
0t))

so that we obtain

η ≤ ‖E∆t−n · · ·∆tT (φ1(v1
0t), . . . , φt(v

t
0t))

∏
i∈[t−n−1]

∆t−n · · ·∆tAi(φi(v
i
0t))‖1/2n+1

op .

This completes the induction. Putting n = t− 1 we have the inequality

η ≤ |E∆1 · · ·∆tT (φ1(v1
0t), . . . , φt(v

t
0t))|1/2

t

.

We have shown that for each m ∈ N, that β∗(G,m) ≤ ‖T‖H(t). This implies the
result. 2

We are now ready to give a proof of Theorem 2.1.2.

Proof of Theorem 2.1.2:
We assume β∗(G) > η. Lemma 2.3.5 immediately implies ‖T‖H(t) ≥ η. To con-
struct a classical strategy, we choose an edge e∗ = (v∗1, . . . , v

∗
t ) ∈ E(H(t)). Any

choice of edge works for our argument. We have that H(t) is 2-regular (by Propo-
sition 2.3.4), so denote by e∗i the unique edge different from e∗ such that v∗i ∈ e∗i .
Write e∗i = (v

(i)
1 , . . . , v∗i , . . . , v

(i)
t ) and V ′i := Vi \ {v∗i }. Using Proposition 2.3.4 we
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see that v∗j /∈ e∗i whenever i 6= j. Then

η2t ≤ | E
φi : Vi→Xi

∏
(v1,...,vt)∈E

T (φ1(v1), . . . , φt(vt))|

= | E
φi : V ′i→Xi

[
∏

(v1,...,vt)∈E\{e∗,e∗1,...,e∗t }

T (φ1(v1), . . . , φt(vt))

E
φ∗i : {v∗i }→Xi

T (φ∗1(v∗1), . . . , φt(v
∗
t ))T (φ∗1(v∗1), . . . , φt(v

(1)
t )) · · ·T (φ1(v

(t)
1 ), . . . , φ∗t (v

∗
t ))]|

≤ E
φi : V ′i→Xi

| E
φ∗i : {v∗i }→Xi

T (φ∗1(v∗1), . . . , φ∗t (v
∗
t ))T (φ∗1(v∗1), . . . , φt(v

(1)
t ))

· · ·T (φ1(v
(t)
1 ), . . . , φ∗t (v

∗
t ))|.

Let us explain the second and third line in detail. Write Vi = V ′i ∪ {v∗i }. Any
map φi : Vi → Xi can be given by two maps φ′i : V

′
i → Xi and φ∗i : {v∗i } → Xi by

defining φi(v) to be φ′i(v) when v ∈ V ′i and otherwise equal to φ∗i (v). It can then
be seen that

E
φi : Vi→Xi

(some expression) = E
φ′i : V

′
i→Xi

[ E
φ∗i : {v∗i }→Xi

(some expression)].

After this we use the triangle inequality. By the averaging principle we see that
there exist specific choices of maps φi : V

′
i → Xi such that

| E
φ∗i : {v∗i }→Xi

T (φ∗1(v∗1), . . . , φ∗t (v
∗
t ))T (φ∗1(v∗1), . . . , φt(v

(1)
t )) · · ·T (φ1(v

(t)
1 ), . . . , φ∗t (v

∗
t ))| > η2t .

The expectation over t-tuples of maps φ∗i : {v∗i } → Xi is the same as the expec-
tation over t-tuples x∗i ∈ Xi and by defining

ai(x
∗
i ) := T (φ1(v

(i)
1 ), . . . , x∗i , . . . , φt(v

(i)
t ))

we see that

| E
x∗1,...,x

∗
k

T (x∗1, . . . , x
∗
k)

k∏
i=1

ai(x
∗
i )| ≥ η2t ,

in other words, the classical bias is at least η2t . 2

2.4 Linear forms game

Before we will go in to the details of the proof of Theorem 2.1.3, we briefly
discuss some concepts from higher-order Fourier analysis. The reference for this
subsection is [Tao12].



2.4. Linear forms game 47

2.4.1 Preliminaries

Recall the notation as in Section 1.1. Let G be a finite abelian group and
f : G→ C a complex-valued function on G. Recall the definition of the Gowers
U s-norm in Definition 1.1. Now let ψ0, . . . , ψt : G

d → G be affine linear forms,
i.e. maps that take the form ψi(g1, . . . , gd) = ci +

∑d
j=1 cijgj where ci ∈ G and

cij ∈ Z.

2.4.1. Definition. Let {ψ0, . . . , ψt} be a system of affine linear forms. We say
that the system has Cauchy-Schwarz complexity at most s if for any 0 ≤ i ≤ t
one can partition {ψ0, . . . , ψt}\{ψi} into s+1 classes (empty classes are allowed)
such that ψi does not lie in the affine linear span (over Q) of the forms in any of
these classes. The Cauchy-Schwarz complexity of the system is defined to be the
least such s or ∞ if no such s exists.

If ψ : Gd → G is an affine linear form, we denote by ψ̇ : Qd → Q the map induced
by its integer coefficients. The characteristic of G is defined to be least order of
all non-identity elements. Here is an equivalent formulation of Cauchy-Schwarz
complexity in terms of change of variables.

2.4.2. Proposition. Let {ψ0, . . . , ψt} be a system of affine linear forms Gd → G.
Suppose that the characteristic of G is sufficiently large depending on the coeffi-
cients of ψ0, . . . , ψt. Then the system has Cauchy-Schwarz complexity at most s
if and only if for every 0 ≤ i ≤ t one can find a linear change of variables ~x =
Li(y1, . . . , ys+1, z1, . . . , zd) on Qd such that the form ψ̇i(Li(y1, . . . , ys+1, z1, . . . , zd))
has non-zero y1, . . . , ys+1 coefficients, but all other forms ψ̇j(Li(y1, . . . , ys+1, z1, . . . , zd))
with j 6= i have at least one vanishing y1, . . . , ys+1 coefficient.

We also need the Gowers inverse theorem 1.4.4.

2.4.2 Quantum/classical bias ratio for line games

We will now continue with line games. Line games, as discussed in the introduc-
tion, fall inside a larger class of games which we will describe first. For this, let
Γ be a finite abelian group, m ≥ 1 an integer and let ψ0, . . . , ψt : Γm → Γ for
i = 1, . . . , t be t+ 1 affine linear forms, i.e.

ψi(g1, . . . , gm) = ci +
m∑
j=1

cijgj

where (g1, . . . , gm) ∈ Γm, ci ∈ Γ and cij ∈ Z.

2.4.3. Definition. A t-player linear forms game is given by the above data
together with a game map ρ : Γ→ {0, 1} as follows. The referee samples a uniform
random point g from Γm and sends ψi(g) to player i (players are numbered from
1 to t). The winning criterion is given by ρ(ψ0(g)).
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Let G be such a game. The classical bias is given by

β(G) = max
ai : Γ→{±1}

| E
g∈Γm

(−1)ρ(ψ0(g))

t∏
i=1

ai(ψi(g))|.

The quantum bias is

β∗(G) = sup
N≥1,Ai : Γ→Obs±1(CN )

‖ E
g∈Γm

(−1)ρ(ψ0(g)) ⊗ti=1 Ai(ψi(g))‖op.

We will use again that limn→∞ β
∗(G, n) = β∗(G) where

β∗(G, n) = max
N≤n,Ai : Γ→Obs±1(CN )

‖ E
g∈Γm

(−1)ρ(ψ0(g))

t∏
i=1

Ai(ψi(g))‖op,

where the maximization is over Ai such that [Ai, Aj] = 0 for i 6= j.

2.4.4. Remark. A t-player line game as discussed in the introduction falls in-
side this framework where the finite group is Γ = Fnp and the linear forms
ψi : (Fnp )2 → Fp are given by ψ0(x, y) = y and ψi(x, y) = x + (i − 1)y for
i = 1, . . . , t.

The main technical theorem of this section is the following.

2.4.5. Theorem. Let G be a game as above. If the Cauchy-Schwarz complexity
of {ψ0, . . . , ψt} is at most s, we then have the inequality

β∗(G) ≤ ‖(−1)ρ‖Us+1(Γ). (2.6)

This theorem is a corollary of the following two results that are immediate gen-
eralizations from the “commutative” setting. See [Tao12] for more details.

2.4.6. Lemma (Second Gowers-Cauchy-Schwarz inequality for operators). For a
function f : Γ→ C and maps Ai : Γm → L(CN) for i ∈ [m] such that ‖Ai(g)‖op ≤ 1
for any g ∈ Γm, Ai is independent of the i-th coordinate of g and [Ai(g), Aj(h)] = 0,
[Ai(g)∗, Aj(h)] = 0 for all i 6= j and g, h ∈ Γm, we have that

‖ E
(g1,...,gm)∈Γm

f(a1g1 + · · ·+ amgm)
m∏
i=1

Ai(g1, . . . , gm)‖op ≤ ‖f‖Um(Γ),

where ai are non-zero integers such that the characteristic of Γ exceeds all of them.

Proof:
We will prove this by induction. For m = 1 we have

‖ E
g∈Γ

f(ag)A(g)‖op ≤ | E
g∈Γ

f(ag)| = | E
g∈Γ

f(g)| = ‖f‖U1(Γ).
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Here we used that A is independent of g. Assume we have proven the statement
up to some integer m ≥ 1. Then

η := ‖ E
(g1,...,gm+1)∈Γm+1

f(a1g1 + · · ·+ am+1gm+1)
m+1∏
i=1

Ai(g1, . . . , gm+1)‖op

= ‖ E
(g2,...,gm+1)∈Γm

A1(g2, . . . , gm+1) E
g1∈Γ

f(a1g1 + · · ·+ am+1gm+1)
m+1∏
i=2

Ai(g1, . . . , gm+1)‖op,

we have done nothing, just rearranged and used the fact that A1 is independent of
g1. Now write F (g2, . . . , gm+1) := Eg1∈Γ f(a1g1+· · ·+am+1gm+1)

∏m+1
i=2 Ai(g1, . . . , gm+1)

so that

η = ‖ E
(g2,...,gm+1)∈Γm

A1(g2, . . . , gm+1)F (g2, . . . , gm+1)‖op

≤ ‖ E
(g2,...,gm+1)∈Γm

F (g2, . . . , gm+1)F (g2, . . . , gm+1)∗‖1/2
op .

Here we used Proposition 2.3.1 and we used the fact that ‖A1(g)‖op ≤ 1 for any
g ∈ Γm+1. Recall that ·∆h(f)(x) = f(x)f(x+ h)∗. Then

η ≤ ‖ E
g1,g′1,g2,...,gm+1

f(a1g1 + · · ·+ am+1gm+1)f(a1g
′
1 + · · ·+ am+1gm+1)∗

×
m+1∏
i=2

Ai(g1, . . . , gm+1)Ai(g
′
1, . . . , gm+1)∗‖1/2

op

≤ ( E
g1,h1
‖ E

(g2,...,gm+1)∈Γm
·∆h1f(a1g1 + · · ·+ am+1gm+1)

×
m+1∏
i=2

Ai(g1 + h1, . . . , gm+1)Ai(g1, . . . , gm+1)∗‖op)1/2

≤ ( E
g1,h1

( E
h2,...,hm+1,z∈Γ

·∆hm+1 . . . ·∆h1f(a1g1 + z))1/2m)1/2

≤ ( E
g1,h1

( E
h2,...,hm+1,z∈Γ

·∆hm+1 . . . ·∆h1f(a1g1 + z)))1/2m+1

= ( E
h1,h2,...,hm+1,z∈Γ

·∆hm+1 . . . ·∆h1f(z))1/2m+1

= ‖f‖Um+1(Γ).

In the third line we used triangle inequality to get the expectation in g1, h1 out-
side the norm. In the fifth line we used the induction hypothesis to upper bound
the expression in the previous line with the Gowers norm. We then use in the
sixth line Jensen’s inequality. 2

2.4.7. Proposition (Generalized von Neumann inequality). Let f : Γ → C be
a function, {ψ0, . . . , ψt} a system of affine linear forms of Cauchy-Schwarz com-
plexity s, Ai : Γm → L(CN) for i ∈ [t] such that ‖Ai(g)‖op ≤ 1 for any g ∈ Γm



50 Chapter 2. Bounding quantum-classical separations of nonlocal games

and [Ai(g), Aj(h)] = 0, [Ai(g)∗, Aj(h)] = 0 for all i 6= j and g, h ∈ Γm. Also
assume the characteristic of Γ is sufficiently large depending on the coefficients
of the affine linear forms. Then we have the inequality

‖ E
g∈Γm

f(ψ0(g))
t∏
i=1

Ai(ψi(g))‖op ≤ ‖f‖Us+1(Γ).

Proof:
The system of affine linear forms has Cauchy-Schwarz complexity s so we can
partition the forms {ψ1, . . . , ψt} into s + 1 classes A1, . . . ,As+1 such that ψ0 is
not an affine linear combination of any forms in any class Ai for any i (over Q).
So one can find a linear change of variables using Proposition 2.4.2

(g1, . . . , gm) 7→ (h1, . . . , hm) + y1v1 + · · ·+ ys+1vs+1

with the property that ψ0(yjvj) = ajyj where aj is a non-zero integer and vj ∈ Zm,
but if ψi ∈ Aj, then ψi(yjvj) = 0, this is where we need the large characteristic
hypothesis. Now we define

Ãk(g1, . . . , gm) :=
∏
j∈Ak

Aj(ψj(g1, . . . , gm)).

Note that Ãi is independent of its i-th coordinate and has operator norm smaller
than 1. We then have

‖ E
g∈Γm

f(ψ0(g1, . . . , gm))
t∏
i=1

Ai(ψi(g1, . . . , gm))‖op

= ‖ E
g∈Γm

f(ψ0(g1, . . . , gm))
s+1∏
i=1

Ãi(g1, . . . , gm)‖op

= ‖ E
h∈Γm

E
y1,...,ys+1∈Γ

f(ψ0(h) + a1y1 + · · ·+ as+1ys+1)
s+1∏
i=1

Ãi(h, y1, . . . , ys+1)‖op

≤ E
h∈Γm

‖f‖Us+1(Γ) = ‖f‖Us+1(Γ).

In the third line we used the linear change of variables just described. Then we
used the triangle inequality together with Lemma 2.4.6 where we need the large
characteristic hypothesis. 2

2.4.8. Remark. If f takes values in {±1} and Ai are ±1-valued observables,
then the inequality says that the quantum bias of such games is bounded from
above by the Gowers norm of the game tensor f .
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Proposition 2.4.7 is in full generality, i.e. for any abelian group the inequality
holds. However, we will now restrict ourselves to the case where Γ = Fnp , where
p is prime and n ≥ 1 as it will make many things easier. We can then use the
Gowers inverse theorem 1.4.4. Let us start giving the proof of Theorem 2.1.3. A
t-player line game is given by a map τ : Fnp → {0, 1} which stands for the predicate
together with a system of linear forms ψ0, ψi : (Fnp )2 → Fnp which are given by

ψ0(x, y) = y and ψi(x, y) = x+ (i− 1)y for i = 1, . . . , t.

Note that the Cauchy-Schwarz complexity of this system is at most t − 1. For
the bias of the game, it is more convenient to look at f := (−1)τ . We also need
the following lemma, provided kindly to us by Shravas Rao.

2.4.9. Lemma. Let P : Fnp → Fp be a polynomial of degree d−1 and p ≥ d. Then
there exist d polynomials Pi : Fnp → Fp, i = 0, . . . , d− 1, such that

P (y) =
d−1∑
i=0

Pi(x+ iy).

Proof:
The polynomial P can be represented as

P (x1, . . . , xn) =
d−1∑
i=0

Ti(x, . . . , x), x = (x1, . . . , xn),

where each Ti : (Fnp )i → Fp is an i-linear form. We will show that for each linear
form Ti we can find α0, . . . , αd−1 such that

Ti(y, . . . , y) =
d−1∑
j=0

αjTi(x+ jy, . . . , x+ jy) (2.7)

and this will be enough to construct P0, . . . , Pd−1. By linearity, we can rewrite
the right hand side as follows,

d−1∑
j=0

∑
s∈{0,1}i

αjTi((1− s1)x+ s1jy, . . . , (1− si)x+ sijy)

=
d−1∑
j=0

∑
s∈{0,1}i

αjj
|s|Ti((1− s1)x+ s1y, . . . , (1− si)x+ siy),

where |s| denotes the Hamming weight of s. Then 2.7 holds, if for 0 ≤ k < i

d−1∑
j=0

αjj
k = 0 and

d−1∑
j=0

αjj
i = 1.
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As d ≤ p the d× d Vandermonde matrix associated with the sequence 1, j, . . . , ji

is invertible, hence there exist unique α0, . . . , αd−1 satisfying the above equations
which concludes the proof. 2

The following lemma will help us later in converting complex strategies into
±1-strategies.

2.4.10. Lemma. For any z ∈ {u ∈ C : |u| = 1}

z =
π

2
E
w

[sgn(<(zw)) w],

where w ∈ {u ∈ C : |u| = 1} is taken uniformly at random.
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Proof:
Write z = eiψ. Then

E
w

[sgn(<(zw))w] =
1

2π

∫ 2π

0

sgn(<(e−i(φ−ψ)))eiφdφ

=
1

2π

∫ 2π

0

sgn(<(e−iχ))eiχ+iψdχ

=
z

2π

∫ 2π

0

sgn(<(e−iχ))eiχdχ

=
2z

π
.

2

Proof of Theorem 2.1.3:
By Theorem 2.4.5 and the hypothesis that the game has entangled value ε > 0
implies that ‖f‖Ut ≥ ε. Then by the Gowers inverse theorem 1.4.4 and assump-
tion that p > t, there exists a constant δ = δ(t, ε, p) > 0 and a polynomial of
degree at most t− 1 such that

| E
x∈Fnp

f(x)ωP (x)| > δ,

where ω is a p-th root of unity. We now want to convert this presence of structure
into a classical strategy. First by Lemma 2.4.9 we can find t polynomials Pi for
i = 1, . . . , t such that

P (y) =
t∑
i=1

Pi(x+ (i− 1)y).

This implies

| E
x,y∈Fnp

f(ψ0(x, y))ωP (ψ0(x,y))| = | E
x,y∈Fnp

f(ψ0(x, y))
t∏
i=1

ωPi(ψi(x,y))| > δ.

The polynomials are not classical strategies yet, we can turn them into ±1-
strategies using Lemma 2.4.10 at a loss of a factor 2t/πt. 2

2.4.3 Parallel repetition

Let f : Γ→ {±1} be a function, representing the predicate. We want to consider
k-fold XOR parallel repetition. The predicate for this is fk : Γk → {1,−1} defined
by

fk(g1, . . . , gk) :=
k∏
i=1

f(gi).
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2.4.11. Lemma. We have that

‖fk‖Us+1(Γk) = ‖f‖kUs+1(Γ).

Proof:
This follows immediately from the definition of the Gowers norm. 2

Let {ψ0, . . . , ψt} be linear forms Γm → Γ which together with f define the
game G. The linear forms corresponding with k-fold XOR parallel repetition are
denoted by {ψk0 , . . . , ψkt } which are maps (Γm)k → Γk and are given by

ψki (g1, . . . , gk) := (ψi(g
1), . . . , ψi(g

k)), where gi ∈ Γm.

Note that if {ψ0, . . . , ψt} has Cauchy-Schwarz complexity at most s, then the
Cauchy-Schwarz complexity of {ψk0 , . . . , ψkt } is also at most s. Denote by G⊕k

the k-fold XOR parallel repetition, then we have as an immediate consequence of
Theorem 2.4.5 together with Lemma 2.4.11 the following upper bound

β∗(G⊕k) ≤ ‖f‖kUs+1(Γ).

If G is an XOR game, denote by Gk the k-fold parallel repetition. If S is a
strategy (classical or quantum) for a game G, denote by ω(G,S) the winning
probability using strategy S. Also denote by ε(G,S) := 2ω(G,S) − 1 the bias
of this strategy. To prove Lemma 2.1.4, we use the following lemma, which is a
straightforward generalization of the 2-player version in [CSUU08] (Lemma 8 in
that paper) to any number of players.

2.4.12. Lemma. Let G be an XOR game assume. Let S be any strategy for Gk.
For each M ⊂ [k], we denote by SM the following strategy for the XOR parallel
repetition ⊕i∈MG : (1) Run strategy S, yielding answers a1

i , . . . , a
k
i for player

i = 1, . . . , t. (2) Player i outputs
∑

j∈M aji mod 2. We then have

ω(Gk, S) =
1

2k

∑
M⊂[k]

ε(⊕i∈MG,SM).

Proof of Lemma 2.1.4.:
Let S be the quantum strategy that achieves the maximum winning probability
of the game Gk. We then use Lemma 2.4.12,

ω∗(Gk) = ω(Gk, S) =
1

2k

∑
M⊂[k]

ε(⊕i∈MG,SM)

≤ 1

2k

∑
M⊂[k]

β∗(G⊕|M |) =
1

2k

k∑
l=0

β∗(G⊕l)

(
k

l

)

≤ 1

2k

k∑
l=0

(
k

l

)
‖f‖Us+1(Γ) =

(
1 + ‖f‖Us+1(Γ)

2

)k
.

2



Chapter 3

Quasirandom quantum channels

This chapter is based on the paper [BBLM20] which is joint work with Tom
Bannink, Jop Briët and Hans Maassen. Recall the notation and basic concepts
on quasirandom graphs in Section 1.3.

3.1 Introduction

In a seminal work [CGW89], Chung, Graham and Wilson — building on work of
Thomason [Tho87a, Tho87b] — proved that several seemingly distinct notions of
quasirandomness for graphs are equivalent. In particular, they identified seven
properties found in random graphs with high probability, that always coexist
simultaneously in any large dense graph. Two of these properties are spectral
expansion and uniformity. A question of Chung and Graham [CG02] on the
equivalence of these two properties in sparse graphs resulted in a line of re-
search culminating in recent work of Conlon and Zhao [CZ17], which introduced
a surprising new item to the armory of combinatorics: the famous Grothendieck
inequality [Gro53]. In this chapter, we draw a parallel line in the context of quan-
tum information theory, where quantum channels take the place of graphs. In
addition, we give a streamlined proof of the main result of [CZ17] and show that
the use of Grothendieck’s inequality yields an optimal constant. Similarly, we
show that the non-commutative Grothendieck inequality gives an optimal con-
stant in the quantum setting.

Expander Mixing Lemma. For a regular graph G, denote by ε(G) its unifor-
mity parameter and λ(G) its expansion parameter (see Section 1.3 for definitions).
A basic result known as the Expander Mixing Lemma [HLW06] shows that for
any regular graph G we have ε(G) ≤ λ(G), which is to say that spectral expan-
sion implies uniformity. A sequence Gn of dn-regular graphs is called dense if
dn ≥ Ω(n), and sparse if dn/n −→ 0. It was shown in [CGW89] that in the dense
case, a converse to the Expander Mixing Lemma ε(Gn) ≤ o(1) ⇒ λ(Gn) ≤ o(1)

55
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also holds. In contrast, Krivelevich and Sudakov [KS06] showed that this is
false for sparse graphs, thereby answering the question posed in [CG02]. Their
counterexample is not regular, however (and a later one from [BN04] is not con-
nected). But in [CZ17] it was shown that even regular sparse graphs (where
dn ≤ o(n)) can simultaneously satisfy ε(Gn) ≤ o(1) and λ(Gn) ≥ Ω(1). Sur-
prisingly, Kohayakawa, Rödl, and Schacht [KRS16] showed that Cayley graphs
over abelian groups, including sparse ones, do again admit such a converse. Cay-
ley graphs are an important class of regular graphs that include for instance the
famous Ramanujan graphs of Margulis [Mar88] and Lubotzky, Phillips and Sar-
nak [LPS88]. Conlon and Zhao [CZ17] generalized this to all Cayley graphs and
showed that this implies the same for all vertex-transitive graphs in general, for
which they showed that λ(G) ≤ 4KGε(G), where 1.6769 . . . ≤ KG < 1.7822 . . . is
the famous Grothendieck constant, whose exact value is currently unknown; the
bounds shown here are the best known and were shown by Davie and Reeds (in-
dependently) in [Dav84, Ree91] and Braverman et al. in [BMMN13], respectively.
Spectral expansion and uniformity are thus equivalent notions of quasirandomness
for dense graphs and vertex-transitive graphs.

Quasirandomness in quantum information theory. A transition matrix,
such as the normalized adjacency matrix of a graph, maps probability vectors1

to probability vectors. A natural non-commutative generalization of a transi-
tion matrix is a quantum channel, a completely positive trace preserving linear
map Φ : Mn(C) → Mn(C); see Section 1.1 for formal definitions. Quantum
channels are the most general operations on quantum systems that are physically
realizable. They encapsulate the “classical” transition matrices by restricting
them to diagonal matrices whose diagonals form probability vectors; we dis-
cuss this in more detail in Section 3.3. Recall that in quantum information
theory, general linear maps from Mn(C) to itself are referred to as superopera-
tors. Since superoperators are in one-to-one correspondence with bilinear forms
on Mn(C) ×Mn(C), they also appear in the context of (generalizations of) Bell
inequalities from physics in the form of quantum XOR games [RV15, CJPPG15],
as well as in combinatorial optimization [NRV14]. The graph-theoretic concepts
mentioned above have natural analogues for superoperators, which we discuss
next.

In independent work, Hastings [Has07] and Ben-Aroya, Schwartz and Ta-
Schma [BST10] introduced quantum expanders as a special class of quantum
channels defined analogously to spectral expanders. For a superoperator Φ, the
expansion parameter is given by

λ(Φ) = ‖Φ− Π‖S2→S2 = sup
{
‖(Φ− Π)(X)‖S2 : ‖X‖S2 ≤ 1

}
, (3.1)

where Π : X 7→ 1
n
Tr(X)Id is the projection onto the identity, ‖X‖S2 =

√
〈X,X〉

1We use the convention of writing probability vectors as column vectors intead of row vectors.
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is the Frobenius (or Schatten-2) norm and 〈X, Y 〉 = 1
n
Tr(Y ∗X) is the normalized

trace inner product. A quantum channel is an expander if λ(Φ) is much smaller
than 1. Also quantum expanders found many applications, one of which is again
randomness reduction, where randomness takes on the form of random unitary
matrices. Since a k-qubit unitary requires 4k real parameters, sampling one from
the uniform distribution (Haar probability measure) is very expensive. A 1-
design is a fixed collection of unitaries U1, . . . , Um such that the superoperator
Φ : X 7→ 1

m

∑m
i=1 UiXU

∗
i exactly effects the projection Π, thus mimicking

in a finite way the Haar measure on U(n). Quantum expanders can be used
to construct approximate 1-designs, meaning that Φ(X) and Π(X) are close in
trace distance2 instead of precisely equal. Another application is in cryptography
where Ambainis and Smith [AS04b] used quantum expanders to construct short
quantum one-time pads. It was shown in [Has07] that truly random quantum
channels (given by independent Haar-uniform Ui as described above) are quantum
expanders with high probability, supporting the idea that this is a notion of
quasirandomness.

In this work we introduce a natural notion of uniformity for superoperators, in-
formally given by how well they mimic the action of Π on projectors on subspaces,
which may be thought of as generalizations of vertex subsets in graphs. This is
similar to Hasting’s notion of edge expansion for quantum channels [Has07]. In
particular, we say that Φ is ε-uniform if for any two subspaces V,W ⊆ Cn with
associated projections PV , PW , it holds that

|〈PV , (Φ− Π)(PW )〉| ≤ ε. (3.2)

Let ε(Φ) denote the smallest ε for which this holds. As we show in Section 3.3.3,
the parameters λ(Φ) and ε(Φ) reduce to their graphical analogs under a suitable
embedding of graphs into quantum channels.

Finally, also symmetry, which in the graph-theoretic context takes the form
of vertex transitivity, is an important property of quantum channels. In par-
ticular, irreducibly covariant quantum channels, which turn out to generalize
vertex-transitive graphs (see Section 3.3), play an important role in questions
about the capacity of quantum channels as noisy transmitters of quantum infor-
mation [Hol06]. A now famous result of Hastings [Has09] shows that the mini-
mum output capacity in general does not have the intuitively natural property
of being sub-additive under tensor products. However, it was shown earlier by
Holevo [Hol02], that the capacity is additive for the subclass of irreducibly co-
variant quantum channels.

Summary of our results. In this work we make a first step in the study of the
equivalence of quasirandom properties for quantum channels, or superoperators in

2The trace distance is the distance induced by the Schatten-1 norm, defined in Section 1.1.
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general, and show optimality in the case of vertex-transitive graphs and covariant
quantum channels.

• (Section 3.3.2) Our main result shows that under irreducible covariance,
expansion and uniformity are equivalent for superoperators. In particular,
while a simple analogue of the classical Expander Mixing Lemma implies
that ε(Φ) ≤ λ(Φ) in general, we show using a non-commutative version of
Grothendieck’s inequality due to Haagerup [Haa85], that for this class of
superoperators, also λ(Φ) ≤ 2π2ε(Φ) always holds. This implies the same
result for vertex-transitive graphs with C-weighted edges, essentially proved
in [CZ17] with the factor 2 replaced by the complex Grothendieck constant
1.3380 . . . ≤ KC

G ≤ 1.4049 . . . .

• (Section 3.3.3) We show that a construction of sparse regular graphs from [CZ17]
can be embedded to give a sequence of quantum channels Φn that are
not irreducibly covariant and for which it holds that ε(Φn) ≤ o(1) and
λ(Φn) ≥ Ω(1).

• (Section 3.3.4) We show that for randomizing channels, a notion introduced
in [Aub09], the two notions of quasirandomness are also equivalent. This
can be interpreted as a generalization of the same statement for dense graphs
proved in [CGW89].

• (Section 3.4.1) We show that the result of [CZ17] cannot be improved in
the sense that the factors 4KG and π2KC

G are optimal in the case of vertex-
transitive graphs with R-weighted and C-weighted edges, respectively.

• (Section 3.4.2) Our work leaves open whether the factor 2π2 in our main
result is optimal. However, our proof consists of two steps, the first of which
gives a factor 2 and the second a factor π2, and we show these steps are indi-
vidually optimal. We prove that the first step is optimal by showing that an
example of Haagerup and Ito [HI95] for the non-commutative Grothendieck
inequality is irreducibly covariant, which uses some representation theory
of SO(n). The optimality of the second step follows directly from a result
of [CZ17].

3.2 Preliminaries

For a compact set S, write C(S) for the set of continuous functions from S to
C. For a compact group Γ, write Eg∈Γ for the the integral with respect to the
(unique) Haar probability measure on Γ.

Recall that Mn(C) is the set of complex n × n matrices and we write U(n)
for the set of unitary matrices {X ∈ Mn(C) : X∗X = Id}. Here, all maps of
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the form Φ : Mn(C) → Mn(C) are linear and referred to as superoperators. A
superoperator Φ is unital if Φ(Id) = Id.

We normalize inner products so that for x, y ∈ Cn we define 〈y, x〉 = Ei∈[n] yixi
and for matrices X, Y ∈Mn(C) we have 〈Y,X〉 = 1

n
Tr[Y ∗X].

3.2.1. Proposition. Let p ≥ 1 and let X ∈Mn(C). Then

‖X‖Sp ≥ ‖(X11, . . . , Xnn)‖Lp .

Proof:
For a vector x ∈ Cn, denote by Diag(x) the n× n matrix with x on the diagonal
and for a matrix X denote by diag(X) the matrix where we set the off-diagonal
elements to 0. A small computation shows that

E
s∈{±1}n

Diag(s)X Diag(s) = diag(X).

Since the Schatten-p norms are invariant under conjugation with a unitary matrix,
applying the above with the triangle inequality gives

‖(X11, . . . , Xnn)‖Lp = ‖diag(X)‖Sp ≤ E
s∈{±1}n

‖Diag(s)X Diag(s)‖Sp = ‖X‖Sp .

2

For q ∈ [1,∞], define q′ ∈ [1,∞] to be its dual given by 1
q

+ 1
q′

= 1. For

p, q ∈ [1,∞], a matrix A ∈ Mn(C) and a superoperator Φ : Mn(C) → Mn(C),
define

‖A‖Lp→Lq = sup{|〈y, Ax〉| : ‖x‖Lp ≤ 1, ‖y‖Lq′ ≤ 1}
‖Φ‖Sp→Sq = sup{|〈Y,Φ(X)〉| : ‖X‖Sp ≤ 1, ‖Y ‖Sq′ ≤ 1}.

If G is a d-regular graph on n vertices with normalized adjacency matrix A, then
λ(G) = ‖A − 1

n
J‖L2→L2 , where J is the all-ones matrix. Also recall from (3.1)

that for a superoperator Φ the expansion parameter is λ(Φ) = ‖Φ− Π‖S2→S2 .
Also define the cut norms by

‖A‖cut = max{|〈y, Ax〉| : x, y ∈ {0, 1}n}
‖Φ‖cut = sup{|〈Y,Φ(X)〉| : X, Y projectors}.

It is then not hard to see that if G is a d-regular graph on n vertices with
normalized adjacency matrix A, then ε(G) = ‖A − 1

n
J‖cut. Similarly, we have

ε(Φ) = ‖Φ− Π‖cut.
We have the following relation between these norms, the proof of which is a

simple generalization of the same result from [CZ17] for matrices.
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3.2.2. Lemma. For any superoperator Φ, we have ‖Φ‖cut ≤ ‖Φ‖S∞→S1 ≤ π2‖Φ‖cut

and π2 is the best possible constant.

Proof:
First note that the cut norm as defined above can also be written as

‖Φ‖cut = sup{|〈Y,Φ(X)〉| : X, Y � 0 , ‖X‖S∞ , ‖Y ‖S∞ ≤ 1}, (3.3)

because the set {X : X � 0, ‖X‖S∞ ≤ 1} is the convex hull of the set of
projectors. Hence, by linearity the supremum in (3.3) will always be attained by
projectors.

The first inequality of the lemma follows by dropping the positive semidefinite
constraint. For the second inequality, let z be a complex number of norm 1, and
w a uniform random complex number of norm 1. Then

z = π Ew[w 1{<(zw̄)≥0} ].

This follows from Lemma 2.4.10. We have that

‖Φ‖S∞→S1 = sup{|〈Y,Φ(X)〉| : ‖X‖S∞ , ‖Y ‖S∞ ≤ 1}.

The set of matrices X such that ‖X‖S∞ ≤ 1 is the convex hull of the set of
unitary matrices, so by linearity we can assume that the supremum in ‖Φ‖S∞→S1

is obtained by unitary X, Y . Unitary matrices are diagonalizable, so write X =
UAU∗ and Y = V BV ∗ with U, V unitary and A,B diagonal. Let u,w ∈ C,
|u| = |w| = 1 be uniform random complex numbers and define diagonal matrices
A′, B′ as A′ii(w) = 1{<(Aiiw̄)≥0} and B′ii(u) = 1{<(Biiū)≥0}. By the above we have
A = π Ew[wA′(w)] and similar for B, so we have X = π Ew[wUA′(w)U∗] and
Y = π Eu[uV B′(u)V ∗]. Now, UA′(w)U∗ and V B′(u)V ∗ are projections for all
values of w and u, as required in the definition of the cut norm. Therefore

‖Φ‖S∞→S1 = |〈Y,Φ(X)〉| = π2|Eu,wūw〈V B′(u)V ∗,Φ(UA′(w)U∗)〉|
≤ π2Eu,w|〈V B′(u)V ∗,Φ(UA′(w)U∗)〉|
≤ π2Eu,w‖Φ‖cut

= π2‖Φ‖cut,

completing the first part of the proof. Conlon and Zhao show that π2 is the
best possible constant in the commutative case, using the matrix A ∈ Mn(C)
given by Ast = e2πi(s−t)/n. This matrix satisfies ‖A‖L∞→L1 = n and one can show
‖A‖cut = (π−2 + o(1))n. By Theorem 3.3.7 in Section 3.3.3, their example can
be embedded into a superoperator with the same norms so π2 is also the best
possible constant here. 2
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Define the Grothendieck norm of a matrix A ∈Mn(C) by

‖A‖G := sup
{∣∣∣ 1
n

n∑
i,j=1

Aij〈xi, yj〉
∣∣∣ : d ∈ N, xi, yj ∈ Cd, ‖xi‖L2 ≤ 1, ‖yj‖L2 ≤ 1

}
.

Then, the complex Grothendieck constant is given by

KC
G := sup

{ ‖A‖G
‖A‖L∞→L1

: n ∈ N, A ∈Mn(C)
}
.

The current best upper and lower bounds onKC
G are 1.4049 [Haa87] and 1.338 [Dav84],

respectively. The real version of the Grothendieck constant, denoted by KG and
mentioned in the introduction, is obtained by replacing the underlying field in
the above quantities by the reals.

Some basic group theory. Given a graph G = (V,E), a permutation π :
V → V is an automorphism of G if for all u, v ∈ V , we have {π(u), π(v)} ∈ E ⇔
{u, v} ∈ E. The automorphisms of G form a group under composition, which
we call Aut(G). Then, G is said to be vertex-transitive if for every u, v ∈ V ,
there is a π ∈ Aut(G) such that π(u) = v. For superoperators, we have the
following analogous definitions. A unitary representation of a group Γ on Cn is a
homomorphism from Γ to U(n) and it is irreducible if the only subspaces of Cn

that are left invariant by the group action are the zero-dimensional subspace and
Cn itself.

3.2.3. Definition (Irreducible covariance). A superoperator Φ : Mn(C)→Mn(C)
is irreducibly covariant if there exist a compact group Γ and continuous irreducible
unitary representations U, V : Γ→ U(n) such that for all g ∈ Γ and X ∈Mn(C),
we have

Φ(U(g)XU∗(g)) = V (g)Φ(X)V ∗(g).

3.3 Converse expander mixing lemmas

In this section, we prove the “converse expander mixing lemmas” announced in
the first and third bullet in the introduction as well as the examples announced
in the second bullet. As a warm-up, we start with a proof of the commutative
case due to Conlon and Zhao, which we reprove in a slightly different manner
analogous to how we will prove the non-commutative case.

3.3.1 Commutative case

In the following, let S be a compact set and Γ be a compact group acting con-
tinuously and transitively on S. The Haar probability measure on Γ induces a
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measure on S (by pullback) according to which the Lp-norm (for p ∈ [1,∞)) and
inner product of f, g ∈ C(S) are given by

‖f‖Lp =
(

E
π∈Γ

∣∣f(π(s0)
)∣∣p) 1

p
and 〈f, g〉 = E

π∈Γ
f
(
π(s0)

)
g
(
π(s0)

)
, (3.4)

where (by transitivity) s0 can be taken to be some arbitrary but fixed element
of S. We lift the action of Γ on S to an action on C(S) by precomposition,
that is, for any function f ∈ C(S) and element π ∈ Γ, define the function fπ by
fπ(s) := f(π(s)). Furthermore, for a linear map A : C(S) → C(S) define Aπ by
Aπf := (Afπ)π

−1
and say that A is transitive covariant with respect to Γ if for

any π ∈ Γ we have Aπ = A.3 We sometimes omit the group and simply say A is
transitive covariant if such a group Γ exists.

In [CZ17], the following result is proved (over the real numbers) for the
case S = [n], in which case transitive covariant linear maps A are simply n × n
matrices which commute with the permutation matrices of a transitive subgroup
Γ of Sn. However, their proof easily implies the more general version below.

3.3.1. Theorem (Conlon–Zhao). Let S be as above and let A : C(S)→ C(S) be
a linear map that is transitive covariant with respect to Γ. Then,

‖A‖L2→L2 ≤ KC
G‖A‖L∞→L1 .

Here we give a somewhat more streamlined proof of this result based on a well-
known factorization version of Grothendieck’s inequality [Gro53] (see also [Pis12]),
which will serve as a stepping stone to the proof of the non-commutative case.4

In our setting the inequality asserts the following

3.3.2. Theorem (Commutative Grothendieck inequality (factorization)). Let S
be as above and let A : C(S)→ C(S) be a linear map. Then, there exist probability
measures λ, ν on S such that for all f, g ∈ C(S), we have

|〈g, Af〉| ≤ KC
G‖A‖L∞→L1

(∫
S

|f(s)|2 dλ(s)

)1/2(∫
S

|g(s)|2dν(s)

)1/2

.

Proof of Theorem 3.3.1:
It follows from the triangle inequality and transitivity that

|〈g, Af〉| ≤ E
π∈Γ
|〈g, Aπf〉| = E

π∈Γ
|〈gπ, Afπ〉|.

3In general one says A is covariant with respect to Γ, but we say transitive to emphasize
that we require Γ to act transitively on S.

4The main difference is that in [CZ17], the result is first proved for weighted Cayley graphs,
after which it is shown that this implies the result for transitive covariant matrices.
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By Theorem 3.3.2 and the AM-GM inequality there are probability measures λ, ν
on S such that the above right-hand side is at most

KC
G‖A‖L∞→L1

2
E
π∈Γ

(∫
S

|fπ(s)|2dλ(s) +

∫
S

|gπ(s)|2dν(s)

)
=
KC
G‖A‖L∞→L1

2
(‖f‖2

L2
+ ‖g‖2

L2
),

where we switched the order of the integrals (using Tonelli’s theorem) and the
expression (3.4) for the L2 norm. Thus, when ‖f‖L2 = ‖g‖L2 = 1 we have shown
that ‖A‖L2→L2 ≤ KC

G‖A‖L∞→L1 . 2

3.3.2 Non-commutative case

Our main technical result is as follows.

3.3.3. Theorem. Let Φ : Mn(C)→ Mn(C) be an irreducibly covariant superop-
erator. Then, ‖Φ‖S∞→S1 ≤ ‖Φ‖S2→S2 ≤ 2‖Φ‖S∞→S1.

Since the supremum in ‖Φ‖S∞→S1 is taken over X, Y with S∞-norm equal to 1,
the first inequality of the theorem follows from the fact that ‖X‖S2 ≤ ‖X‖S∞ .
As projectors have Schatten-∞ norm 1, the first inequality also easily implies
the analogue of the Expander Mixing Lemma, that is, ε(Φ) ≤ λ(Φ), where λ(Φ)
and ε(Φ) are as in (3.1) and (3.2), respectively; note that when Φ is irreducibly
covariant, so is Φ−Π. The second inequality is proved at the end of this section
and in Section 3.4.2 we show that the factor 2 in the theorem is optimal. With
Lemma 3.2.2, which relates the uniformity parameter ε(Φ) to ‖Φ − Π‖S∞→S1 ,
Theorem 3.3.3 then immediately gives the following result stated in the introduc-
tion.

3.3.4. Corollary (Converse Quantum Expander Mixing Lemma). Let Φ be an
irreducibly covariant superoperator. Then, λ(Φ) ≤ 2π2ε(Φ).

In this non-commutative setting we use the following analog of Theorem 3.3.2
(a factorization version of the non-commutative Grothendieck inequality), proved
by Haagerup in [Haa85]; see also [Pis12]. A density matrix is a positive semidef-
inite matrix with trace equal to 1.

3.3.5. Theorem (Haagerup). Let Φ: Mn(C)→Mn(C) be a superoperator. Then,
there exist density matrices ρ1, ρ2, σ1, σ2 such that for any X, Y ∈Mn(C), we have

|〈Y,Φ(X)〉| ≤ ‖Φ‖S∞→S1 (Tr[ρ1X
∗X] + Tr[ρ2XX

∗])1/2 (Tr[σ1Y
∗Y ] + Tr[σ2Y Y

∗])1/2 .
(3.5)
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We also use the following lemma.

3.3.6. Lemma. Let Γ be a compact group. Then, a representation U : Γ→ U(n)
is irreducible if and only if for any X ∈Mn(C), we have

E
g∈Γ

U(g)XU(g)∗ = Tr(X)
1

n
Id.

Proof:
By Schur’s lemma, if U is an irreducible representation, then for T ∈Mn(C)[

∀g ∈ Γ U(g)TU(g)∗ = T
]
⇐⇒

[
∃λ ∈ C T = λ Id

]
.

Let TX = Eg∈Γ U(g)XU(g)∗, by the group structure we have U(g)TXU(g)∗ = TX
for all g ∈ Γ. Therefore, if U is irreducible then TX = λX Id. By taking the
trace, it follows that λX = Tr(X)/n. In the other direction, if U is reducible then
there exists a projector P onto an irreducible subspace that is left invariant, i.e.
U(g)PU(g)∗ = P for all g ∈ Γ, so TP 6= λId. 2

Proof of Theorem 3.3.3:
Denote by Γ and U, V : Γ→ U(n) the group and irreducible representations such
that Φ is irreducibly covariant with respect to Γ (see Definition 3.2.3). For any
X, Y ∈Mn(C) write Xg = U(g)XU∗(g) and Yg = V (g)Y V ∗(g), then we have

|〈Y,Φ(X)〉| = E
g∈Γ
|〈Yg,Φ(Xg)〉|.

By Theorem 3.3.5 and the AM-GM inequality, there exist density matrices ρ1, ρ2, σ1, σ2

such that the right-hand side is bounded from above by

1

2
‖Φ‖S∞→S1 E

g∈Γ

(
Tr[ρ1X

∗
gXg] + Tr[ρ2XgX

∗
g ] + Tr[σ1Y

∗
g Yg] + Tr[σ2YgY

∗
g ]
)
.

By Lemma 3.3.6 we have

E
g∈Γ

X∗gXg = E
g∈Γ

U(g)X∗XU∗(g) =
1

n
Tr[X∗X]Id = ‖X‖2

S2
Id.

Let ρ be a density matrix, then Eg∈Γ Tr[ρX∗gXg] = ‖X‖2
S2

. The same holds for
Eg∈Γ Tr[ρXgX

∗
g ] but with U , and for Y with V , so we see that the above quantity

is equal to

‖Φ‖S∞→S1

(
‖X‖2

S2
+ ‖Y ‖2

S2

)
.

If ‖X‖S2 = ‖Y ‖S2 = 1 we obtain ‖Φ‖S2→S2 ≤ 2‖Φ‖S∞→S1 . 2
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3.3.3 Embedding graphs into quantum channels

In this subsection, we elucidate the claim that quantum channels generalize graphs
and prove the result stated in the second bullet in the introduction, namely that
there are non-irreducible quantum channels for which a converse expander mixing
lemma does not hold.

We consider the following embeddings. For A ∈ Mn(C), define the superop-
erator ΦA : Mn(C)→Mn(C) as

ΦA(X) =
∑
i,j

AijXjjEii, (3.6)

where Eij is the matrix with a single 1 at position (i, j). When A is a transi-
tion matrix, i.e., its column sums are 1, then it is not hard to see that ΦA is
completely positive and trace preserving and that Φ 1

n
J = Π. Several other ways

exist to create quantum expanders from expander graphs, see for example [HH09]
and [Har08], but as we show below, our embedding given above carries over all
relevant properties of the graph we consider here.

Conlon and Zhao [CZ17] give an infinite sequence of d-regular graphs Gn

that are o(1)-uniform but for which λ(Gn) ≥ 1/2. Combined with the following
proposition, this immediately gives the result stated in the second bullet in the
introduction.

3.3.7. Proposition. Let A ∈ Mn(C) and p, q ∈ [1,∞]. Then, for ΦA as
in (3.6), we have

‖ΦA − Π‖Sp→Sq = ‖A− 1

n
J‖Lp→Lq and ‖ΦA − Π‖cut = ‖A− 1

n
J‖cut.

Proof:
Let B = A− 1

n
J , then ΦA−Π = ΦB. By compactness and definition of ‖·‖Sp→Sq we

can assume there is an X ∈ Mn(C) such that ‖ΦB‖Sp→Sq = ‖ΦB(X)‖Sq/‖X‖Sp .
Write X = diag(x) + Xother where x ∈ Cn is the diagonal of X, and Xother

are the off-diagonal entries. Note that by definition of ΦB we have ΦB(X) =
ΦB(diag(x)) = diag(Bx). By definition of Schatten norms, ‖diag(x)‖Sp = ‖x‖Lp
and by Proposition 3.2.1 we have ‖X‖Sp ≥ ‖x‖Lp . We have

‖B‖Lp→Lq ≥
‖Bx‖Lq
‖x‖Lp

≥
‖diag(Bx)‖Sq
‖X‖Sp

=
‖ΦB(X)‖Sq
‖X‖Sp

= ‖ΦB‖Sp→Sq

Now let y ∈ Cn be such that ‖B‖Lp→Lq = ‖By‖Lq/‖y‖Lp . Then

‖ΦB‖Sp→Sq ≥
‖ΦB(diag(y))‖Sq
‖diag(y)‖Sp

=
‖diag(By)‖Sq
‖y‖Lp

=
‖By‖Lq
‖y‖Lp

= ‖B‖Lp→Lq .

This proves the first part.
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The cut norm of a matrix takes the supremum over x, y ∈ {0, 1}n. Instead
we can relax this to x, y ∈ [0, 1]n, since by linearity the supremum will always
be attained by the extreme points. Similarly, for the superoperator case, we use
Equation (3.3). Then, there exist x, y ∈ [0, 1]n such that ‖B‖cut = |〈Bx, y〉|. We
have diag(x), diag(y) � 0 and ‖diag(x)‖S∞ , ‖diag(y)‖S∞ ≤ 1. Therefore

‖ΦB‖cut ≥ |〈diag(y),ΦB(diag(x))〉| = |〈diag(y), diag(Bx)〉| = |〈y,Bx〉| = ‖B‖cut.

In the other direction, let X, Y ∈ Mn(C) such that X, Y � 0 and with operator
norm at most 1. Define x, y to be the diagonals of X, Y , i.e. xi = Xii and yi = Yii.
By Proposition 3.2.1 we have ‖x‖L∞ , ‖y‖L∞ ≤ 1. Since X, Y � 0 we know all
diagonal entries of X and Y are real and non-negative, so we have x, y ∈ [0, 1]n.
We conclude

‖B‖cut ≥ |〈y,Bx〉| = |〈diag(y), diag(Bx)〉| = |〈Y,ΦB(X)〉| = ‖ΦB‖cut,

completing the proof. 2

Note that ‖A − 1
n
J‖L2→L2 is the second largest eigenvalue in absolute value of

the matrix A, so spectral expansion is preserved under the embedding of graphs
into quantum channels. Also, uniformity is preserved since the cut-norm does
not change.

The following proposition shows that the embedding (3.6) preserves transi-
tivity. This shows that our Theorem 3.3.3 generalizes the main result of [CZ17],
albeit with a slightly worse constant.

3.3.8. Proposition. For any A ∈ Mn(C), A is vertex transitive if and only if
ΦA is irreducibly covariant.

Proof:
SupposeA is vertex transitive. Let π ∈ Aut(A) be a permutation and Pπ ∈Mn(C)
be the associated permutation matrix, so that PπAP

∗
π = A. Then,

ΦA(PπXP
∗
π ) =

∑
i,j

Aij(PπXP
∗
π )jjEii

=
∑
i,j

AijXπ−1(j)π−1(j)Eii

=
∑
i,j

Aiπ(j)XjjEii

=
∑
i,j

Aπ(i)π(j)XjjEπ(i)π(i)

=
∑
i,j

Aπ(i)π(j)Xjj(PπEiiP
∗
π ) = PπΦA(X)P ∗π .

This shows that for all π ∈ Aut(A) we have ΦA(PπXP
∗
π ) = PπΦA(X)P ∗π .
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Let U(1) = {c ∈ C : |c| = 1} be the complex unit circle. For α ∈ (U(1))n,
define Uα := diag(α). We have UαEiiU

∗
α = |αi|2Eii = Eii and (UαXU

∗
α)ii =

|αi|2Xii = Xii. Therefore

ΦA(UαXU
∗
α) =

∑
i,j

Aij(UαXU
∗
α)jjEii =

∑
i,j

AijXjjUαEiiU
∗
α = UαΦA(X)U∗α.

We combine these two observations as follows. First we have that(
E

α∈U(1)n
UαXU

∗
α

)
ij

= E
α∈U(1)n

αiXijαj =

∫ 2π

0

∫ 2π

0

eiθiXije
−iθj dθidθj = Xiiδij

If A is vertex transitive then for all x ∈ Cn we have Eπ∈Aut(A) Pπ diag(x)P ∗π =
(Ei xi) Id. Therefore

E
π∈Aut(A)
α∈U(1)n

(PπUα)X(PπUα)∗ = E
π∈Aut(A)

Pπ

(
E

α∈U(1)n
UαXU

∗
α

)
P ∗π =

Tr(X)

n
Id.

Letting G ⊂Mn(C) be the subgroup generated by the Uα and Pπ for π ∈ Aut(A),
we see that for any g ∈ G

ΦA(gXg∗) = gΦA(X)g∗

and by the previous equation and Lemma 3.3.6, G acts irreducibly on Cn (and
it is unitary). This proves Φ is irreducibly covariant with respect to the group G
with equal representations.

For the other direction, let U : G → U(n) be the irreducible representation
such that ΦA is irreducibly covariant, i.e. ΦA(U(g)XU∗(g)) = U(g)ΦA(X)U∗(g)
for all g ∈ G. Define Pg ∈Mn(C) as (Pg)ij = |U(g)ij|2 so that (U(g)EjjU(g)∗)ii =
(Pg)ij. Then

Akl = Tr[EkkΦA(Ell)] = Tr[U(g)EkkU(g)∗ ΦA(U(g)EllU(g)∗)]

=
∑
ij

Aij(Pg)jl(Pg)ik = (P T
g APg)kl,

showing P T
g APg = A. Since U(g) is unitary, Pg is doubly stochastic so by

Birkhoff’s Theorem Pg is a convex combination of permutation matrices, i.e.,
Pg = Ei Πi for some (not necessarily uniform) probability distribution and where
Πi is a permutation matrix. We have

Akl = (P T
g APg)kl = E

i
E
j
(ΠT

i AΠj)kl = E
i
E
j
Aπi(k) πj(l).

Since A is {0, 1}-valued, it follows that if Akl = 1 then all elements of the convex
combination on the right-hand side must be 1, and if Akl = 0 then all elements
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of the right hand side must be 0. Therefore, for all i we have ΠT
i AΠi = A. By

irreducibility, we have for all k, l that

1

n
=

Tr[Ekk]

n
Idll =

(
E
g∈G

U(g)EkkU
∗(g)

)
ll

= E
g∈G
|U(g)lk|2 ,

showing Eg∈G(Pg)lk = 1/n. It follows that there is a g ∈ G such that (Pg)lk > 0.
Decomposing Pg into permutation matrices shows there is a Π ∈ Aut(A) such
that Πlk = 1. This holds for all k, l, proving the lemma. 2

3.3.4 Randomizing superoperators

We prove the following analogue of one of the results from [CGW89] showing that

for any d-regular graph G, we have λ(G) ≤ (2ε(G)/δ2)
1/4

, where δ = d/n is the
edge density. This in particular establishes a tight relation between spectral ex-
pansion and uniformity for sequences of graphs with δn ≥ Ω(1). For A ∈Mn(C),
we have ‖A‖L1→L∞ = n supij |Aij|, and for an n-vertex d-regular graph with nor-
malized adjacency matrix A we have supij |Aij| = 1

d
so ‖A − J/n‖`1→`∞ = 1

δ
− 1

with J being the all-ones matrix. Therefore, a sequence of graphs with normal-
ized adjacency matrices An is dense exactly when ‖An − Jn/n‖L1→L∞ ≤ O(1),
where Jn is the all-ones n by n matrix .

Let Π be the projector onto the identity matrix. A superoperator Φ is said
to be η-randomizing if ‖Φ − Π‖S1→S∞ ≤ η, which when η ≤ O(1), may thus be
seen as an analogue of density. Note that by Theorem 3.3.7 the embedding of
any dense graph is O(1)-randomizing.

3.3.9. Proposition. Let Φ : Mn(C)→ Mn(C) be a superoperator that is O(1)-
randomizing. Then, λ(Φ) ≤ O(ε(Φ)1/4).

To prove Proposition 3.3.9, we require the following lemma.

3.3.10. Lemma. Let Φ : Mn(C) → Mn(C) be a superoperator and define C =

‖Φ‖S1→S∞. Then we have ‖Φ‖S2→S2 ≤
(
C3‖Φ‖S∞→S1

)1/4

.

Proof:
Note that by definition of C we have |〈Q,Φ(P )〉| ≤ C‖Q‖S1‖P‖S1 . Let X, Y ∈
Mn(C) be such that 〈Y,Φ(X)〉 = ‖Φ‖S2→S2 with ‖X‖S2 = ‖Y ‖S2 = 1. Write
X = 1

n

∑n
i=1 λiPi and Y = 1

n

∑n
i=1 µiQi with Pi, Qi rank-1 matrices with ‖Qi‖S1 =
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‖Pi‖S1 = 1. We have ‖λ‖L2 = ‖µ‖L2 = 1 and by applying Cauchy-Schwarz twice,

|〈Y,Φ(X)〉|4 =
∣∣∣E
ij
λiµj〈Qj,Φ(Pi)〉

∣∣∣4
≤
(
E
i
λ2
i

)2 (
E
i

∣∣E
j
µj〈Qj,Φ(Pi)〉

∣∣2)2

=
(

E
i,j,j′

µjµj′〈Qj,Φ(Pi)〉〈Pi,Φ∗(Qj′)〉
)2

≤
(
E
j,j′
µ2
jµ

2
j′

)(
E
j,j′

∣∣∣E
i
〈Qj,Φ(Pi)〉〈Pi,Φ∗(Qj′)〉

∣∣∣2)
= E

i,i′,j,j′
〈Qj,Φ(Pi)〉〈Pi,Φ∗(Qj′)〉〈Qj′ ,Φ(Pi′)〉〈Pi′ ,Φ∗(Qj)〉,

where all indices are averaged from 1 to n. Now we see

|〈Y,Φ(X)〉|4 ≤ E
i,j
〈Qj,Φ(Pi)〉

〈
E
j′
〈Qj′ ,Φ(Pi)〉Qj′ ,Φ

(
E
i′
〈Pi′ ,Φ∗(Qj)〉Pi′

)〉
≤ E

i,j
|〈Qj,Φ(Pi)〉| ‖Φ‖S∞→S1 ‖E

j′
〈Qj′ ,Φ(Pi)〉Qj′‖S∞ ‖E

i′
〈Pi′ ,Φ∗(Qj)〉Pi′‖S∞

≤ E
i,j
|〈Qj,Φ(Pi)〉| ‖Φ‖S∞→S1 max

j′
|〈Qj′ ,Φ(Pi)〉| max

i′
|〈Qj,Φ(Pi′)〉|

≤ C3‖Φ‖S∞→S1 .

2

Proof of Theorem 3.3.9:
Let Π(X) = 1

n
Tr[X]Id be the projector on to the identity. By assumption, we

have ‖Φ − Π‖cut = ε(Φ). Define C = ‖Φ − Π‖S1→S∞ . Using Lemma 3.2.2 and
Lemma 3.3.10 applied to Φ− Π we find ‖Φ− Π‖S2→S2 ≤ (C3π2ε(Φ))1/4. 2

3.4 Optimality of constants

3.4.1 Commutative case

In this section we prove the fourth bullet point in our introduction. Theorem 3.3.1
shows that KC

G bounds the ratio of the L2 → L2 and L∞ → L1 norms, and
Lemma 3.2.2 (the matrix version) shows that π2 bounds the ratio of the L∞ → L1

norm and the cut norm. We now prove the optimality of the combined inequality.
Let Sm−1 = {x ∈ Cm : ‖x‖L2 = 1} denote the (m−1)-dimensional unit sphere

endowed with its Haar probability measure µ.

3.4.1. Theorem. For any ε > 0 there exist positive integers m, k and a transitive
covariant linear map M : C(Sm−1× [k])→ C(Sm−1× [k]) such that ‖M‖L2→L2 ≥
(π2KC

G − ε)‖M‖cut.
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The optimality of π2 between the L∞ → L1 norm and the cut norm is already cov-
ered in Lemma 3.2.2. We show that KC

G is optimal in the sense that Theorem 3.3.1
cannot be improved (despite the fact that the exact value of the Grothendieck
constant KC

G is unknown). We do this in Lemma 3.4.2 below. Then in Theo-
rem 3.4.3 we show that any map can be lifted to one on a bigger space with
appropriately bounded cut norm. The combination of these lemmas proves our
theorem.

In the introduction we also mentioned the optimal constant 4KG in the case
where the field is R instead of C. The proofs below still apply in this case, with
only small modifications.

3.4.2. Lemma. For any ε > 0 there exists a positive integer m and a transitive
covariant linear map B : C(Sm−1)→ C(Sm−1) such that

‖B‖L2→L2 ≥ (KC
G − ε)‖B‖L∞→L1 .

Proof:
By definition of the Grothendieck constant, for any ε > 0 there exists an n ∈ N
and a linear map A ∈Mn(C) such that ‖A‖G ≥ (KC

G− ε)‖A‖L∞→L1 . This map A
might not be transitive covariant, so from it we will now construct a transitive co-
variant linear map B : C(S2n−1)→ C(S2n−1) such that ‖B‖L∞→L1 ≤ ‖A‖L∞→L1

and ‖B‖L2→L2 ≥ ‖A‖G. This idea is based on a lemma found in [Bri11].

Let xi, yj ∈ S2n−1 be the vectors that attain the Grothendieck norm for A,
which can always be assumed to be 2n-dimensional since there are only 2n of
them, so

‖A‖G =
∣∣∣ 1
n

∑
i,j

Aij〈xi, yj〉
∣∣∣.

Define the map B by

〈f,B(g)〉 =
1

n

∑
i,j

Aij

∫
U(2n)

f(Uxi)g(Uyj)dU.

To bound ‖B‖L∞→L1 we have to bound |〈f,B(g)〉| for f, g : S2n−1 → [−1, 1]. By
the triangle inequality,

|〈f,B(g)〉| ≤
∫
U(2n)

∣∣∣ 1
n

∑
i,j

Aijf(Uxi)g(Uyj)
∣∣∣dU ≤ ∫

U(2n)

‖A‖L∞→L1dU ≤ ‖A‖L∞→L1 .

Now for each i ∈ [2n] let fi ∈ C(S2n−1) be given by fi(x) = xi (i.e. the i-th
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coordinate). Then,

1

2n

2n∑
i=1

〈fi, B(fi)〉 ≤
1

2n

2n∑
i=1

‖B‖L2→L2‖fi‖2
L2

= ‖B‖L2→L2

∫
S2n−1

1

2n

2n∑
i=1

x2
i dµ(x)

= ‖B‖L2→L2 .

On the other hand,

1

2n

2n∑
i=1

〈fi, B(fi)〉 =
1

n

∑
i,j

Aij

∫
U(2n)

〈Uxi, Uyj〉dU =
1

n

∑
i,j

Aij〈xi, yj〉 = ‖A‖G,

so we conclude ‖B‖L2→L2 ≥ ‖A‖G. We will show B is transitive covariant with
respect to Γ = U(2n). To show B is invariant, we have to prove that for all
V ∈ U(2n) we have 〈fV , B(gV )〉 = 〈f,B(g)〉. Indeed,

〈fV , B(gV )〉 =
1

n

∑
i,j

Aij

∫
U(2n)

f(V Uxi)g(V Uyj)dU

=
1

n

∑
i,j

Aij

∫
U(2n)

f(U ′xi)g(U ′yj)dU ′ = 〈f,B(g)〉,

which completes the proof. 2

3.4.3. Lemma. Let S be any compact set and let B : C(S) → C(S) be a linear
map. For any ε > 0 there exists a k ∈ N and a linear map M : C(S × [k]) →
C(S × [k]) such that

‖M‖cut

‖M‖L2→L2

≤
( 1

π2
+ ε
)‖B‖L∞→L1

‖B‖L2→L2

and if B is transitive covariant then so is M .

Proof:
We will choose k large enough, to be determined later. For any f, g ∈ C(S × [k])
define f i ∈ C(S) as f i(s) := f(s, i), and similar for gi. Define ω = e2πi/k. Define
a linear map M : C(S × [k])→ C(S × [k]) as

(
M(f)

)
(t, j) :=

1

k

k∑
i=1

ωi−jB(f i)(t), for t ∈ S and j ∈ [k].
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We then have

〈g,M(f)〉S×[k] =
1

k2

〈∑
i

ωigi, B
(∑

j

ωjf j
)〉

S

where one factor of 1
k

comes from our normalization of the inner product. This
implies

∣∣〈g,M(f)〉S×[k]

∣∣ ≤ ‖B‖L∞→L1

∥∥∥1

k

k∑
i=1

ωigi
∥∥∥
L∞

∥∥∥1

k

k∑
j=1

ωjf j
∥∥∥
L∞
. (3.7)

If f, g ∈ C(S × [k]) are the [0, 1]-valued functions that attain the cut norm of M ,
then by (3.7)

‖M‖cut ≤
( 1

π2
+ ε
)
‖B‖L∞→L1 ,

where we used Theorem 3.4.4 to bound
∥∥∥ 1
k

∑k
i=1 ω

igi
∥∥∥
L∞

.

Let u, v ∈ C(S) with ‖u‖L2 = ‖v‖L2 = 1 be such that ‖B‖L2→L2 = 〈v,B(u)〉S.
Now define f(u), g(v) ∈ C(S× [k]) as f(u)(s, i) := ω−iu(s) and g(v)(s, i) := ω−iv(s),
which also have L2-norm equal to 1. We then see

‖M‖L2→L2 ≥
〈
g(v),M(f(u))

〉
S×[k]

= 〈v,B(u)〉S = ‖B‖L2→L2 .

The combination of these observations completes the first part of the proof. Now
assume B is transitive covariant with respect to Γ, so B(fπ)(π−1(s)) = B(f)(s)
for all s ∈ S and π ∈ Γ. Define a new group Γ′ as the cartesian product
Γ′ = Γ × Zk. For (π,m) ∈ Γ′ define the action (π,m) : S × [k] → S × [k] as
(π,m)(s, i) = (π(s), i+m). By entering f (π,m) into the definition of M it follows
that M (π,m) = M , so M is transitive covariant with respect to Γ′, completing the
proof. 2

3.4.4. Lemma. Let ε > 0, then there exists a k0 ∈ N such that for all k ≥ k0 and
x ∈ [0, 1]k we have ∣∣∣1

k

k∑
j=1

e2πi j/kxj

∣∣∣ ≤ 1

π
+ ε.

Proof:
First let k0 be arbitrary, to be determined later and k ≥ k0. Define y ∈ [−1, 1]k

as yi = 2xi − 1, then∣∣∣1
k

k∑
j=1

e2πi j/kxj

∣∣∣ =
1

2

∣∣∣1
k

k∑
j=1

e2πi j/kyj

∣∣∣ =
1

2
e2πiφ 1

k

k∑
j=1

e2πi j/kyj.
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In the first equality we used that
∑k

j=1 e
2πi j/k = 0. In the second equality we used

that there exists a φ such that the full expression becomes real and positive. Since
eiθ = cos(θ) + i sin(θ) and the full expression is real, we know the sin component
vanishes and therefore

1

2

1

k

k∑
j=1

e2πi(φ+j/k)yj =
1

2

1

k

k∑
j=1

cos(2π(φ+ j/k))yj.

Now note that cos(2π(φ+ j/k))yj ≤
∣∣ cos(2π(φ+ j/k))

∣∣ and hence

1

2

1

k

k∑
j=1

∣∣ cos(2π(φ+ j/k))
∣∣ k→∞−→ 1

2

∫ 1

0

∣∣ cos
(
2π(φ+ x)

)∣∣dx =
1

π
.

This completes the proof. 2

3.4.2 Non-commutative case

In the non-commutative case we show optimality of Theorem 3.3.3. By Theo-
rem 3.2.2, the factor π2 between the cut-norm and S∞ → S1-norm is also opti-
mal. In contrast with the commutative case, our work leaves the optimality of
the combined inequality in Theorem 3.3.4 as an open problem. Straightforward
analogues of the techniques employed in Theorem 3.4.3 did not follow through in
the non-commutative case.

3.4.5. Proposition. For any ε > 0, there exists a positive integer n and an
irreducibly covariant superoperator Φ : Mn(C) → Mn(C) such that ‖Φ‖S2→S2 ≥
(2− ε)‖Φ‖S∞→S1.

One of the forms of the non-commutative Grothendieck inequality, equivalent
to Theorem 3.3.5, is the following [Pis12]. Let Φ : Mn(C) → Mn(C) be a linear
map and xi, yj ∈Mn(C) finite sets of matrices. Then,∣∣∣∑

i

〈xi,Φ(yi)〉
∣∣∣ ≤ K ′G‖Φ‖S∞→S1

(
‖
∑

i x
∗
ixi‖+ ‖

∑
i xix

∗
i ‖

2
· ‖
∑

i y
∗
i yi‖+ ‖

∑
i yiy

∗
i ‖

2

)1/2

(3.8)

where K ′G ≤ 2 and the norms on the right hand side are operator norms ‖·‖S∞ .
To show tightness, i.e. K ′G ≥ 2, Haagerup and Itoh [HI95] (see [Pis12] for a
survey) gave an explicit family of operators for which (3.8) gives a lower bound
of K ′G approaching 2. We will show that slight modifications of these operators
are irreducibly covariant, which proves Proposition 3.4.5. It is instructive to
repeat their construction. The proof uses techniques familiar in the context of
the antisymmetric Fock space, but our proof is self contained.
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3.4.6. Lemma ([HI95]). For each n ∈ N there exists a d ∈ N and a linear map
Φ : Md(C) → Md(C) with sets of matrices {xi}, {yi} such that (3.8) yields
K ′G ≥ (2n+ 1)/(n+ 1).

Proof:
Let H = C2n+1 and consider the antisymmetric k-fold tensor product H∧k which
is a linear subspace of the k-fold tensor product H⊗k. A basis of H∧k is formed
by vectors ei1 ∧ ei2 ∧ · · · ∧ eik with i1 < · · · < ik where the ei are standard basis
vectors of H. Here ∧ is the wedge product or exterior product, which has the
property x ∧ y = −y ∧ x and is given by x ∧ y = x⊗ y − y ⊗ x, for x, y ∈ H. We
will consider k = n and k = n+ 1 so that the dimension of H∧k is d =

(
2n+1
n

)
for

both k = n and k = n+ 1.

For 1 ≤ i ≤ (2n + 1), define ci : H∧n → H∧(n+1) as ci(x) := ei ∧ x, which
physicists call the fermionic creation operator. Its adjoint c∗i : H∧(n+1) → H∧n

is known as the annihilation operator. By the antisymmetric property, ci(x) = 0
whenever ei was present in x, i.e., when x = ei∧x′. The operator cic

∗
i , also known

as the number operator, is a projector onto the space spanned by basis vectors
in which ei is present. The operator c∗i ci is a projector onto the space where ei is
not present. Since there are always n + 1 vectors present in H∧(n+1) and n + 1
vectors not present in H∧n, we have

2n+1∑
i=1

cic
∗
i = (n+ 1)IdH∧(n+1) and

2n+1∑
i=1

c∗i ci = (n+ 1)IdH∧n .

We will now argue that

〈ci, cj〉 :=
1

d
Tr(c∗i cj) = δi,j

n+ 1

2n+ 1
, (3.9)

‖
2n+1∑
i=1

αici‖S1 = ‖α‖L2

n+ 1√
2n+ 1

for α ∈ C2n+1. (3.10)

The δi,j in (3.9) follows because 〈x, c∗i cjx〉 = 0 for any x = ek1 ∧ · · · ∧ ekn when
i 6= j. The factor n+1

2n+1
follows by taking the trace of one of the sums above and

noting that by symmetry in i, every term of the sum must have the same trace.
To prove (3.10), first note that for any unitary U ∈ U(2n+ 1) we have

U⊗(n+1) · ci · (U⊗n)−1 =
∑
j

Ujicj, (3.11)
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which can be shown by proving it for all basis states:

U⊗(n+1)ci(U
⊗n)−1(ek1 ∧ ... ∧ ekn) = U⊗(n+1)ci(U

−1ek1 ∧ ... ∧ U−1ekn)

= U⊗(n+1)(ei ∧ U−1ek1 ∧ ... ∧ U−1ekn)

= (Uei ∧ ek1 ∧ ... ∧ ekn)

= (
∑
j

Ujiej ∧ ek1 ∧ ... ∧ ekn)

=
∑
j

Ujicj(ek1 ∧ ... ∧ ekn).

The trace-norm is unitarily invariant, so (3.11) implies ‖ci‖S1 = ‖
∑

j Ujicj‖S1 .

Since c∗i ci is a projector, we have
√
c∗i ci = c∗i ci and hence ‖ci‖S1 = 1

d
Tr(c∗i ci).

Now let α ∈ C2n+1 with
∑

i |αi|2 = 1, then there is a unitary U ∈ U(2n + 1)
such that the i-th row of U is α. Note that ‖α‖L2 = 1/

√
2n+ 1 since we use

normalized Ll2-norms, which implies (3.10).
Since the dimensions of H∧n and H∧(n+1) are equal, we can identify the space

of linear maps L(H∧n, H∧(n+1)) with Md(C) (by choosing bases for H∧n and
H∧(n+1)), and define the following operator Φ : Md(C)→Md(C),

Φ(x) =
2n+1∑
i=1

〈ci, x〉 ci.

Consider (3.8) for Φ with xi = yi = ci. For the left hand side, note that by (3.9)
we have ∣∣∣ 2n+1∑

j=1

〈cj,Φ(cj)〉
∣∣∣ =

∣∣∣ 2n+1∑
i,j=1

〈ci, cj〉 〈cj, ci〉
∣∣∣ =

(n+ 1)2

2n+ 1
.

For the right-hand side of (3.8), we require ‖Φ‖S∞→S1 = sup‖x‖S∞=1‖Φ(x)‖S1 .

For any x ∈ Md(C), define v(x) ∈ C2n+1 as v
(x)
i = 〈ci, x〉. Note that ‖v‖L2 =

sup‖α‖L2
=1 |〈v, α〉|. First apply (3.10) to obtain

‖Φ(x)‖S1 = ‖
2n+1∑
i=1

〈ci, x〉ci‖S1 = ‖v(x)‖L2

n+ 1√
2n+ 1

= sup
‖α‖L2

=1

|〈v(x), α〉| n+ 1√
2n+ 1

.

Using (3.10) again, we compute sup‖x‖S∞=1 |〈v(x), α〉| for arbitrary α with ‖α‖L2 =
1,

sup
‖x‖S∞=1

|〈v(x), α〉| = sup
‖x‖S∞=1

1

2n+ 1

∣∣〈x,∑
i

αici〉
∣∣

=
1

2n+ 1
‖
∑
i

αici‖S1 =
n+ 1

(2n+ 1)
√

2n+ 1
.
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We obtain ‖Φ‖S∞→S1 = (n+ 1)2/(2n+ 1)2. Now (3.8) yields (n+1)2

2n+1
≤ K ′G

(n+1)2

(2n+1)2
·

(n+ 1) and therefore 2n+1
n+1
≤ K ′G. 2

We use the following fact from [FH13, Theorem 19.14], about the representa-
tions of the odd-dimensional complex special orthogonal groups on wedge prod-
ucts of complex vector spaces.

3.4.7. Lemma. Let n, k ∈ N, N := 2n+ 1 and let Rk : SO(N,C)→ GL((CN)∧k)
be given by A 7→ A⊗k. This representation is irreducible.

Below, we actually need that the real special orthogonal group SO(N,R) acts
irreducibly on the same anti-symmetric space. Fortunately, this is implied by
Lemma 3.4.7; see [FH13, pp. 439]. We will also use the fact that Rk and RN−k
are unitarily equivalent to each other. This is the content of the following propo-
sition [Sim96, Proposition IX.10.4].

3.4.8. Proposition. For positive integer n and N = 2n+1 and k ∈ {1, . . . , N},
let Rk be the representation as in lemma 3.4.7. Then, there exists an isometry
Vk : (CN)∧k → (CN)∧(N−k) such that

VkRk(A) = RN−k(A)Vk, ∀A ∈ SO(N,R).

Proof of Proposition 3.4.5:
Let d be the dimension of (CN)∧n and let Φ : Md(C) → Md(C) be as in the
proof of Lemma 3.4.6. For each k ∈ N, let Rk : SO(N,R) → GL(H∧k) be
the representation A 7→ A⊗k, which is irreducible by Theorem 3.4.7. Define,
for notational convenience, π := Rn+1 and ρ := Rn. We first show that for all
A ∈ SO(N,R), we have

Φ(π(A)xρ∗(A)) = π(A) Φ(x) ρ∗(A). (3.12)

For the left-hand side, note that

Φ(π(A)xρ∗(A)) =
∑
i

〈
ci, π(A)xρ∗(A)

〉
ci

=
∑
i

〈
π(A)∗ciρ(A), x〉 ci

=
∑
i

〈∑
j

Aijcj, x
〉
ci

=
∑
ij

Aij〈cj, x〉 ci,
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where we used (3.11) from the proof of Lemma 3.4.6 and noting that SO(N,R) ⊂
U(N) is a subgroup. Using (3.11) again for the right-hand side, we have

π(A) Φ(x) ρ∗(A) =
∑
i

〈ci, x〉π(A)ciρ
∗(A)

=
∑
i

〈ci, x〉
∑
j

Ajicj

=
∑
ij

Aij〈cj, x〉 ci.

which proves (3.12).
Define a new superoperator Φ′ : Md(C)→Md(C) by

Φ′(x) = Φ(xV ∗)V,

where V := Vn+1 is the isometry as in Proposition 3.4.8 (we view V as a matrix
in Md(C) by choosing basis). We first note that this Φ′ might also be used in
Lemma 3.4.6 to show that the non-commutative Grothendieck constant is 2, since
Schatten-norms are unitarily invariant. Hence, if we show that Φ′ is irreducibly
covariant, we are done. This follows from the following computation, where we
use (3.12) and the fact that V π(A) = ρ(A)V for all A ∈ SO(N,R):

Φ′
(
π(A)xπ(A)∗

)
= Φ

(
π(A)xπ(A)∗V ∗

)
V

= Φ
(
π(A)xV ∗ρ(A)∗

)
V

(3.12)
= π(A) Φ(xV ∗) ρ(A)∗V

= π(A) Φ(xV ∗) V π(A)∗

= π(A) Φ′(x) π∗(A),

where the second-last line follows since ρ(A)∗ = V π(A)∗V ∗. Hence, Φ′ is irre-
ducibly covariant with respect to the irreducible representation π of SO(N,R). 2

3.4.3 Discussion

We have shown that for irreducibly covariant superoperators Φ the inequality
λ(Φ) ≤ 2π2ε(Φ) holds, see Corollary 3.3.4. But we have not resolved the question
whether the constant 2π2 is optimal in this inequality. However, we have shown
that the inequalities in Lemma 3.2.2 and Theorem 3.3.3 have optimal constants of
π2 and 2 respectively. But it is not clear that the constant 2π2 in Corollary 3.3.4
is optimal, which is a combination of Lemma 3.2.2 and Theorem 3.3.3. The two
families of superoperators for which we have shown optimality of Lemma 3.2.2
and Theorem 3.3.3, are different. We could prove optimality of Corollary 3.3.4 by
combining these two families of superoperators, but this appears to be non-trivial
and is left as an open problem for future work.





Chapter 4

Stabilizer rank and higher-order Fourier
analysis

This chapter is based on the paper [Lab21].

4.1 Introduction

The Gottesman-Knill Theorem [Got98, NC02] states that any quantum circuit
consisting of Clifford gates can be efficiently classically simulated. The Clif-
ford group on n qubits is generated by the Hadamard gate H, the π/4 phase
gate S, and the entangling CNOT gate. In particular, this means that cir-
cuits consisting only of Clifford gates cannot provide a computational advantage
over classical computers. We can promote such circuits to universal quantum
computers by having access to a non-Clifford gate or (equivalently) a “magic
state” [BK05]. It is widely believed that universal quantum computers cannot
be efficiently simulated by classical computers: state-of-the-art simulators us-
ing modern-day supercomputers are only able to simulate a few dozen qubits
[CZH+18, HS17, PGN+17, SSAG16]. So it has to be this magic state that fuels
the computational hardness of simulation by classical computers. It is therefore
important to understand how much this resource costs in terms of free (efficiently
simulatable) resources. These costs are quantified by “measures of magic” [LW20]
an example of which is stabilizer rank , first introduced in [BSS16]. Here, the free
resources are states obtained from the canonical all-zero state by applying only
Clifford operations, which are the well-known stabilizer states. To increase our
understanding of non-stabilizerness, or the amount of “magic” a quantum state
has, a valid approach might be to find a different characterization of these ob-
jects. This might introduce new techniques in analyzing measures of magic. It is
well known that stabilizer states are characterized by quadratic forms defined on
affine subspaces [DDM03, HDDM05, Gro06]. Here we observe that these objects
are so-called nonclassical quadratic phase functions defined on affine subspaces
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which are well-studied objects in higher-order Fourier analysis.

Higher-order Fourier analysis, a still nascent area of mathematics, grew out
of a Fourier-analytic proof of Szemerédi’s theorem [Sze75] by Gowers [Gow98].
Whereas in Fourier analysis one studies how functions correlate with characters,
in higher-order Fourier analysis one studies correlations with functions that re-
semble polynomials (where characters correspond to linear functions). These
polynomial-like functions are known as polynomial phase functions.

It turns out that Boolean functions giving the (unnormalised) amplitudes of
graph states are examples of quadratic phase functions. In general, quadratic
phase functions can be defined using “multiplicative derivatives”: for h ∈ Fn2 , the
multiplicative derivative of f : Fn2 → C in direction h is

·∆hf(x) := f(x+ h)f(x).

Nonclassical polynomial phase functions of degree d are those functions that are
constant after taking d + 1 multiplicative derivatives. It is not difficult to check
that graph states, whose amplitude function always has the form f(x) = (−1)q(x)

where q is a quadratic polynomial, satisfies this property with d = 2. These are
referred to as the classical quadratic phase functions. However, the nonclassical
quadratic phase functions are not exhausted by these examples. It turns out that
stabilizer states correspond to functions in this broader class. This establishes a
surprising link between higher-order Fourier analysis and quantum information
theory. It was shown in [DDM03] (see also [BG16]) that stabilizer states are
quadratic forms taking values in Z8 defined on affine subspaces. We will see that
they are nonclassical quadratic phase functions on affine subspaces.

Let p be an odd prime and consider qudits of dimension p. Then, the am-
plitudes of n-qudit stabilizer states are also quadratic phase functions defined on
affine subspaces of Fnp [HDDM05], see also [Gro06]. It is interesting to note that
for primes p > 2 the n-qudit stabilizer states are given by classical quadratic
polynomials while there are no nonclassical polynomials of degree two, contrary
to the case p = 2.

Stabilizer rank. Stabilizer rank is a measure of magic which was recently ex-
tensively analyzed by Bravyi et al. [BBC+19]. The stabilizer rank of a quantum
state |ψ〉, denoted χ(|ψ〉), is the minimal number r such that |ψ〉 can be written
as a linear combination of r stabilizer states. As is well known, any circuit C
consisting of Clifford gates and n copies of the T -gate, given by |0〉〈0|+eiπ/4|1〉〈1|,
can be implemented using Clifford operations on the n-qubit magic state |T 〉⊗n,

where |T 〉 = |0〉+eiπ/4|1〉√
2

. Then, the stabilizer rank of |T 〉⊗n upper bounds the sim-

ulation cost of the circuit C. Bravyi, Smith and Smolin [BSS16] showed that the
stabilizer rank of the n-qubit magic state is Ω(

√
n). Very recently Peleg, Shpilka,

and Volk [PSV21] showed a lower bound of Ω(n) for the stabilizer rank of the
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n-qubit magic state, which is a quadratic improvement. Here we give the same
lower bound but use completely different techniques (from higher-order Fourier
analysis) and generalize to qudits of any prime dimension.

Adding any non-Clifford gate to the Clifford gate set could in principle pro-
mote it to universal quantum computation. However, we use the generalization
of the T gate for qudits from [HV12]. Let us call this gate U (defined below in

Section 4.3) and define |+〉 := |0〉+|1〉+···+|p−1〉√
p

. Then, the single qudit magic state

over Fp is defined to be

|ψU〉 = U |+〉.

Our main result is the following.

4.1.1. Theorem. Let p be any prime and let |ψU〉⊗n be the n-qudit magic state
over Fp. We have that χ(|ψU〉⊗n) ≥ Ω(n).

This result generalizes [PSV21], but our techniques are completely different and
use explicitly tools from higher-order Fourier analysis. Roughly speaking, we
show that the function giving the amplitudes of the n-qudit magic state is a
cubic nonclassical polynomial phase function for which the polynomial “in the
phase” has high rank (see Definition 4.2.5). We then prove that the lower bound
for this rank is also a lower bound for the stabilizer rank. In this step, we use
a lemma from [PSV21, Claim 3.3] to get a handle on the affine subspaces that
appear from the stabilizer states. Apart from this lemma, the techniques are
different.

The techniques used here might pave the way to super-linear lower bounds for
decompositions in terms of stabilizer states defined on the full space Fnp .

4.2 Techniques

In this section, we introduce all the definitions necessary for the proof of our
main result. Our main result generalizes the recent result of [PSV21], but we use
completely different techniques that we explain here as well. Recall the notation
from Section 1.1.

4.2.1 Stabilizer states

In [BG16], a succinct representation of n-qubit stabilizer states is given in terms of
quadratic forms on affine subspaces of Fn2 . For this, they introduced the following
definition. For an affine subspace H ⊂ Fnp , we write L(H) = {x− y : x, y ∈ H}.

4.2.1. Definition. For an affine subspace H ⊂ Fn2 , a map Q : H → 1
8
Z/Z is

called a quadratic form if ∆h1∆h2Q(x) is independent of x ∈ H for all h1, h2 ∈ L(H).
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4.2.2. Theorem ([BG16]). For any n-qubit stabilizer state |φ〉, there exists a
unique affine subspace H ⊂ Fn2 and a quadratic form Q : H → 1

8
Z/Z such that

|φ〉 = 2− dimH/2
∑
x∈H

e(Q(x))|x〉. (4.1)

In [BG16] quadratic forms are considered that are maps Q : H → 1
8
Z/Z. We will

show that the only way that such a map has the property ∆h1∆h2Q(x) being
independent of x ∈ H for all h1, h2 ∈ L(H), is if Q actually takes values in
1
4
Z/Z ⊂ 1

8
Z/Z. We will also see that such functions are nonclassical polynomials

of degree two in the literature of higher-order Fourier analysis. Making this
explicit link with higher-order Fourier analysis allows us to import tools from
that theory to use in lower bounding the stabilizer rank of quantum states.

Next, qudit stabilizer states where the dimension of the qudit is an odd prime
p are somewhat simpler as they are given by quadratic polynomials taking values
in Fp on affine subspaces in Fnp . Let ω = e2πi/p be a p-th root of unity. A
map Q : H → Fp is a quadratic polynomial on an affine subspace H ⊂ Fnp if
∆h1∆h2Q(x) is independent of x ∈ H for all h1, h2 ∈ L(H).

4.2.3. Theorem ([HDDM05], see also [Gro06]). Let p be an odd prime and |φ〉
an n-qudit stabilizer state where the dimension of the qudit is p. Then, there is
an affine subspace H ⊂ Fnp and a quadratic polynomial Q : H → Fp such that

|φ〉 = p− dim(H)/2
∑
x∈H

ωQ(x)|x〉. (4.2)

4.2.4. Definition. For an n-qudit quantum state |ψ〉 define its stabilizer rank,
denoted χ(|ψ〉), to be the minimal number r needed to write |ψ〉 as a linear
combination of r stabilizer states.

4.2.2 Rank of nonclassical polynomials

In this section we introduce a notion of rank for nonclassical polynomials. The
main reference is again [HHL19]. Recall the definition of nonclassical polynomials
in Section 1.4.

4.2.5. Definition. Let P : Fnp → T be a nonclassical polynomial. For an integer
d ≥ 1, we define the d-rank, denoted by rankd(P ), to be the minimal number r
such that there are nonclassical polynomials Q1, . . . , Qr all of degree at most d−1
and a function Γ: Tr → T such that

Γ(Q1(x), . . . , Qr(x)) = P (x).

If d = 1, the d-rank will be ∞ if P is non-constant and 0 otherwise. The rank of
P , denoted rank(P ), is the deg(P )-rank of P .
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The next result is a standard application of Fourier analysis and can be thought
of as a kind of “inverse theorem”. We give the proof here for convenience.

4.2.6. Proposition ([HHL19]). Let d ≥ 2, P : Fnp → T be a nonclassical polyno-
mial and r := rankd(P ). Then there exists a nonclassical polynomial Q of degree
at most d− 1 such that

|〈e(P ), e(Q)〉| ≥ p−(1+d(d−1)/(p−1)e)r.

Proof:
Let Γ: Tr → T be a map and Q1, . . . , Qr be nonclassical polynomials of degree
at most d− 1 such that

P (x) = Γ(Q1(x), . . . , Qr(x)).

We can assume that Γ is a map with domain G :=
∏r

i=1
1

pki+1Z/Z, where ki is

the depth of Qi. Let Ĝ =
∏r

i=1 Zpki+1 be the dual of G, so that the Fourier
decomposition of e(Γ) becomes

e(Γ(z)) =
∑
α∈Ĝ

Γ̂αe(〈α, z〉).

The Fourier decomposition of e(Γ) gives a “higher-order” Fourier decomposition

of e(P ): for α ∈ Ĝ define Qα(x) :=
∑r

i=1 αiQi(x), then

e(P (x)) =
∑
α∈Ĝ

Γ̂αe(Qα(x)).

So

1 = |〈e(P ), e(P )〉| ≤
∑
α∈Ĝ

|〈e(P ), e(Qα)〉|.

Indeed, there is an α∗ such that

|〈e(P ), e(Qα∗)〉| ≥ |Ĝ|−1.

Since the degree of the polynomialsQi is at most d−1, it follows that ki(p− 1) ≤ d− 1.
This implies that

|Ĝ| = pk1+1+···+kr+1 ≤ p(1+d(d−1)/(p−1)e)r.

2

The next lemma tells us how the rank changes if we restrict a polynomial to
an affine subspace.
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4.2.7. Lemma ([HHL19]). Let P : Fnp → T be a polynomial of degree d ≥ 2 and
r := rank(P ). Let U ⊂ Fnp be an affine subspace of codimension k and define P ′

to be the restriction of P to U . If r > pk + 1 then P ′ is a polynomial of degree d
and rank(P ′) ≥ r − pk.

Proof:
We will prove the statement for k = 1. The general case will follow after repeated
application of the proof for k = 1.

Since rank and degree do not change under invertible affine linear transfor-
mations, we can assume without loss of generality that U = {x ∈ Fnp : xn = 0}.
Let π : Fnp → Fnp be the projection onto U , so π(x1, . . . , xn) = (x1, . . . , xn−1, 0).
Define P ′′ = P − P ′ ◦ π. For x ∈ U we have P ′′(x) = 0. Let a ∈ Fp \ {0}
and ha = (0, . . . , 0, a) ∈ Fnp . We have that ∆haP

′′ has degree at most d − 1 and
that ∆haP

′′(y) = P ′′(y + h) for all y ∈ U . So P ′′ agrees with a polynomial Qa of
degree at most d − 1 on U + ha. This implies there is a function Γ: Tp+1 → T
such that P (x) = Γ(|xn|/p, P ′(x), Q1(x), . . . , Qp−1(x)).

Now, if P ′ has degree at most d − 1, then rank(P ) ≤ p + 1 < r, which is a
contradiction. If P ′ has rank < r − p, we get that rank(P ) < r which is again a
contradiction. 2

Next, we define the Fourier rank of a function.

4.2.8. Definition. Let f : Fnp → C be a function and d ≥ 2. The degree-
d Fourier rank of f , denoted frankd(f), is the minimal r such that there are
polynomials Q1, . . . , Qr of degree at most d− 1 such that

f(x) =
r∑
i=1

cie(Qi(x)). (4.3)

The following lemma relates the notion of rank of a polynomial and its Fourier
rank.

4.2.9. Lemma. Let P : Fnp → T be a polynomial and d ≥ 2. Then

frankd(e(P )) ≥ rankd(P ).

Proof:
Denote by r the degree d Fourier rank of e(P ). So there are polynomialsQ1, . . . , Qr

of degree at most d− 1 such that we have a decomposition

e(P (x)) =
r∑
i=1

cie(Qi(x)). (4.4)
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We will now define a function Γ: Tr → T as follows. Let Q : Fnp → Tr be
defined by Q(x) = (Q1(x), . . . , Qr(x)). The map Γ on the image of Q is defined
by

e(Γ(Q1(x), . . . , Qr(x))) =
r∑
i=1

cie(Qi(x)).

For a point z in the complement of the image of Q, we (arbitrarily) set Γ(z) = 0.
But the Γ we just defined has the property that Γ(Q1(x), . . . , Qr(x)) = P (x) by
(4.8). Hence r ≥ rankd(P ), proving the statement. 2

For d = 2, Sanyal [San19] shows that frank2(e(P )) ≥ rank2(P )2. This is
quadratically better than the above lemma. See Section 4.5 for a discussion for
the case d > 2.

In the other direction, we have the following lemma.

4.2.10. Lemma. Let d ≥ 2 and P : Fnp → T a polynomial. Then

frankd(e(P )) ≤ p(1+d(d−1)/(p−1)e)rankd(P ).

Proof:
Let r := rankd(P ). Then there is a function Γ: Tr → T and polynomials
Q1, . . . , Qr of degree at most d − 1 such that Γ(Q1(x), . . . , Qr(x)) = P (x). The
Fourier expansion of Γ gives us a degree d− 1 Fourier expansion of P , namely

e(Γ(Q1(x), . . . , Qr(x))) =
∑
α∈Ĝ

Γ̂(α)e(Qα(x))

= e(P (x)),

where Qα(x) =
∑r

i=1 αiQi(x) and Ĝ =
∏r

i=1 Zpki+1 is the dual of the group
G =

∏r
i=1

1
pki+1Z/Z and ki is the depth of Qi. Since there are at most

|Ĝ| ≤ p(1+d(d−1)/(p−1)e)r

Fourier coefficients in the above expression, the result follows. 2

4.3 Magic states in prime dimension

In this section we will give the explicit form of the magic state that we obtain by
using the generalization of the T gate in odd prime dimensions [HV12]. We will
then proceed to show that these magic states have exponentially small correlation
with quadratic phase functions.
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4.3.1 Generalization of the T gate

The generalization of the T gate, and hence the corresponding magic state, cu-
riously enough depends on whether the prime dimension p is equal to three or
p > 3.

• But first, let us consider the p = 2 case. In this case, the T -gate is given
by T =

(
1 0
0 eiπ/4

)
and the corresponding single qubit magic state is given by

T |+〉 = |T 〉 = |0〉+eiπ/4|1〉√
2

. Hence, the n-qubit magic state is

|T 〉⊗n =
1

2n/2

∑
x∈Fn2

e(|x|/8)|x〉. (4.5)

Here, the polynomial P : Fn2 → T : x 7→ |x|/8 is a nonclassical polynomial
of degree three. This follows immediately from Proposition 1.4.8; see also
Example 1.4.7. We will see a similar phenomenon in other prime dimensions.

• In the case that p = 3, let ξ = e2πi/9 be a ninth-root of unity. The general-
ization of the T -gate for p = 3, denoted by U , is given by

U =

1 0 0
0 ξ 0
0 0 ξ2

 .

The corresponding single qutrit magic state is then

|ψU〉 = U |+〉 =
|0〉+ ξ|1〉+ ξ2|3〉√

3
.

The n-qutrit magic state in this case is

|ψU〉⊗n =
1

3n/2

∑
x∈Fn3

e(|x|/9)|x〉. (4.6)

The polynomial P : Fn3 → T : x 7→ |x|/9 is again a nonclassical polynomial
of degree three, which follows from Proposition 1.4.8.

• The case p > 3 are all similar, but different from the previous two cases.
In this case, let ω = e2πi/p be a p-th root of unity and P : Fp → Fp be a
classical polynomial of degree three. Define

U :=
∑
x∈Fp

ωP (x)|x〉〈x|.

This gate is then a non-clifford gate [HV12] and could serve as a generaliza-
tion of the T gate. The condition that P has degree three is important: if
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P has degree two, the gate U would be a Clifford gate. The corresponding
n-qudit magic state is then

|ψU〉⊗n =
1

pn/2

∑
x∈Fnp

ωPn(x)|x〉, (4.7)

where Pn(x) =
∑n

i=1 P (xi). Unlike the p = 2, 3 case, the polynomial Pn is a
classical polynomial of degree three. Coincidentally, all cubic nonclassical
polynomials for p > 3 are classical.

4.3.2 Correlation with quadratic phase functions

We will now show that for the n-qudit magic states defined as above, the cor-
relation with quantum states whose amplitudes are given by a quadratic phase
functions is exponentially small. We will give the proof for the p = 2 case, since
the cases p > 2 are similar.

We need the following basic lemma, see [LMS08]. We will state and prove it
here for convenience.

4.3.1. Lemma. For any two functions f, g : Fnp → T, we have

|〈e(f), e(g)〉|4 ≤ E
h
|〈e(∆hf), e(∆hg)〉|2.

Proof:
By the Cauchy-Schwarz inequality,√

E
h
|〈e(∆hf), e(∆hg)〉|2 ≥ |E

h
〈e(∆hf), e(∆hg)〉|

= | E
x,h
e(f(x+ h)− f(x)− (g(x+ h)− g(x)))|

= |〈e(f), e(g)〉|2.

2

In other words, we can compute the correlation between two phase functions by
computing the correlations between their derivatives and taking their average. If
the derivatives are easier to work with, this will become useful.

We will now show that the polynomial phase function e(|x|/8), giving the ampli-
tudes of the n-qubit magic state (see (4.5)), has exponentially small correlation
with quadratic phase functions. First we compute the derivative of P ; let h ∈ Fn2 .
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Then

P (x+ h)− P (x) = |x+ h|/8− |x|/8 =
∑
i

|xi + hi|/8− |x|/8

=
∑
i

(|xi|+ |hi| − 2|xi||hi|)/8− |x|/8

= |h|/8− |x ◦ h|/4.

Let f : x 7→ |x ◦ h|/4. We need the magnitudes of the Fourier coefficients of f .
We have for α ∈ Fn2 ,

f̂(α) = E
x
eiπ(|x◦h|−2|α◦x|)/2,

so

|f̂(α)|2 = E
x,y
eiπ(|x◦h|−|y◦h|−2|α◦x|+2|α◦y|)/2

= E
y,z
eiπ(|y◦h|+|z◦h|−2|y◦z◦h|−|y◦h|−2|α◦z|)/2

= E
y,z
eiπ(|z◦h|−2|y◦z◦h|−2|α◦z|)/2

= E
z
eiπ(|z◦h|−2|α◦z|)/2 E

y
(−1)|y◦z◦h|.

The expectation over y is 0 unless hi = 1⇒ zi = 0 in which case it is equal to 1.
So continuing where we left off

=
1

2n

∑
z:hi=1⇒zi=0

eiπ(|z◦h|−2|α◦z|)/2

=
1

2n

∑
z:hi=1⇒zi=0

(−1)|α◦z|

which is 0 unless hi = 0⇒ αi = 0, in which case it equals 2−|h|. So the non-zero
Fourier coefficients of f are at those α ∈ Fn2 for which it holds that hi = 0 ⇒
αi = 0.

We will now show that there is exponentially small correlation between e(P )
and any nonclassical polynomial phase function e(Q) of degree two. By Lemma
4.3.1 and Parseval, we have that
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|〈e(P ), e(Q)〉|4 ≤ E
h
|〈e(∆hP ), e(∆hQ)〉|2

= E
h
|〈 ̂e(∆hP ), ̂e(∆hQ)〉|2

≤ E
h

2−|h|

=
1

2n

n∑
k=0

2−k|{h ∈ Fn2 : |h| = k}|

=

(
3

4

)n
.

In the third line, we used that ∆hQ is a degree-one classical polynomial, which
means that e(∆hQ) has only one non-zero Fourier coefficient.

Similarly, for p ≥ 3, the cubic phase function giving the amplitudes of the n-
qudit magic states given by (4.6) for p = 3 and (4.7) for p > 3 have exponentially
small correlation with any quadratic phase function.

4.3.2. Proposition. Let P : Fnp → T be the polynomial in the phase of the am-
plitudes in either Equation (4.5), (4.6) or (4.7). Then, for any nonclassical
polynomial Q : Fnp → T of degree at most two,

|〈e(P ), e(Q)〉| ≤ 2−cn,

for some c > 0 depending on p.

4.4 Stabilizer rank of the n-qudit magic state

Here we prove Theorem 4.1.1, our main result.
The following claim from [PSV21] is needed to get a handle on the affine

subspaces that appear with the stabilizer states in a stabilizer decomposition.

4.4.1. Claim ([PSV21]). Let p be a prime and H1, . . . , Hr ⊂ Fnp be a collection
of affine subspaces and assume r ≤ n/2. Then there exists an affine subspace U
of dimension at least n− 2r and a subset S ⊂ [r] such that for all x ∈ U

1Hi(x) =

{
1 if i ∈ S
0 otherwise.

Proof:
Let E : Fnp → {0, 1}r be the map given by x 7→ (1H1(x), . . . , 1Hr(x)). By the
pigeonhole principle, there is α ∈ {0, 1}r such that |E−1(α)| ≥ pn2−r ≥ pn−r.
Denote by S ⊂ [r] the set of indices i such that αi = 1. It is clear that
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E−1(α) = ∩i∈S Hi \ ∪i/∈SHi. Now define V = ∩i∈SHi, this is an affine sub-
space of dimension at least n − r. Pick an arbitrary x0 ∈ E−1(α), so x0 /∈ Hi

for i /∈ S. This implies that ∀i /∈ S there is an affine equation hi such that
hi(x0) = 1 but hi(x) = 0 for all x ∈ Hi. The affine subspace we are looking for is

U := {x ∈ V : ∀i /∈ S hi(x) = 1}.

Note that U is not empty since x0 ∈ U . Since we only add at most r extra
equations, the dimension of U is at least n− 2r. 2

Proof of Theorem 4.1.1 Let P : Fnp → T be the nonclassical polynomial of
degree three given by the corresponding n-qudit magic state, depending on the
prime p. For p = 2, p = 3 and p > 3 it is given by the (polynomials in the phase
of the) amplitudes of Equation (4.5), (4.6) and (4.7) respectively. Let |ψ〉 be the
corresponding n-qudit magic state, i.e.

|ψ〉 = p−n/2
∑
x∈Fnp

e(P (x))|x〉.

Denote by r the stabilizer rank of |ψ〉, so there is a decomposition

|ψ〉 =
r∑
i=1

ci|φi〉,

for some constants ci and stabilizer states |φi〉. Each such φi is defined on an
affine subspace Hi ⊂ Fnp . Let C > 0 be a large enough constant1. If r > n/C, we
are done. So assume r ≤ n/C. Then, we have that

e(P (x)) = pn/2〈x|ψ〉 = pn/2
r∑
i=1

ci〈x|φi〉

=
r∑
i=1

c′ie(Qi(x))1Hi(x),

where eachQi is a (nonclassical) quadratic polynomial onHi and c′i = p(n−dim(Hi))/2ci.
Then by Claim 4.4.1 (using r ≤ n/C), there is an affine subspace U of dimension
cn for some c ≥ 0.99 and a non-empty subset S ⊂ [r] such that ∀x ∈ U

1Hi(x) =

{
1 if i ∈ S
0 otherwise.

1Given the prime p and the constant c from Proposition 4.3.2, the constant C should satisfy
C > 2p/c.
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Let A : Fcnp → Fnp be an affine linear map such that U = {A(y) : y ∈ Fcnp }. Let
P ′ : Fcnp → T be the polynomial given by P ′(y) = P (A(y)). Then the restriction
of the above decomposition of e(P (x)) to U implies that

e(P ′(y)) =
∑
i∈S

c′ie(Q
′
i(y)), (4.8)

where Q′i(y) := Qi(A(y)) and we have that Q′i is a nonclassical polynomial of
degree at most two. By Propositions 4.3.2 and 4.2.6 the polynomial P has high
rank: rank(P ) ≥ Ω(n). By Lemma 4.2.7 it follows that P ′ is still cubic and we
have rank(P ′) ≥ Ω(n) (this uses that C is a large enough constant). But (4.8) is
a decomposition in terms of nonclassical polynomial phase functions of degree at
most two. By Lemma 4.2.9 we have |S| ≥ Ω(n) so that r ≥ Ω(n).

4.5 Discussion

From the above proof, we can immediately conclude that it is not possible to
get super-linear lower bounds on the stabilizer rank of n-qudit magic states.
This is due to the use of Claim 4.4.1. However, there is no obvious obstruction
to get super-linear lower bounds on the number of stabilizer states needed in
a decomposition of n-qudit magic states where all the stabilizer states are de-
fined on the full space Fnp . The graph states (classical quadratic polynomials)
are for example in this set. The possibility of such a super-linear lower bound
hinges on the relationship between the rank of a polynomial and its Fourier rank:
the d-rank of a polynomial P on n variables is at most n, whereas the degree-
d Fourier rank of a polynomial is at most pdn. Lemma 4.2.9 only shows that
frankd(e(P )) ≥ rankd(P ). Is this relation optimal, or can we expect much bet-
ter?

4.5.1. problem. Let d ≥ 2 and P : Fnp → T be a polynomial. Is it true that

frankd(e(P )) ≥ ω(rankd(P ))?

A positive answer to this question would not only show that the n-qubit magic
state needs super-linear many stabilizer states defined on the full space Fnp , but
would also have implications in another field. For this, let us consider the case
p = 2.

Let AND(x) = |x1x2 · · ·xn|/2 be the (classical) polynomial giving the AND
function. The “quadratic uncertainty principle” [FHH+14] is a conjecture that
states that any decomposition

e(AND(x)) =
r∑
i=1

cie(Qi(x)), (4.9)
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where Qi are classical quadratic polynomials, must have r ≥ 2Ω(n). Note that
Definitions 4.2.5 and 4.2.8 of rank and frank are still valid if we only allow classical
polynomials, which we will denote by rank′ and frank′. The best known lower
bound is frank′3(e(AND)) ≥ n/2 [Wil18]. The proof of this uses the Chevalley-
Warning theorem in an elegant way. It shows, implicitly, that the 3-rank′ of the
AND function is at least n/2, i.e. near maximal rank. This way of looking at it
fits very well with Lemma 4.2.9. What is actually shown in [Wil18] is the same
lower bound for the NOR function, i.e. NOR(x) = |1 + x1| · · · |1 + xn|/2. Lower
bounds on the NOR function imply the same lower bounds on the AND function
(it is the same function in a different basis). The proof also works if we allow
polynomials of degree at most a constant.

4.5.2. Theorem ([Wil18], generalized). Let NOR: Fn2 → T be the function de-
fined above and let d ≥ 3 be an integer (constant). Then

frank′d(e(NOR)) ≥ n/(d− 1).

Proof:
We will show that rank′d(NOR) ≥ n/(d−1). Having shown this, the result follows
immediately from Lemma 4.2.9 (which also holds for rank′ and frank′).

Let r = rank′d(NOR). So there are (classical) polynomials Q1, . . . , Qr of degree
at most d− 1 such that there is a function Γ: Tr → T such that

NOR(x) = Γ(Q1(x), . . . , Qr(x)).

We may assume without loss of generality that Qi(0) = 0 for all i = 1, . . . , r. As-
sume that r < n/(d − 1). By the Chevalley-Warning theorem, the polynomials
Q1, . . . , Qr have another common root x 6= (0, . . . , 0). This contradicts the fact
that NOR(x) = 1/2 if and only if x = (0, . . . , 0). 2

Since the NOR function has rank′3(NOR) ≥ n/2, a positive answer to Prob-
lem 4.5.1 would show that the number of quadratic polynomials needed in (4.9) is
super-linear. As noted before, Sanyal [San19] showed that frank′2(e(P )) ≥ rank′2(P )2.
An analogue of this result for d > 2 would quadratically improve the best lower
bound on rank′3(NOR).



Chapter 5

High-entropy dual functions over finite
fields

This chapter is based on the paper [BL21] which is joint work with Jop Briët.

5.1 Introduction

For k ≥ 2, integer vector i = (i1, . . . , ik) ∈ Zk≥0 and finite abelian group G, the
associated set of order-k dual functions is given by

∆i =
{
φ : y 7→ Ex∈Gf1(x+ i1y) · · · fk(x+ iky) : fi : G→ D

}
,

where D denotes the complex unit disc. For example, if A ⊆ G is a subset,
i = (0, 1, 2) and fi = 1A for each i ∈ [3], then φ(y) is the fraction of three-term
arithmetic progressions in A with common difference y.

For applications in additive combinatorics and higher-order Fourier analysis,
it is desirable to understand to what extent dual functions can be approximated
by simpler functions. If k = 2, it follows from the Fourier inversion formula that
one has the simple decomposition in terms of the characters:

φ(y) =
∑
χ∈Ĝ

αχχ
(
(i2 − i1)y

)
, (5.1)

where ‖α‖`1 ≤ 1. Similar decompositions exist for higher-order dual functions
thanks to inverse theorems for the Gowers uniformity norms. Inverse theorems
roughly show that if f has large Uk-norm, then f correlates with a function
ψ : G→ D akin to a polynomial of degree at most k − 1, see Section 1.4 for the
precise statement of the Gowers inverse theorem when G is a vector space over
a finite field. Here the “linear” ψ are precisely the characters. What exactly the
“higher-order characters” are depends on the group G. For finite vector spaces Fnp
with p ≥ k, they are the polynomial phase functions

ψ(x) = e2πiP (x)/p,
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where P ∈ Fp[x1, . . . , xn] is a polynomial of degree at most k − 1 [TZ10]. When
p < k, one has to consider the larger class of non-classical polynomials [TZ12]. For
the cyclic group ZN , they are the (k− 1)-step nilsequences (of bounded complex-
ity) [GTZ12]. Combined with the Hahn-Banach theorem, these inverse theorems
imply that the decomposition (5.1) generalizes for larger k in terms of higher-
order characters of degree at most k − 1 up-to small L1-error [Gow10]. Recall
from Section 1.5 that, in the finite-field setting, this amounts to the following:

5.1.1. Proposition. Let p ≥ k + 1 be a prime and let G = Fnp . Then, for any
ε > 0 and i ∈ Zk≥0, there is an M = M(ε, k, p) > 0 such that any dual function
φ ∈ ∆i can be decomposed as

φ =
r∑
i=1

αiψi + τ, (5.2)

where α1, . . . , αr ∈ C satisfy |α1| + · · · + |αr| ≤ M , ψ1, . . . , ψr are polynomial
phases of degree at most k − 1 and ‖τ‖L1 ≤ ε.

While a decomposition theorem like this (in particular over ZN) can be use-
ful in higher-order Fourier analysis [Gow10], for other applications in additive
combinatorics it is preferable to have more precise control over the error func-
tion τ in (5.2). A natural finite-field analog of a question raised by Frantzikinakis
in [Fra16, Problem 1] (see also [Alt20]) asks if this error function can be bounded
everywhere, that is, if Proposition 5.1.1 still holds with ‖τ‖L∞ ≤ ε. The ap-
parent expectation of a positive answer to Frantzikinakis’s question motivated
conjectures on a poorly-understood probabilistic variant of Szemerédi’s theorem
on arithmetic progressions (cf. Section 5.1.1). Our main result, however, shows
that in the finite-field setting, the answer is negative.

5.1.2. Theorem. For infinitely many primes p, there is a k = k(p) ∈ N and an
integer vector i ∈ Zk≥0 such that (5.2) cannot hold with ‖τ‖L∞ ≤ ε.

Special cases of Theorem 5.1.2 show that for k = 3 and p = 2t− 1 a Mersenne
prime, the decomposition (5.2) requires polynomial phases of degree at least t
for fixed ε,M and ‖τ‖L∞ ≤ ε. The largest known Mersenne prime as of January
2018 has t = 77, 232, 917 [GIM].

5.1.1 Locally decodable codes and random Szemerédi

The examples behind Theorem 5.1.2 originate from constructions of special types
of error-correcting codes called locally decodable codes (LDCs). These codes have
the property that any single encoded message symbol can be retrieved from a
codeword with good probability by reading only a tiny number of codeword sym-
bols, even if the codeword is partially corrupted. LDCs originated in complexity
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theory [BK95, AS98, ALM+98] and cryptography [CGKS98] and were defined
in the context of channel coding in [KT00]. They have since found many other
applications in computer science and mathematics, for instance in fault tolerant
distributed storage systems [GHSY12] and Banach space geometry [BNR12]. We
refer to [Yek12, Gop18] for extensive surveys.

Despite their ubiquity, LDCs are poorly understood. Of particular interest is
the tradeoff between the codeword length N as a function of message length k
when the query complexity—the number of probed codeword symbols—and al-
phabet size are constant. The Hadamard code is a 2-query LDC of lengthN = 2O(k)

and this length is optimal in the 2-query regime [KdW04]. For q ≥ 3, the best-
known lower bounds show that any q-query LDC has at least polynomial length
k1+1/(dq/2e−1)−o(1) [KdW04, Woo07]. The family of Reed-Muller codes, which gen-
eralize the Hadamard code, were for a long time the best-known examples, giving
q-query LDCs of length exp(O(k1/(q−1))).

In a breakthrough result, Yekhanin [Yek08] constructed an entirely new family
of vastly shorter LDCs. For each Mersenne prime p = 2t − 1, he gave a 3-query
LDC of length N ≤ exp(O(k1/t)). The construction uses a family of k homomor-
phisms from Fnp to the multiplicative subgroup of F2t . The homomorphisms are
constructed using a family of matching vectors (ui, vi)i∈[k], which are pairs of or-
thogonal vectors in Fnp such that the inner products 〈ui, vj〉 with i 6= j belong to a
special subset of F∗p. It is this construction that forms the basis for Theorem 5.1.2.

Subsequently, Efremenko [Efr12] constructed much larger matching vector
families over Znm for composite moduli m and used Yekhanin’s framework to give
the first 3-query LDCs of subexponential length N ≤ exp(exp(O

√
log k log log k)).

But huge gaps persist between the best-known upper and lower bounds for constant-
query LDCs.

In contrast with other combinatorial objects such as expander graphs, the
probabilistic method has so far not been successfully used to beat the best ex-
plicit LDC constructions. In [BDG19], a probabilistic framework was given that
could in principle yield best-possible LDCs, albeit non-constructively. A special
instance of this framework connects LDCs with a probabilistic version of Sze-
merédi’s theorem alluded to above. The setup for this is as follows:

For a finite abelian group G of size N = |G|, let D ⊆ G be a random subset
where each element is present with probability ρ independently of all others. For
k ≥ 3 and ε ∈ (0, 1), let E be the event that every subset A ⊆ G of size |A| ≥ ε|G|
contains a proper k-term arithmetic progression with common difference in D.
If ρ = 1, then it follows from the Density Hales–Jewett Theorem [FK91] that E
holds with probability 1 provided N is large enough in terms of k and ε. It is an
open problem to determine the smallest value of ρ — which we will denote by ρk
— such that Pr[E] ≥ 1

2
. This value will depend on ε too, but we will suppress

this in the notation and assume ε is a fixed constant. It is also assumed that N
is large enough so that ρk exists.
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In [BDG19] it is shown that there exist k-query LDCs of message length Ω(ρkN)
and codeword length O(N). As such, Szemerédi’s theorem with random dif-
ferences, in particular lower bounds on ρk, can be used to show the existence
of LDCs. Conversely, this connection indirectly implies the best-known upper
bounds on ρk for all k ≥ 3, given by N−(1−o(1))/dk/2e [FLW12, BG18]. However,
a conjecture of Frantzikinakis, Lesigne and Wierdl [FLW16] states that over ZN
we have ρk �k N

−1 logN for all k, which would be best-possible. Truth of this
conjecture would imply that over this group, Szemerédi’s theorem with random
differences cannot give LDCs better than the Hadamard code. For finite fields,
Altman [Alt20] showed that this conjecture is false. In particular, over Fnp for p
odd, he proved that ρ3 ≥ Ω(p−n n2); generally, ρk ≥ Ω(p−n nk−1) holds when
p ≥ k + 1 [Bri20]. In turn, these bounds are conjectured to be optimal for the
finite-field setting, which would imply that over finite fields, Szemerédi’s theorem
with random differences cannot give LDCs better than Reed-Muller codes.

These conjectures appear to be motivated mainly by the possibility of an L∞-
version of Proposition 5.1.1 (and analogous variants over ZN) with dual functions
based on 3-term progressions. Theorem 5.1.2 falls short of obstructing this route
to obtaining optimal bounds in the finite-field setting for two reasons. First,
our examples do not include “arithmetic-progression dual functions,” those with
i = (0, 1, . . . , (k−1)); in fact in the Appendix we show that our current framework
cannot give such examples. Second, even if we had such examples, they do not
appear to imply any new lower bounds on ρk. Nevertheless, we do not expect
arithmetic progressions to be exceptional patterns for which there are no such
examples.

5.1.3. Remark. Ideas behind Theorem 5.1.2 recently inspired similar examples
in the integer setting for 3-term progressions [BG20].

5.2 Preliminaries

We will identify the set of maps G → C with CG. If X and Y are quantities
depending on some underlying variable n ∈ N and α1, . . . , αk are parameters,
we then write X = Oα1,...,αk(Y ) if X ≤ Cα1,...,αkY for all n large enough, where
Cα1,...,αk is a constant depending only on the parameters α1, . . . , αk. Similarly,
X = Ωα1,...,αk(Y ) means that X ≥ Cα1,...,αkY for all n large enough, where Cα1,...,αk

is a constant depending only on the parameters α1, . . . , αk.
For a polynomial P (x) =

∑t
ι=0 cιx

ι, define its support i(P ) to be the sequence
of degrees ι ∈ Z≥0 such that cι 6= 0, arranged in increasing order. The support
size is the length of i(P ). We will use some basic facts from the theory of finite
fields, for which we refer to [LN97]. The Minkowski sum of two sets A,B ⊆ Cn

is the set given by

A+B = {a+ b : a ∈ A, b ∈ B}.
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We will use the following slight generalization of the notion of the convex hull,
where we allow for complex coefficients. For a compact set A ⊆ Cn, define

ConvC(A) =
{∑
a∈A

αaa : αa ∈ C ∀a ∈ A,
∑
a∈A

|αa| ≤ 1
}
.

For a finite set A ⊆ Dn and ε,M ∈ (0,∞), define N (A, ε,M) to be the smallest
size of a finite set B ⊆MDn such that

A ⊆ ConvC(B) + εDn.

Then, for any a ∈ A, there is a b ∈ ConvC(B) such that ‖a − b‖`∞ ≤ ε and so
N (A, ε,M) is a restricted form of the covering number of A relative to the `∞
distance. Note that for I ⊆ [n], the projection of A to the set of coordinates I,
given by AI = {(ai)i∈I : a ∈ A}, is contained in ConvC(BI) + εDI . Since
|B| ≥ |BI |, it follows that

N (A, ε,M) ≥ N (AI , ε,M). (5.3)

5.3 Covering numbers from hypercubes

We will use the following lemma, which shows that containment of a high-
dimensional hypercube implies a large restricted covering number.

5.3.1. Lemma. Let c > 0, z ∈ C be a complex number such that <(z) ≤ 0 and
let S ⊆ Ck be a finite set such that {c, z}k ⊆ S. Then, for any ε ∈ (0, c

2
) and

M > 0, we have that

log2

(
N (S, ε,M)

)
≥ Ωc,ε,M(k).

Proof:
Let θ be a uniformly distributed {−1, 1}k-valued random vector. For a compact
set A ⊆ Ck, define

w(A) = Emax
a∈A
|〈a, θ〉|.

We use the following basic properties:

1. If A ⊆ B, then w(A) ≤ w(B).

2. For a finite set A ⊆ Ck, it holds that w(ConvC(A)) = w(A).

3. For A,B ⊆ Ck finite, it holds that w(A+B) ≤ w(A) + w(B).
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It follows from the first property that

w(S) ≥ w({c, z}k) ≥ ck

2
. (5.4)

For the second inequality, observe that for fixed θ ∈ {−1, 1}k, we have

max
a∈{c,z}k

|〈a, θ〉| ≥
∣∣∣ ∑
i:θi=1

c−
∑

i:θi=−1

z
∣∣∣

≥
∣∣∣<( ∑

i:θi=1

c−
∑

i:θi=−1

z
)∣∣∣

≥ c|{i ∈ [k] : θi = 1}|.

Averaging over θ then gives the result.

Let B ⊆MDk be a finite set such that S ⊆ ConvC(B) + εDk. Let l = |B| and
p = log2 l. By the second property of w, Jensen’s inequality and the Khintchine
inequality [MS86, Chapter 5],

w
(

ConvC(B)
)

= Emax
b∈B
|〈b, θ〉|

≤ E
(∑
b∈B

|〈b, θ〉|p
) 1
p

≤
(∑
b∈B

E|〈b, θ〉|p
) 1
p

≤ C
√
p
(
|B|max{‖b‖p`2 : b ∈ B}

) 1
p

≤ C ′M
√
k log l.

For some constants C,C ′. We also have w(εDk) = εk. Since S ⊆ ConvC(B)+ εDk,
the second and third properties of w and (5.4) then give

ck

2
≤ w(S) ≤ w(ConvC(B)) + εDk) ≤ O(M

√
k log2 l + εk).

Rearranging the left- and right-hand sides now gives the claim. 2

5.4 Locating high-dimensional hypercubes

Here we show that for certain primes p and some integer vectors i, the dual
functions in ∆i over Fnp contain high-dimensional hypercubes.
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5.4.1. Proposition. Let p, r be distinct primes, let t = ordp(r) and let G = Fnp .
Suppose there exists a polynomial P (x) ∈ Fr[x] that has a root in F∗rt of order p
and such that P (1) 6= 0. Then, there exists a z ∈ C with <(z) ≤ 0 and a set
D ⊆ G of size |D| ≥ Ωp(n

t) such that

{z, 1}D ⊆ ∆D
i(P ).

The proof of this proposition relies on the following result due to Yekhanin,
which is implicit in [Yek08] (and shown explicitly in [Rag07]). We include a proof
for completeness.

5.4.2. Theorem (Yekhanin). Let p, r be distinct primes and t := ordp(r). For
integer m > p− 1, let

k =

(
m

p− 1

)
and n =

(
m+ p−1

t
− 1

p−1
t

)
.

Let

P (x) =
s∑
ι=0

cιx
ι ∈ Fr[x]

be a polynomial with a root γ ∈ F∗rt of order p. Then, for each i ∈ [k] there exists
a function fi : Fnp → Frt and vectors di, wi ∈ Fnp such that for every x ∈ Fnp , we
have

s∑
ι=0

cιfi(x+ ιdj) =

{
γ〈x,wi〉P (1) if i = j
0 otherwise.

Proof:
For a (p−1)-element subset S ⊆ [m], define the vectors uS = 1S and vS = 1[m]−uS
in Fmp . Then, 〈uS, vT 〉 = 0 if and only if S = T . Let l = p−1

t
. Then, for a ∈ F∗p,

we have al ∈ {rq : q = 0, 1, . . . , p− 1}.
Consider the expansion of the polynomial Q(x) ∈ Fp[x1, . . . , xm] given by

Q(x) = (x1 + · · ·+ xm)l =
∑
β∈Ml

cβx
β,

where Ml := {β ∈ Zm≥0 :
∑m

i=1 βi = l} and xβ :=
∏m

i=1 x
βi
i . For each subset

S ⊆ [m] of size p − 1, define the vectors wS = (uβS)β∈Ml
and dS = (cβv

β
S)β∈Ml

.
Since xβyβ = (x◦y)β, where ◦ denotes the coordinate-wise product, we have that

〈wS, dT 〉 = Q(uS ◦ vT ) = 〈uS, vT 〉l.

By the above, this equals zero if S = T and a power of r otherwise. Moreover,
the vectors wS and dS have dimension |Ml| =

(
m+l−1

l

)
.
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Define fS : Fnp → F∗rt by

fS(x) = γ〈x,wS〉.

Note that this a homomorphism, because γ has order p. Then,

s∑
ι=0

cιfS(x+ ιdS) = γ〈x,wS〉
s∑
ι=0

cιγ
ι〈dS ,wS〉

= γ〈x,wS〉
s∑
ι=0

cι

= γ〈x,wS〉P (1).

If S 6= T , then 〈dT , wS〉 = rq mod p for some integer q and therefore,

s∑
ι=0

cιfS(x+ ιdT ) = γ〈x,wS〉
s∑
ι=0

cιγ
ι〈dT ,wS〉

= γ〈x,wS〉
s∑
ι=0

cιγ
ιrq

= γ〈x,wS〉P (γ)r
q

= 0.

This completes the proof. 2

Proof of Proposition 5.4.1:
Let P (x) ∈ Fr[x] be as in Proposition 5.4.1 and let γ ∈ F∗rt be a p-th root of unity
such that P (γ) = 0. Let fi : Fnp → F∗rt and di, wi ∈ Fnp be as in Theorem 5.4.2.
Let χ : Frt → C be a nontrivial additive character such that the complex number

z := Ec∈Fpχ
(
γcP (1)

)
satisfies <(z) ≤ 0. To see that such a character exists, observe that by orthogo-
nality of the characters,

Eχ∈F̂rtEc∈Fpχ
(
γcP (1)

)
= Ec∈Fp

(
Eχ∈F̂rtχ

(
γcP (1)

))
= 0.

The existence of the desired character then follows by averaging. For each
a ∈ {0, 1}k and ι ∈ i(P ), define F ι

a : Fnp → C by

F ι
a(x) = χ

(
cι

k∑
j=1

ajfj(x)
)
. (5.5)

Based on these functions, we define the dual function φa : Fnp → D by

φa(y) = Ex∈Fnp
∏
ι∈i(P )

F ι
a(x+ ιy). (5.6)
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Then,

φa(di) = Ex∈Fnpχ
( k∑
j=1

aj
∑
ι∈i(P )

cιfj(x+ ιdi)
)

= Ex∈Fnpχ(aiγ
〈x,wi〉P (1))

= Ec∈Fpχ(aiγ
cP (1)).

The last expectation equals 1 if ai = 0 and z if ai = 1 and therefore,

{1, z}k ⊆ {(φ(d))d∈D : φ ∈ ∆i(P )}.

Since k ≥ (m
p

)p−1, n ≤ (2etm
p

)
p−1
t and t ≤ p− 1, we have k ≥ Ωp(n

t). 2

5.5 Sparse polynomials over F2

The following lemma supplies infinitely many primes and polynomials that can
be used in Proposition 5.4.1 .

5.5.1. Lemma. For infinitely many primes p, there is an irreducible polynomial
P (x) ∈ F2[x] with support size at most t = ordp(2) and a root in F∗2t of order p.

To prove Lemma 5.5.1, we use some basic theory of cyclotomic polynomials
(see for example [LN97, Chapter 2]). Let r be a prime and n ∈ N not divisible by
r. Recall that a primitive n-th root of unity over Fr is a generator of the non-zero
elements of the splitting field of the polynomial xn − 1 over Fr. Then, for any
such root of unity ζ, the n-th cyclotomic polynomial is given by

Φn(x) =
∏

gcd(s,n)=1

(x− ζs),

where the product is over s ∈ {1, . . . , n} such that gcd(s, n) = 1. The following
lemma gives the properties of cyclotomic polynomials we need.

5.5.2. Lemma. Let r be a prime, n ∈ N not divisible by r. Then, the coeffi-
cients of Φn(x) lie in Fr. Moreover, if n is a prime, then Φn(x) factors into
(n − 1)/ ordn(r) distinct monic irreducible polynomials all of which have degree
exactly ordn(r).

For an integer k ≥ 2, denote by p(k) the largest prime number that divides
k. We will use the following result of Stewart [Ste13].
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5.5.3. Lemma (Stewart). For all n large enough, we have

p(2n − 1) > n exp

(
log n

104 log log n

)
.

Proof of Lemma 5.5.1:
By Lemma 5.5.3, for p = p(2n − 1) and n sufficiently large, we have that
ordp(2) ≤ n < (p − 1)/2. Hence, there are infinitely many primes p such that
t := ordp(2) ≤ (p − 1)/2. For such a p, consider the p-th cyclotomic polynomial
Φp(x) over F2. By Lemma 5.5.2, Φp(x) factors into (p − 1)/t distinct monic ir-
reducible polynomials over F2 of degree exactly t. Since over F2, there is only
one polynomial of degree t with support size t + 1, there must be an irreducible
factor with support of size at most t. Let P (x) be such a factor. Then, since
P (x)|Φp(x), its roots lie in the set of p-th roots of unity in F2t . 2

5.5.4. Remark. For Mersenne primes p = 2t − 1, there are polynomials over F2

with support size 3 that meet the conditions of Proposition 5.4.1. Indeed, since in
this case, any p-th root of unity ζ in F2t is a generator of F∗2t and since 1 + ζ 6= 0,
there exists an s such that P (x) = 1 + x+ xs satisfies P (1) = 1 and P (ζ) = 0.

5.6 Proof of Theorem 5.1.2

Let p, t, P (x) be as in Lemma 5.5.1, so that P has support size k ≤ t. Let
i = i(P ). Since P is irreducible, P (1) 6= 0 and so it satisfies the conditions of
Proposition 5.4.1. Fix ε ∈ (0, 1

2
) and M ∈ (0,∞). Suppose that Proposition 5.1.1

held with ‖τ‖L∞ ≤ ε, which is to say that

∆i ⊆ ConvC
(
M · {polynomial phases of degree ≤ k − 1}

)
+ εDFnp .

Then, since there are at most pO(nk−1) polynomial phase functions of degree at
most k−1 (one for each n-variate polynomial of degree at most k−1), this implies
that

log2N (∆i, ε,M) ≤ Op(n
k−1) ≤ Op(n

t−1). (5.7)

At the same time, Proposition 5.4.1, Lemma 5.3.1 and property (5.3) give

log2N (∆i, ε,M) ≥ Ωp,ε,M(nt).

This contradicts (5.7) for large n and finishes the proof of Theorem 5.1.2.
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5.7 On the possible arithmetic patterns

Here we show that our construction cannot give examples for dual functions
corresponding to arithmetic progressions. Let p, r be primes and t = ordp(r).
Suppose that for some k, s ∈ N, there is a polynomial P (x) ∈ Fr[x] of the form

P (x) =
k−1∑
ι=0

cιx
ιs

such that P (1) 6= 0 and P (x) has a root in F∗rt of order p. Then, the functions
defined as in (5.5) and (5.6) belong to the set of dual functions corresponding
to the progression i = (0, s, 2s, . . . , (k − 1)s) and generate in a hypercube of
dimension at least nt. We show that k ≥ t + 1, which means that this does not
contradict an L∞-version of Proposition 5.1.1.

First note that s cannot be a multiple of p, since for any γ ∈ F∗rt of order p
we would have γs = 1, which implies that P (γ) = P (1) 6= 0. It follows that for
any such γ, the element γs also has order p and does not equal 1. Define the
polynomial

Q(x) =
k−1∑
ι=0

cιx
ι ∈ Fr[x].

Then, this polynomial has a root α in F∗rt of order p (where α = γs), satis-
fies Q(1) = P (1) 6= 0 and has degree k − 1. We claim that k − 1 ≥ ordp(r). If Q
is reducible, then it has a factor of degree strictly less than k − 1 that has the
same properties. So assume that Q is irreducible. Let K = Fr(α) be the simple
algebraic extension of Fr obtained by adjoining α. Then K is isomorphic to Frk−1 .
Since α lies in Frk−1 and has order p, it follows that p | rk−1− 1. But this implies
that k − 1 ≥ ordp(r) = t.
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[BDG19] J. Briët, Z. Dvir, and S. Gopi. Outlaw distributions and locally
decodable codes. Theory Comput., 15(12):1–24, 2019. doi: 10.
4086/toc.2019.v015a012. Preliminary version in ITCS’17.

[Bel64] J. Bell. On the Einstein Podolsky Rosen paradox. Physics,
1(3):195–200, 1964.

[BG16] S. Bravyi and D. Gosset. Improved classical simulation of quan-
tum circuits dominated by Clifford gates. Physical review letters,
116(25):250501, 2016.
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Anal., 11(3):465–588, 2001. ISSN 1016-443X.

[Gow07] W. T. Gowers. Hypergraph regularity and the multidimensional
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Samenvatting

In dit proefschrift bestuderen we quasirandomness in verschillende contexten.
Maar wat is quasirandomness? Beschouw een eerlijke munt die we, zeg, 100 keer
opgooien en de uitkomst van elke worp opslaan. Dit zal een rij zijn vanK (Kop) en
M (Munt), bijvoorbeeld KKMKMKKMMMKMKKMK... etc. De uitkomst
van elke worp is natuurlijk willekeurig, dus zal deze rij ook willekeurig zijn. Een
typische eigenschap van zo een rij dat getuigt dat deze rij willekeurig is, is dat in
elke grote deelrij de letters K en T ongeveer even vaak voorkomen. Als we een
rij van K’s en T ’s construeren op een niet-willekeurige wijze en het heeft deze
eigenschap, dan zeggen we dat het quasirandom is. Dit is niet het enige typische
eigenschap dat zulke rijen hebben, maar het is een simpel voorbeeld dat het idee
schetst. We zullen nu zien dat quasirandomness in veel verschillende contexten
voorkomt.

In Hoofdstuk 2 bestuderen we een merkwaardige eigenschap van de natuur
genaamd verstrengeling door middel van nonlokale spellen. In een nonlokale spel
krijgen twee spelers, genaamd Alice en Bob, vragen toegestuurd van een scheid-
srechter. Alice en Bob moeten antwoorden terugsturen vanuit een vooraf afgespro-
ken verzameling van antwoorden en de scheidsrechter accepteert hun antwoorden
aan de hand van een vooraf afgesproken regel. Alles van het spel wordt bespro-
ken met de spelers: de vragen die ze kunnen verwachten, wat voor antwoorden ze
kunnen terugsturen en wat de regel is dat hun antwoorden wordt geaccepteerd.
Alice en Bob mogen een strategie bedenken voordat het spel begint. Zodra ze
de vragen hebben gekregen van de scheidsrechter, mogen ze niet meer commu-
niceren. In het bijzonder, weten ze niet welke vraag de ander heeft gekregen. In
een klassieke wereld kunnen ze alleen deterministische strategiëen gebruiken. Dit
komt erop neer dat de spelers, voordat het spel begint, besluiten wat te antwo-
orden op een gegeven vraag. Maar in een quantum mechanische wereld kunnen
Alice en Bob hun antwoorden baseren op meetuitkomsten van hun fysieke syste-
men. Zulke strategiëen worden quantum strategiëen genoemd en kunnen betere
winkansen geven voor het nonlokale spel als hun fysieke systemen verstrengeld
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zijn. Het is belangrijk om te onderzoeken hoeveel beter je een nonlokale spel
kan spelen (hogere winkans) met quantum strategiëen tegenover deterministische
strategiëen. In Hoofdstuk 2 laten we zien dat voor bepaalde natuurlijke klassen
van nonlokale spellen, het voordeel van quantum strategiëen over deterministische
strategiëen beperkt is. De technieken die we daarbij gebruiken zijn gebaseerd op
quasirandomness van bepaalde functies die geassocieerd worden met de nonlokale
spellen.

In grafentheorie zijn er procedures om willekeurige “reguliere” grafen te con-
strueren. Dit zijn grafen waarbij elke knooppunt, zeg, precies drie buren heeft.
Een typische eigenschap van zulke grafen is dat ze heel erg goed kunnen “mixen”:
als je op welke knooppunt dan ook begint en willekeurig een stap zet naar een buur
en dit herhaalt, zal je je na een klein aantal stappen mogelijk overal op de graaf
kunnen bevinden! Deze eigenschap wordt expansie genoemd. Een ander inter-
essante eigenschap van zulke willekeurige reguliere grafen is dat ze uniform zijn:
voor elke paar van deelverzamelingen van de knooppunten is het aantal kanten
tussen deze twee deelverzamelingen ongeveer gelijk aan wat je zou verwachten van
een willekeurige graaf met dezelfde kantdichtheid. Expansie en uniformiteit zijn
daarom quasirandom eigenschappen, omdat willekeurige grafen deze eigenschap-
pen hebben. Verrassend genoeg zijn deze twee eigenschappen equivalent voor
grafen met “relatief veel” kanten en voor heel symmetrische grafen. In Hoofd-
stuk 3 generaliseren we deze verrassende equivalentie van quasirandom eigen-
schappen naar het quantum geval.

In het gebied van quantumcomputers is het bekend dat algoritmes die alleen
een bepaald soort quantum circuit gebruiken, genaamd stabilizer circuits, efficient
gesimuleerd kunnen worden met behulp van klassieke computers. De quantumtoe-
standen die zulke circuits produceren worden stabilizer toestanden genoemd. Als
we naast zulke circuits kopiëen van de zogenaamde magische quantumtoestand tot
onze beschikking hebben, dan zouden we de volledige kracht van quantumcom-
puters tot onze beschikking hebben en kunnen we, bijvoorbeeld, grote getallen
factoriseren in priemfactoren met Shor’s algoritme. Deze magische quantumtoes-
tand is echter een duur middel en we willen daarom weten hoe we deze toestand
kunnen verkrijgen uit de simpelere, en goedkopere, stabilizer toestanden. Het
aantal stabilizer stabilizer toestanden die we hierbij nodig hebben wordt ook
wel de stabilizer rang genoemd van de magische quantumtoestand. Voor een
willekeurige quantumtoestand geldt er dat de stabilizer rang heel hoog is, wat
wil zeggen dat zulke toestanden erg duur zijn. Dit is een typische eigenschap
van willekeurige quantumtoestanden en als een expliciete quantumtoestand deze
eigenschap heeft, dan zeggen we dat het quasirandom is. Er wordt vanuit gegaan
dat de (expliciete) magische quantumtoestand quasirandom is in deze zin, maar
dit is tot zover nog niet bewezen. In Hoofdstuk 4 bestuderen we dit open probleem
vanuit een ander gezichtspunt, gebruikmakend van hogere orde Fourier analyse.

Hogere orde Fourier analyse is een generalisatie van “gewone” Fourier anal-
yse dat is ontstaan vanuit Gowers’s Fourier analytische bewijs van een bekend
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resultaat van Szemerédi’s in 1974. Dit resultaat zegt, grof gezegd, dat bepaalde
soort patronen genaamd arithmetische progressies onvermijdbaar zijn in grote
deelverzamelingen van {1, 2, . . . , N}, waarbij N een groot geheel getal is. Een
arithmetische progressie is een rij van getallen zodat het verschil tussen opeenvol-
gende getallen hetzelfde is. Bijvoorbeeld, voor getallen x en d is x, x + d, x + 2d
een arithemitische progressie van lengte drie. In Hoofdstuk 5 laten we zien dat
een bepaalde hypothese in hogere orde Fourier analyse niet waar is: we laten
zien dat duale functies, objecten die relevant zijn voor bepaalde verfijningen van
Szemerédi’s stelling, meer quasirandom zijn dan eerder gedacht.





Abstract

In this dissertation, we study quasirandomness in several contexts. But what
is quasirandomness? Consider a fair coin that we throw, say, 100 times and
record the outcome of each coin flip. It will be a list of H (Heads) and T ’s
(Tails), for example HHTHTHHTTTHTHHTH... etc. Since each coin flip
was random, this sequence will be random as well. A typical property of such a
sequence “certifying” randomness would be that in any large subsequence, H and
T will occur approximately the same number of times. When a sequence that we
construct in a non-random way has this property, we say that it is quasirandom.
This is not the only typical property that such sequences have but is a simple
example demonstrating the idea. We will now see that quasirandomness appears
in a wide variety of contexts.

In Chapter 2 we study a curious property of nature called entanglement
through nonlocal games. In a nonlocal game, two players called Alice and Bob
get questions from a referee. They then have to answer from a prescribed set
of answers and the referee accepts or rejects their combined answer according
to some known condition that is also known beforehand. Everything about the
game is known, i.e. the set of questions and answers and the acceptance crite-
rion of the referee. Alice and Bob are allowed to come up with a strategy before
the game starts, but once they receive their questions, they are not allowed to
communicate. In particular, they don’t know what question the other player has
received. In a classical world, they can only use a deterministic strategy. This is
simply deciding, before the game starts, what to answer when a certain question
is received. In a quantum mechanical world, Alice and Bob can base their answers
on outcomes of a measurement on their private physical systems. Such a strategy
is called a quantum strategy and it can give better chances of winning the game if
their systems are entangled. It is important to understand how much better the
chances of winning a nonlocal game are if we are allowed to use strategies based
on entangled systems compared to deterministic strategies. In Chapter 2 we show
that for certain natural classes of multiplayer nonlocal games, the advantage of
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quantum strategies over deterministic strategies is bounded. The techniques used
are based on the quasirandomness of certain functions that are associated with
the nonlocal game.

In graph theory, there are procedures that can generate random “regular”
graphs, i.e. graphs that where each vertex has exactly, say, three neighbors. A
typical property of such graphs is that they “mix” very well: if you started at
any vertex of the graph and randomly went to one of its neighbors at each step,
then after a small number of steps you could be anywhere! This property is
often referred to as expansion of the graph. So if a deterministic graph has
this property, we say that it is quasirandom. Another interesting property is
uniformity, in this case, the graph should have the property that for arbitrary
pairs of subsets of vertices the number of edges is roughly equal to what one
would expect from a random graph of the same density. Surprisingly, these two
properties are equivalent for “dense” graphs and for a class of very symmetric
graphs called vertex-transitive graphs. In Chapter 3 we generalize this surprising
equivalence of quasirandom properties in the quantum realm.

In quantum computing, algorithms using only certain quantum circuits called
stabilizer circuits can be easily simulated on classical computers. The quantum
states that such circuits can produce are called stabilizer states. If besides such
circuits we are allowed to use copies of the magic state, we obtain the full power
of quantum computation and we can, for example, factor large numbers very
efficiently using Shor’s algorithm. This magic state is an expensive resource and
therefore we would like to know how we can obtain this quantum state using
the simpler, or cheaper, stabilizer states. We will refer to the number of such
states needed as the stabilizer rank. Interestingly, a random quantum state has
the property that it has a high stabilizer rank, meaning that such states are very
expensive resources. This is a typical property of random quantum states and
explicit quantum states having this property are then quasirandom in this sense.
It is believed that the (explicit) magic state is quasirandom, but so far no one
has been able to prove that it has a high stabilizer rank. In Chapter 4 we study
this problem from a completely different viewpoint than the previous literature,
using tools from higher-order Fourier analysis.

Higher-order Fourier analysis is a generalization of “ordinary” Fourier analysis
that grew out of Gowers’s Fourier-analytic proof of a famous result by Szemerédi
from 1974. It says, intuitively, that certain patterns called arithmetic progression
are unavoidable in large subsets of the integers {1, 2, . . . , N}. More precisely,
Szemerédi’s theorem states that any “dense” subset of the integers {1, 2, . . . , N}
contains an arithmetic progression of arbitrary length, provided that the integer
N is large enough. An arithmetic progression is a sequence of numbers such
that consecutive numbers have equal differences. For example, an arithmetic
progression of length three has the form x, x+d, x+2d for some integer x called the
starting point and non-zero integer d called the common difference. In Chapter 5
we disprove a conjecture in higher-order Fourier analysis: we show that dual



Abstract 127

functions, objects relevant for certain refinements of Szemerédi’s theorem, are
more quasirandom than thought before.





Titles in the ILLC Dissertation Series:

ILLC DS-2016-01: Ivano A. Ciardelli
Questions in Logic

ILLC DS-2016-02: Zoé Christoff
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