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Efficient Sampling and Solver Enhancement  
for Uncertainty QuantiÞcation 
The focus of this thesis is on the development of efficient and robust uncertainty quantiÞcation 
algorithms that can be used for a wide range of applications. The goal is to determine how likely 
certain outcomes are if some aspects of the application are not known exactly, i.e., in case of 
limited prior knowledge or uncertainties in the parameter values. We focus in particular on 
quantifying uncertainties in the output of a mathematical model induced by uncertainties in the 
input parameters, often referred to as forward propagation of parametric uncertainties.


The Þrst part of this thesis discusses how to signiÞcantly reduce the required number of samples

needed in the forward propagation of uncertainties. In particular, if the quantity of interest is highly 
non-linear or discontinuous depending on the input parameters, Gibbs phenomena may occur, 
which deteriorate the accuracy globally. As we often do not know beforehand if a quantity of 
interest is smooth or discontinuous, we propose a new algorithm that works in both cases.


In the second part of this thesis, instead of placing samples optimally in order to reduce the 
overall computational cost of forward propagation, we opt to increase the accuracy of the 
quantity of interest that is outputted by the solver. To clarify, when using numerical discretisation 
to compute outcomes of the mathematical model, the resolution of the computational grid 
determines the accuracy of the quantity of interest, but it also determines the computational time 
it takes to compute this quantity of interest. In general, a quantity of interest that is computed 
using a coarse computational grid is fast to compute but also inaccurate. As a remedy, we opt to 
use machine learning to increase the accuracy of a quantity of interest that is computed on a 
coarse grid, as it is able to deal with highly non-linear behaviour and high-dimensional input/
output relations.


The main topics of this thesis are uncertainty quantiÞcation and machine learning. We assume 
that the reader possesses basic prior knowledge on these two subjects. Furthermore, the test 
cases discussed in both Part I and II of this thesis assume prior knowledge on basic numerical 
discretisation techniques, in particular Þnite volume methods.
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Preface
This PhD-thesis is the result of four years of research at the
Centrum Wiskunde & Informatica (CWI) in Amsterdam, as a
member of the NWO Perspective Program Sloshing of Liqui-
fied Natural Gas (SLING). The focus of this thesis is on the
development of efficient and robust uncertainty quantification
algorithms that can be used for a wide range of applications. In
this thesis we consider in particular fluid flow applications that
are inspired by the SLING project.

Before I started this PhD project, I was not fully convinced on
how relevant uncertainty quantification is in for instance indus-
trial applications. During my PhD-project I noticed that uncer-
tainties are everywhere, and correctly quantifying the effects of
these uncertainties is of major importance in many industrial
applications.
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I. 1 Mathematical modelling

Mathematical modelling as a building block for science and engineering, for society in general
Mathematics is omnipresent, often without being noticed. Beit, the transition to renewable fuels,
or the fast emerging interest in artificial intelligence, mathematics is one of the tools that allows us
to invent and optimise many processes we come across in everyday life. The things we take for
granted as humans nowadays, such as flying to our holiday destination inside an Airbus A380, or
predicting the weather, would not be possible without the underlying mathematical models. These
two applications (and many more) require us to study the flow of liquids and gases, for which the
mathematical model is a set of Partial Differential Equations (PDEs) that need to be solved numer-
ically. Computing solutions for PDEs helps us gaining insight in how to operate and/or optimise an
industrial process involving fluid flow. In the remainder of this thesis we refer to a mathematical
model as a single PDE or a set of PDEs.

APPLICATION

MATHEMATICAL MODEL

modelling

Mathematical models are not perfect
For one given application, multiple mathematical models may be available, that incorporate dif-
ferent amounts of prior knowledge and/or assumptions. Incorporating prior knowledge and/or as-
sumptions into a mathematical model ameliorates the proximity of the mathematical representation
to reality. The amount of prior knowledge we can incorporate is often determined by the amount of
data/observations that are available to model the underlying physics. Furthermore, even if we are
certain that a mathematical model is able to accurately represent reality, the computational power
required for obtaining a solution of the model is often a limiting factor. Summarised, it is often im-
possible to obtain a solution that coincides with reality, is it due to a lack of knowledge to construct
a proper model, or due to a lack of computational power to obtain solutions.

Even if the model is perfect, it is not
A mathematical model often possesses several parameters that determine how a physical process
behaves. For instance, in fluid dynamics commonly encountered parameters are viscosity, density
and surface tension, and they significantly influence how a fluid behaves. Getting the correct pa-
rameter values can be difficult and may lead to an error between a solution of a mathematical model
and reality.

Solvers for mathematical models to approximate reality
A mathematical model may be solved numerically, using for instance a Finite Element Method
(FEM), in order to map a set of model/input parameter values to a quantity in which one is interested.
For instance, when studying the flow of air over an airplane, the Quantity of Interest (QoI) may be
the drag coefficient of the wing.

MATHEMATICAL MODEL

SOLVER
MODEL

PARAMETERS QoI

discretise

input output

The quality of the solutions is often determined by the fidelity of the solver. In the field of
mathematical modelling, fidelity refers to the degree to which a model or simulation reproduces
reality, and often determines the computational effort that is required to obtain a numerical solution.
To clarify, high-fidelity solutions represent reality closely at a high computational cost, while a low-
fidelity solution is less accurate, but requires less computational effort. The fidelity of the model
also determines the accuracy of the computed QoIs, but also determines the time it takes to compute
a QoI.

I. 2 Uncertainty quantification
Uncertainty Quantification (UQ) is the science of characterisation and reduction of uncertainties
and the goal is to determine how likely certain outcomes are if some aspects of the application are
not known exactly, i.e., in case of limited prior knowledge or uncertainties in the parameter val-
ues. In this thesis we focus on how to quantify uncertainties in the output of a mathematical model
induced by uncertainties in the input parameters, often referred to as forward propagation of para-
metric uncertainties.

Steps in forward UQ
Quantifying the effects of uncertainties in computational engineering typically consists of three
steps:

1. Each of the input uncertainties is characterised in terms of a Probability Density Function
(PDF), which follows from observations or physical evidence.

2. The uncertainties are propagated through the model.

3. The output is post-processed; the QoI is expressed in terms of its statistical properties.

In the present work we focus on the (second) propagation step, and the input distributions are as-
sumed to be given.

Non-intrusive sampling methods for forward UQ
For problems which have a complex underlying model, one often uses so-called non-intrusive meth-
ods for forward propagation of uncertainties through the model, also known as sampling methods.
The model is solved deterministically a number of times for different parameter values, and a sur-
rogate of the QoI is constructed as a function of the uncertain parameters using these deterministic
samples. The number of samples at which the model needs to be evaluated and the time it takes
to perform a single sample determine the overall computational cost of the forward propagation of
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parameter uncertainties. Hence, in order to increase efficiency of a non-intrusive UQ method, one
can either reduce the required number of samples for obtaining statistics on the QoI, or decrease the
required computational time for computing a single sample. In this thesis we explore both strategies
in more detail and show that both approaches are suited depending on the underlying application.

Why this thesis?
A well known sampling method for propagating uncertainties through a model is the Monte Carlo
method. Despite its easy implementation and wide applicability, the Monte Carlo method suffers
from slow convergence with increasing number of model evaluations, when approximating the QoI.
As a consequence of this slow convergence rate, many samples are required for obtaining high qual-
ity stochastic solutions. Even though Monte Carlo methods are often superior for high-dimensional
problems, proper alternatives have been proposed to speed up convergence in many cases. As an al-
ternative to Monte Carlo methods, other methods were introduced, improving the slow convergence
of Monte Carlo significantly. Three popular alternatives to Monte Carlo are:

• Kriging (Gaussian process regression): is a method of regression for which the regressed
values are modeled by a Gaussian process governed by prior covariances. The advantage
of using Kriging is that it automatically quantifies the regression errors (Kriging variance).
A disadvantage of Kriging is that it is computationally expensive compared to other local
regression methods.

• Generalised polynomial chaos (gPC): performs a polynomial expansion of the QoI, where
the type of polynomials are determined by the underlying PDF. An advantage of gPC is that
it is robust and results in a stable regression of the QoI. A drawback of gPC is its rather poor
flexibility, i.e., the sample locations are fixed by the zeros of the chosen polynomial basis,
which does not allow for any alteration in the sample locations without constructing a whole
new polynomial basis. As a remedy, novel basis construction methods were introduced that
increase the flexibility in sample location placement.

• Stochastic collocation (SC): is an interpolation based on Lagrange polynomials. Its primary
advantage lies in its ease of implementation. A drawback of the original SC method is that it
does not scale well for high-dimensional problems and does not exploit observed behaviour
in the QoI.

These are the most common alternatives to Monte Carlo. The introduction of these alternatives
resulted in a decrease of required samples to achieve a certain accuracy in comparison to Monte
Carlo methods. In this thesis we focus on SC-based approaches, as they are often easy to implement
and easy to use.

Reducing the required number of samples by using for instance SC if often not enough. In many
fluid dynamics applications the model is extremely expensive to sample from, which makes even
SC infeasible, as performing a single sample is time consuming. Furthermore, in many real appli-
cations we have to deal with many uncertainties, leading to the so-called curse of dimensionality,
which states the number of samples needed to estimate an arbitrary function with a given level of
accuracy grows exponentially with respect to the number of input variables of the function. Another
complication may occur when the space spanned by the uncertainties is not a hypercube, which does
not allow for structurally placing samples and exploiting symmetries. Lastly, it is possible that the
QoI exhibits a discontinuous response with respect to an uncertain parameter. These discontinu-
ities significantly complicate surrogate construction and often lead to a significant increase in the
required number of samples. Efficiently constructing a surrogate for a QoI in case the underlying
model is expensive to sample from, a QoI which lives in a (non-hypercube) high-dimensional
space and/or exhibits discontinuities, is the aim of this thesis.
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I. 3 Outline of this thesis
This thesis explores the two ways to make forward UQ more efficient and the outline of the thesis
is shown below.

CHAPTER 2

CHAPTER P(reliminaries)

PART II

INTRODUCTION

CONCLUSION

PIC/FLIP FLUID FLOW SIMULATIONS

INTRUSIVE SOLVER ENHANCEMENT

CHAPTER 1NON-INTRUSIVE SOLVER ENHANCEMENT

CHAPTER 2

PART I

PDE-INFORMED SAMPLING

CHAPTER 1

CHAPTER 4

CHAPTER 3

SAMPLING FOR DISCONTINUOUS RESPONSES

Part I: Reducing the required number of samples
The first part of this thesis discusses how to significantly reduce the required number of samples
needed in the forward propagation of uncertainties.

In particular, if the QoI is highly non-linear or discontinuous depending on the input parameters,
Gibbs phenomena may occur, which deteriorate the accuracy globally. Many alternatives to SC have
been proposed that are able to deal with discontinuities in the QoI, but they have the downside that
they often lead to inefficient sample placement when used for a smooth QoI. As we often do not
know beforehand if a QoI is smooth or discontinuous, we propose a new algorithm that works in
both cases.

Another drawback of conventional SC is that it does not take the underlying model into account,
i.e., samples are placed solely based on the characterisation of the input parameters in terms of a
PDF. Adaptive sampling strategies have been proposed that use information about previously sam-
pled QoI values in order to determine the optimal set of input parameter values for which to sample
the model next. We propose a new adaptive sampling strategy that incorporates information about
both the underlying model PDE and PDF of the input parameters, to effectively sample the QoI.

Part II: Increasing the accuracy of inexpensive, but inaccurate solutions
Instead of placing samples optimally in order to reduce the overall computational cost of forward
UQ, we also opt to increase the accuracy of the QoI that is outputted by the solver. To clarify, when
using numerical discretisation to compute outcomes of the mathematical model, the resolution of
the computational grid determines the accuracy of the QoI, but it also determines the computational
time it takes to compute this QoI. In general, a QoI that is computed using a coarse computational
grid is often fast to compute but also inaccurate. As a remedy, we opt to use machine learning to
increase the accuracy of a QoI that is computed on a coarse grid, as it is able to deal with highly
non-linear behaviour and high-dimensional input/output relations.
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We first study how machine learning can be used as a non-intrusive post-processing tool to
increase the accuracy of the QoI. This non-intrusive approach is flexible as it does not require to
change the underlying numerical solver that is used to compute the QoI, but also has limitations
in terms of improper treatment of the temporal dimension when the QoI is time dependent, as the
non-intrusive approach is only able to enhance the QoI at a given time instance. As a result, we
need to retrain our machine learning algorithm when wanting to enhance the QoI at a different time
instance. Therefore, also an intrusive alternative is proposed that uses machine learning inside the
numerical solver in order to increase the accuracy of solver quantities at every time step. We will
focus in particular on the enhancement of a specific numerical fluid flow solver, i.e., PIC/FLIP. This
solver is introduced in detail in the preliminary section of this part.

I. 4 What prior knowledge do you need
The main topics of this thesis are UQ and machine learning. We assume that the reader possesses
basic prior knowledge on these two subjects. Furthermore, the test cases discussed in both Part I and
II assume prior knowledge on basic numerical discretisation techniques, in particular finite volume
methods. Good references for the assumed prior knowledge are shown below.

UNCERTAINTY QUANTIFICATION

Dongbin Xiu, Numerical Methods for Stochastic 
Computations, 2010, Princeton Univerity Press

MACHINE LEARNING

Ian Goodfellow et al., Deep Learning, 2016, MIT Press
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I. 4 What prior knowledge do you need
The main topics of this thesis are UQ and machine learning. We assume that the reader possesses
basic prior knowledge on these two subjects. Furthermore, the test cases discussed in both Part I and
II assume prior knowledge on basic numerical discretisation techniques, in particular finite volume
methods. Good references for the assumed prior knowledge are shown below.

UNCERTAINTY QUANTIFICATION

Dongbin Xiu, Numerical Methods for Stochastic 
Computations, 2010, Princeton Univerity Press

MACHINE LEARNING

Ian Goodfellow et al., Deep Learning, 2016, MIT Press
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As stated before, for problems which have a complex underlying model, one often uses so-called
non-intrusive methods, also known as sampling methods. The model is solved deterministically a
number of times, and a surrogate for the QoI is constructed using these deterministic samples. In
this part of the thesis we focus on minimising the required number of samples when constructing a
surrogate model. In mathematical form, the goal is to solve the following stochastic problem:

L (v;z) = 0 . (P. 1)

We define Iz as the support set of the uncertain inputs z, referred to as the random space, z =
(z1, ...,zd) ∈ Iz the d-dimensional vector containing uncertain inputs, v = v(z) the solution and
L an operator, representing the model. The operator L can be a non-linear partial differential
operator, or any sufficiently smooth mathematical model that relates input z to the solution v(z).
The QoI q is calculated by applying an operator Q to the solution v, i.e., q(z) = Q(v(z)). The
uncertain inputs are assumed to be characterised by a joint PDF ρ(z). The stochastic problem is
solved non-intrusively by sampling the model (P. 1) at different locations zi in a random space, i.e.:

L (vi;zi) = 0 ⇒ qi = q(zi) = Q(vi) , (P. 2)

where vi = v(zi) and qi = q(zi) are the sampled solution and QoI at the collocation node zi, respec-
tively. Since the sampling is non-intrusive, black-box solvers for the operator L can be used. We
are interested in finding the entire functional relation q as a function of the uncertainties z, in terms
of a surrogate model. Such a surrogate allows for fast sampling of the QoI in the random space and
removes the high computational burden once the surrogate is constructed. A surrogate model q̃ of
q may be constructed by interpolation, such that:

q̃(z)≈ q(z), for all z ∈ Iz . (P. 3)

Effectively choosing your sample locations zi to reduce the required number of samples is the goal
of Part I. In particular, we will focus on effectively choosing sample locations zi when the QoI shows
a discontinuous response in Chapter 1. Efficiently choosing sample locations by incorporating
knowledge of the underlying PDE is discussed in Chapter 2.

An overview of this part of the thesis is given below.

CHAPTER 2

PART I

PDE-INFORMED SAMPLING

CHAPTER 1

SAMPLING FOR DISCONTINUOUS RESPONSES
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Sampling for discontinuous responses

A novel approach for non-intrusive uncertainty propagation is proposed. Our approach over-
comes the limitation of many traditional methods, such as generalised polynomial chaos meth-
ods, which may lack sufficient accuracy when the QoI depends discontinuously on the input
parameters. As a remedy we propose an adaptive sampling algorithm based on minimum
spanning trees combined with a domain decomposition method based on support vector ma-
chines. The minimum spanning tree determines new sample locations based on both the
PDF of the input parameters and the gradient in the QoI. The support vector machine effi-
ciently decomposes the random space in multiple elements, avoiding the appearance of Gibbs
phenomena near discontinuities. On each element, local approximations are constructed by
means of least orthogonal interpolation, in order to produce stable interpolation on the un-
structured sample set. The resulting minimum spanning tree multi-element method does not
require initial knowledge of the behaviour of the QoI and automatically detects whether dis-
continuities are present.

Background
As stated in the introduction, the goal of part I is to reduce the required number of samples when
constructing an accurate surrogate for a QoI that is complicated by either possessing discontinuities
or lives in a high-dimensional space. In this chapter we are discussing how to effectively construct a
surrogate for a QoI in the presence of discontinuities. When propagating input uncertainties through
a computational model it is often assumed that the QoI has a smooth response. However, if the QoI
is highly non-linear or discontinuous, Gibbs phenomena [1] may occur, which may deteriorate the
accuracy of a sampling approach globally. To avoid the occurrence of Gibbs phenomena, several
methods were introduced [2, 3], but they focus solely on discontinuous QoIs, leading to a significant
increase in the number of samples needed for approximating smooth QoIs. One interesting method
is the multi-element stochastic collocation method [4, 5]. The idea of multi-element stochastic col-
location is to decompose the domain, spanned by the uncertainties, into smaller non-overlapping
elements, in each of which the QoI is amenable for using a stochastic collocation method. Gibbs
phenomena still appear in the elements where there is a discontinuity in the QoI, but they are con-
fined to these specific elements. Improving the multi-element approach is an active field of research
and focuses on more efficient and robust domain decomposition. Jakeman et al. [6] proposed the
minimal multi-element method, which uses discontinuity detection based on polynomial annihi-
lation to detect discontinuities, and divides the domain along the discontinuities. As a result, the
Gibbs phenomena are removed completely. Although this discontinuity detection algorithm is ac-
curate, the total number of samples needed to determine the discontinuity location may easily be
still too high if sampling the model is expensive. Therefore, a discontinuity detection algorithm
which performs well for a lower number of samples was proposed by Gorodetsky et al. [7]. This
discontinuity detection uses polynomial annihilation in combination with Support Vector Machines
(SVMs) to divide the domain into elements along the so-called SVM classification boundary. Even
though both discontinuity detection algorithms [6, 7] perform well, using them for approximat-
ing smooth QoIs can become prohibitively expensive, as both methods focus solely on finding the
discontinuities. It is often unknown in advance if a QoI is smooth or discontinuous.

An adaptive minimum spanning tree multielement method for uncertainty quantification 
of smooth and discontinuous responses

The highlights of the new approach are:

• Parametric solutions for PDEs can be efficiently constructed using the proposed method;

• The proposed method automatically detects if a quantity of interest is smooth or discontinu-
ous, so no a-priori knowledge of the quantity of interest is required;

• A supervised learning algorithm detects the location of discontinuities when present;

• Minimum spanning trees refine the sample based on solution gradients and probability density
functions.
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Our Approach

sample the random space to detect and approximate the disconti-
nuity manifold

split into multiple elements by cutting along the approximated dis-
continuity

interpolate sample values on each element to get multiple local 
approximations

The highlights of the new approach are:

• Parametric solutions for PDEs can be efficiently constructed using the proposed method;

• The proposed method automatically detects if a quantity of interest is smooth or discontinu-
ous, so no a-priori knowledge of the quantity of interest is required;

• A supervised learning algorithm detects the location of discontinuities when present;

• Minimum spanning trees refine the sample based on solution gradients and probability density
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1 Preliminaries
As mentioned before, we only consider non-intrusive approaches, which approximate q(z) in (P.3)
by using a black-box to sample point values q(zi) as in (P.2). These point values are then used to
create a surrogate model q̃(z) for the QoI. When q is smooth, it is possible to construct a surrogate
q̃ which converges exponentially fast to the exact QoI q. However, if the QoI exhibits highly non-
linear or discontinuous behaviour, then the accuracy of the surrogate deteriorates globally, due to
Gibbs phenomena. Multi-element methods divide the random space Iz into a set of NE smaller
elements Ei, such that the negative impact of the Gibbs phenomena is confined to a limited number
of elements surrounding the discontinuity. The elements Ei are non-overlapping and span the entire
random space, i.e.:

∪NE
i=1 Ei = Iz and Ei ∩E j = /0 , if i �= j . (1.1)

A local surrogate q̃(i) is constructed in each Ei:

q̃(i)(z)≈ q(z), for all z ∈ Ei . (1.2)

The global surrogate is given by patching the local surrogate models:

q̃(z) =
NE

∑
i=1

q̃(i)(z)IEi(z) , (1.3)

where IEi(z) is the indicator function satisfying IEi(z) = 1, if z ∈ Ei and 0 otherwise. Standard
multi-element methods utilise a tensor construction of hypercubes for defining the elements Ei
[4, 5]. While such a tensor construction removes the global effect of Gibbs phenomena, they can
still appear locally in several elements.

An example of the standard tensorised multi-element approach for the approximation of a 2D
function is shown in figure 1.1. Gibbs phenomena appear in the elements E3,4, where a discontinuity
is present in the exact function.

E3

E1 E2

E4

random space Iz

z1

z 2

q(
z)

z1

exact function

z2

q(
z)

z1

ME-approximation

z2

Figure 1.1: Example of the standard multi-element approach for approximating a 2D function exhibiting a
discontinuity.

2 Our approach in short
The goal of this chapter is to construct an efficient multi-element method that accounts for the
possible presence of discontinuities. It is often not known beforehand if the QoI comprises discon-
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2 Our approach in short
The goal of this chapter is to construct an efficient multi-element method that accounts for the
possible presence of discontinuities. It is often not known beforehand if the QoI comprises discon-

tinuities and therefore in order for an approach to be robust, our method needs to be able to deal
with both smooth and discontinuous responses.

The proposed approach works for both smooth and discontinuous QoIs and requires no initial
knowledge about the QoI. A novel domain decomposition method in combination with adaptive
sampling of the QoI is therefore proposed for constructing this surrogate. The adaptive sampling
procedure in our method is based on Minimum Spanning Trees (MST) [8, 9], which add new sam-
ple points at places which are associated with a high PDF and/or where the QoI changes rapidly.
The adaptively placed samples are classified and an SVM [7, 10, 11, 12, 13] is used to obtain a
classification boundary, which serves as an approximation for the discontinuity location. The de-
composition of the random space in this way leads to elements on which each local QoI is amenable
for interpolation without Gibbs phenomena. For constructing a surrogate model in each element a
least orthogonal interpolant [14] is employed, which is suited for interpolation on the scattered data
points that we obtain with our adaptive sampling. Our proposed method is abbreviated as MST-ME
(Minimum Spanning Tree Multi-Element) method and is designed mainly for the purpose of uncer-
tainty propagation. However, when assuming uniformly distributed PDFs for the input parameters,
the MST-ME method is also well suited to obtain a parametric solution of the PDE under consid-
eration. Although the MST-ME method is designed to work in any number of dimensions, very
high-dimensional problems are not the main focus of our work, but rather the accurate treatment of
discontinuities.

3 Minimum spanning tree multi-element method

The art of constructing an efficient multi-element stochastic collocation method lies in the choice
of sampling points zi, the choice of the elements Ei, and the reconstruction of the local approxima-
tions q̃(i). These are the foci of this method. Accordingly, the MST-ME method introduced here,
is divided into three stages: (I) sampling, (II) domain decomposition and (III) local approximation
construction:

I choice of zi: adaptive sampling of the QoI while taking into account both smooth and discon-
tinuous regions, and the underlying PDF.

II choice of Ei: division of the random space into a minimal number of elements, such that the
QoI is smooth within each element.

III construction of q̃(i): interpolation of the samples, while producing a stable interpolant.

The QoI is adaptively sampled (I) by taking into account both the PDF and the QoI gradient infor-
mation. The samples are distributed among different classes, such that within each class the local
QoI is smooth. The classified samples are given as input to the domain classification algorithm (II).
Instead of using a tensor-based domain decomposition, the random space is divided into a minimal
number of elements, in which the QoI is amenable for interpolation without Gibbs phenomena. This
domain decomposition methodology was already introduced in [6], but in that work the number of
samples required for determining proper elements was too high. In contrast, our domain decomposi-
tion method (II) uses the samples from the sampling algorithm (I) for determining proper elements,
without the need to perform additional sampling. Local approximations (III) are constructed in
each element, by using the least orthogonal interpolation method [14]. The global approximation,
the surrogate model, is given by the patched local approximations (1.3).
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I Sampling algorithm
The main idea behind our adaptive sampling algorithm is that we want to refine our surrogate model
based on the QoI behaviour and the associated joint PDF of the random input variables. We achieve
this by creating a graph that links the samples, and by assigning weights to edges of this graph,
constructing an MST, and then adding samples on the most important edges of this MST.

The methodology is explained for a 2D QoI q(z1,z2), but can be generalised easily to a higher
dimensional QoI.

Initial sample placement
The sampling procedure is started by placing initial sample points. Straightforward choices of the
initial sample locations are shown in figure 1.2. These initial sample configurations are extensible
to high-dimensional random spaces. Initial sample placement in both figure 1.2a and figure 1.2b
introduces an anisotropy in the placement of subsequent samples. The initial sample placement in
figure 1.2c is a good trade-off between the number of initial samples and the isotropy of subsequent
samples.
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Figure 1.2: Initial sample location configurations. a) One sample in the middle and one sample at each face
centre. b) One sample in the middle and one sample at each corner of the domain. c) The combination of a)
and b).

The initial sample grid shown in figure 1.2c is employed, unless stated otherwise.

Graph construction with neighbouring samples
The existing samples are connected based on Voronoi diagram construction [15]. A Voronoi dia-
gram is a partitioning of a d-dimensional space into regions based on the distance to a specific set
of samples [16]. Each Voronoi cell contains one sample, and the cell corresponds to all the points
that are closer to this sample than to any other sample. The Voronoi diagram for the initial sample
configuration is shown in figure 1.3 (left).
The boundary of each Voronoi cell contains several vertices. At each of these vertices the neighbour-
ing Voronoi cells are determined. The midpoints of these neighbouring cells are then connected to
obtain a local graph, see figure 1.3 (middle). This local graph is similar to a Delaunay triangulation,
but gives more isotropic behaviour on regular grids. The local graphs are subsequently connected
together to obtain a global graph, see figure 1.3 (right).

Assignment of weights to edges
Not all the edges in the total graph are equally attractive for placing new samples. Edges that are
long, and have large variation between QoI values and/or are in a region associated with a high PDF
value, are good candidates for refinement. A weight function w(z1,z2) assigns a weight to the edge
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Assignment of weights to edges
Not all the edges in the total graph are equally attractive for placing new samples. Edges that are
long, and have large variation between QoI values and/or are in a region associated with a high PDF
value, are good candidates for refinement. A weight function w(z1,z2) assigns a weight to the edge

Voronoi diagram add all local graphs

pick Voronoi vertex find attached cells construct local graph total graphinitial samples

Voronoi vertex Voronoi edge graph connectionsample

loop over all Voronoi vertices

Figure 1.3: Algorithm for constructing the total graph of a set of sample points. (left) The Voronoi diagram
with the corresponding Voronoi vertices. (middle) The local graphs connect the sample points of which the
Voronoi cells have a common Voronoi vertex. (right) The total graph combines all the local graphs.

between the two graph vertices z1 and z2. A low weight means that the edge is a good candidate for
refinement and vice versa. Weighing based solely on either PDF [17, 18] or gradient [6] is the most
straightforward:

wPDF(z1,z2) =

(
ρ
(

z1 + z2

2

)
||z1 − z2||2

)−1

, (1.4)

wgrad(z1,z2) =

(
|q(z1)−q(z2)|
||z1 − z2||2

||z1 − z2||2
)−1

, (1.5)

where ρ is the PDF and || · ||2 the Euclidean distance. These weight functions are not always
efficient, as they place most samples in either the smooth or the discontinuous regions. A PDF-
weighed gradient across an edge is more meaningful, as it incorporates both the rate of change of
response values and the probability of occurrence. Therefore, when compared to (1.4)-(1.5), a more
meaningful measure would be:

(∫

e
|e ·∇q(z)|ρ(z)dz

)−1

, (1.6)

where e is a vector representing an edge. Equation (1.6) can be seen as the reciprocal of the ex-
pectation of the gradient across an edge. The expectation of the gradient is an important quantity
in stochastic optimisation routines such as stochastic gradient descent [19], where it justifies the
use of a subset of samples for determining the gradient, which is used for minimising the objective
function. In our case the gradient is not used for finding a descent direction, but it indicates the
amount of local variation in the QoI q. By weighing the gradient with the PDF and integrating it
over an edge, we get the expected variation across an edge for the given PDF, which indicates if
refinement is necessary. The integral in (1.6) can not be computed directly, but can be approximated
as:

wPDF+grad(z1,z2) =

((
ρ
(

z1 + z2

2

)
|q(z1)−q(z2)|
||z1 − z2||2

)
||z1 − z2||2

)−1

. (1.7)

To clarify, we multiply each weight function with the distance of the edge ||z1 − z2||2 to account
for regions in the random space that have a low number of samples. After weighing all the edges,
we normalise by dividing by the maximum weight. The different weight functions are compared in
section 6.

Minimum spanning tree for refinement of sample grid
New samples are placed at the middles of the edges that have a sufficiently low weight. However,
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if all edges with sufficiently low weight are refined, undesirable clustering of samples may occur at
early stages of the sampling procedure.

To prevent this, a Minimum Spanning Tree (MST) is used to obtain a subset of edges, such that
this subset reaches all the samples, with a minimal total edge weight. The most important edges are
contained in this MST, while still exploring a significant portion of the random space. The MST
prevents the undesirable sample clustering at early stages. An edge in the MST is refined, if its
weight is sufficiently low compared to the minimum weight among all edges, wmin:

wi ≤ c wmin , (1.8)

where c > 1. The value of c determines how many samples are added each iteration, i.e., low values
of c result in a low number of samples added and vice versa. Low values of c produce the most
accurate results, but many iterations are needed to reach a specified total number of samples. Iter-
ations can become prohibitively expensive in high-dimensional random spaces. Therefore, we set
c = 2, which is a trade-off between the number of samples added and the number of iterations to be
performed. The edge with minimum weight wmin is not necessarily included in the MST, and will be
added if it was not already included, to prevent the sampling algorithm from not adding any samples.

Complete sampling algorithm
The complete sampling strategy (I) is an iterative procedure, which is illustrated in figure 1.4. The
procedure starts with choosing the initial sample points. Next we loop over the three steps: graph
construction, edge weighing and MST edge refinement. The loop is terminated when the specified
number of iterations imax has been performed or when the total number of sample points exceeds a
specified threshold N > Nmax.

N ≤ Nmax or i ≤ imax

set iteration counter

i=0
start

initial samples

stop

i=i+1

yes

no

keep w ≤ c∙wmin

0.21

0.19
0.3

0.2

0.17

find MST

0.73

1

refine edges

construct graphweigh edges

0.2

0.51 0.21

0.19 0.3
0.2

0.17

Figure 1.4: Schematic representation of the adaptive sampling strategy.
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if all edges with sufficiently low weight are refined, undesirable clustering of samples may occur at
early stages of the sampling procedure.

To prevent this, a Minimum Spanning Tree (MST) is used to obtain a subset of edges, such that
this subset reaches all the samples, with a minimal total edge weight. The most important edges are
contained in this MST, while still exploring a significant portion of the random space. The MST
prevents the undesirable sample clustering at early stages. An edge in the MST is refined, if its
weight is sufficiently low compared to the minimum weight among all edges, wmin:

wi ≤ c wmin , (1.8)

where c > 1. The value of c determines how many samples are added each iteration, i.e., low values
of c result in a low number of samples added and vice versa. Low values of c produce the most
accurate results, but many iterations are needed to reach a specified total number of samples. Iter-
ations can become prohibitively expensive in high-dimensional random spaces. Therefore, we set
c = 2, which is a trade-off between the number of samples added and the number of iterations to be
performed. The edge with minimum weight wmin is not necessarily included in the MST, and will be
added if it was not already included, to prevent the sampling algorithm from not adding any samples.

Complete sampling algorithm
The complete sampling strategy (I) is an iterative procedure, which is illustrated in figure 1.4. The
procedure starts with choosing the initial sample points. Next we loop over the three steps: graph
construction, edge weighing and MST edge refinement. The loop is terminated when the specified
number of iterations imax has been performed or when the total number of sample points exceeds a
specified threshold N > Nmax.
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II Domain decomposition
The idea of the domain decomposition step in our method is to divide the random space into non-
intersecting elements Ei, such that the sampled QoI values from section I exhibit smooth behaviour
locally in each element. The elements are constructed by first classifying the QoI values according
to the QoI gradients. Second, the sample classes are separated by means of a classification bound-
ary, based on SVMs. This classification boundary cuts the random space into several elements.

Sample classification based on QoI gradients
An SVM determines a classification boundary based on a set of classified samples. Since a classifi-
cation boundary is an approximation to a discontinuity in the QoI, the classification is based on the
difference in values between two neighbouring samples. To clarify, samples are put into different
groups if the jump in values across an edge exceeds a threshold. The choice for the threshold in the
procedure is crucial. We have observed that the polynomial annihilation procedure from [7] works
very well and a similar methodology is therefore employed. Polynomial annihilation, using all sam-
ples close to a straight line crossing an edge, is used to estimate a jump value across an edge and
labels two points as the same class if the difference in function values is less than the jump value.
An in-depth discussion of polynomial annihilation is discussed in [20]. A schematic representation
of the classification procedure is shown in figure 1.5.

The classification procedure shown in figure 1.5 is able to detect multiple discontinuities and
able to divide the samples in multiple classes by using only the sample locations and corresponding
function values. There is no need for specifying the number of classes beforehand, as the procedure
detects the total number of classes automatically. Even though the classification procedure works
in many cases, it is not able to consistently detect discontinuities which do not divide the random
space into multiple sub-domains. For this reason, we do not consider such discontinuities in the
remainder of this manuscript.

Classification boundary from support vector machines
The classes assigned to the different samples in the random space will be used as training data for a
supervised machine learning algorithm. SVM is a supervised machine learning technique, used for
building a classification boundary between samples that belong to different classes [7, 13]. SVM
is used because it is defined by a convex optimisation problem, for which efficient methods are
available [21], which makes it viable for high-dimensional problems.

Assume N adaptive samples Z = {zi}N
i=1 are classified into Nc different classes ci, where ci ∈

{1, ...Nc} is the class belonging to sample zi. The idea behind an SVM is to construct a classifier Sλ
of the form:

Sλ (z) = ∑
i∈SV

αiK(z,zi) , (1.9)

where αi is the coefficient associated with the sample point zi, λ a regularisation parameter, SV ⊂ Z
the set of support vectors and K a kernel [12]. If αi > 0, then zi is a support vector. Depending on
the application, different kernels are available [13]:

K(x,y) =< x,y > (linear) , (1.10)
K(x,y) = (γ < x,y >+ct)

r (polynomial) , (1.11)

K(x,y) = exp(−γ||x−y||22) (radial basis function) , (1.12)
K(x,y) = tanh(γ < x,y >+ct) (sigmoid) , (1.13)

where < ·, · > is the standard inner product in Rd , γ a regularisation constant, ct a translation
constant and r the polynomial degree. Choosing the proper kernel depends on the regularity of the
classification boundary which is often not known beforehand. Radial basis function kernels (1.12)
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Figure 1.5: Schematic representation of the classification procedure. The sample connectivity is given by
the Voronoi construction performed on the final sampling grid from the adaptive sampling algorithm.

are a common choice and are also employed. The constant γ is normally advised to be chosen as
1/Nc [21], but we will also investigate other choices in the results section. High values for γ result
in a classification boundary with a fine resolution, but this may result in overfitting. Low values for
γ result in a coarser estimation of the location of the classification boundary. The optimal value for
γ differs for different functions. In section 6 an optimal value for γ is found for a specific family
of functions, which is important in our test-cases. Once K has been chosen, the classifier Sλ is
obtained by solving the following least-squares problem:

Sλ (z) = arg min
S∈L2(Iz)

{
1
N

N

∑
i=1

max(0,1− ciS(zi))+λ ||S||L2(Iz)

}
. (1.14)

The classification boundary is given by the 0-contour of Sλ . It separates the different classes from
each other with a hypersurface and is obtained with the LIBSVM library [21]. The classification
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are a common choice and are also employed. The constant γ is normally advised to be chosen as
1/Nc [21], but we will also investigate other choices in the results section. High values for γ result
in a classification boundary with a fine resolution, but this may result in overfitting. Low values for
γ result in a coarser estimation of the location of the classification boundary. The optimal value for
γ differs for different functions. In section 6 an optimal value for γ is found for a specific family
of functions, which is important in our test-cases. Once K has been chosen, the classifier Sλ is
obtained by solving the following least-squares problem:

Sλ (z) = arg min
S∈L2(Iz)

{
1
N

N

∑
i=1

max(0,1− ciS(zi))+λ ||S||L2(Iz)

}
. (1.14)

The classification boundary is given by the 0-contour of Sλ . It separates the different classes from
each other with a hypersurface and is obtained with the LIBSVM library [21]. The classification

boundary decomposes the domain into several elements. Figure 1.6 shows an example of a classifi-
cation boundary for two different classes. SVMs can deal with multiple classes, and hence multiple
discontinuities, quite easily, which makes it a suitable discontinuity finder for a wide range of QoIs.
However, SVMs in combination with the classification procedure are not yet able to properly de-
tect discontinuities that have at least one endpoint which is not intersecting with itself or with the
boundaries of the random space.

Gorodetsky et al. [7] show how SVMs can be used to efficiently localise discontinuities in
a high-dimensional space. Their approach differs from our approach in the strategy for placing
samples which are used by the SVM. They propose sample placement which is solely suited for
detecting discontinuities and samples are placed without taking the PDF into account. As opposed
to this, our approach incorporates the PDF and makes our sample placement more suitable for
surrogate construction and statistical moment calculations, while being slightly less efficient in
localising discontinuities.

discontinuity

class 1 class 2

sample classes

support vectors classification boundary

SVM

Sλ=0

classified input samples SVM domain decomposition

Figure 1.6: An example of an SVM domain decomposition for two different classes.

III Local approximations

The elements Ei from the domain decomposition (II) are arbitrarily shaped and the samples zi are
distributed in such a way that interpolation is not a trivial task. Least orthogonal interpolation is
able to perform interpolation on sample distributions on such arbitrarily shaped domains. The sam-
pling strategy (I) does not necessarily choose points that are optimal for interpolation. Therefore,
attempting to construct an interpolant on this set of interpolation nodes is not always a good idea
and may produce unstable interpolants. We therefore use an extended version of the original least
orthogonal interpolation, which selects a subset of samples that is better suited for stable interpola-
tion [6]. This enables the MST-ME method to place sample points in the random space, where we
want to further resolve the QoI, without focusing on the stability of the interpolation. In practice,
the least orthogonal interpolation can become unstable when an element has a highly irregular shape
and in such cases we propose that a different interpolation procedure should be used [22, 23]. In
this work we use the least orthogonal interpolation in the remainder of this manuscript because of
its fast convergence and flexibility for scattered data sets, and we do not consider highly irregular
shapes.
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Least orthogonal interpolation
We briefly introduce the least orthogonal interpolation procedure, which is discussed in more detail
in [14]. Assume we have sampled our model response at the unstructured locations {zi}N

i=1 in one
element E ∈ Rd of the SVM domain decomposition. Assume a pdf ρ(z) on E, with corresponding
orthonormal polynomials {φi(z)}∞

i=1. The orthonormal polynomials are ordered with natural num-
bers according to the graded reverse lexicographic ordering. We order the orthonormal polynomials
by using a multi-index i ∈ Nd . Now let Π be the space of all d-variate polynomials and let Πk be
the space of all d-variate polynomials of degree less than or equal to k. For any q ∈ Π, define the
projection Pk onto Πk, as

q = ∑
i

q̂iφi ⇔ Pkq = ∑
||i||≤k

q̂iφi , (1.15)

where the expansion coefficients q̂i are given by

q̂i =< q,φi >ρ=
∫

E
q(z)φi(z)ρ(z)dz . (1.16)

The goal of Least Orthogonal Interpolation is now: Given the nodes Z = {zi}N
i=1, define a poly-

nomial interpolation space ΠZ,ρ in which we can uniquely perform interpolation on the sample
responses {q(zi)}N

i=1.
To accomplish this, we use the sample locations to define a new set of functions:

hn(·) = ∑
i

φi(z j)φi(·) , j = 1, ...,N . (1.17)

An operator is introduced that maps the functions hn to polynomials:

h↓,ρ = Pmh , m = min{∈ N0 : Pkh �= 0} , (1.18)

where we introduce a subscript ρ to emphasise the fact that the operator P depends on the choice
of ρ . We extend the operator (·)↓,ρ to vector spaces H by H↓,ρ = span

{
h↓,ρ : h ∈ H

}
. If H =

span{hi}N
i=1 one can show that the space of polynomials

ΠZ,ρ = H↓,ρ , (1.19)

is an N−dimensional space of d-variate polynomials, that is isomorphic to interpolation data at the
sample locations Z. Therefore, a polynomial g ∈ ΠZ,ρ , satisfying g(zi) = q(zi), exists and is unique.
The polynomial g is called the least orthogonal interpolant. The construction of both the interpola-
tion space and the interpolation coefficients is accomplished by standard linear algebra operations
on the Vandermonde matrix. Notice that when using Gauss quadrature sample locations associated
with the specified PDF as input for least orthogonal interpolation, the classic orthogonal basis poly-
nomials result, and the procedure boils down to common non-intrusive stochastic collocation. For
an in-depth discussion of least orthogonal interpolation, see [14].

Surrogate construction
We denote the least orthogonal interpolation operator by I[·], which operates on a subset of (zi,q(zi))

n
i=1,

and we assume that the random space is decomposed into Nc elements Ei. Each element Ei com-
prises a single class ci, which consists of the samples (Zi,Qi). The global approximation is given
by, see equation (1.3):

q̃(z) =
Nc

∑
i=1

I[(Zi,Qi)]IEi(z) , (1.20)

where IEi(z) is the indicator function satisfying IEi(z) = 1, if z ∈ Ei and 0 otherwise.
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}
. If H =
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ΠZ,ρ = H↓,ρ , (1.19)

is an N−dimensional space of d-variate polynomials, that is isomorphic to interpolation data at the
sample locations Z. Therefore, a polynomial g ∈ ΠZ,ρ , satisfying g(zi) = q(zi), exists and is unique.
The polynomial g is called the least orthogonal interpolant. The construction of both the interpola-
tion space and the interpolation coefficients is accomplished by standard linear algebra operations
on the Vandermonde matrix. Notice that when using Gauss quadrature sample locations associated
with the specified PDF as input for least orthogonal interpolation, the classic orthogonal basis poly-
nomials result, and the procedure boils down to common non-intrusive stochastic collocation. For
an in-depth discussion of least orthogonal interpolation, see [14].

Surrogate construction
We denote the least orthogonal interpolation operator by I[·], which operates on a subset of (zi,q(zi))

n
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and we assume that the random space is decomposed into Nc elements Ei. Each element Ei com-
prises a single class ci, which consists of the samples (Zi,Qi). The global approximation is given
by, see equation (1.3):

q̃(z) =
Nc

∑
i=1

I[(Zi,Qi)]IEi(z) , (1.20)

where IEi(z) is the indicator function satisfying IEi(z) = 1, if z ∈ Ei and 0 otherwise.

IV Complete algorithm
The complete MST-ME method is shown in figure 1.7. Apart from the weight function and sampling
threshold, no additional input from the user is required, which makes the method suitable for generic
problems.
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Figure 1.7: A schematic overview of the complete MST-ME method in a 2D random space.

A suitable stopping criterion is given by checking if cross-validation errors in the surrogate drop
below a specified threshold. Computing the cross-validation errors is straightforward and is based
on the leave-one-out principle. The errors in the surrogate given by cross-validation are unbiased
[24, 25, 26] and give a good indication on how well the algorithm performs. In fact, as we use the
adaptive least orthogonal interpolation, some samples are not used in the interpolation procedure
and are left out. These samples can be used to compute the validation error without the need to
leave out relevant samples.

Global approximation error
The adaptive nature and incorporation of SVMs in our approach makes it difficult to derive error
bounds. However, in this subsection we discuss how the error is composed and how it can be
monitored. The global approximation error can be decomposed into two parts.

The first part comprises the error made by the SVM, i.e., the error in the approximation for the
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discontinuity location. Strict error bounds are hard to derive for SVMs in general. However, Vapnik
and Chapelle showed that the cross-validation error of the SVM gives an unbiased estimate of the
error in the domain decomposition step [24], and it yields therefore a proper way to monitor the
error of the SVM approximation.

The second part comprises the error made by interpolating the samples. Least orthogonal inter-
polation is used, which is able to interpolate scattered data sets adaptively. A quality measure of our
sample set can be given by the Lebesgue constant, which is a measure of how well an interpolant
is in comparison with the best polynomial approximation. In the least orthogonal interpolation
method, the Lebesgue constant in 1D is defined as [14]

ΛN = sup
z∈Iz

λ (z) , (1.21)

where

λ (z) =
N

∑
i=1

|li(z)| , (1.22)

where N is the number of samples and li(z) is the Lagrange interpolating polynomial corresponding
to node i. The Lebesgue constant is related to the error in the interpolant as follows

‖q− q̃‖ ≤ (1+ΛN)‖q−q∗‖ , (1.23)

where q, q̃, and q∗ are the exact function, the surrogate and the best approximating polynomial
amongst the set of polynomials of degree N − 1, respectively. The adaptively chosen sample sets
that are used for interpolation on the elements can be used to compute the Lebesgue constant, which
gives an indication of the quality of the nodal locations. However, for the 1D test-cases in section
6, the Lebesgue constant gives no additional insight and is therefore not further discussed.

Computational cost for N samples in d-dimensional random space
The computational cost of the sampling strategy (I) is determined by the cost of computing the
Voronoi diagrams and finding the MST. Computing a Voronoi diagram on N samples in Rd can be
done in O(N log(N)+N�d/2�) time [27]. In the worst-case scenario, only a single sample is added
in each iteration, and hence we have to compute N Voronoi diagrams on N samples. The maximum
computational cost is therefore O(N2 log(N) +N�d/2�+1). Notice that the Voronoi diagrams are
not suited for high-dimensional spaces, because of the factor d/2 in the exponent. Instead, when
Voronoi diagrams are too expensive to compute, a simple radius search algorithm can be used.
Computing the MST can be done with Prim’s algorithm [28], which has an algorithmic complexity
of O(|E| log(|V |)), where |E| is the total number of edges and |V | the total number of samples. An
upper bound for |E| and |V | is given by N(N + 1)/2 and N, respectively. Again, in the worst case
scenario we have to perform N iterations, which can be done in O(N3 log(N)) time.

The computational cost of the domain decomposition (II) is based on the complexity of the
classification procedure and the SVM. Classification of N samples can be performed in O(N2)
time. The SVM has a complexity ranging between O(N2) and O(N3), depending on the number of
classes and the kernel [21]. Hence, domain decomposition can be performed in O(N3) time and is
independent of d.

The local approximation (III) uses LU- and QR-decomposition for determining the interpolant.
Computing the QR-decomposition is the dominant factor in (III), it can be done in O(N3) time,
using the standard implementation in Matlab. If least orthogonal interpolation is employed in an
adaptive fashion, the complexity increases to O(N4), as N QR-decompositions are computed in the
worst case.

The complexity of the complete algorithm is determined by the complexities of (I), (II) and (III).
This results in an overall complexity of O(N4) if d ≤ 5 and O(N3 log(N)+N�d/2�+1) otherwise.
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not suited for high-dimensional spaces, because of the factor d/2 in the exponent. Instead, when
Voronoi diagrams are too expensive to compute, a simple radius search algorithm can be used.
Computing the MST can be done with Prim’s algorithm [28], which has an algorithmic complexity
of O(|E| log(|V |)), where |E| is the total number of edges and |V | the total number of samples. An
upper bound for |E| and |V | is given by N(N + 1)/2 and N, respectively. Again, in the worst case
scenario we have to perform N iterations, which can be done in O(N3 log(N)) time.

The computational cost of the domain decomposition (II) is based on the complexity of the
classification procedure and the SVM. Classification of N samples can be performed in O(N2)
time. The SVM has a complexity ranging between O(N2) and O(N3), depending on the number of
classes and the kernel [21]. Hence, domain decomposition can be performed in O(N3) time and is
independent of d.

The local approximation (III) uses LU- and QR-decomposition for determining the interpolant.
Computing the QR-decomposition is the dominant factor in (III), it can be done in O(N3) time,
using the standard implementation in Matlab. If least orthogonal interpolation is employed in an
adaptive fashion, the complexity increases to O(N4), as N QR-decompositions are computed in the
worst case.

The complexity of the complete algorithm is determined by the complexities of (I), (II) and (III).
This results in an overall complexity of O(N4) if d ≤ 5 and O(N3 log(N)+N�d/2�+1) otherwise.

4 Results
In this section we present multiple examples that illustrate the robustness and flexibility of the MST-
ME method. For computing the error between the exact surrogate and approximation we use the
following weighed L2,ρ -norm:

‖q̃−q‖2
2,ρ =

1
NMC

NMC

∑
i=1

ρ(zMC
i ) · |q̃(zMC

i )−q(zMC
i )|2 , (1.24)

where the surrogate model q̃ is constructed using MST-ME and evaluated at Monte Carlo sample
locations zMC

i drawn from the PDF ρ . The exact solution q is the evaluation of the model sampled
at the same Monte Carlo samples. To clarify, the error compares the constructed surrogate with
the exact solution at the Monte Carlo sample locations, and this error should converge to 0 if the
constructed surrogate converges to the exact response. We multiply the difference between the
surrogate and exact solution with the PDF ρ to emphasise on regions in the random space that
are likely to occur. Samples that are within a distance from the discontinuity, which is lower than
the minimum distance of the adaptive MST-ME samples, are discarded. Discarding samples is
motivated by the fact that these lie below the resolution of the SVM discontinuity detection, where
the fidelity of the classification is questionable [6].

The first example shows the approximation of three 2D, piecewise constant functions. This
example focuses solely on the domain classification and shows convergence of the SVM domain
decomposition (II). The second example shows the approximation of 1D and multidimensional
Genz functions [29]. The third test-case shows the MST-ME method applied to a more compli-
cated model, which is defined by an underlying PDE, namely, the shallow water equations. Lastly,
we apply the MST-ME method to a 3D dam break problem simulated through an incompressible
Smoothed Particle Hydrodynamics (SPH) model, to indicate that our methodology can be applied
to complex engineering problems.

4.1 Domain classification
The accuracy of the SVM domain decomposition (II) is investigated as a function of the parameter γ .

SVM domain decomposition works best for discontinuities without corners
The SVM domain decomposition (II) is tested by approximating three piecewise constant 2D func-
tions. The functions have a discontinuity in the shape of a circle, a rectangle and a triangle, re-
spectively. Notice that all discontinuities divide the domain into two sub-domains, and therefore
are detectable by the classification procedure in II. The sampling algorithm (I), with a weight func-
tion that focuses solely on the gradient (1.5), is used to determine the sample locations. The SVM
domain decomposition uses the radial basis function kernel (1.12) in which γ is set to the advised
value 1/Nc [21], where Nc is the number of classes. The sample locations for the circle test-case
are shown in figure 1.8 (left), along with the definition of the error measure (the misclassified por-
tion). Clustering of samples appears around the circular-shaped discontinuity location, because the
gradient based weight function (1.5) does not lead to refinement if there is no intersection with the
discontinuity. The sample locations show symmetry, but after 5 iterations, the symmetry is slightly
lost, although this is not noticeable in figure 1.8 (left).
The domain decomposition error as a function of the number of samples is shown in figure 1.8
(right).

The misclassified portion of the domain decreases rapidly with the increasing number of sam-
ples, but is in general not monotonically decreasing. As stated in section II, discontinuity lines
with sharp corners, in particular the square and triangle, are hard to approximate for the SVM with
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Figure 1.8: SVM domain decomposition results. (left) Sample locations at different iterations for the circular
test-case, with γ = 1

2 . (right) Convergence of the misclassified portion for increasing number of samples.

a radial basis function kernel. However, the regularity of the classification boundary is often not
known beforehand and therefore we opt for the commonly used radial basis function kernel. The
value for γ however may significantly influence the accuracy of the discontinuity approximation,
and the advised value 1/Nc is in general not optimal. Therefore we search for a value of γ that is
optimal for the remaining test-cases.

The optimal value for γ for our test-cases is 3/Nc
We now investigate the optimal value for γ by testing several candidate values for a large set of
piecewise constant functions. To clarify, the optimal shape parameter γ for the radial basis function
kernel (1.12) is sought for a specific family of discontinuous functions, such that the classification
procedure works best. The fact that this value may be optimal for the radial basis function kernel,
does not necessarily imply that it is optimal for other kernels as well. Kernel (1.12) is used for
classification, we focus on the optimal shape parameter for this specific kernel. The parameter γ
may influence the accuracy of the SVM domain classification. Many discontinuous QoIs in engi-
neering applications possess a discontinuity without corners, i.e., the exact discontinuity surface is a
smooth hypersurface. For such discontinuities, the value of 1/Nc might not be optimal and therefore
we search for an optimal value among a set of candidates that are obtained by adding perturbations
to the advised value: { 1
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Nc+2 ,
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functions, possessing up to 3 discontinuities, on the domain [−1,1]2, is randomly generated. The
discontinuity location is given by up to 3 non-intersecting polynomial parametric curves up to de-
gree 5, which have random coefficients. For each of these functions, an SVM domain decomposition
is performed for each of the possible values of γ . This domain decomposition is performed on 50
adaptively sampled points from the MST-ME method, based on the weight function (1.5) and the
initial configuration shown in figure 1.2c. We add all correctly classified portions for each γ-value,
and divide the resulting sum value by 106 to obtain an average correctly classified portion for all
the randomly generated functions. The number of adaptive samples influences the average correctly
classified portion. A similar trend between the γ-values is obtained. The results are shown in figure
1.9.
Figure 1.9 shows that γ = 3/Nc is the most accurate choice for the generated family of piecewise
constant functions. The inconsistency with the value for γ suggested in literature (1/Nc) and our
value is possibly due to the fact that we limit ourselves to a family of discontinuous functions,
which possess no sharp corners in the discontinuity surface. Hence, the value 3/Nc might not be the
optimal value for other families of discontinuous functions. The discontinuities considered in this
chapter have no sharp corners in the discontinuity surface and γ = 3/Nc is therefore used there as
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well.

4.2 Genz functions approximation

To illustrate the accuracy/efficiency, the proposed MST-ME method is applied to standard bench-
mark problems, namely, approximation of 1D Genz functions [29].

Edge weighing based on PDF and gradient is most robust
We consider the following Genz functions:

g1(x,α) = cos(αx) , (1.25)

g3(x,α,β ) =
(

1
1+αx

)1+β
, (1.26)

g5(x,α,β ) = exp(−(α|x|−β )) , (1.27)

g6(x,α,β ) =
{

0, x > β ,
exp(αx), otherwise .

(1.28)

A uniform PDF is assumed on the interval [−1,1] and the initial grid consists of the two end points
plus the middle point of this interval. As a reference, the MST-ME solution is compared with
the stochastic collocation solution on a Gauss-Legendre grid, which is essentially least orthogonal
interpolation using Gauss-Legendre sample locations (see section III).
Figure 1.10 shows that weighing based on the PDF only results in a uniformly spaced sample grid.
Interpolation on such a grid is in general not a good idea, as it may produce unstable interpolants.
The least orthogonal interpolation method partially circumvents this issue by choosing a subset
of these samples in constructing an interpolant. Consequently, the smooth Genz functions g1 and
g3 are well approximated, but g5 and g6 are not. Weighing based on the gradient alone leads to
improved results for the discontinuous function g6, but leads to less accurate results for the smooth
functions g1 and g3. The standard stochastic collocation method performs well in smooth cases, but
converges slowly and also shows an oscillating error in some cases, due to the Gauss-Legendre grid
that includes the middle point of the domain only for an odd number of samples. In contrast, the
weight function based on both the PDF and the gradient performs the best overall, by keeping track
of the discontinuity location, while still maintaining a sample distribution which resolves parts of
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the random space away from the discontinuity. In the remainder of this chapter we therefore use
weighing based on both PDF and gradient, equation (1.7).

Notice that all weight functions show slow convergence in the approximation of g5. This is due
to the absence of the second derivative in the weight function (1.7). By basing the classification
on the second derivative in the QoI, we can circumvent the slow error convergence in presence of
a discontinuity in the first derivative. However, we will not have any discontinuities in the first
derivatives for the remaining test-cases. We therefore use classification based on the first derivative
only.

The underlying PDF changes the sample grid
The effect of the underlying PDF is now investigated. The two PDFs that we consider are a sym-
metric and an asymmetric β -distribution, with parameters (10,10) and (2,7), respectively. The
support of both PDFs is scaled to [−1,1] and we use the uniform distribution as a reference. The
error convergence for g1 and g6 is shown in figure 1.11.
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The error convergence is similar to the error convergence for the uniform distribution. Again the
sample grid is not ideal for interpolation, but the adaptive least orthogonal interpolation circumvents
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The error convergence is similar to the error convergence for the uniform distribution. Again the
sample grid is not ideal for interpolation, but the adaptive least orthogonal interpolation circumvents

this by using a subset of nodes.

MST-ME outperforms conventional Latin Hypercube Sampling in multiple dimensions
To investigate how the MST-ME method performs in multiple dimensions, the error is plotted for
the smooth Genz function g1 and the discontinuous Genz function g6, with increasing dimension
d, in figure 1.12 (left). These multidimensional Genz functions are tensor products of the 1D Genz
functions. The error for each dimension is based on 1000 adaptively sampled points with an initial
sampling configuration equal to the one shown in figure 1.2c. The number of required samples
needed to attain a specific accuracy is also plotted as a function of the dimension of the random
space (right). As stochastic collocation scales poorly to multiple dimensions when using a tensor
grid construction, we compare the MST-ME method with a method which scales better to higher
dimensions [30, 31]. As a comparison, we use isotropic Latin Hypercube Sampling (LHS) in com-
bination with the least orthogonal interpolation method, and the results are shown in figure 1.12.
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Figure 1.12: Comparison of the MST-ME method and LHS+least orthogonal interpolation with increas-
ing dimensionality. (left) Error of the approximation with respect to the exact function as a function of the
dimension. (right) The number of samples needed to attain a certain accuracy as a function of the dimension.

We clearly see the exponential increase of the required number of samples for the MST-ME method,
which is the well-known curse of dimensionality. The LHS approach scales similarly when com-
pared to the MST-ME for the smooth case, but requires significantly more samples when compared
to the MST-ME method.

4.3 Shallow water dam break

We study the performance of the MST-ME method applied to a system of 1D conservation laws.
This system consists of the 1D shallow water equations (SWEs), which describe the inviscid flow
of a layer of fluid with free surface, under the action of gravity, with the thickness of the fluid layer
small compared to the other length scales [32]:

∂
∂ t

(
h
hv

)
+

∂
∂x

(
hv

hv2 +gh2/2

)
= 0 , (1.29)

where h is the free surface height (thickness of the fluid layer), v the velocity, and g = 9.81 the
acceleration of gravity. The initial condition for the system of PDEs is given by:

(
h
v

)
(x, t = 0) =





(
hl
vl

)
, x ≤ 0 ,

(
1
0

)
, x > 0 ,

(1.30)
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leading to a Riemann problem shown in figure 1.13. The solution of the Riemann problem for these
initial conditions can be computed exactly when working on an infinite spatial domain [33]. The
solution consists of two characteristic waves travelling through the spatial domain, see figure 1.13.
Each wave is a shock or rarefaction wave. When solid boundary conditions are imposed at x =±1,
an exact solution cannot be obtained for all initial solutions. We therefore employ a finite volume
method with an exact Riemann solver [34] to compute the cell face fluxes, and solve the SWEs
using 256 cells. A Crank-Nicolson scheme is used to integrate the SWEs in time and a ghost-cell
method with reflective properties is used for the boundaries. The initial left state (hl ,vl) is assumed
to be uncertain and uniformly distributed U between [1.5,2.5] and [−0.5,0.5], respectively, i.e.:

z =
(

hl
vl

)
∼
(

U (1.5,2.5)
U (−0.5,0.5)

)
. (1.31)

The uncertainty in the initial conditions is large in order to ensure that we get different character-
istic behaviours of the QoI. The average thickness of the fluid layer is not shallow compared to the
domain length, but this is not important for showing the performance of the MST-ME method. The
QoI q is defined as the fluid height at x =−1 at a certain time t∗. A schematic representation of this
set-up is shown in figure 1.13.
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Figure 1.13: Schematic representation of the shallow water test-case.

Notice that the QoI is time dependent and that the characteristics of this QoI will change signifi-
cantly as time progresses. Either a transition between a shock and rarefaction wave, or a difference
in wave speeds can result in a discontinuity in q. This allows us to study the robustness of the
MST-ME method, as this test-case comprises both smooth and discontinuous QoI responses. We
emphasise that the constructed surrogate for the QoI at t = t∗ cannot be reused for other time in-
stances, because the MST-ME method uses the QoI at the current time t∗ as a measure to place new
samples.

MST-ME automatically detects if a function is smooth or discontinuous
The MST-ME method is used for three different QoIs, u = h(x =−1, t∗ ∈ {1.67,4.16,2.21}), which
correspond to a mildly non-linear, highly non-linear and close to discontinuous QoI, respectively.
The surrogate model and sample grids after 10 iterations are shown in figure 1.14.
The discontinuity in the QoI at time t∗ = 2.21 is caused by a shock wave, which hits the left bound-
ary for certain values in the random space, but does not yet hit the left boundary for other values in
the random space.

To investigate the accuracy of the MST-ME method, we determine the convergence. The error
is based on 106 Monte Carlo samples. The convergence of the L2,ρ -error (1.24) is shown in figure
1.15.
The results show that the error as a function of the samples decays fast for the mildly and highly
non-linear case, as expected. The highly non-linear case shows a sudden drop in the error, which
is caused by transition in the domain decomposition. First the classification procedure detects a
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large enough jump in the sampled QoI to conclude that there is a discontinuity present in the QoI.
As the MST-ME progresses, samples are added in the area of the possible discontinuity, until the
jumps in the QoI values become small enough to classify the samples properly. This transition to a
correct classification explains the sudden drop in the error for the highly non-linear case. MST-ME
automatically detects the smoothness of the QoI, as the number of samples increases.

4.4 3D dam break
As a last test-case, the MST-ME method is applied to a complex engineering problem, namely a 3D
fluid dam break problem with parametric initial conditions. This test-case is similar to the shallow
water dam break, with the difference that it describes fluid motion in 3D and contains more physics,
i.e., viscous effects and no shallow-water assumption. Dam break problems are commonly used as



40

benchmark in for example sloshing applications [35] and have been studied extensively [35, 36, 37].
MST-ME can be used to gain physical insight for this parametric problem, by constructing a sur-
rogate model in the full parameter space, and this is our goal in this test-case. We do not focus
on convergence, as it is computationally infeasible to construct a reliable reference solution. A
schematic representation of the test-case is shown in figure 1.16.
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Figure 1.16: Schematic of initial condition for 3D dam break.

We consider two uncertain parameters, namely the length of the tank and the height of the right
column of liquid. When the fluid is released, it starts to flow to the left side of the domain and
impacts the wall, shown in figure 1.16. The QoI is the maximum perpendicular wall force compo-
nent Fx during first impact. Smoothed particle hydrodynamics (SPH) is used to simulate the free
surface flow, induced by the initial condition in figure 1.16. We use an open-source SPH solver,
DualSPHysics [38]. The acceleration of gravity is set to 9.81m/s2 and the kinematic viscosity ν is
set to 10−6m2/s, which is the value for water at room temperature. Surface tension is neglected.
Approximately 106 particles are used for the simulations, which is considered as medium to high
resolution for free surface flows of these length scales. The simulations are performed on a single
GPU-unit with 2048 cores and the average simulation time is approximately 14 hours. A typical
time-dependent result for a height of 3m and a length of 7m, along with the perpendicular wall force
component Fx, is shown in figure 1.17. The four consecutive instances of the example simulation
show: initial liquid configuration; wave development due to pressure gradient; breaking wave im-
pact on wall; liquid after impact. Depending on the height difference between both liquid columns,
wave breaking may occur before the wave impacts the wall. In reality, a gas pocket may be en-
trapped during this process. The gas pocket may be compressed and next lead to an inside pressure
build-up. However, the simulations performed here are single phase free surface flows and the gas
is not taken into account, so the physics in an entrapped gas pocket is ignored.
Obtaining a parametric solution is the target, where both parameters are assumed to be uniformly
distributed. The MST-ME method is used to construct the unknown QoI response. A total of 6
iterations of the sampling algorithm is performed with weight function (1.7), which results in 30
samples. We expect the MST-ME method to automatically distinguish smooth and discontinuous
behaviour of the QoI, which is important for this problem, since we have limited knowledge of the
QoI as a function of the parameters. The results are shown in figure 1.18.
The results indicate a smooth QoI response, which is approximately constant along the lines where
height/length is constant. This implies that for single phase free surface flow, the force on the wall
depends roughly on the ratio of height and length, and not on their separate values. The wall force
increases when this ratio increases, which is intuitive from a physical point of view. Figure 1.18
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behaviour of the QoI, which is important for this problem, since we have limited knowledge of the
QoI as a function of the parameters. The results are shown in figure 1.18.
The results indicate a smooth QoI response, which is approximately constant along the lines where
height/length is constant. This implies that for single phase free surface flow, the force on the wall
depends roughly on the ratio of height and length, and not on their separate values. The wall force
increases when this ratio increases, which is intuitive from a physical point of view. Figure 1.18
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Figure 1.17: Single simulation with height of 3m and a length of 7m. The QoI is the maximum of the wall
force Fx.
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Figure 1.18: QoI of the 3D dam break problem, obtained by the MST-ME method with 6 iterations.

(right) shows that this increase is non-linear, which corresponds to results previously reported for
dry-bed dam break problems [39].

Interestingly, in contrast to the SWE test-case, the QoI shows no discontinuity in the parameter
space. This is possibly due to neglecting the gas phase in the single phase free surface simulations.
When simulated with a gas phase, the pressure build-up in the entrapped gas pocket (see figure 1.17)
may lead to a discontinuity in the QoI. The strength of our proposed MST-ME method is that we do
not require knowledge about the characteristics of the QoI beforehand, as it distinguishes smooth
and discontinuous behaviour automatically.

5 Conclusion

In this chapter we presented a novel domain decomposition based interpolation method, the Min-
imum Spanning Tree Multi-Element (MST-ME) method. The unique property of the MST-ME
method is that it adaptively constructs a surrogate model as a function of a set of uncertain pa-
rameters for both smooth and discontinuous quantities of interest. The three key ingredients in the
MST-ME method are: (I) adaptive sampling based on a minimum spanning tree with a smart weight
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function, (II) discontinuity detection and sample classification with a support vector machine algo-
rithm, and (III) least orthogonal interpolation to construct local approximations. This combination
of robust methods makes the MST-ME method a very practical method that is applicable to a wide
range of UQ problems.

The MST-ME method has been applied to several numerical examples: domain decomposition,
Genz function approximation, 1D shallow water equations, and a 3D dam break problem. Dis-
continuities present in these test-cases are effectively captured by the method. In all cases, fast
convergence is obtained, leading to an accurate surrogate model already at a relatively low number
of model runs. This surrogate model can be directly used as a fast tool for uncertainty quantification
(for example with Monte Carlo type methods), but it is also a useful tool for the parametric solution
of black-box models, including PDEs. We also foresee application of this surrogate model in the
solution of inverse problems. The freedom in the weighing function of the minimum spanning tree
offers many applications, such as adaptive sampling for reliability analysis, where the weighing
function may be adapted such that samples are placed in regions of low probability.

Currently, the MST-ME method does not include the option to detect discontinuities that do not
divide the random space into several simply connected subdomains. Furthermore, the MST-ME
method can not yet preserve the symmetry in the node distributions, which might be advantageous
in certain special cases (e.g. when both the model and the underlying PDF of the random variables
are symmetric). Lastly, the least orthogonal interpolation does not necessarily use all sample points
in the construction of the local approximation. By adding a term to the weight function of the min-
imum spanning tree, which accounts for the stability of the interpolant (as is done for example in
Leja nodes [40]), the sample locations may be further improved, such that all samples are used in
the construction of the interpolant.

What did we achieve?
This chapter discussed how to effectively place your samples in the random space when the QoI
possesses a discontinuity in the random space. By effectively placing samples based on the proposed
MST-ME method, we are able to construct an accurate surrogate, even when a discontinuity is
present, also in high-dimensional spaces.
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PDE-informed sampling

A novel refinement measure for non-intrusive surrogate modelling of PDEs with uncertain
parameters is proposed. Our approach uses an empirical interpolation procedure, where the
proposed refinement measure is based on both the PDE residual and the PDF. An important
strength is that it excludes parts of the PDE solution that are not required to compute the QoI.
The PDE residual used in the refinement measure is computed by using all the partial deriva-
tives that enter the PDE separately. The proposed refinement measure is suited for efficient
parametric surrogate construction when the underlying PDE is known, even when the param-
eter space is non-hypercube, and has no restrictions on the type of the discretisation method.
Therefore, we are not restricted to conventional discretisation techniques, e.g., finite elements
or finite volumes, and the proposed method is shown to be effective when used in combination
with recently introduced neural network PDE solvers. We present several numerical exam-
ples with increasing complexity that demonstrate accuracy, efficiency and generality of the
method.

Background
As stated in the introduction, the goal of part I is to reduce the required number of samples when
constructing an accurate surrogate for a QoI that is complicated by either possessing discontinuities
or lives in a high-dimensional space. We already discussed how to effectively sample the QoI in the
presence of discontinuities. In this chapter we will discuss how to deal with high-dimensional and/or
non-rectangular random spaces by incorporating knowledge from the underlying PDE and PDF.
Commonly used non-intrusive methods, e.g., stochastic collocation, place samples that are based
on the input uncertainties and do not use the sampled QoI to determine samples locations, which
may result in placing samples in regions where the QoI does not provide any additional information.
In order to place samples more effectively, methods like empirical interpolation [41, 42, 43, 44]
and ‘best’ interpolation [45, 46] were introduced. These alternatives sample the model adaptively
in order to reduce the number of samples required for constructing an accurate surrogate model.
Furthermore, the empirical interpolation approach enhances adaptive sampling by incorporating
knowledge from the underlying model in terms of the PDE residual, which is a measure of how
well a discrete approximation satisfies the model. Even though this results in a significant decrease
in the number of samples compared to methods that do not take the model into account, the method
is still unsuited for uncertainty propagation with a large number of uncertainties. One reason for
this is that the empirical interpolation bases sample placement on the entire solution, rather than
focusing on the QoI. Furthermore, when interested in the statistical properties of the QoI, e.g.,
mean and variance, using only the residual as a measure for adaptive sampling placement is not
efficient, as it does not utilise the PDF, which is used in the calculation of these quantities.



Our Approach

The highlights of the new approach are:

• Refinement procedure for empirical interpolation is proposed which works not only for elliptic
PDEs;

• Incorporates both PDE information and probability density information of the uncertain pa-
rameters;

• Suited for efficient surrogate construction on non-hypercube domains;

• Faster convergence dependent on the QoI when compared to conventional empirical interpo-
lation;

• No restrictions on the underlying discretization, e.g., finite elements or finite volumes;

• Perfectly suited to combine with new state-of-the-art neural network based PDE solvers.
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1 Preliminaries

In order for our approach to work, we need to assume a specific form of the underlying PDE (P. 1)
(page 16), which is given by:

nl

∑
l=1

Gl(z,x)Ll(v;x) = S (z,x) , (x,z) ∈ D× Iz , (2.1)

supplemented with proper initial and boundary conditions. In (2.1), nl denotes the number of dif-
ferential operators in the PDE, z ∈ Iz ⊂ Rd a d-dimensional vector containing uncertain parameters
with corresponding joint PDF ρ(z), x ∈ D a vector containing spatial and/or temporal coordinates,
Ll differential operators, Gl known functions, S a source term, and v(z,x) the exact solution of the
PDE. This particular explicit PDE-form, where the uncertainties enter the equation via the source
term S (z,x) and via the functions Gl(z,x) as uncertain coefficients in front of differential opera-
tors, is more restrictive than the more general form F(v,x) = 0. The explicit form is used because
it allows for the definition of a non-zero residual in the random space Iz. This PDE-form does not
comprise all possible PDEs, but many PDEs with parametric uncertainties, e.g., isotropic diffusion
equations, Navier-Stokes equations and advection-diffusion equations, may be written in this form:

ve
t = z1ve

xx , (2.2)
ve

t + z1ve
x = z2(x)ve

xx , (2.3)

ve
t +(ve ·∇)ve =−∇pe

ρ
+ z∆ve . (2.4)

Because the exact solution of (2.1) is often not available, a discrete solution vector v(z,x) is com-
puted, e.g., via a finite-difference method or finite-volume method, which satisfies a discretised
form of (2.1) for z ∈ Iz:

nl

∑
l=1

Gl(z,X)Ll(v(z)) = S(z,X) , X ⊂ D,v ∈ RNPDE . (2.5)

Here Ll : RNPDE →RNPDE are the discretised PDE operators, X = (x1, ...,xNPDE) is the computational
grid in space and time, consisting of NPDE grid points, Gl ∈ RNPDE×NPDE are diagonal matrices with
diagonal entries Gl,ii(z,X)= gl(z,Xi), and S(z,X)∈RNPDE is the source term vector. In case of finite
difference methods, the source term vector S is the source term evaluated on the computational
grid, but in the case of finite volume or finite element methods the source vector may involve
discretisation operations as well. The initial and boundary conditions also enter via the source term
S. The uncertainties enter the equations via the source term and the matrices Gl , which comprise
the function Gl evaluated on the computational grid X .

We are again interested in the dependence of the QoI q on the parameters z. In this chapter we
also assume a specific form for the operator Q that is used in (P. 2). The QoI is a vector q(z) and
is assumed to be a set of linear combinations of the discrete solution vector v, i.e., q(z) = Qv(z),
where

Q : RNPDE → RNQoI , (2.6)

is a matrix that maps the solution vector v to the QoI q. This assumption allows for a suitable
refinement measure for sampling, which is introduced later. By assuming linearity of Q we limit
the space of possible QoIs, but this limitation is not too severe as many quantities, e.g., integral
quantities and mean quantities, can be written in this form.
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difference methods, the source term vector S is the source term evaluated on the computational
grid, but in the case of finite volume or finite element methods the source vector may involve
discretisation operations as well. The initial and boundary conditions also enter via the source term
S. The uncertainties enter the equations via the source term and the matrices Gl , which comprise
the function Gl evaluated on the computational grid X .

We are again interested in the dependence of the QoI q on the parameters z. In this chapter we
also assume a specific form for the operator Q that is used in (P. 2). The QoI is a vector q(z) and
is assumed to be a set of linear combinations of the discrete solution vector v, i.e., q(z) = Qv(z),
where

Q : RNPDE → RNQoI , (2.6)

is a matrix that maps the solution vector v to the QoI q. This assumption allows for a suitable
refinement measure for sampling, which is introduced later. By assuming linearity of Q we limit
the space of possible QoIs, but this limitation is not too severe as many quantities, e.g., integral
quantities and mean quantities, can be written in this form.

2 Our approach in short
In this work, an empirical interpolation procedure related to [42, 44, 45, 47, 48, 49, 50, 51] is
proposed, with the main differences that: first, the PDF of the parameters is included in the sampling
algorithm, and second, fewer restrictions on the type of the PDE are imposed (when compared to
e.g. [50]), and third, the residual is based on the QoI and not on the entire PDE solution. A relation
between the error in the surrogate and the PDE residual is given, which justifies the residual as
a refinement measure for surrogate construction. Furthermore an alternative refinement measure,
which incorporates the PDF, is proposed when interested in the statistical properties of the QoI.
Using both the residual and PDF as a measure for defining new sampling locations, leads to accurate
statistical properties of the QoI, which converge significantly faster than the procedures in [42, 44,
45]. Additionally, it is shown that the proposed method is suited for efficient surrogate construction
on complex topologies, which is a common problem in the case of dependent input uncertainties.
Our method does not require a specific type of PDE discretisation, e.g., finite elements or finite
volumes, and can in fact also be used in combination with state-of-the-art neural network solvers
[52]. A key part of our approach is the use of the PDE residual, which is discussed later in more
detail. In order to compute this residual, the black-box solver needs to give not only the solution
values, but also derivatives with respect to spatial and/or temporal coordinates and will be referred
to as a gray-box. This introduces a small degree of intrusiveness in our approach, although no
changes to the model equations are necessary. Our approach is therefore still referred to as a non-
intrusive approach. As our approach is still considered to be non-intrusive and uses a combination
of the PDE residual and PDF of the uncertain parameters as a refinement measure, we refer to the
proposed method as Non-Intrusive PDE/PDF-informed Adaptive Sampling (NIPPAS).

The goal in this work is twofold: either construct an accurate surrogate q̃(z) for q(z) or calcu-
late statistical properties of q(z) with respect to the uncertain parameters z. The latter, calculating
statistical properties, is typically achieved by the former, constructing a surrogate, in combination
with Monte Carlo sampling of the surrogate to extract the statistical quantities. However, if we are
only interested in the statistical properties of the QoI, the surrogate does not need to be accurate
everywhere, as some areas of the random space contribute little when calculating these statisti-
cal properties. Nevertheless, whether we are interested in constructing an accurate surrogate to
study the dependency of the QoI on the parameters z, or whether we are interested in the statistical
properties of the QoI, a surrogate needs to be constructed. We construct a surrogate by solving the
discretised PDE (2.5) and by sampling values from q(z). We sample the QoI q(zi) at N+1 locations
{zi}N

i=0 in the random space Iz. The QoI evaluations q(zi) are calculated as follows

nl

∑
l=1

Gl(z,X)Ll(v(z)) = S(z,X)

︸ ︷︷ ︸
solve PDE for z=zi

⇒ q(zi) = Qv(zi) . (2.7)

The PDE-solver is assumed to be a gray-box, which means that we supply inputs and receive out-
puts, with the possibility to observe intermediate calculated quantities, but without the possibility
to alter the intermediate steps. After sampling, a surrogate model q̃(z) is constructed by means of
polynomial interpolation on the samples {(zi,q(zi))}N

i=0. The interpolant is constructed individually
for each element of q, such that:

q̃ j(z)≈ q j(z), for all z ∈ Iz , with q̃ j(zi) = q j(zi) i = 0, ...,N , (2.8)

where q j corresponds to the j-th element of the vector q. The element-wise approximation for the
entire QoI vector q is denoted as q̃. Polynomial interpolation is used instead of polynomial re-
gression as it allows for more efficient adaptive refinement and has extensive theoretical grounding.
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When interpolating, placing a new sample ensures that the new surrogate model is accurate in a
neighbourhood around the newly added sample and has therefore immediate impact on the surro-
gate in the sampled area. This ensures improved accuracy near the new sample location, something
which is not necessarily the case when using regression. Choosing proper sample locations zi is
crucial for stable and accurate interpolation and this will be the main focus of this chapter.

Many UQ methods focus either on the PDF [53] or on the PDE residual [42, 44, 45, 50] for adap-
tive sample placement. The PDF indicates which values for z are likely to happen and are therefore
important to sample. The PDE residual however gives an indication where surrogate refinement is
needed in order for the surrogate to satisfy the underlying PDE. In this chapter we propose a novel
strategy, in which the importance of both the PDE and PDF is taken into account in determining the
sample locations. Finding a set of sample locations, which resembles the importance of both the
underlying PDE and the PDF, is the goal of this chapter.

3 Non-intrusive PDE/PDF-informed adaptive sampling

The locations of the interpolation samples determine the accuracy and stability of the surrogate
model. We aim for accuracy and stability by constructing a set of interpolation nodes adaptively, by
using knowledge from the underlying PDE as refinement measure.

3.1 Residual definition

For this purpose we define the PDE residual, which indicates how well an approximation of the
parametric PDE solution satisfies the parametric discretised PDE in the random space Iz. An intu-
itive definition of the residual can be obtained by first constructing approximations ˜Ll(v(z)) in the
random space based on evaluations Ll(v(zi)) and interpolation (2.8), and substituting these approx-
imations into the discretised PDE (2.5):

Rv(z) :=
nl

∑
l=1

Gl(z,X) ˜Ll(v(z))−S(z,X) . (2.9)

The quantity Rv indicates how well the approximations ˜Ll(v(z)) satisfy the discretised PDE in the
random space Iz.

3.2 Relation between residual and surrogate error

The residual Rv(z) is a quantity that indicates the quality of a parametric approximation by substi-
tuting the approximation into the discretised PDE and by calculating the error. The next theorem
states a relation between the residual Rv and the error in the surrogate q̃ for linear PDEs, which is
used later to define a suitable refinement measure for placing new samples in the random space.

Theorem 1. Assume the following:

• Bounded random space Iz.

• Stable discretization of well-posed linear PDE with probability 1 for all z ∈ Iz, of the form

nl

∑
l=1

Gl(z,X)Ll(v(z)) = S(z,X) , X ⊂ D,v ∈ RNPDE . (2.10)
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The quantity Rv indicates how well the approximations ˜Ll(v(z)) satisfy the discretised PDE in the
random space Iz.

3.2 Relation between residual and surrogate error

The residual Rv(z) is a quantity that indicates the quality of a parametric approximation by substi-
tuting the approximation into the discretised PDE and by calculating the error. The next theorem
states a relation between the residual Rv and the error in the surrogate q̃ for linear PDEs, which is
used later to define a suitable refinement measure for placing new samples in the random space.

Theorem 1. Assume the following:

• Bounded random space Iz.

• Stable discretization of well-posed linear PDE with probability 1 for all z ∈ Iz, of the form

nl

∑
l=1

Gl(z,X)Ll(v(z)) = S(z,X) , X ⊂ D,v ∈ RNPDE . (2.10)

• Ll are discretised linear differential operators, i.e., matrices satisfying:

Ll(v+w) = Llv+Llw . (2.11)

• Interpolation and matrix multiplication commute, i.e., L̃lz = Ll z̃.

• Gl(z,X) are known matrices as functions of z and X.

• QoI vector can be written as q = Qv, where Q ∈ RNQoI×NPDE .

Then the following holds:

Q

(
nl

∑
l=1

Gl(z,X)Ll

)−1

(Rv(z)) = q̃(z)−q(z) , (2.12)

where q̃ is the interpolant in the random space Iz for each element of the vector q, based on the
samples {(zi,q(zi)}N

i=0.

Proof. Substitution of assumption 1 into (2.9) gives

Rv(z) =
nl

∑
l=1

Gl(z,X)Ll(ṽ(z))−S(z,X) . (2.13)

Subtracting equation (2.10), results in

Rv(z) =
nl

∑
l=1

Gl(z,X)Ll(ṽ(z))−
nl

∑
l=1

Gl(z,X)Ll(v(z))
︸ ︷︷ ︸

S(z,X)

. (2.14)

This can be rewritten by using linearity of L as

Rv(z) =
nl

∑
l=1

Gl(z,X)Ll(ṽ(z)−v(z)) . (2.15)

Using well-posedness of the underlying discretised PDE, we can write
(

nl

∑
l=1

Gl(z,X)Ll

)−1

(Rv(z)) = ṽ(z)−v(z) , (2.16)

which can be multiplied by the matrix Q to obtain the desired result

Q

(
nl

∑
l=1

Gl(z,X)Ll

)−1

(Rv(z)) = q̃(z)−q(z) , (2.17)

The commutation assumption (assumption 4) holds for a wide variety of interpolation operators and
especially for the one used in this chapter (discussed in section 5.1). Theorem 1 states a relation
between the residual and the error in the QoI surrogate. From this relation we can derive the error
bound stated in the following corollary.

Corollary 1. Assume the following:
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• The conditions of theorem 1 are satisfied, such that (2.12) holds.

Then the error ‖q̃(z)−q(z)‖2 satisfies

‖q̃(z)−q(z)‖2 ≤ ‖Q‖2

∥∥∥∥∥∥

(
nl

∑
l=1

Gl(z,X)Ll

)−1
∥∥∥∥∥∥

2

‖Rv(z)‖2 , (2.18)

where ‖ · ‖2 is the vector 2-norm or its induced matrix norm.

Corollary 3.1 states an upper bound for the error in the surrogate in terms of the residual and the
discretised differential operator, which gives an indication where the surrogate q̃ deviates signifi-
cantly from the exact solution. Equation (2.18) holds for any induced matrix norm. In this chapter
we adopt the 2-norm. For specific types of PDEs, e.g. elliptic PDEs, stricter error bounds can be
formulated [50].

3.3 Refinement measure for adaptive sampling
The goal is to sample the QoI in the random space Iz such that we can construct an accurate sur-
rogate model for the QoI by means of polynomial interpolation. Theorem 1 shows that a suitable
refinement measure for a linear underlying PDE is given by

R∗(z) = Q

(
nl

∑
l=1

Gl(z,X)Ll

)−1

Rv(z) . (2.19)

If samples are placed such that R∗ converges to zero, then the error in the surrogate also converges
to zero. Using polynomial interpolation for the approximations ˜Ll(v(z)) in Rv ensures that Rv is
close to zero in the neighbourhood of the interpolation samples. The quantity

(
∑nl

l=1 Gl(z,X)Ll
)−1

is a function of z, but does not depend on the choice of interpolation samples and therefore acts as a
scaling function for the residual Rv. This justifies using a greedy approach for placing new samples
as follows:

znew = argmax
z∈Iz

‖R∗(z)‖2 . (2.20)

The construction of ˜Ll(v(z)) in Rv is a crucial step in the NIPPAS method and is therefore discussed
in detail, in section 4. However, when using R∗ as a refinement measure, there are two issues:

• The term
(
∑nl

l=1 Gl(z,X)Ll
)−1 is a-priori unknown and expensive to compute.

• Equation (2.19) holds for linear PDEs only.

The inverse of the full discretisation matrix is unknown in general and cannot be used for adaptive
sample placement, as it is expensive to compute as a function of z. However, as this term only
acts as a scaling function, omitting this term may result in a compact refinement measure for the
quantities that are used to compute the QoI. This particular residual is then computed as follows:

R(z) := QRv(z) . (2.21)

Notice that in comparison to R∗, R can be computed for both linear and non-linear PDEs. Intu-
itively, we might expect that the refinement measure R(z) produces accurate and stable interpolants
in combination with the greedy sample placement, because large errors and/or instabilities in the
surrogate would lead to large errors in the residual, which then triggers new sample placement due
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• The conditions of theorem 1 are satisfied, such that (2.12) holds.

Then the error ‖q̃(z)−q(z)‖2 satisfies

‖q̃(z)−q(z)‖2 ≤ ‖Q‖2

∥∥∥∥∥∥

(
nl

∑
l=1

Gl(z,X)Ll

)−1
∥∥∥∥∥∥

2

‖Rv(z)‖2 , (2.18)

where ‖ · ‖2 is the vector 2-norm or its induced matrix norm.

Corollary 3.1 states an upper bound for the error in the surrogate in terms of the residual and the
discretised differential operator, which gives an indication where the surrogate q̃ deviates signifi-
cantly from the exact solution. Equation (2.18) holds for any induced matrix norm. In this chapter
we adopt the 2-norm. For specific types of PDEs, e.g. elliptic PDEs, stricter error bounds can be
formulated [50].

3.3 Refinement measure for adaptive sampling
The goal is to sample the QoI in the random space Iz such that we can construct an accurate sur-
rogate model for the QoI by means of polynomial interpolation. Theorem 1 shows that a suitable
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R∗(z) = Q

(
nl

∑
l=1

Gl(z,X)Ll

)−1

Rv(z) . (2.19)
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)−1 is a-priori unknown and expensive to compute.
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acts as a scaling function, omitting this term may result in a compact refinement measure for the
quantities that are used to compute the QoI. This particular residual is then computed as follows:

R(z) := QRv(z) . (2.21)

Notice that in comparison to R∗, R can be computed for both linear and non-linear PDEs. Intu-
itively, we might expect that the refinement measure R(z) produces accurate and stable interpolants
in combination with the greedy sample placement, because large errors and/or instabilities in the
surrogate would lead to large errors in the residual, which then triggers new sample placement due

to the greedy approach. A commonly used quantity that is used to indicate the quality of a set of
sample locations is the Lebesgue constant [54]. We note that our proposed greedy approach does
not necessarily result in sample locations with an optimal Lebesgue constant, but effectively uses
the model information to sample regions of interest, similar to other approaches [40, 42, 45, 55].

To summarise, R is our proposed refinement measure, as it is less expensive to compute and
more generally applicable when compared to R∗. A numerical comparison for both refinement
measures is given in section 6 for a case where R∗ can still be computed. Furthermore, the ef-
fectiveness of using R as a refinement measure for the case of non-linear PDEs is demonstrated
numerically in section 6.

3.4 Incorporating PDF in refinement measure
Although using the residual R(z) as a refinement measure for adaptive sampling may result in
stable and accurate surrogate models, the sampling procedure may put too many resources in areas
that contribute little to the statistical quantities. Such areas are of little interest when we compute
statistical quantities like the mean

E[u] :=
∫

Iz
ρ(z)q(z)dz . (2.22)

These statistical quantities are calculated by weighing the QoI with the PDF and integrating the
resulting quantity over the parameter space Iz. Areas of Iz where both the PDF and QoI are low,
contribute little to the integral in (2.22) and therefore an alternative refinement measure is proposed,
which is especially suited when one is interested in accurate statistical quantities rather than an
accurate surrogate model. The proposed refinement measure is based on the following theorem:

Theorem 2. Assume the following:

• The conditions of theorem 1 are satisfied, such that (2.12) holds.

• E[q̃] and E[q] are finite.

Then the following holds:

‖E[q̃−q]‖2 ≤ vol(Iz)sup
z∈Iz

s(z)ρ(z)‖Q‖2‖Rv(z)‖2 , (2.23)

where

s(z) =

∥∥∥∥∥∥

(
nl

∑
l=1

Gl(z,X)Ll

)−1
∥∥∥∥∥∥

2

. (2.24)

The proof of the theorem follows the proof of theorem 1 and bounds the integral by multiplying the
domain volume with a bound for the integrand. The full proof is not shown to avoid repetition.

Theorem 2 states a relation between the residual and the error in the mean of the QoI. The
theorem shows that a proper refinement measure again includes the inverse of the full differentiation
matrix. As stated before, this value is unknown in general as a function of z and is expensive to
sample. Therefore the proposed refinement measure for calculating statistical quantities is given by

Rρ(z) := ρ(z)QRv(z) = ρ(z)R(z) , (2.25)

and new samples are placed using the greedy approach

znew = argmax
z∈Iz

‖Rρ(z)‖2 . (2.26)
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Refinement measure (2.25) will not place new samples in parts of the random space where the PDF
is zero, but is still able to place samples at “rare events” in the random space, i.e., parts where the
PDF is small but where the PDE residual is large.

A comparison of the refinement measures (2.21) and (2.25) for convergence of both surrogate
construction and statistical quantity calculation is made in section 6.

3.5 Overview of method

Residual definitions (2.21) and (2.25) are used in the NIPPAS method to adaptively refine a surro-
gate model q̃(z). In detail, the NIPPAS method comprises the following steps:

1. initial sample placement

2. refinement loop:

(a) compute residual R(z) or Rρ(z)

(b) check stopping criterion

(c) find znew = argmaxz∈Iz ‖R(z)‖2 or ‖Rρ(z)‖2

(d) sample model at znew

3. interpolate resulting samples

A schematic representation of the methodology is shown in figure 2.1. The choice of using either
refinement measure (2.21) or (2.25) depends on whether the interest is in constructing an accu-
rate surrogate or calculating accurate statistical quantities. The individual steps of the proposed
surrogate model construction are discussed in detail in the next section. Before discussing the NIP-
PAS method steps, the connection is shown between the NIPPAS method and a general empirical
interpolation method.

initial sample placement interpolate samples

q q

z z

compute residual

R

z

sample model

q

z

surrogatemodel evaluation 

refinement loop

I

find maximum

R

z

maximum
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II-bII-a III
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Figure 2.1: Schematic representation of the methodology.
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The refinement measures were derived from theory for linear PDEs. We will show in section
6 that the proposed refinement measures also work for a non-linear underlying PDE. Stable poly-
nomial interpolating surrogates show clustering samples at the boundary of the domain [54]. Even
though stability is not proven for the proposed method, it follows intuitively from using the greedy
approach in combination with the residual. If samples do not cluster at the boundaries, then the ap-
proximations used to calculate the residual become unstable. These unstable interpolants produce
large errors near the boundary of the domain because of the Runge-phenomenon. This results in
large residual values, which leads to sample placement near the boundary of the domain. Lastly,
note that the sample locations from the NIPPAS method are in general scattered, which complicates
constructing an interpolant on these samples. This aspect will be discussed in more detail in section
5

3.6 Connection with empirical interpolation
Our NIPPAS method has similarities to the classical empirical interpolation procedure [42, 44,
45, 50]. The main difference between general empirical interpolation and the NIPPAS method is
the way in which the residual is constructed. In empirical interpolation the residual is based on the
entire spatial/temporal surrogate ṽ, rather than on the QoI q̃. Consequently, the residual in empirical
interpolation is defined as

REI(z) =
nl

∑
l=1

Gl(z,X)Ll(ṽ(z))−S(z,X) , (2.27)

which has the advantage that one only needs to approximate a single term, i.e., ṽ(z), instead of

constructing several approximations ˜Ll(v(z)). However, the disadvantage is that the refinement
measure REI adds a degree of intrusiveness as it assumes that the operators Ll are known completely
[43], which is not always the case and restricts the applicability.

An advantage of the NIPPAS method is that it focuses the sample placement on regions where q̃
needs to be refined, rather than where ṽ needs to be refined. The NIPPAS method therefore focuses
on areas in the parameter space that are most relevant for constructing an accurate surrogate for
q, which results in faster convergence. The disadvantage is that the NIPPAS method requires the
observation of calculated quantities in the PDE-solver, i.e., calculated partial derivatives, which will
be discussed in section 4.

4 Algorithm in detail
The Non-Intrusive PDE/PDF-informed Adaptive Sampling (NIPPAS) method when using refine-
ment measure R is shown in this section. The procedure when using Rρ is analogous. A schematic
overview of the NIPPAS method is shown in figure 2.1.

I. Placement of one random initial sample
The adaptive algorithm starts by performing initial sampling in the random space. Multiple initial
sample configurations can be considered. It is advised to start the method with a single Monte-
Carlo sample in the random space. Other configurations that initially place multiple samples in
the random space are also possible. However, this introduces additional degrees of freedom in the
initialisation phase, which are in principle unneeded, as the method is perfectly capable of choosing
proper sample locations from the start with only one initial sample. This initialisation is used in
the remainder of this chapter. The initial sample location and corresponding model evaluation is
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denoted as (Z0,VQ,0) = (z0,q(z0)). More generic, a subscript i indicates the number of adaptively
placed samples, i.e., Zi = {z j} j=i

j=0 and VQ,i = {q(z j)} j=i
j=0.

II-a. Non-intrusive computation of residual
The refinement loop starts with computing the residual (2.21).

The residual requires the approximations ˜Ll(v(z)). These approximations can be easily con-
structed for a given sample set Zi by applying an interpolation operator P (to be discussed in section
5.1) on the values {Ll(v(zi))}i

j=0. However, the gray-box solver in general only returns the so-
lution values v(zi), and should be altered such that it also returns the values of the individual
discretised differential operators Ll(v(zi)). These discretised partial derivatives are used to com-
pute the solution values within the solver and may be output alongside the solution when sampling
PDE solutions. This requires only a slight alteration of the solver, without changing the underlying
PDE, and therefore keeps the methodology non-intrusive. To summarise, the approximations of the
differential operator terms are given by

Ll(v(z))≈ ˜Ll(v(z)) = P[(Zi,(LlV )i] , l = 1, ...,nl , (2.28)

where
(LlV )i = {Ll(v(z0)), ...,Ll(v(zi))} , l = 1, ...,nl , (2.29)

which are the values that should be returned by the gray-box solver alongside the solution values v.
After approximating each differential operator term in the random space through interpolation, the
interpolants are substituted into (2.21), which returns a function in the variable z. Notice that if the
gray-box solves (2.5) with negligible round-off and iteration error, then we satisfy

R(z j) = 0, j = 0, ..., i , (2.30)

which attains local maxima between the samples, as is shown in figure 2.1.

II-b. Stopping criterion based on the residual
The refinement loop has to be terminated after a number of iterations. For this purpose we need
a stopping criterion, which reflects the quality of the surrogate model. Equation (2.18) can be
used as a stopping criterion. However, (2.18) does not hold for non-linear PDEs and computing the
required norms would be intractable in general. Ideally, the residual will show a similar convergence
as the error in the surrogate. If this is the case, the magnitude of the residual is not only useful to
adaptively sample the gray-box, but it also serves as a reliable indication for the quality of the
surrogate. Therefore, the refinement loop is stopped when the following criterion is met:

‖R(z)‖2 < ε , (2.31)

where ε is a specified threshold. This norm is approximated using Monte Carlo sampling.

II-c. Find the location where the residual attains maximum
If criterion (2.31) is not met, the surrogate is refined by placing an extra sample according to (2.21).
In other words, we need to solve the following global optimisation problem in Iz:

zmax = argmax
z∈Iz

‖R(z)‖2 . (2.32)
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R(z j) = 0, j = 0, ..., i , (2.30)

which attains local maxima between the samples, as is shown in figure 2.1.

II-b. Stopping criterion based on the residual
The refinement loop has to be terminated after a number of iterations. For this purpose we need
a stopping criterion, which reflects the quality of the surrogate model. Equation (2.18) can be
used as a stopping criterion. However, (2.18) does not hold for non-linear PDEs and computing the
required norms would be intractable in general. Ideally, the residual will show a similar convergence
as the error in the surrogate. If this is the case, the magnitude of the residual is not only useful to
adaptively sample the gray-box, but it also serves as a reliable indication for the quality of the
surrogate. Therefore, the refinement loop is stopped when the following criterion is met:

‖R(z)‖2 < ε , (2.31)

where ε is a specified threshold. This norm is approximated using Monte Carlo sampling.

II-c. Find the location where the residual attains maximum
If criterion (2.31) is not met, the surrogate is refined by placing an extra sample according to (2.21).
In other words, we need to solve the following global optimisation problem in Iz:

zmax = argmax
z∈Iz

‖R(z)‖2 . (2.32)

The complexity of this global optimisation problem depends on characteristics of the objective
function R(z). The residual is in general not smooth and has multiple local maxima. Therefore, in
order to solve (2.32), a particle swarm method from the Global optimisation toolbox in Matlab is
used, which is able to solve non-smooth global optimisation problems.

The solution of the global optimisation problem (2.32) is denoted zmax and is used in the next
step to refine the surrogate.

II-d. Sample the model at the new sample location

To refine the surrogate model, we add the new sample zmax to our current sample set Zi:

Zi+1 = Zi ∪ zmax , (2.33)
VQ,i+1 =VQ,i ∪q(zmax) , (2.34)

(LlV )i+1 = (LlV )i ∪Ll(v(zmax)) , l = 1, ...,nl . (2.35)

The new sample set (LlV )i+1 is suited for constructing an improved approximation L̃l(v), see equa-
tion (2.28), which is used in the next iteration of the refinement loop.

III Final surrogate is constructed by interpolation

After the stopping criterion (2.31) has been met, the refinement loop terminates and we end up with
a sample set Zn and an evaluation set Qn. In order to construct the final surrogate, we apply the
interpolation operator P on the final sample set, leading to

q̃(z) = P[(Zn,VQ,n)] , (2.36)

where q̃ is expected to be an accurate approximation to q. If wanted, statistical quantities like (2.22)
can be computed by using this surrogate to compute the desired integrals.

5 Implementation details
In this section some implementation details are discussed.

5.1 Surrogate modelling by polynomial interpolation for scalar QoIs

Interpolation for a scalar QoI is discussed here. Interpolation for a vector QoI is achieved by apply-
ing the interpolation operator to each element of the QoI vector individually.

Assume we have a sample set Z = {zi}N
i=0 and corresponding QoI values VQ = {q(zi)}N

i=0. As
mentioned in section 4, we denote by P the interpolation operator which acts on the set (Z,VQ).
Polynomial interpolation aims to find a polynomial q̃, such that:

q̃(zi) = P[(Z,VQ)](zi) = q(zi) . (2.37)

The polynomial q̃ serves as a surrogate for q(z). Finding q̃ is straightforward in a 1D random space,
but interpolation in multi-dimensional random spaces is not unique, and the result is influenced by
the choice of interpolation basis. Additionally, the sample locations from our adaptive sampling are
scattered, which further complicates the interpolation procedure. In order to make the interpolation
basis unique, graded lexicographic ordered Chebyshev polynomials {φi(z)}N

i=0 are used, which are
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known for their stability when using them for interpolation [54]. The interpolant is found by solving
a Vandermonde system [53]:




φ0(z0) . . . φN(z0)
...

...
φ0(zN) . . . φN(zN)




︸ ︷︷ ︸
A




c0
...

cN


=




q(z0)
...

q(zN)


 , (2.38)

which results in the interpolant

q̃(z) =
N

∑
i=0

ciφi(z) . (2.39)

The Vandermonde matrix A can become ill-conditioned when increasing the number of samples
[56], which makes solving (2.38) difficult. Nevertheless, other approaches that circumvent solving
(2.38) [14, 57, 58] do not have the flexibility to reuse calculations done in the previous iterations
for solving the larger system at the current iteration. This leads to a significant increase in compu-
tational expense as the adaptive sampling placement is done iteratively. Therefore, Vandermonde
interpolation is used in the NIPPAS method, and a robust procedure for solving the possibly ill-
conditioned system (2.38) is used.

Several methods exist for solving ill-conditioned systems of equations: regularisation [59], sin-
gular value decomposition [60], pivoted LU-factorisation [61], and pseudo-inversion [62]. In prac-
tice, computing the pseudo-inverse is often not advised due to its computational cost, which is
O(N3). However, our adaptive sampling algorithm requires the solution of multiple linear systems
with the same Vandermonde matrix A at each iteration, which makes the use of a pseudo-inverse
beneficial. Nevertheless, computing the full pseudo-inverse at each iteration would be inefficient
and therefore Greville’s algorithm [63] is used to update the pseudo-inverse after adding a new
row/column to A. Consequently, interpolating polynomials can be constructed without solving the
full linear system (2.38) and without computing the full pseudo-inverse each time the interpolation
operator P is applied. The implementation of Greville’s algorithm is discussed in more detail in the
next subsection.

5.2 Rank-one update of pseudo-inverse

As mentioned before, when adding a new sample to the sample set, an extra row and column are
appended to the existing Vandermonde matrix (2.38). Therefore, a new pseudo-inverse needs to be
determined for this new Vandermonde matrix [63]. Instead of calculating the new entire inverse,
Greville’s algorithm is used to iteratively compute the pseudo-inverse of a given matrix A.

Assume we have a matrix A ∈ RN×N and its corresponding pseudo-inverse G. When a column
is added to A, i.e.,

A′ = [A a] , (2.40)

then Greville’s algorithm computes the pseudo-inverse of the new matrix A′ recursively. In more
detail, the new pseudo-inverse G′ of A′ is given by [64]

G′ =

(
G−dbT

bT

)
, (2.41)
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G′ =

(
G−dbT

bT
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where

a(1) = AGa , a(2) = a−a(1) , (2.42)
d = Ga , (2.43)

bT =





(a(2))
H

(a(2))
H

a(2)
, if a(2) �= 0 ,

(1+dT d)−1dT G , if a(2) = 0 ,

(2.44)

where the H denotes the conjugate transpose. Notice that our refinement loop adds both a row
and a column to the Vandermonde matrix (2.38), each time a new sample is added. Therefore the
procedure described above has to be performed twice, first adding a column A′ = [A c], then adding
a column rT to the transpose of the resulting matrix, i.e., (A′′)T = ((A′)T rT ).

A recursive algorithm for calculating the pseudo-inverse is necessary to reduce the algorithmic
complexity of the adaptive sampling procedure. For an N×N matrix, Greville’s algorithm performs
an inverse update with complexity O(8N2), while computing the full inverse directly has complexity
O(N3) [63] and becomes infeasible quickly in high dimensional spaces Iz, where the number of
samples required for constructing an accurate surrogate is high.

5.3 Algorithmic complexity scales well for high dimensions
The algorithmic complexity gives an estimate on how the computational effort scales with the num-
ber of samples and the dimension of the random space.

• The computational complexity is determined by the complexity of the individual parts; up-
dating pseudo-inverse, interpolation, and particle swarm optimisation. First we discuss the
algorithmic complexity of a single iteration in the refinement loop.

• Updating the pseudo-inverse is achieved by using Greville’s algorithm. Assume a row and
column are added to an existing pseudo-inverse of dimensions i× i. Using Greville’s algo-
rithm, this can be done in O(8i2) operations [63] (discussed in section 5).

• The interpolation procedure is fairly cheap when the pseudo-inverse is available. In detail,
when interpolating on i sample locations, solving (2.38) only requires a matrix-vector multi-
plication of O(i2) operations.

• The complexity of the particle swarm optimisation is determined by the number of particles
used and the maximum number of iterations. In our case we use a particle swarm of Np
particles and a maximum of Nit iterations. Typical values for Np and Nit are 100dim(Iz) and
200dim(Iz), respectively. In the worst case, the number of maximum iterations is reached
and we have to evaluate the residual at NpNit locations, without the guarantee to have found
an optimum. Moreover, if we have i samples, then the residual is a polynomial of degree i−1
and can be evaluated with Horner’s method [56] in O(i) operations. This results in a total
cost of the particle swarm optimisation for a single iteration of the surrogate construction of
O(idim(Iz)

2nl), where nl is the number of terms in the PDE (2.5).

The total cost of each iteration in the refinement loop is now given by:

O( i2︸︷︷︸
Greville

+ i2︸︷︷︸
interpolation

+ idim(Iz)
2nl︸ ︷︷ ︸

particle swarm optimisation

) . (2.45)

Hence, if we run the refinement loop N times, a conservative upper bound for the total algorithm
complexity becomes

O(N3 +N2 dim(Iz)
2nl) . (2.46)
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Notice that the complexity depends quadratically on the dimension of the random space. However,
the number of samples necessary for achieving a specified accuracy in higher-dimensional random
space will generally increase with the number of dimensions, and computational cost will therefore
increase faster than quadratic with the dimension of the random space.

6 Results
In this section we present multiple examples that illustrate the efficiency of our method. In order to
study and compare convergence properties, two error measures are defined, one for the error in the
statistical quantities, i.e., mean, variance, etc., and one for the error in the surrogate.

The error in the k-th statistical moment is the 2-norm of the difference vector between the exact
and the approximate statistical moment as computed in (2.22):

e(k)ρ := ‖E[qk − q̃k]‖2 =

∥∥∥∥
∫

Iz
ρ(z)(qk(z)− q̃k(z))dz

∥∥∥∥
2
, (2.47)

where the integral is calculated using numerical integration with negligible error, i.e., a tensor based
Gauss quadrature rule with 100 nodes in each direction. The uncertainties are assumed to be uni-
formly distributed, ρ(z) = 1, unless stated otherwise.

Secondly, the error in the surrogate is computed as follows:

e :=
1

NMC

NMC

∑
i=1

‖q(zi)− q̃(zi)‖2 , (2.48)

where the sum is taken over a large number of uniform Monte-Carlo samples (NMC) in the random
space.

The first two test-cases consider a steady and unsteady advection-diffusion equation, respec-
tively. They demonstrate the difference between our approach and conventional empirical interpo-
lation, effect of discretisation on error convergence, difference between refinement measures (2.21)
and (2.25), and applicability to non-hypercube domains. The third and last test-case considers the
non-linear shallow water equations and demonstrates how our method can be used in combination
with a new state-of-the-art neural network based PDE solver.

6.1 Steady-state advection-diffusion equation
We first consider a test-case such that the assumptions in theorem 1 hold and we study the following:

• Comparison of refinement measure (2.21) and (2.19).

• Asymptotic sample distribution.

• Comparison between the NIPPAS method and conventional empirical interpolation.

The underlying PDE is the dimensionless steady state advection-diffusion problem given by:

Re(z)vx − vxx = 0 , v(0,z) = 0, v(1,z) = 1, x ∈ [0,1] , (2.49)

where Re(z) is the Reynolds number, which is assumed to be uncertain and a function of z. The
equations are discretised using a finite-difference approach on an equidistant grid with a resolution
of ∆x with NPDE grid points. The solution vector on the computational grid v(z) ≈ v(x), with
xi = i∆x for i = 1, ...,NPDE , is obtained by solving the following linear system:

Re(z)L1v−L2v = S(z) , (2.50)
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where the sum is taken over a large number of uniform Monte-Carlo samples (NMC) in the random
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The first two test-cases consider a steady and unsteady advection-diffusion equation, respec-
tively. They demonstrate the difference between our approach and conventional empirical interpo-
lation, effect of discretisation on error convergence, difference between refinement measures (2.21)
and (2.25), and applicability to non-hypercube domains. The third and last test-case considers the
non-linear shallow water equations and demonstrates how our method can be used in combination
with a new state-of-the-art neural network based PDE solver.

6.1 Steady-state advection-diffusion equation
We first consider a test-case such that the assumptions in theorem 1 hold and we study the following:

• Comparison of refinement measure (2.21) and (2.19).

• Asymptotic sample distribution.

• Comparison between the NIPPAS method and conventional empirical interpolation.

The underlying PDE is the dimensionless steady state advection-diffusion problem given by:

Re(z)vx − vxx = 0 , v(0,z) = 0, v(1,z) = 1, x ∈ [0,1] , (2.49)

where Re(z) is the Reynolds number, which is assumed to be uncertain and a function of z. The
equations are discretised using a finite-difference approach on an equidistant grid with a resolution
of ∆x with NPDE grid points. The solution vector on the computational grid v(z) ≈ v(x), with
xi = i∆x for i = 1, ...,NPDE , is obtained by solving the following linear system:

Re(z)L1v−L2v = S(z) , (2.50)

where

L1 =
1

2∆x




0 1
−1 0 1

. . . . . . . . .
−1 0 1
0 −1 0



, L2 =

1
∆x2




−2 1
1 −2 1

. . . . . . . . .
1 −2 1
0 1 −2




(2.51)

S(z) =




0
...
...
0

−Re(z)
2∆x − 1

∆x2




, (2.52)

where the boundary conditions enter the discretised equation via the vector S. Notice that the dis-
cretised PDE satisfies the assumptions of theorem 1. Example solutions for different Reynolds
numbers are shown in figure 2.2.
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Figure 2.2: Example solutions for different Reynolds number. The solution are computed on a computational
grid with ∆x = 10−3.

In order for the discretisation to produce stable results, the cell Reynolds number Re∆x = Re∆x
should satisfy Re∆x < 2, which is satisfied by picking ∆x sufficiently small, which is ∆x = 10−3 in
our case (NPDE = 1000).

There is no significant difference in convergence between refinement measures R and R∗

The difference between refinement measures R and R∗ is the incorporation of the scaling term(
∑nl

l=1 Gl(z,X)Ll
)−1 in R∗. This scaling term is in general expensive to compute as a function of z

and is therefore often infeasible to incorporate in the refinement measure. However, for this simple
test-case we can compute this scaling term as a function of z and are able to study its effect on
sample placement. In order to compare the two refinement measures R (2.21) and R∗ (2.19), three
different functional forms for Re(z) are used, where z is uniformly distributed between [0,1]. The
three different functional forms are given by:

Re1(z) = 99z+1 , (2.53)

Re2(z) = 102z , (2.54)

Re3(z) = 10−2(z−1) , (2.55)
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and are shown in figure 2.3. All three functions range from 1 to 100 for z ∈ [0,1], but have com-
pletely different shapes, which influence the scaling function and therefore the sample locations
when using refinement measure R∗.

A comparison between the two refinement measures R and R∗ is made by choosing Q = I, i.e.,
we are interested in the entire solution q = v as a function of z. The adaptive sample placement
starts by placing a single uniformly distributed sample in the random space. The solution values
and derivative values vx := L1v and vxx := L2v are sampled at the sample location. These values
are used to construct the interpolants which are required for computing Rv. The convergence of the
error in the surrogate ṽ(z) for both refinement measures and the different Rei is shown in figure 2.3.
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Figure 2.3: The results for the steady-state advection-diffusion equation for the two refinement measures
R and R∗ and three different Reynolds functions in the random space. The solutions are computed using
∆x = 10−3.

The error in the surrogate converges exponentially fast to machine precision for both refinement
measures without any significant difference. Samples are placed at similar locations for both refine-
ment measures, which is shown in the empirical CDF plot in figure 2.3. Regarding stability of the
interpolant, a clustering of samples occurs at the boundaries of the random space, which stimulates
stable interpolation.

Refinement measure R∗ uses all the terms that depend on z and should be optimal for sample
placement, see equations (2.12) and (2.19). However, the error in the surrogate is not only deter-
mined by sample placement, but also by the polynomial interpolation procedure. Consequently the
best refinement measure does not necessarily lead to the best convergence in the error. Including
the scaling term in R∗ appears to have little effect on the sample placement, at least for this simple
test-case. In fact, for this test-case one could refine directly on ‖q̃− q‖2 (because q is explicitly
known), and this gives the same results as refining based on R∗. As there is no significant differ-
ence between the two refinement measures, we use refinement measure R in the remainder of this
chapter, as it is more generally applicable.

NIPPAS method converges faster than conventional empirical interpolation
We compare convergence of the surrogate for the NIPPAS method based on (2.21) with the con-
ventional empirical interpolation based on (2.27). The main difference (in absence of incorporation
of the PDF) is the fact that empirical interpolation places new adaptive samples based on a residual
which is based on the entire solution v, whereas the NIPPAS method uses a residual based only on
the QoI q. To compare both methods, the QoI is set to q = (v)500 (the solution computed at the
middle of the computational grid, with Q = (0, ...,0,1,0, ...,0)), and the Reynolds number is given
by Re1(z). The convergence comparison is shown in figure 2.4.
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The error in the surrogate converges exponentially fast to machine precision for both refinement
measures without any significant difference. Samples are placed at similar locations for both refine-
ment measures, which is shown in the empirical CDF plot in figure 2.3. Regarding stability of the
interpolant, a clustering of samples occurs at the boundaries of the random space, which stimulates
stable interpolation.

Refinement measure R∗ uses all the terms that depend on z and should be optimal for sample
placement, see equations (2.12) and (2.19). However, the error in the surrogate is not only deter-
mined by sample placement, but also by the polynomial interpolation procedure. Consequently the
best refinement measure does not necessarily lead to the best convergence in the error. Including
the scaling term in R∗ appears to have little effect on the sample placement, at least for this simple
test-case. In fact, for this test-case one could refine directly on ‖q̃− q‖2 (because q is explicitly
known), and this gives the same results as refining based on R∗. As there is no significant differ-
ence between the two refinement measures, we use refinement measure R in the remainder of this
chapter, as it is more generally applicable.

NIPPAS method converges faster than conventional empirical interpolation
We compare convergence of the surrogate for the NIPPAS method based on (2.21) with the con-
ventional empirical interpolation based on (2.27). The main difference (in absence of incorporation
of the PDF) is the fact that empirical interpolation places new adaptive samples based on a residual
which is based on the entire solution v, whereas the NIPPAS method uses a residual based only on
the QoI q. To compare both methods, the QoI is set to q = (v)500 (the solution computed at the
middle of the computational grid, with Q = (0, ...,0,1,0, ...,0)), and the Reynolds number is given
by Re1(z). The convergence comparison is shown in figure 2.4.
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Figure 2.4: Convergence comparison for the NIPPAS method and conventional empirical interpolation for
the steady-state advection-diffusion equation.

The NIPPAS method enhances the surrogate by focusing on locations that are relevant for the QoI.
This leads to faster convergence for the NIPPAS method when compared to conventional empirical
interpolation. However, in case more solution values from the solution vector v would be incorpo-
rated, i.e., more non-zero entries in the columns of Q, the convergence speed-up will decrease and
eventually the convergence coincides with the one from empirical interpolation when the QoI uses
the entire solution vector v.

6.2 Unsteady advection-diffusion equation

In the previous example we applied the NIPPAS method to a steady-state PDE for a 1D random
space in order to compare refinement measures and to compare with conventional empirical inter-
polation. In this section we study the following:

• The effect of the discretisation method applied to the PDE.

• The accuracy of the NIPPAS method for approximating statistical moments in a 2D random
space.

• The construction of a surrogate model on non-hypercube domains.

Therefore, we thoroughly study the NIPPAS method for an unsteady advection-diffusion equation
with two parameter uncertainties. We start with a 2D hypercube random space and then gradually
increase the complexity of the test-case.

The underlying PDE is the 1D advection-diffusion equation, given by

vt + z1vx = z2vxx , (2.56)

where the advection parameter z1 and the diffusion parameter z2 are assumed to be uncertain and
uniformly distributed between [0,2π]. For the problem (2.56) to be well-posed, initial and boundary
conditions are required. A spectral spatial discretisation method [1] is used for solving (2.56) and
the boundary conditions are taken periodic for x ∈ [0,2π] and the initial condition is given by

v(x,0) = v0(x) = sin(x) . (2.57)

The spectral spatial discretisation is performed on an equidistant grid xi = (2πi)/Nx for i = 0, ...,Nx,
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where Nx = 256. This results in a solution vector v(t):

v(t) =




v0(t)
...

vNx(t)


 , (2.58)

where vi(t) is the approximate solution at grid point xi. Additionally, taking derivatives can be
written in terms of a matrix-vector multiplication

vx ≈ Dxv , (2.59)

vxx ≈ (Dx)
2v , (2.60)

where Dx is the spectral differentiation matrix [1]. As a result, the solution vector v(t) can be
obtained by solving the semi-discrete problem

vt + z1Dxv = z2D2
xv , (2.61)

which can be rewritten in the form (2.5) by discretising the time-derivative and formulating the
resulting set of equations in matrix form. Notice that this results in a block-diagonal system.

A surrogate is created for the quantity q(z1,z2) = vNx(1), which is the solution at the right
boundary of the physical domain at t = 1.

Effect of discretisation method is small
As we use a spectral method with a fine resolution for the spatial discretisation and the problem
is linear, the time integration error is expected to be dominant, and therefore the effect of the time
discretisation method is studied. The semi-discrete problem (2.61) is solved using different time
discretisation schemes, i.e., backward-Euler, Crank-Nicolson and fourth-order explicit Runge-Kutta
(RK4), where we fix the time step at ∆t = 10−5.

To demonstrate the efficiency of the NIPPAS method, convergence is compared to an adaptive
Smolyak approach [65]. The errors in the surrogate for both the NIPPAS method and the Smolyak
solution are computed by using a Monte-Carlo reference solution based on 5000 samples. Notice
that the reference solution changes, depending on the time discretisation. The reference solution for
a Crank-Nicolson time discretisation is shown in figure 2.5. The choice of the time discretisation
method affects the accuracy of the gray-box solver, and changes the shape of the surrogate slightly,
as different time discretisations do not give the same QoI at the exact same location in random space.
As a result, when changing the discretisation, a new reference solution has to be computed to study
convergence. To further clarify, there is a difference between the exact/wanted surrogate, which
is obtained by solving (2.1), and the discrete exact surrogate, obtained by solving the discretised
equations (2.5). This difference is shown in the following equation:

‖q− q̃Nx‖2︸ ︷︷ ︸
error w.r.t. exact solution

≤ ‖q−qNx‖2︸ ︷︷ ︸
discretisation error

+ ‖qNx − q̃Nx‖2︸ ︷︷ ︸
error w.r.t. discrete solution

, (2.62)

where q is the exact solution (solution of (2.1)), qNx is the discrete solution computed using Nx +1
grid points (solution of (2.5)), and q̃Nx is the surrogate based on the discrete solutions. For this
reason, we plot both the error in the surrogate with respect to the exact solution and the discrete so-
lution. The results are shown in figure 2.6. The error with respect to the discrete solution converges
to zero, with a convergence rate that is significantly faster than that for the adpative Smolyak sparse
grid. Convergence is non-monotonic, which is common for adaptive sampling methods [40]. The
error with respect to the exact solution stalls before machine precision is reached, which is due to
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solution are computed by using a Monte-Carlo reference solution based on 5000 samples. Notice
that the reference solution changes, depending on the time discretisation. The reference solution for
a Crank-Nicolson time discretisation is shown in figure 2.5. The choice of the time discretisation
method affects the accuracy of the gray-box solver, and changes the shape of the surrogate slightly,
as different time discretisations do not give the same QoI at the exact same location in random space.
As a result, when changing the discretisation, a new reference solution has to be computed to study
convergence. To further clarify, there is a difference between the exact/wanted surrogate, which
is obtained by solving (2.1), and the discrete exact surrogate, obtained by solving the discretised
equations (2.5). This difference is shown in the following equation:
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where q is the exact solution (solution of (2.1)), qNx is the discrete solution computed using Nx +1
grid points (solution of (2.5)), and q̃Nx is the surrogate based on the discrete solutions. For this
reason, we plot both the error in the surrogate with respect to the exact solution and the discrete so-
lution. The results are shown in figure 2.6. The error with respect to the discrete solution converges
to zero, with a convergence rate that is significantly faster than that for the adpative Smolyak sparse
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Figure 2.5: Reference solution for the advection-diffusion equation for the quantity q(z1,z2) = vNx(1) based
on 5000 samples.
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Figure 2.6: Error (2.48) comparison between the Smolyak sparse grid surrogate and the NIPPAS surrogate
for different time discretisation methods with ∆t = 10−5 and Nx = 256. The errors are plotted with respect to
both the discrete solution of (2.56) and the exact solution of (2.61).

the discretisation error. To clarify, the error with respect to the discrete solution converges to zero
and equation (2.62) therefore states that the observed error after stalling is the discretisation error.

The convergence behaviour of the error with respect to the discrete solution is not dependent on
the time discretisation, which indicates that the performance of our method does not depend on the
underlying discretisation.

Faster convergence for statistical quantities with PDF weighing
Next, to study the effect of the two different refinement measures (2.21) and (2.25), we assume
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independent β -distributed input uncertainties z1 and z2:

ρ(z1,z2) = c · (2πz1)
α1(2πz2)

α2(1−2πz1)
β1(1−2πz2)

β2 , (2.63)

where (αi,βi) are parameters that characterise the PDF and the constant c is chosen such that the
PDF has total probability 1 on [0,2π]2. Convergence behaviour is studied as a function of the shape
of the underlying PDF and therefore we vary the PDF parameters as follows:

αi ∈ {1,2,3,4,5}, βi ∈ {1,2,3,4,5}, i = 1,2 , (2.64)

which results in a total of 625 PDFs with totally different shapes. The convergence statistics of the
mean, variance and the entire surrogate are shown in figure 2.7.
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Figure 2.7: Convergence in advection-diffusion surrogate, mean and variance for the two refinement mea-
sures (2.21) and (2.25). The error in the surrogate is computed with (2.48) with 5000 Monte-Carlo samples.
The errors in the mean and variance are calculated with (2.47).

Figure 2.7 shows the average convergence behaviour taken over the 625 different PDFs. From the
figure we may conclude that weighing the residual with the PDF results in slower convergence for
the surrogate model, see equation (2.48), but leads to faster convergence in both the mean and the
variance, which are computed using (2.47). Furthermore, the variation in convergence over all 625
different PDFs, given by the shaded area around the mean line, has similar width for both refine-
ment measures (2.21) and (2.25). The choice of refinement measures thus depends on the type of
convergence the user requires, i.e., convergence in the surrogate or convergence in the statistical
quantities. Notice that the shaded area for the convergence in the mean has a minimum that starts
at 0 initially, which is due to the fact that for some PDFs the exact mean is zero, and as the initial
sample is placed at a location in the random space where the response is also 0, we start with an ap-
proximate mean that is equal to the exact mean. The sample placement does not stop immediately,
as the stopping criterion (2.31) is not met.
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independent β -distributed input uncertainties z1 and z2:

ρ(z1,z2) = c · (2πz1)
α1(2πz2)

α2(1−2πz1)
β1(1−2πz2)

β2 , (2.63)

where (αi,βi) are parameters that characterise the PDF and the constant c is chosen such that the
PDF has total probability 1 on [0,2π]2. Convergence behaviour is studied as a function of the shape
of the underlying PDF and therefore we vary the PDF parameters as follows:

αi ∈ {1,2,3,4,5}, βi ∈ {1,2,3,4,5}, i = 1,2 , (2.64)

which results in a total of 625 PDFs with totally different shapes. The convergence statistics of the
mean, variance and the entire surrogate are shown in figure 2.7.
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Figure 2.7: Convergence in advection-diffusion surrogate, mean and variance for the two refinement mea-
sures (2.21) and (2.25). The error in the surrogate is computed with (2.48) with 5000 Monte-Carlo samples.
The errors in the mean and variance are calculated with (2.47).

Figure 2.7 shows the average convergence behaviour taken over the 625 different PDFs. From the
figure we may conclude that weighing the residual with the PDF results in slower convergence for
the surrogate model, see equation (2.48), but leads to faster convergence in both the mean and the
variance, which are computed using (2.47). Furthermore, the variation in convergence over all 625
different PDFs, given by the shaded area around the mean line, has similar width for both refine-
ment measures (2.21) and (2.25). The choice of refinement measures thus depends on the type of
convergence the user requires, i.e., convergence in the surrogate or convergence in the statistical
quantities. Notice that the shaded area for the convergence in the mean has a minimum that starts
at 0 initially, which is due to the fact that for some PDFs the exact mean is zero, and as the initial
sample is placed at a location in the random space where the response is also 0, we start with an ap-
proximate mean that is equal to the exact mean. The sample placement does not stop immediately,
as the stopping criterion (2.31) is not met.

Method shows fast convergence for non-hypercube domains
The 2D β -distribution (2.63) just discussed, comprises two independent uncertainties and therefore
the space in which we construct a surrogate is a hypercube. However, when dealing with dependent
uncertainties, the space in which the surrogate is constructed, is in general not a hypercube, and
many existing UQ methods fail when dealing with a complex random space.

To study the performance of the NIPPAS method on more general geometries, we assume a
non-hypercube domain Iz ⊂ Rd with associated uniform PDF ρ(z). In order to sample the model
on the domain Iz, we restrict the residual (2.21) to Iz by multiplying it with an indicator function:

RIz(z) = R(z)IIz(z) , (2.65)

where

IIz(z) =
{

1, if z ∈ Iz ,
0, otherwise .

(2.66)

After altering the residual definition slightly and placing an initial sample randomly in the non-
hypercube random space, the NIPPAS method can be applied straightforwardly. Note that the basis
functions are the same for the hypercube case, they are given by the Chebyshev polynomials defined
on the smallest hypercube that comprises Iz. In order to show the efficiency of our method for non-
hypercube domains, we again construct a surrogate for the response shown in figure 2.5, but now
on more complexly shaped domains. Three different geometries with different characteristics are
chosen:

• sharp corners:

(z2 ≥ 0)∩ (z2 −
√

3z1 ≤ 0)∩ (
√

3z1 + z2 ≤ 2π
√

3) ,

• smooth boundary:

(z1 −π)2 +(z2 −π)2 ≤ π2,

• domain with holes:

(z1,z2) ∈ [0,2π]2, but

¬
(
(z1 −π)2 +(z2 −π)2 ≤ π2

4

)
∪

¬
(
(z1 −

π
3
)2 +(z2 −

π
3
)2 ≤ π2

25

)
∪

¬
(
(z1 −

5π
3
)2 +(z2 −

5π
3
)2 ≤ π2

9

)
.

The convergence results are shown in figure 2.8.
The results show an exponential convergence behaviour for all three different geometries, but the
convergence rates slightly differ, which is likely caused by the choice of basis, which is suboptimal
for all domains. Furthermore, weighing the residual with the PDF in case of non-uniformly dis-
tributed uncertainties is again possible, but results are similar to the results shown in figure 2.7 and
are not shown to avoid repetition.

It has to be pointed out that the choice of a lexicographically ordered Chebyshev basis is far from
optimal on non-hypercube domains. Nevertheless, good convergence behaviour is still achieved.



68

#samples
0 100 200

circle
grid (200 samples)

circle

z2

z1

triangle

0 2π

2π

z1
0 2π

rectangle with holes

rectangle with holes

z1
0 2π 10-15

10-10

10-5

10
0

triangle

e

Figure 2.8: Convergence of surrogate for three different non-hypercube domains.

Method scales well to higher dimensions
In order to study the effect of an increase in dimensionality, we pose the advection parameter z1 as
a random field z1(ξ , t). We demonstrate our approach by choosing the most basic random field, i.e.,
we define z1(ξ , t) as a random polynomial function:

z1(ξ , t) =
Nz−1

∑
i=1

ξit i, ξi ∈ [0,1] . (2.67)

The influence of ξi decreases when i increases and an efficient sampling approach would place less
samples in the ξi direction when i increases. A surrogate for the QoI vNx(1) can be constructed in the
high-dimensional random space spanned by (ξi)

Nz−1
i=1 and z2. To show scalability of our approach,

we plot the required number of samples such that

‖q−qref‖2 < 10−3 , (2.68)

where both q and qref are the constructed surrogate values and exact solution values, respectively,
sampled at 10000 uniformly distributed samples in the random space (ξ1, ...,ξNz ,z2) ∈ [0,1]Nz−1 ×
[0,2π]. The results are shown in figure 2.9.
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Figure 2.9: Comparison between the NIPPAS approach and adaptive Smolyak approach in terms of the
required number of samples to achieve ‖q−qref‖2 < 10−3. The required number of samples is post-processed
to show the required number of samples per dimension.

Notice that the NIPPAS approach scales well to high-dimensional random spaces, i.e., increasing
Nz, and outperforms the adaptive Smolyak approach up to Nz = 12. However, the required num-
ber of samples per dimension for the Smolyak approach decays slightly faster than the NIPPAS
method, which is likely caused by sub-optimal sample locations resulting from the particle swarm
optimisation in high-dimensional spaces. In order to circumvent this issue, one might resort to other
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In order to study the effect of an increase in dimensionality, we pose the advection parameter z1 as
a random field z1(ξ , t). We demonstrate our approach by choosing the most basic random field, i.e.,
we define z1(ξ , t) as a random polynomial function:

z1(ξ , t) =
Nz−1

∑
i=1

ξit i, ξi ∈ [0,1] . (2.67)

The influence of ξi decreases when i increases and an efficient sampling approach would place less
samples in the ξi direction when i increases. A surrogate for the QoI vNx(1) can be constructed in the
high-dimensional random space spanned by (ξi)

Nz−1
i=1 and z2. To show scalability of our approach,

we plot the required number of samples such that

‖q−qref‖2 < 10−3 , (2.68)

where both q and qref are the constructed surrogate values and exact solution values, respectively,
sampled at 10000 uniformly distributed samples in the random space (ξ1, ...,ξNz ,z2) ∈ [0,1]Nz−1 ×
[0,2π]. The results are shown in figure 2.9.
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Notice that the NIPPAS approach scales well to high-dimensional random spaces, i.e., increasing
Nz, and outperforms the adaptive Smolyak approach up to Nz = 12. However, the required num-
ber of samples per dimension for the Smolyak approach decays slightly faster than the NIPPAS
method, which is likely caused by sub-optimal sample locations resulting from the particle swarm
optimisation in high-dimensional spaces. In order to circumvent this issue, one might resort to other

optimisation routines, which are more suitable for finding suitable optima for sample placement in
high dimensions. As we need to compute a solution of a PDE at each sample location, it became
infeasible to run simulations with Nz > 12.

6.3 Shallow water equations with dependent random inputs
As last test-case, we study the performance of the NIPPAS method for a hyperbolic non-linear PDE
with dependent random inputs in a non-hypercube random space. In this test-case the underlying
model is non-linear and comprises three uncertain parameters which lie on a 2D triangular manifold
in a 3D space and therefore this test-case combines the difficult aspects from all previous test-cases.
The underlying model is a system of conservation laws, namely the 1D shallow water equations
(SWEs):

∂
∂ t

(
h
hv

)
+

∂
∂x

(
hv

hv2 +gh2/2

)
= 0 , (2.69)

where h is the free surface height (thickness of the fluid layer), v the velocity, g the acceleration
of gravity, and where we have assumed that the bottom is flat. Reflective boundary conditions are
imposed at x =±1 and the initial condition for the system of PDEs is given by a Riemann problem:

(
h
v

)
(x, t = 0) =




(
hl
vl

)
, x ≤ 0 ,

(
1
0

)
, x > 0 ,

(2.70)

leading to a dambreak problem. The three uncertain inputs are z1 = g, z2 = hl and z3 = vl , and
are assumed to jointly follow a Dirichlet distribution, which is the multivariate generalisation of the
1D β -distribution [66], and which is often used as a prior to a discrete categorical distribution in
Bayesian statistics. The PDF of the 3D Dirichlet distribution with shape parameters (α1,α2,α3) is
given by:

ρ(z1,z2,z3;α1,α2,α3) =
Γ(∑3

i=1 αi)

∏3
i=1 Γ(αi)

3

∏
i=1

zαi−1
i , (2.71)

which is defined on the unit simplex

3

∑
i=1

zi = 1, and zi ≥ 0, ∀i . (2.72)

For this specific test-case we scale/translate the unit simplex to a triangle with corner points

(g,hl ,vl) = {(12,0.5,−0.5),(8,1.5,−0.5),(8,0.5,0.5)} . (2.73)

For testing the efficiency of refinement measure (2.25), we consider the shape parameter set (α1,α2,α3)=
(5,2,2). This specific shape parameter set corresponds to an asymmetric PDF and is shown in fig-
ure 2.10.
The Dirichlet distribution is defined on a 2D triangular manifold in 3D space and is used for testing
the NIPPAS method efficiency for non-hypercube random spaces. The interpolation basis is the set
of Chebyshev polynomials defined on the smallest hypercube that comprises the 2D manifold. As
mentioned before, improvements on the interpolation basis are possible, but are outside the scope
of this chapter. Furthermore, the QoI q(z1,z2,z3) is the free surface height h at the left boundary
x =−1 at t = 1.

The NIPPAS method samples the solution of the dambreak problem for multiple inputs in order
to construct a surrogate. A commonly used method for solving the SWEs is a Riemann solver
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Figure 2.10: Dirichlet PDF on the scaled unit simplex.

based finite-volume discretisation [33], which can determine accurate solutions efficiently. In this
chapter instead we demonstrate the effectiveness of the NIPPAS method in combination with a more
recently developed numerical method. Instead of using a Riemann solver, a neural network is used
to solve the SWEs [52]. An advantage of using neural networks for solving PDEs is that the solution
is given in terms of a functional form, from which derivatives can be directly computed analytically.
This functional form allows us to calculate the residual, without requiring alterations to the code
output. A multi-output neural network with 7 hidden layers and 40 neurons in each hidden layer
is used to solve the SWEs, which is trained on a total of 105 collocation nodes in space and time,
which are the places where the neural network tries to enforce the PDE. This particular combination
of number of hidden layers and neurons was found using straightforward hyperparameter tuning
and shows the best results. The trained neural network produces a solution of the PDE. After the
residual is computed and a new sample location in random space is determined, the neural network
is retrained to produce a solution of the PDE for this new set of parameter values. Previously trained
neural networks closest to the new sample location are used as initial starting point for training the
new neural network in order to significantly speed-up the training process.
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Figure 2.11: (left) Surrogate model based on 300 samples for refinement measure (2.21). (right) Sample
locations for refinement measures (2.21) and (2.25), respectively.

The surrogate and sample locations for both refinement measures (2.21) and (2.25) are shown in
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based finite-volume discretisation [33], which can determine accurate solutions efficiently. In this
chapter instead we demonstrate the effectiveness of the NIPPAS method in combination with a more
recently developed numerical method. Instead of using a Riemann solver, a neural network is used
to solve the SWEs [52]. An advantage of using neural networks for solving PDEs is that the solution
is given in terms of a functional form, from which derivatives can be directly computed analytically.
This functional form allows us to calculate the residual, without requiring alterations to the code
output. A multi-output neural network with 7 hidden layers and 40 neurons in each hidden layer
is used to solve the SWEs, which is trained on a total of 105 collocation nodes in space and time,
which are the places where the neural network tries to enforce the PDE. This particular combination
of number of hidden layers and neurons was found using straightforward hyperparameter tuning
and shows the best results. The trained neural network produces a solution of the PDE. After the
residual is computed and a new sample location in random space is determined, the neural network
is retrained to produce a solution of the PDE for this new set of parameter values. Previously trained
neural networks closest to the new sample location are used as initial starting point for training the
new neural network in order to significantly speed-up the training process.
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The surrogate and sample locations for both refinement measures (2.21) and (2.25) are shown in

figure 2.11. The sample locations show clustering at the boundaries, to produce a stable interpolant.
As mentioned before, if the surrogate tends to become unstable and grows at the boundaries of
the random space, the residual becomes large at the boundaries as well and causes refinement of
the surrogate near the boundaries. At early stages of the refinement process the surrogate can
still show irregular oscillations, which is due to insufficient refinement at the boundaries, but these
disappear upon further refinement. When taking the PDF into account, clustering also occurs in the
region of high probability, as expected. This clustering deteriorates the accuracy of the surrogate in
regions of low probabilities, but leads to improved estimation of statistical quantities. Convergence
comparison for refinement measures (2.21) and (2.25) are shown in figure 2.12.
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Figure 2.12: Results for the dambreak problem with random inputs. The convergence plot shows a compar-
ison of the two different refinement measures (2.21) and (2.25). The error in the surrogate is computed with
(2.48) with 5000 Monte-Carlo samples. The errors in the mean and variance are calculated with (2.47).

The results show indeed faster convergence in statistical quantities when accounting for the PDF in
the refinement measure, which was also shown in figure 2.7.

7 Conclusion

In this chapter we have presented a novel approach for parametric surrogate construction when the
underlying PDE is known. Our technique, the Non-Intrusive PDE/PDF-informed Adaptive Sam-
pling (NIPPAS), is suited for surrogate construction on non-hypercube parametric spaces. Non-
hypercube parametric spaces occur when the underlying PDF is dependent, e.g., Dirichlet-distributed,
and significantly complicates surrogate construction when using common stochastic collocation
methods, e.g., sparse grid interpolation. The key ingredient of the proposed empirical interpola-
tion procedure is refinement which is based on the PDE-residual and/or the PDF. Sampling based
on the PDE-residual leads to stable interpolation, even on non-hypercube domains, due to sample
clustering at the boundaries of the domain. At the same time, the incorporation of the PDF in the
refinement procedure samples the parametric space in regions of high probability, which ensures
fast convergence of statistical quantities. This combination makes the NIPPAS method an efficient
and flexible method that is applicable to a wide range of UQ problems. As an extension to the pre-
viously proposed refinement measures, a convex combination of both the residual and PDF-based
residual can be defined, which attempt to balance the trade-offs between the two types of residuals,
simultaneously. However, such a refinement measure does not show any improvement over the two
previously proposed refinement measures.

The NIPPAS method has been applied to several numerical examples: 1D and 2D surrogate
construction on a hypercube with linear underlying PDE, 2D surrogate construction on complex
domains, and 3D surrogate construction with non-linear underlying PDE on a complex domain.
In all cases, exponential convergence is obtained, leading to an accurate surrogate model. This
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surrogate model can be directly used as a tool for uncertainty quantification (for example with
Monte-Carlo type methods), but it is also a great tool for the parametric solution of gray-box models.

Currently, the interpolation basis for non-hypercube domains is a Chebyshev basis defined on
the smallest hypercube that comprises the parametric space. Several improvements could be made,
for instance by constructing a suitable basis based on the sample locations [14]. Furthermore, the
global minimisation problem to be solved at each iteration does not scale well to high-dimensional
random space, and alternatives for the particle swarm optimisation may be used [67].

What did we achieve?
This chapter discussed how to effectively place your when the QoI lives in a high-dimensional and
possibly non-hypercube random space. The NIPPAS method provides an efficient way to sam-
ple your QoI in such spaces by basing the sample locations on the PDE residual and/or the PDF.
Whether to choose sample location based on the PDE, PDE+PDF, depends on if you are interested
in either convergence of the surrogate, or convergence of the QoI statistics, i.e., mean and variance.
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In Part I of this thesis, it is discussed how to efficiently sample the QoI in order to significantly
reduce the computational cost when performing UQ. An alternative for reducing the overall com-
putational cost when performing UQ is to speed-up the underlying numerical solver that is used to
sample the QoI, either by reducing the computational time of computationally expensive and accu-
rate solutions, or to increase the accuracy of computationally cheap but inaccurate solutions. We
will look at how to effectively increase the accuracy of computationally cheap but inaccurate numer-
ical solutions in both a non-intrusive and intrusive manner. Our non-intrusive approach functions
as a shell around a low-fidelity solver. The non-intrusive approach takes solutions coming from the
low-fidelity solver and enhances these in a post-processing stage. The intrusive approach alters the
underlying low-fidelity solver by adding a neural network that maps quantities that are defined on
a coarse grid to an accurate counterpart on a high-resolution grid. An overview of this part of the
thesis is given below.

CHAPTER 4

PART II

CHAPTER P(reliminaries)

PIC/FLIP FLUID SIMULATIONS

INTRUSIVE SOLVER ENHANCEMENT

CHAPTER 3

NON-INTRUSIVE SOLVER ENHANCEMENT

In order to make a clear distinction between the level of accuracy and the computational time it takes
to compute a solution, we define low- and high-fidelity solutions in more detail in the figure below.
Using a low-fidelity solver alleviates the computational burden by lowering the computational time

HIGH-FIDELITY SOLUTION

COMPUTATIONALLY EXPENSIVE

ACCURATE

LOW-FIDELITY SOLUTION

COMPUTATIONALLY INEXPENSIVE

INACCURATE

required for computing a solution, but may drop the accuracy of this same solution. Using a high-
fidelity solver may increase accuracy, but at the cost of a significant increase in computational time.

As a remedy, a multi-fidelity approach utilises both low- and high-fidelity solutions to construct an
accurate, but fast solution.
In this part we focus in particular on enhancing low-fidelity fluid simulations, i.e., Particle In Cel-
l/FLuid Implicit Particle (PIC/FLIP) simulations, but as is shown in chapter 3, the methodologies
can be used for other applications as well. The PIC/FLIP method is commonly used to simulate
free-surface flows, due to its easy parallel implementation and flexibility when it comes to placing
obstacles in the computational domain. The inner and outer workings of the PIC/FLIP solver are
discussed in the next chapter. Then, in chapter 3 and 4 these PIC/FLIP simulations are enhanced
using a new non-intrusive approach and an intrusive approach.
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Yous van Halder

We discuss the fluid flow solver in more detail. The governing equations for incompressible fluid
flow are the Navier-Stokes equations:

∇ ·u = 0 , (P.1a)
∂u
∂ t

+(u ·∇)u =−∇p
ρ

+F+ν∇2u , (P.1b)

where u is the velocity field, p the pressure, ρ the density, F the body-force vector, and ν the
kinematic viscosity. The first equation (P.1a) is known as the incompressibility condition, while the
second set of equations (P.1b) is known as the momentum equation. When solving these equations,
we can resort to grid-based methods or particle-based methods. In this chapter we use a PIC/FLIP
solver for predicting single-phase free-surface flows, as it allows for real-time computation when
implemented efficiently on a GPU. This numerical method is a combination of a grid-based method
and a particle-based method, and is often used to simulate fluid motions in movies or computer
games due to its easy parallel implementation. The particles represent the fluid, and the positions
of these particles are evolved over time by using velocity values that are computed on a staggered
grid.

P
PIC/FLIP simulations for fluid flow

Based on the work of Bridson [1, 2]

x
y

z

Figure P.2: Grid and particle initialisation with (Nx,Ny,Nz) = (20,8,8). The top half of the grid comprises
dry cells while the cells in the bottom half are filled with particles.

P. 2.1 Particle to grid transfer
A weighted average of particle velocities is used to compute the velocities at the grid-cell faces. In
order to compute the velocity at a given face centre, particles that lie within a sphere with a 2∆s ra-
dius, centred around this face centre, are used for computing the new velocity value. Consequently,
the new face centre velocities are given by:

ui+ 1
2 , j,k

=
∑Np

i=1 p(i)u h(p(i)−xi+ 1
2 , j,k

)

∑Np
i=1 h(p(i)−xi+ 1

2 , j,k
)

, (P.2a)

vi, j+ 1
2 ,k

=
∑Np

i=1 p(i)v h(p(i)−xi, j+ 1
2 ,k

)

∑Np
i=1 h(p(i)−xi, j+ 1

2 ,k
)

, (P.2b)

wi, j,k+ 1
2
=

∑Np
i=1 p(i)w h(p(i)−xi, j,k+ 1

2
)

∑Np
i=1 h(p(i)−xi, j,k+ 1

2
)

, (P.2c)

where the vectors x correspond to the locations of the face centres, and where h is the so-called ker-
nel. The choice of kernel h depends on the application. In general the cubic kernel is considered to
be robust and it results in a smoothed out fluid surface without irregular jumps when post-processed
[1]:

k(r)
{

(4∆s2 −‖r‖2
2)

3 , ‖r‖2 ≤ 2∆s ,
0 , otherwise .

(P.3)

The particles that are used for the grid transfer for a single face velocity are schematically shown in
figure P.3.

Store velocities

After the particle velocities have been transferred to the grid, the resulting face velocities are copied
for later use, i.e., we define:

u∗i+ 1
2 , j,k

= ui+ 1
2 , j,k

, v∗i, j+ 1
2 ,k

= vi, j+ 1
2 ,k

, w∗
i, j,k+ 1

2
= wi, j,k+ 1

2
. (P.4)

The copied velocities remain unaltered for the rest of the time step.



PIC/FLIP simulations · 85

We discuss the fluid flow solver in more detail. The governing equations for incompressible fluid
flow are the Navier-Stokes equations:

∇ ·u = 0 , (P.1a)
∂u
∂ t

+(u ·∇)u =−∇p
ρ

+F+ν∇2u , (P.1b)

where u is the velocity field, p the pressure, ρ the density, F the body-force vector, and ν the
kinematic viscosity. The first equation (P.1a) is known as the incompressibility condition, while the
second set of equations (P.1b) is known as the momentum equation. When solving these equations,
we can resort to grid-based methods or particle-based methods. In this chapter we use a PIC/FLIP
solver for predicting single-phase free-surface flows, as it allows for real-time computation when
implemented efficiently on a GPU. This numerical method is a combination of a grid-based method
and a particle-based method, and is often used to simulate fluid motions in movies or computer
games due to its easy parallel implementation. The particles represent the fluid, and the positions
of these particles are evolved over time by using velocity values that are computed on a staggered
grid.

x
y

z

Figure P.2: Grid and particle initialisation with (Nx,Ny,Nz) = (20,8,8). The top half of the grid comprises
dry cells while the cells in the bottom half are filled with particles.

P. 2.1 Particle to grid transfer
A weighted average of particle velocities is used to compute the velocities at the grid-cell faces. In
order to compute the velocity at a given face centre, particles that lie within a sphere with a 2∆s ra-
dius, centred around this face centre, are used for computing the new velocity value. Consequently,
the new face centre velocities are given by:

ui+ 1
2 , j,k

=
∑Np

i=1 p(i)u h(p(i)−xi+ 1
2 , j,k

)

∑Np
i=1 h(p(i)−xi+ 1

2 , j,k
)

, (P.2a)

vi, j+ 1
2 ,k

=
∑Np

i=1 p(i)v h(p(i)−xi, j+ 1
2 ,k

)

∑Np
i=1 h(p(i)−xi, j+ 1

2 ,k
)

, (P.2b)

wi, j,k+ 1
2
=

∑Np
i=1 p(i)w h(p(i)−xi, j,k+ 1

2
)

∑Np
i=1 h(p(i)−xi, j,k+ 1

2
)

, (P.2c)

where the vectors x correspond to the locations of the face centres, and where h is the so-called ker-
nel. The choice of kernel h depends on the application. In general the cubic kernel is considered to
be robust and it results in a smoothed out fluid surface without irregular jumps when post-processed
[1]:

k(r)
{

(4∆s2 −‖r‖2
2)

3 , ‖r‖2 ≤ 2∆s ,
0 , otherwise .

(P.3)

The particles that are used for the grid transfer for a single face velocity are schematically shown in
figure P.3.

Store velocities

After the particle velocities have been transferred to the grid, the resulting face velocities are copied
for later use, i.e., we define:

u∗i+ 1
2 , j,k

= ui+ 1
2 , j,k

, v∗i, j+ 1
2 ,k

= vi, j+ 1
2 ,k

, w∗
i, j,k+ 1

2
= wi, j,k+ 1

2
. (P.4)

The copied velocities remain unaltered for the rest of the time step.



86

x
y

z

Figure P.3: Particles that are used for computing one face velocity.

P. 2.2 Add body forces
The external forces, such as gravity, are added to the velocity field by a simple forward Euler time-
integration:

ui+ 1
2 , j,k

= ui+ 1
2 , j,k

+∆tFx(xi+ 1
2 , j,k

) , (P.5a)

vi, j+ 1
2 ,k
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2 ,k

+∆tFy(xi, j+ 1
2 ,k

) , (P.5b)

wi, j,k+ 1
2
= wi, j,k+ 1

2
+∆tFz(xi, j,k+ 1

2
) , (P.5c)

where Fx, Fy and Fz are the components of the body force acting on the fluid in each coordinate
direction, calculated at the corresponding face centres. A more accurate time-integration scheme
may be used, but forward Euler is very easy to implement and is therefore considered as the standard
in PIC/FLIP [2, 1]. When ∆s is set, we need to choose ∆t accordingly such that the forward Euler
time integration remains stable, which is often not an issue when using PIC/FLIP due to the often
coarse computational grid.

P. 2.3 Enforce boundary conditions
We assume that the domain boundaries and obstacles are solid, and therefore solid-wall boundary
conditions are imposed at these locations, which state that fluid is not allowed to flow out of the
domain. As a result, the boundary condition is given by:

u ·n = uboundary ·n , (P.6)

where n is the normal vector pointing outside the domain. Furthermore, this boundary condition can
be simplified when using a staggered grid, where the faces intersect with the domain boundaries:

u− 1
2 , j,k

= uboundary,0, uNx− 1
2 , j,k

= uboundary,Lx , (P.7a)

vi,− 1
2 ,k

= vboundary,0, vi,Ny− 1
2 ,k

= vboundary,Ly , (P.7b)

wi, j,− 1
2
= wboundary,0, wi, j,Nz− 1

2
= wboundary,Lz , (P.7c)

where we assumed that the domain does not deform and the boundaries have a uniform velocity,
i.e., uboundary,0 = uboundary,Lx , vboundary,0 = vboundary,Ly , wboundary,0 = wboundary,Lz .
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P. 2.3 Enforce boundary conditions
We assume that the domain boundaries and obstacles are solid, and therefore solid-wall boundary
conditions are imposed at these locations, which state that fluid is not allowed to flow out of the
domain. As a result, the boundary condition is given by:

u ·n = uboundary ·n , (P.6)

where n is the normal vector pointing outside the domain. Furthermore, this boundary condition can
be simplified when using a staggered grid, where the faces intersect with the domain boundaries:

u− 1
2 , j,k

= uboundary,0, uNx− 1
2 , j,k

= uboundary,Lx , (P.7a)

vi,− 1
2 ,k

= vboundary,0, vi,Ny− 1
2 ,k

= vboundary,Ly , (P.7b)

wi, j,− 1
2
= wboundary,0, wi, j,Nz− 1

2
= wboundary,Lz , (P.7c)

where we assumed that the domain does not deform and the boundaries have a uniform velocity,
i.e., uboundary,0 = uboundary,Lx , vboundary,0 = vboundary,Ly , wboundary,0 = wboundary,Lz .

P. 2.4 Determine which cells contain particles

The cells that contain at least one particle are referred to as wet cells. We define a new quantity
mi, j,k:

mi, j,k

{
1 , if cell (i, j,k) contains at least one particle ,
0 , otherwise .

(P.8)

P. 2.5 Pressure correction

The PIC/FLIP method simulates incompressible fluid flow, which means that the velocities at the
face centres of all i, j,k have to satisfy the following discrete version of incompressibility constraint
(P.1a):

(∇ ·u)i, j,k →
ui+ 1

2 , j,k
−ui− 1

2 , j,k

∆s
+

vi, j+ 1
2 ,k

− vi, j− 1
2 ,k

∆s
+

wi, j,k+ 1
2
−wi, j,k− 1

2

∆s
= 0 , (P.9)

which states that the central second-order accurate divergence, computed at each cell centre, should
be zero. In general, the face velocities from (P.5a)-(P.5c) do not satisfy this constraint. Therefore,
the velocities are corrected by subtracting a pressure gradient. In order to calculate this pressure
gradient, we solve the pressure equation in the cells that are wet (mi, j,k = 1):

(∇2 p)i, j,k =
1
∆t

(∇ ·u)i, j,k , (P.10)

where

(∇2 p)i, j,k →
pi+1, j,k + pi−1, j,k

∆s2 +
pi, j+1,k + pi, j−1,k

∆s2 +
pi, j,k+1 + pi, j,k−1

∆s2 −
6pi, j,k

∆s2 , (P.11)

and set pi, j,k = 0 in dry cells. Notice that near the domain boundaries or obstacles we require
the pressures located outside the domain, which are not defined, and a different formulation is
necessary. To enforce that there is no flow through solid boundaries, we employ the commonly
used homogeneous Neumann boundary condition for the pressure at these boundaries. Even though
the homogeneous Neumann boundary condition may translate to a non-zero tangential velocity
component along the boundaries, it is the easiest to implement while still enforcing that no fluid
flows outside the domain. Other boundary conditions, e.g., strict no-slip boundary conditions, are
not straightforward to implement on a staggered grid and are not considered in this paper. The
homogeneous Neumann boundary conditions set the pressure coefficient of the cells outside the
domain or inside an obstacle to zero and the central pressure coefficient 6 in (P.11) is decreased by
the number of cells outside the domain or inside an obstacle, which translated to a pressure gradient
that is zero on the boundary [1]. All this results in a sparse linear system of the form:

A




p0,0,0
p1,0,0

...
pNx−1,Ny−1,Nz−1


=

1
∆t




(∇ ·u)0,0,0
(∇ ·u)1,0,0

...
(∇ ·u)Nx−1,Ny−1,Nz−1


 , (P.12)

where A is the pressure Poisson matrix. This system is solved using the preconditioned conjugate
gradient method, as it does not require the explicit storage of the coefficient matrix A, and still
exhibits relatively fast convergence for symmetric matrices A when compared to Jacobi iteration.
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After the pressures have been computed, we correct the face velocities, that do not coincide with
a domain boundary, as follows:

ui+ 1
2 , j,k

= ui+ 1
2 , j,k

− ∆t
∆s

(pi+1, j,k − pi, j,k) , (P.13a)

vi, j+ 1
2 ,k

= vi, j+ 1
2 ,k

− ∆t
∆s

(pi, j+1,k − pi, j,k) , (P.13b)

wi, j,k+ 1
2
= wi, j,k+ 1

2
− ∆t

∆s
(pi, j,k+1 − pi, j,k) , (P.13c)

which now satisfy the constraint (P.9) [1].

P. 2.6 Grid to particle transfer

Once the grid velocities are known, they have to be transferred back to the particles in order to
advect the particles. To calculate the new particle velocities, we use trilinear interpolation. We
will discuss how to compute the u−component of the particle velocity p(i)u , and the remaining two
components can be computed in a similar fashion.

The face centre velocities that are used for the trilinear interpolation procedure for computing
the u−component of the velocity p(i)u for a single particle are shown in figure P.4.
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(x,y,z)
(x0,y0,z0)

(x1,y1,z1)
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Figure P.4: The face velocities that are used for the trilinear interpolation procedure to calculate the
u−component of the particle velocity.
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The u−component of the velocity is now calculated as:

x∗ =
x− x0

x1 − x0
, y∗ =

y− y0

y1 − y0
, z∗ =

z− z0

z1 − z0
, (P.14a)

u00 = u000(1− x∗)+u100x∗, u10 = u001(1− x∗)+u101x∗ ,

u01 = u010(1− x∗)+u110x∗, u11 = u011(1− x∗)+u111x∗ , (P.14b)

u0 = u00(1− y∗)+u01y∗ ,

u1 = u10(1− y∗)+u11y∗ , (P.14c)

p(i)u = u0(1− z∗)+u1z∗ . (P.14d)

This trilinear interpolation is performed two times to perform the PIC/FLIP velocity update; with
the new grid velocities ui+ 1

2 , j,k
from (P.13b), and the old grid velocities u∗

i+ 1
2 , j,k

from (P.4). As a

result, two particle velocities are obtained p(i)new,u and p(i)old,u. The new particle velocity is calculated
as follows:

p(i)u ← (1− f )(p(i)u − p(i)old,u)+ p(i)new,u , (P.15)

where p(i)u is the particle velocity from the previous time step, and f ∈ [0,1] the so-called PICness
parameter. If f = 1, then the velocity update is known as the PIC update, while setting f = 0
corresponds to the FLIP update. PIC is known for its good stability properties, but suffers from
severe numerical diffusion. On the other hand, FLIP does not suffer from numerical diffusion, but
can become unstable. Therefore, a weighted average between PIC and FLIP is taken, f ∈ (0,1), to
obtain a stable, but less diffusive solution. Notice that we did not include physical diffusion induced
by the viscosity term in the method so far. In PIC/FLIP methods, the physical diffusion term in
the Navier-Stokes equations is approximated by tweaking the numerical viscosity by choosing a
specific value for the PICness parameter f , namely, f can be related to the kinematic viscosity as:

f = max
{

1,
6∆tν
∆s2

}
, (P.16)

and the value for ν should be set to the desired kinematic viscosity accordingly. It is common
practice to use f = 0.99, which yields good results for water flow [1] and is used in the remainder
of this thesis unless stated otherwise.

P. 2.7 Advect particles
A suitable time-integrator is used to advect the particles. A good trade-off between computational
expense and accuracy is the second-order accurate Runge-Kutta method (RK2) which mimics the
midpoint rule. The procedure for advecting the particles is given by:

1. Advect the particles for the duration of a half time step: p(i)
halfway = p(i) + ∆t

2 p(i)
u ,

2. Compute new particle velocities using trilinear interpolation, using the grid velocities ui+ 1
2 , j,k

to obtain p(i)
halfway,u,

3. Compute new particle positions as p(i) = p(i) +∆tp(i)
halfway,u.
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After computing new particle positions p(i)
halfway and p(i), it may appear that some particles have

crossed the boundary of the domain. Particles that hit the domain boundary are reflected back into
the domain to prevent particles leaving the domain.

P. 3 PIC/FLIP for fluid sloshing
We will consider fluid sloshing simulations in 3D. These sloshing simulations can be performed
in a number of ways and we choose the one that is easiest to implement. In order to induce fluid
sloshing, the rectangular tank can be rotated along the x-axis and y-axis independently. This rotation
of the tank will alter the orientation of the gravity vector. To clarify, the rotation of the tank enters
the fluid solver in the body force as F = g = 9.81(sin(ψ)cos(φ),sin(φ),−cos(ψ)cos(φ)), where ψ
and φ are the rotation angles along the x and y axis, respectively. Rotating the gravity vector mimics
rotation of the tank without the need to complicate the boundary conditions of the tank boundary to
incorporate rotational accelerations.

P. 4 Accuracy of PIC/FLIP
The accuracy of a PIC/FLIP simulation is determined by the number of particles Np and the grid
resolution ∆s. As the particles do not react with each other, the steps that involve particles are
easily implemented on a GPU. The number of particles can be chosen to be large (millions) while
still being able to run in real-time. Most computational work occurs in the computations on the
grid, especially in the solution of equation (P.12) to compute the pressures at the cell centres. It
is not straightforward to efficiently implement these computations on a GPU. Solving the pressure
equation is done in O(Nc log(Nc)) time, where Nc is the total number of grid cells. Decreasing the
grid resolution by a factor 2 in each coordinate direction, i.e., ∆s → 2∆s, results in a pressure solve
that is approximately 10 times faster. As a result, when choosing a coarse grid, we can still easily
simulate up to millions of particles in real-time, but computing solutions on a coarse grid results in
a significant drop in accuracy of the particle positions when compared to simulating flows on a fine
grid with the same number of particles. This drop in accuracy is mainly caused by the inaccurate
incompressible velocity field that is computed on a the coarse grid, and the trilinear interpolation
that is used to transfer these grid velocities to the particles. For instance, the error in the trilinear
interpolation is composed of three linear interpolation errors Rint, which are bounded by [3]

Rint ≤C∆s2 , (P.17)

where C is a constant depending on the smoothness of the velocity field that is transferred to the
particles. Equation (P.17) expresses that the error increases quadratically when coarsening the grid.
Insufficiently accurate solutions may quickly arise when coarsening the computational grid. This
quadratic scaling of errors holds for other grid computations as well (divergence computation (P.9),
pressure computation (P.12)).
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Non-intrusive solver enhancement

A novel multi-level method for partial differential equations with uncertain parameters is
proposed. The principle behind the method is that the error between grid levels in multi-level
methods has a spatial structure that is by good approximation independent of the actual grid
level. Our method learns this structure by employing a sequence of convolutional neural net-
works, that are well-suited to automatically detect local error features as latent quantities of
the solution. Furthermore, by using the concept of transfer learning, the information of coarse
grid levels is reused on fine grid levels in order to minimize the required number of samples
on fine levels. The method outperforms state-of-the-art multi-level methods, especially in the
case of complex PDEs (such as single-phase and free-surface flow problems), or when high
accuracy is required.

Background
As stated in the introduction, the goal of part II is to increase the accuracy of fast, but inaccurate
solutions. The resulting low-fidelity solver with enhanced accuracy can then be used to efficiently
sample a QoI, even in high-dimensional random spaces. This chapter discusses a non-intrusive way
to enhance such a low-fidelity solver. The curse of dimensionality limits the applicability of UQ
algorithms, especially when the black-box is computationally expensive to sample from. Using
a low-fidelity black-box alleviates the computational burden by lowering the computational time
per sample, but may drop the accuracy of the deterministic samples. Using a high-fidelity black-
box may increase accuracy, but at the cost of a significant increase in computational time. As a
remedy, multi-fidelity approaches were introduced, which use high-fidelity samples to construct
the surrogate model and low-fidelity samples to explore the parameter space, and to see where to
place a new high-fidelity sample [4, 5, 6, 7, 8, 9, 10, 11]. These approaches significantly reduce
the number of high-fidelity samples required to construct an accurate surrogate model. Multi-Level
Stochastic Collocation (MLSC) [12, 13, 14, 15, 16, 17] extends this approach by using a hierarchy
of grid resolutions, often referred to as levels, and places samples on each grid level to approximate
the difference between two consecutive grid resolutions. The underlying concept of variance decay
(of the difference in the solution between subsequent levels) ensures that the number of samples
required to approximate the difference between two consecutive levels, reduces with increasing
level (variance decay [18]). This results in a significant reduction of required number of high-
fidelity samples.
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The highlights of the new approach are:

• The error between grid levels is trained in terms of the solution through a neural network;

• Convolutional neural networks are used to learn local error features as latent quantities;

• Transfer learning is used to exploit the similarities between errors at different levels.

Our Approach
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1 Preliminaries: Multi-level UQ
We introduce notation for the different levels of solutions. The discretised operators corresponding
to different levels are labelled with a superscript and are denoted as L(i), and the corresponding
computational grids consisting of N(i) grid points are denoted as X (i). The solutions are denoted
as u(i)(z) ∈ RN(i)

and are functions of the input uncertainties. In a multi-level method we use a
hierarchy of grid resolutions consisting of a total of NL grids. We denote with u(1)(z) the solution
which is computed on the coarsest grid level X (1), while u(NL)(z) is the solution computed on the
finest grid level X (NL). For simplicity the computational grids are assumed to be nested:

X (1) ⊂ X (2) ⊂ ...⊂ X (NL) . (3.1)

Several multi-level strategies have been presented that use a hierarchy in grid resolutions [4],
which reduces the number of high-fidelity solves required to construct an accurate surrogate model
or extract accurate statistics. Consider restriction of the fine-grid solution to the coarsest grid:

u(NL)(z)→ u(NL)(z)|X(1) , (3.2)

where ·|X(1) is the restriction operator which computes values on the coarse grid X (1), which may
incorporate sub sampling and interpolation. The multi-level methods described in [12, 14, 15]
rewrite u(NL)(z), using the telescoping-sum identity:

u(NL)(z)|X(1) = u(1)(z)+
NL

∑
i=2

(u(i)(z)|X(1) −u(i−1)(z)|X(1) ) . (3.3)

In case of nested grids, (3.1), the restriction operator solely uses sub-sampling. Restricting to the
coarsest level is not necessary, as we can also prolongate the coarse solutions to the finest level
computational grid X (NL), but in many cases the coarsest grid suffices to accurately calculate the
QoI. To circumvent interpolation of coarse-grid solution values to the fine grid and reduce the
degrees of freedom in the neural networks that are used later, we opt to restrict solution values to
the coarsest level. For convenience, we denote the error between two levels as

e(i)(z) := u(i)(z)|X(1) −u(i−1)(z)|X(1) . (3.4)

The goal of a multi-level method is to approximate the error between two levels e(i), where we
assume that e(i) → 0 as i → ∞. The variance decay in the magnitude of the terms in (3.3) decreases
the number of samples required to approximate e(i)(z) with increasing level i [12, 19], which reduces
the total computational cost for constructing an accurate surrogate.

2 Our approach in short
Our method utilises the variance decay and is based on the fact that subsequent errors themselves
typically exhibit similar behaviour (as a function of the spatial variables) with increasing grid res-
olution. This is a key insight that we will directly exploit in this chapter as it allows us to construct
multi-level methods based on the concepts of convolutional neural networks and transfer learning.
Our proposed method is as follows. Like in the MLSC approach [12], we use the telescopic-sum
identity to express the solution in terms of the solution differences between consecutive grid levels
(’relative errors’, in the following mostly shortly ’errors’). Our method distinguishes itself in that
we use the similarity of this error between consecutive grid levels to reduce the required number
of samples on each level. We achieve this through an original combination of several ingredients.
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2 Our approach in short
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olution. This is a key insight that we will directly exploit in this chapter as it allows us to construct
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Our proposed method is as follows. Like in the MLSC approach [12], we use the telescopic-sum
identity to express the solution in terms of the solution differences between consecutive grid levels
(’relative errors’, in the following mostly shortly ’errors’). Our method distinguishes itself in that
we use the similarity of this error between consecutive grid levels to reduce the required number
of samples on each level. We achieve this through an original combination of several ingredients.

First, we express the relative error between grid levels as a function of the solution at the coarser
level through the use of a neural network. Convolutional neural networks enable this step. Con-
volutional neural networks are well-suited to learn local or low-level features (‘latent quantities’)
in the solution structure, that turn out to be similar to the truncation error commonly encountered
in numerical discretisation methods for PDEs. In connection with a second, fully connected neu-
ral network, the convolutional neural network is able to learn the error between grid levels as a
function of the solution. Finally, we use transfer learning to reuse the weights and biases from
previously trained neural networks at coarse levels to quickly train the neural networks at finer grid
levels, thereby significantly reducing the required number of samples of high-fidelity solutions. In
the remainder of this chapter we refer to the proposed approach as the Multi-Level Neural Network
(MLNN) method.

3 Multi-level neural network surrogate construction
The MLNN method is also based on identity (3.3), but does not use interpolation for constructing
the approximations for e(i) as used in [12]. Instead we use a convolutional neural network that
approximates e(i) in terms of a set of local low-level features, also known as latent quantities. To
show that a representation of e(i) in a set of latent quantities is justified, the error e(i) can be written
as:

e(i) = u(i)(z)|X(1) −u(i−1)(z)|X(1)

= (u(i)(z)|X(1) −uexc(z)|X(1) )− (u(i−1)(z)|X(1) −uexc(z)|X(1) )

= E(i)|X(1) −E(i−1)|X(1) , (3.5)

where E(i) = u(i)(z)−uexc(z)|X(i) denotes the global error between the solution on level i and the
exact solution (sub-sampled on X (i)). The exact solution is often not known and therefore (3.5) is
not directly useful. However, for a linear discretisation operator L(i), we can write:

L(i)E(i) = L(i)(u(i)−uexc|X(i) )

= L(i)u(i)−L(i)(uexc|X(i) )

=−L(i)(uexc|X(i) )

=−τ(i) , (3.6)

where τ is the local truncation error. This can be rewritten as:

E(i) =−
(

L(i)
)−1

τ(i) , (3.7)

The local truncation error is the error when substituting the exact solution into the discretised opera-
tor L(i) and is computed locally, for instance by performing Taylor-series expansions on the schemes

that are used to discretise the differential operator L . The inverse operator
(

L(i)
)−1

maps the local

truncation error to the global error E(i). For linear discretisation of linear PDEs this results in the
form:

τ(i) =
∞

∑
k=1

ck (uexc)∂ ,k (z)|X(i) , (3.8)

where (uexc)∂ ,k is a sequence of partial derivatives of the exact solution with respect to spatial/tem-
poral coordinates. The truncation error can be interpreted as a set of latent quantities, which are
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local or low-level features that can be used to effectively express the error in the solution. However,
this only holds for linear differential equations and is therefore a rather restrictive assumption.

Our key idea is to construct an approximation for e(i) in terms of a set of latent quantities. This
set of latent quantities is obtained by applying a non-linear transformation of the solution values on
a coarser level. For linear differential equations, the truncation error is a good candidate for such a
set of latent quantities, but it does not generalise to non-linear problems. Therefore, we propose a
new algorithm that approximates e(i)(z), i = 2, ...,NL using a neural network approach. The How
and Why of this approach are discussed in more detail next.

How a neural network is used to approximate e(i)(z)
The neural network architecture that is used for approximating e(i)(z) is shown in figure 3.1. The
neural network consists of two stages:

Stage 1: Obtain latent/inferred quantities from the solution vector u(i)(z), that can be mapped
efficiently to e(i)(z)

Stage 2: Construct mapping from latent quantities to e(i)(z)

The neural network takes as input the sub-sampled solution values u(i−1)(z)|X(1) and is trained such
that it outputs e(i)(z).

Stage 1, How?
The first part of the neural network that corresponds to stage 1 consists of a number of sequential
convolutional layers. The filters that are used in convolutional neural networks are equivalent to a
sequence of local finite difference operators whose coefficients are determined during the training
procedure. As a result, the convolutional layers are used to efficiently combine the solution values
into latent quantities.

Stage 1, Why?
Instead of constructing an approximation for e(i)(z) directly (as done in for example [12]), we first
construct a set of latent quantities from the solution vector u(i)(z)|X(1) ), which are then mapped to
e(i)(z). We learn from equations (3.6)-(3.7), that a mapping between the solution vector and e(i)(z)
exists in terms of the truncation error, which consists of a set of latent quantities. As a result, the
MLNN method uses a sequence of convolutional layers to find a set of latent quantities that can be
used by stage 2 of the neural network to efficiently construct an approximation for e(i)(z).

Stage 2, How?
After propagating the input u(i−1)(z)|X(1) through the convolutional layers, the output is flattened
into a single vector and feeds the second stage of the neural network. The second stage consists
of multiple fully-connected layers that apply a non-linear transformation that maps the previously
obtained latent quantities to the desired quantity e(i)(z). Furthermore, as we want to approximate
the dependency of e(i) on z, z is included in the neural network by concatenating the values of z to
the flattened convolutional output.

Stage 2, Why?
Solely using convolutional layers is not preferred due to their inherent local nature, making them
only useful for extracting low-level features. The latent quantities obtained in stage 1 need to be
mapped to the desired quantity e(i)(z). As in equation (12), this requires a global and possibly
non-linear transformation. It is known that fully-connected neural networks are so-called universal-
function approximators [20, 21, 22] and are therefore perfectly suited for constructing the non-linear
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procedure. As a result, the convolutional layers are used to efficiently combine the solution values
into latent quantities.
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Instead of constructing an approximation for e(i)(z) directly (as done in for example [12]), we first
construct a set of latent quantities from the solution vector u(i)(z)|X(1) ), which are then mapped to
e(i)(z). We learn from equations (3.6)-(3.7), that a mapping between the solution vector and e(i)(z)
exists in terms of the truncation error, which consists of a set of latent quantities. As a result, the
MLNN method uses a sequence of convolutional layers to find a set of latent quantities that can be
used by stage 2 of the neural network to efficiently construct an approximation for e(i)(z).

Stage 2, How?
After propagating the input u(i−1)(z)|X(1) through the convolutional layers, the output is flattened
into a single vector and feeds the second stage of the neural network. The second stage consists
of multiple fully-connected layers that apply a non-linear transformation that maps the previously
obtained latent quantities to the desired quantity e(i)(z). Furthermore, as we want to approximate
the dependency of e(i) on z, z is included in the neural network by concatenating the values of z to
the flattened convolutional output.

Stage 2, Why?
Solely using convolutional layers is not preferred due to their inherent local nature, making them
only useful for extracting low-level features. The latent quantities obtained in stage 1 need to be
mapped to the desired quantity e(i)(z). As in equation (12), this requires a global and possibly
non-linear transformation. It is known that fully-connected neural networks are so-called universal-
function approximators [20, 21, 22] and are therefore perfectly suited for constructing the non-linear

mapping between the latent quantities and e(i)(z).

Stage 1 + Stage 2
The full architecture for a scalar partial differential equation with two space dimensions and uncer-
tainties z is shown schematically in figure 3.1.
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Figure 3.1: The convolutional and fully-connected network architecture for approximating e(i) for a scalar
partial differential equation with two space dimensions and uncertainties z.

The architecture for the coupled vector partial differential equation case requires a multi-channel
input, i.e., one channel for each of the calculated quantities, which is explained in more detail in
section 4. We denote the neural network that maps u(i−1)(z)|X(1) to e(i)(z) as,

e(i)(z)≈ P(i)(u(i−1)(z)|X(1) ) . (3.9)

To clarify, the neural network P(i) requires a training set that comprises pairs of solutions

(u(i−1)(z)|X(1) ,u(i)(z)|X(1) ) , (3.10)

where u(i−1)(z)|X(1) is used as input for the neural network, while u(i)(z)|X(1) enters the cost function
during training. This is discussed in more detail in section 4. In order to utilise the telescopic-sum
identity (3.3), we need approximations for e(i)(z) with i = 2, ...,NL and therefore we train NL − 1
neural networks (P(2), ...,P(NL)) of the form shown in figure 3.1. After training the neural networks,
we can approximate the high-fidelity solution as:

u(NL)(z)|X(1) ≈ u(1)(z)+
NL

∑
i=2

P(i)

(
u(1)(z)+

i−1

∑
j=2

P( j)

(
u(1)(z)+

j−1

∑
k=2

P(k) (...)

))
, (3.11)

where we used (3.3) and recursively used:

u(i)(z)|X(1) = u(i−1)(z)|X(1) + e(i) ≈ u(i−1)(z)|X(1) +P(i)(u(i−1)(z)|X(1) ) . (3.12)

We denote the approximate high-fidelity solution as ũ(NL)(z) ≈ u(NL)(z)|X(1) . Notice that we only
need u(1)(z)|X(1) to construct an approximation for u(NL)(z)|X(1) . The architecture, hyperparameters
and training procedure of the neural networks will be discussed in more detail in section 4.

How the required number of samples for training P(i) is reduced
The combination of convolutional layers and fully-connected layers allows for learning complex
non-linear mappings. The filter coefficients that are determined during training of the convolutional
layers, have significantly less degrees of freedom when compared to fully-connected layers with
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similar input-output dimensions. As a result, the number of unknowns that need to be determined
during training is significantly lower than in a network architecture with the same number of layers
using solely fully-connected layers. This drastically decreases the required number of training
samples in the MLNN method.

Second, it can be shown that e(i−1)(z) and e(i)(z) have a similar spatial shape (apart from a
scaling factor). This concept is summarised in the following theorem:

Theorem 1. Assume the solution u|Xh of the discretised problem can be expanded as follows:

u(h) = uexc|Xh +hdv|Xh +O(hd+1) , (3.13)

where h is the grid resolution, d the order of convergence with d ≥ 1, and v a function independent
of h. Then the errors e(h/2) := u(h/2)|Xh −u(h) and e(h/4) := u(h/4)|Xh −u(h/2)|Xh satisfy

ce(h/4) = e(h/2) +O(hk) , (3.14)

where k ≥ 1 and where c is a constant independent of h.

Proof. Using the expansion (3.13), we can write

e(h/2) =

((
h
2

)d

−hd

)
v|Xh +O(hd+1) , (3.15)

e(h/4) =

((
h
4

)d

−
(

h
2

)d
)

v|Xh +O(hd+1) . (3.16)

Multiplying the second equation with 2d results in

2de(h/4) =

((
h
2

)d

−hd

)
v|Xh +2dO(hd+1) = e(h/2) +O(hd+1) , (3.17)

which is of the form displayed in equation (3.14) with k = d +1.

The existence of expansion (3.13) is a crucial assumption in this theorem. Notice that theorem
1 assumes a restriction to the grid Xh, while the proposed method restricts to the coarsest level
X (1). However by assuming the nested property of consecutive grids, theorem 1 also holds for a
restriction to the coarsest grid. It has been proven in [23] (theorem 2.1) that this expansion exists
for a large class of (discretisations of) linear differential equations under relatively mild conditions.
Roughly speaking, these conditions are: existence and uniqueness of the discrete and continuous
problem, and sufficient smoothness of the terms appearing in the discretised equations.

Theorem 1 indicates that if an expansion of the form (3.13) holds, then information of a previ-
ously trained neural network mapping P(i−1) can be used to more efficiently train P(i). The concept
of reusing parts of a previously trained neural network is not new in the field of machine learning,
and is known as transfer learning [24]. Transfer learning is used to circumvent the need for sam-
pling many solutions on the higher levels by using weights and biases from the previously trained
neural network P(i−1).

The concept of similarity of error profiles, as expressed by theorem 1, holds for linear differential
equations, as it relies on assumption (3.13). We numerically show in section 6 that the concept of
similarity of error profiles also holds to a large extent for non-linear differential equations, which
makes transfer learning applicable to non-linear cases as well.
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which is of the form displayed in equation (3.14) with k = d +1.

The existence of expansion (3.13) is a crucial assumption in this theorem. Notice that theorem
1 assumes a restriction to the grid Xh, while the proposed method restricts to the coarsest level
X (1). However by assuming the nested property of consecutive grids, theorem 1 also holds for a
restriction to the coarsest grid. It has been proven in [23] (theorem 2.1) that this expansion exists
for a large class of (discretisations of) linear differential equations under relatively mild conditions.
Roughly speaking, these conditions are: existence and uniqueness of the discrete and continuous
problem, and sufficient smoothness of the terms appearing in the discretised equations.

Theorem 1 indicates that if an expansion of the form (3.13) holds, then information of a previ-
ously trained neural network mapping P(i−1) can be used to more efficiently train P(i). The concept
of reusing parts of a previously trained neural network is not new in the field of machine learning,
and is known as transfer learning [24]. Transfer learning is used to circumvent the need for sam-
pling many solutions on the higher levels by using weights and biases from the previously trained
neural network P(i−1).

The concept of similarity of error profiles, as expressed by theorem 1, holds for linear differential
equations, as it relies on assumption (3.13). We numerically show in section 6 that the concept of
similarity of error profiles also holds to a large extent for non-linear differential equations, which
makes transfer learning applicable to non-linear cases as well.

4 Training the neural networks

In order to train the neural networks (P(2), ...,P(NL)), we need to specify:

1. Architecture: layer architecture, activation functions, and hyperparameters

2. Training/validation data: data set for training and validating the neural networks

3. Hyperparameter tuning: finding proper hyperparameter values

We will discuss these three components separately in the next subsections.

4.1 Neural Network Architecture
As mentioned before we use a combination of convolutional layers and fully-connected layers, and
the architecture is split in two stages.

Convolutional layers

The name “convolutional layer” indicates that the network employs a mathematical operation called
convolution. A convolutional layer is simply a fully-connected neural network layer in which the
dense matrix multiplication is replaced by a convolution operator (multiplication with a sparse ma-
trix) [25], where filters are convolved over the space of current values. In general, an nD convo-
lutional layer accepts nc channels of dimension k1 × k2 × ...× kn as input, and convolves a filter of
dimension f1 × f2 × ...× fn × nc over the input channels, adds a bias, and applies a (non-)linear
transformation to produce the output. This procedure is shown schematically in figure 3.2.
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Figure 3.2: The 2D convolutional layer with a 1-channel input.

Figure 3.2 shows a 2D convolutional layer for a 1-channel input. The number of channels of the
input corresponds to the number of quantities that is solved for in the underlying PDE. E.g., when
solving 2D incompressible Navier-Stokes, we solve for the two velocity components and the pres-
sure, which results in a 3-channel input. In this chapter, a single 3×3 filter is used with 9 unknown
filter weights w j, which is a commonly used filter-width that yields the best results on our test-cases
(see section 6). In addition, a multi-channel input results in a multi-channel filter with more un-
knowns. It is common practice to use more than one filter, which results in an output with multiple
channels, i.e., one channel associated to the convolution of one filter. Notice that the output of a
convolutional layer is in general smaller than the input, as the filter cannot cross the boundaries of
the input channel. Therefore, the dimensions of the output depend on the input dimensions and the
filter dimensions. As a remedy, we can pad the input channel with zero values at the boundaries in
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order to obtain an output which has the same dimensions as the input channel. This is often referred
to as zero-padding, and will be used in this chapter to keep the output dimensions of the convo-
lutional layers the same. After convolving the filters, a trainable bias coefficient is added to each
output channel and the resulting values are activated with a non-linear activation function σCNN.
The activation function σ for the convolutional neural network (CNN) is chosen to be the Rectified
Linear Unit (ReLU):

σCNN(x) = max(0,x) , (3.18)

because it does not suffer from the vanishing gradient problem and allows for a sparse represen-
tation of the output [25]. The ReLU activation function may suffer from so-called dying neurons
[25]. Other variants, e.g., leaky-Relu or ELU, may be used to resolve the dying neuron problem.
However, the sparse representation when using ReLU is beneficial and is therefore employed in
the remainder of this chapter. The number of convolutional layers NCNN to choose, depends on the
intrinsic complexity of the dataset and is treated as a hyperparameter in the MLNN method. Lastly,
increasing the number of filters with a factor 2 for consecutive CNN layers is a good starting point
to tune the neural network [25], and this strategy is therefore used in this chapter.

Fully-connected layers

After the input has been propagated through the convolutional layers, we flatten the output of the
last convolutional layer into a single vector, and the uncertainties z are concatenated. This vector
is the start of the fully-connected part, where we apply a non-linear transformation to the output
of the convolutional part. This part of the neural architecture is characterised by the number of
fully-connected layers NFC, the number of neurons per layer n, and the activation function σFC. The
parameters NFC and n are treated as hyperparameters and will be tuned during the training process.
Additionally, a ReLU activation function is used for the fully-connected layers. Once we have
propagated the output of the convolutional part through the NFC fully-connected layers, we output
a vector which has the same dimensions as the input of the network. The output layer uses a linear
activation function, because it allows for unbounded output values.

Cost function

The goal of training the neural network is to find the weights w and biases b, of both the convolu-
tional and fully-connected parts, which minimise the following cost functions:

c(i)(w,b) = ∑
(u(i),u(i−1))∈T (i)

‖P(i)(u(i−1)|X(1) )− (u(i)|X(1) −u(i−1)|X(1) )‖2
2 , i = 2, ...,NL , (3.19)

where T (i) is the training set. The construction of this training set is discussed in section 2.4 in more
detail.

Overfitting may occur due to the large amount of unknowns, i.e., convolutional weights/biases
and fully-connected layer weights/biases. In order to prevent overfitting, we use an l2-regularisation,
which introduces a new hyperparameter λ and the altered cost functions:

c(i)λ (w,b) = ∑
(u(i),u(i−1))∈T

‖P(i)(u(i−1)|X(1) )− (u(i)|X(1) −u(i−1)|X(1) )‖2
2 +λ‖w‖2

2, i = 2, ...,NL .

(3.20)
After training the neural network, we validate if the neural network generalises to unseen data by
computing the validation error:

v(i) = ∑
(u(i),u(i−1))∈V (i)

‖P(i)(u(i−1))− (u(i)−u(i−1))‖2
2, i = 2, ...,NL , (3.21)
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lutional layers the same. After convolving the filters, a trainable bias coefficient is added to each
output channel and the resulting values are activated with a non-linear activation function σCNN.
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a vector which has the same dimensions as the input of the network. The output layer uses a linear
activation function, because it allows for unbounded output values.

Cost function
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tional and fully-connected parts, which minimise the following cost functions:
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where T (i) is the training set. The construction of this training set is discussed in section 2.4 in more
detail.

Overfitting may occur due to the large amount of unknowns, i.e., convolutional weights/biases
and fully-connected layer weights/biases. In order to prevent overfitting, we use an l2-regularisation,
which introduces a new hyperparameter λ and the altered cost functions:

c(i)λ (w,b) = ∑
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‖P(i)(u(i−1)|X(1) )− (u(i)|X(1) −u(i−1)|X(1) )‖2
2 +λ‖w‖2
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After training the neural network, we validate if the neural network generalises to unseen data by
computing the validation error:

v(i) = ∑
(u(i),u(i−1))∈V (i)

‖P(i)(u(i−1))− (u(i)−u(i−1))‖2
2, i = 2, ...,NL , (3.21)

where V (i) is the validation set. The validation error is used to tune the hyperparameters of the
network architecture. Additionally, a test set can be used to check if the neural network with proper
hyperparameters generalises well outside the training/validation set. However, using a test set re-
sults in an increase of required number of samples, and as generalisation is only important within
or close to the range of training/validation data. We choose to solely use a training and validation
set.

Transfer learning

The amount of training data required for obtaining a proper set of weights and biases may become
infeasible when increasing the level, as it requires a training set that is constructed by sampling
many high-fidelity solutions. When training P(i), i = 3, ...,NL, transfer learning is used to circum-
vent the need for sampling many solutions on the higher levels, by using weights and biases from the
previously trained neural network P(i−1). Transfer learning can be performed in multiple ways [24].
We choose to fix the weights and biases of the previously trained neural network P(i−1) and add
a small number of fully-connected layers at the end, while keeping the rest of the architecture the
same. As the input for P(i), i = 2, ...,NL is a solution vector, which is defined on the same grid X (1),
the learned convolutional filters are still expected to compute a proper set of latent quantities when
increasing the level i. Therefore, the transfer learning approach leaves the convolutional part unal-
tered for all P(i), i = 3, ...,NL. The transfer learning procedure is schematically shown in figure 3.3.

(2)P P(3)

large number of unknowns -> large training set small number of unknowns -> small training set

(2)Pweights and biases from unknown weights/biasesunknown weights/biases

Figure 3.3: Transfer learning procedure.

A single fully-connected layer is added with the same activation function as the other fully-connected
layers, but with a hyperparameter n representing the number of neurons in the new layer.

4.2 Training/validation data

The neural networks {P(i)}NL
i=2 are trained to approximate the errors e(i)(z)|X(1) = u(i)(z)|X(1) −

u(i−1)(z)|X(1) . The training set for training P(i) requires solution values for both u(i−1)(z) and u(i)(z),
sampled at multiple values for z. The training set that is used for training P(i) is denoted as:

T (i) :=
{(

u(i)(zk)|X(1) ,u(i−1)(zk)|X(1)

)
| k = 1, ...,Ntraining

}
. (3.22)

In order to validate if the neural network generalises to values not in the training set, we validate
our neural network on the set:

V (i) :=
{(

u(i)(zk)|X(1) ,u(i−1)(zk)|X(1)

)
| k = 1, ...,Nvalidate

}
. (3.23)

The amount and quality of data that is used to train and validate the neural network is paramount.
How to ensure that we obtain a proper set of weights and biases that generalises well to unseen val-
ues, is discussed in this section. The required amount of training data depends on the complexity
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of the response to be approximated and on the total number of unknowns in the neural network
architecture, i.e., the weights and biases. The numbers of unknown weights and biases in the neu-
ral networks {P(i)}NL

i=2 decrease significantly by using the transfer learning approach described in
section 4.1. As a result, we need a large amount of training samples when training P(2), which is
feasible when assuming that low-fidelity solutions are computationally cheap to sample. As op-
posed to this, sampling high-fidelity solutions for training P(NL) is computationally expensive, but
we require significantly less training samples, due to variance decay in e(i) for increasing i [19] and
the small amount of unknown weights and biases induced by transfer learning. The quality of the
training data is determined by the sample locations zk in (3.23). As determining a proper size of the
training/validation set is difficult [25], we employ a sampling strategy which iteratively adds new
samples u(i)(zk) when the neural network does not generalise well to the validation set.

The training procedures for the neural networks {P(i)}NL
i=2 are explained in more detail below.

Training P(2)

The first neural network that needs to be trained is P(2). When training P(2), we approximate the
error

e(2)(z)|X(1) = u(2)(z)|X(1) −u(1)(z) , (3.24)

and to construct T (2), the sample locations zk need to be specified. As the low-fidelity solutions
u(1)(z) and u(2)(z) are assumed to be computationally cheap to sample from, we place many sam-
ples on the first two levels. In this chapter, the initial sample set comprises a relatively large set
of 10dim(I) solutions in the random space I, which shows to give good results for our test-cases in
section 6. However, as we employ an iterative sampling strategy, the final size of the sample set is
tailored to the underlying problem, which makes a proper size of the initial sample set less signifi-
cant. The locations are defined using Monte Carlo sampling according to the underlying PDF of the
uncertainties ρ(z). As transfer learning can not be used for training P(2), the number of unknown
weights and biases is large compared to P(i), i = 3, ...,NL. As a result, the initial sample set should
be large enough to properly train the neural network, but also small enough to be feasible in high-
dimensional random spaces. However, having the dimensional scaling in the sample size of the
initial set introduces a curse of dimensionality. One may opt to reduce the size of the initial samples
set with the risk of needing to perform more learning cycles which affects the overall computational
costs. The sample set is split using the 80/20%-rule in a training set T (2) and a validation set V (2).
Splitting the full sample set according to this 80/20% ratio is known as the Pareto Principle [25]
and is commonly used in machine learning for determining the size of the training and validation
sets. After minimising (3.20), we tune the hyperparameters and pick the network architecture which
results in the smallest validation error v(i)min. This is discussed in more detail in section III. Training
is stopped if v(i)min satisfies:

v(i)min < ε , (3.25)

where ε is a specified threshold. The threshold ε indicates how well the trained neural network
generalises to data that is not contained in the training set. If the stopping criterion is not met, we
increase the sample set by sampling another 10dim(I) new PDE solutions. The newly obtained larger
sample set is again split randomly in a training/validation set following the 80/20%-rule, which are
used to retrain the neural network. This process of training, validating, enlarging the training set
is repeated until (3.25) is satisfied. Notice that each time the sample set is increased, the neural
network needs to be retrained, which is assumed to be a relatively cheap operation when compared
to computing a high-fidelity solution, as the weights and biases of the previous training can be used
as a very good initial guess for the retraining.
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network needs to be retrained, which is assumed to be a relatively cheap operation when compared
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Training P(i), i > 2

Constructing a large training set when increasing i is often not feasible. Therefore, the combination
of transfer learning and iterative sample set construction is used to limit the required number of
training samples. Training the relatively small neural networks is fast in general. We iteratively
increase the size of the training set during the training procedure. We again start with a small sample
set that is used for training/validation of the neural network. After training the neural network we
check if (3.25) is met. If not, then new samples are added to the sample set, which effectively
increases the size of the training/validation set. This process is repeated until (3.25) is satisfied.

Initially, the sample set comprises 2dim(I) randomly placed samples in the space I, which is
split in a training set T (i) and validation set V (i) following the 80/20%-rule. The size of the initial
sample set is smaller when compared to the initial sample set used for training P(2) to alleviate
computational burden when sampling the computationally expensive higher-fidelity solutions. The
number of samples in the initial sample set is chosen to be small in order for the MLNN method to
still be feasible for high-dimensional random spaces. As mentioned before, the use of an iterative
sampling strategy makes the size of the initial sample set insignificant. Furthermore, notice that
we only need to sample solutions for u(i) and u(1), as accurate approximations of u(i−1) can be
constructed using (3.11) with NL = i−1.

Nesting of samples on different levels removes the need for sampling additional solutions for
u(i−1), but introduces correlated expectations on the different levels, which is unwanted [18]. Strate-
gies to reuse samples on different levels have recently been proposed [26], and could be used to
further enhance the MLNN method, but are not required to show the basic methodology that we
propose.

After training the neural network, we check if criterion (3.25) is met. If the stopping criterion
is not met, we increase the sample set by sampling 2dim(I) new PDE solutions. The newly obtained
larger sample set is again split randomly in a training/validation set following the 80/20%-rule,
which is used to retrain the neural network. This process of training, validating, enlarging the
training set, is repeated until we satisfy (3.25).

4.3 Hyperparameter tuning
When training the neural networks, values for the hyperparameters need to be specified. A complete
list of hyperparameters in this chapter is shown below:

• Hyperparameters when training P(2):

– λ (regularisation parameter)

– NCNN (number of convolutional layers)

– NFC (number of fully-connected layers)

– n (number of neurons per fully-connected layer)

• Hyperparameters when training P(i), i > 2:

– λ (i) (regularisation parameter)

– n(i) (number of neurons in the added fully-connected layer)

Notice that the hyperparameters directly affect the effective number of degrees of freedom in the
neural network. This allows us to find an architecture with a proper number of learnable parameters
during training, which is expected to reduce the required number of samples for training each neural
network. To tune these hyperparameters, we use a grid search, which specifies pre-defined values
for each parameter, and constructs a tensor grid of all possible combinations of hyperparameter
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values. A neural network is then trained for each combination of hyperparameter values. To limit
the total number of neural networks we have to train, we pick only 3 values for each hyperparameter,
which are commonly used in deep-learning approaches:

• λ ∈ {0,10−6,10−3} ,

• NCNN ∈ {2,4,6} ,

• NFC ∈ {1,3,5} ,

• n ∈ {�N(1)

2 �,N(1),2N(1)} .

This range of values for the hyperparameters has been shown to work well for many cases [24, 25,
27, 28, 29, 30] and is therefore employed in this chapter.

5 Complete algorithm
A schematic representation of the MLNN method is shown in figure 3.4.
The number of levels that should be picked, depends on the decay of e(i) with increasing i. As a
result, an intuitive criterion for adding new levels is:

if ∃u(NL−1) ∈ T (NL) : ‖P(NL)(u(NL−1))‖2 > εacc → NL = NL +1 , (3.26)

where εacc is the accuracy tolerance value. To clarify, two thresholds need to be specified, i.e., ε
in (3.25) and εacc in (3.26). As mentioned before, the threshold ε indicates how well the trained
neural network generalises to data not contained in the training set. The threshold εacc corresponds
to the accuracy of the approximated high-fidelity solution when using (3.11). In general, εacc is set
to the required accuracy of the approximation, and ε is set to a value which is one or two orders of
magnitude smaller than εacc to ensure that the accuracy of the approximate high-fidelity solution is
not influenced by possibly poor training of the neural networks.

Performing in-depth analysis on the stability and convergence of the MLNN method is cumber-
some due to the inherent non-linearity in the neural network architecture. A wide range of numerical
results has shown that MLNN converges to a solution which fits the training/validation set. To clar-
ify, the required number of training/validation samples is often small which results in easy to train
neural networks that will almost surely converge, but are sensitive to overfitting. This overfitting is
circumvented by introducing the regularisation strategy proposed in section 4. Important to note is
that errors from neural networks on the low levels P(2),P(3), ... do propagate to the higher levels.
This can be directly seen in equation (3.11), where the output of a neural network on a specific
level enters as input of a neural network on a higher level. The effect of this error propagation can
be controlled by setting the threshold ε . Low values for ε result in more accurate predictions of a
neural network, hence reducing the magnitude of the errors that will propagate through the neural
network chain (3.11).

The MLNN method is flexible and robust and works for a wide variety of problems, some of
which are shown in the next section. We note that the assumption that e(i−1)(z) and e(i)(z) should
possess similar behaviour is a key assumption in the MLNN method. If this assumption does not
hold, the transfer learning approach is not optimal and one might still require many samples for ap-
proximating e(i)(z). The extension of transfer learning to problems where the similarity assumption
does not hold will require further research in transfer learning; this is an open topic of research in
the field of machine learning and it is still difficult to estimate how much e(i−1)(z) and e(i)(z) may
deviate and which features are transferable [31].
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Figure 3.4: Schematic overview of the MLNN method.

6 Results

In this section we use the MLNN method to do surrogate construction for test-cases with ranging
complexity. These surrogates may be used to extract statistical quantities, e.g., mean and variance.
As the purpose of this chapter is to construct accurate surrogates, we assume that all the uncertain
parameters are uniformly distributed, which does not put any emphasis on certain parameter config-
urations. The neural networks are constructed and trained using Tensorflow [32], which is a highly
optimised library for machine learning.
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6.1 Steady-state advection diffusion equation
In this section we study the following:

• Construction of a parametric solution for a linear 1D differential equation.

• Behaviour of P(i) for a linear differential equation.

• Extrapolation outside the training domain.

• Comparison with MLSC [12].

• Optimality of architecture choice.

• Performance in high-dimensional random space.

Parametric solution

We employ the MLNN method for constructing a parametric solution for the 1D steady-state ad-
vection diffusion equation:

du
dx

− 1
Re

d2u
dx2 = 0, u(0) = 0, u(1) = 1, x ∈ [0,1] , (3.27)

where Re is the Reynolds number and is uncertain, i.e., z = Re. The exact solution is given by:

uexc(x,Re) =
exp(xRe)−1
exp(Re)−1

. (3.28)

We aim to construct a parametric solution for u as a function of Re ∈ [1,100].
The equations are discretised using a finite-difference approach on an equidistant grid with a

resolution of ∆x with N+1 grid points. The solution vector on the computational grid u = (ui)
N
i=0 ≈

(u(xi))
N
i=0, with xi = i∆x where ∆x = 1/N, is obtained by solving the following linear system:

L1u− 1
Re

L2u = S(Re) , (3.29)

where

L1 =
1

2∆x




0 1
−1 0 1

. . . . . . . . .
−1 0 1
0 −1 0



, L2 =

1
∆x2




−2 1
1 −2 1

. . . . . . . . .
1 −2 1
0 1 −2




,

(3.30a)

S(Re) =




0
...
...
0

− 1
2∆x +

1
Re∆x2




, (3.30b)

where the boundary conditions enter the discretised equation via the vector S. The discretisation
scheme is second order accurate and therefore the error in the solution converges with O(∆x2),
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Figure 3.5: Advection diffusion equation. The exact parametric solution for the advection diffusion equation.

assuming that, on the basis of the Lax-equivalence theorem, the solution method to be used is nu-
merically stable. The exact parametric solution for Re ∈ [1,100] is shown in figure 3.5. The fidelity
of the solution increases when N increases, and we choose to increase the fidelity by increasing
the number of grid points with a factor 2 for consecutive levels, i.e., N(i) = 2N(i−1). In order for
the discretisation to produce stable results, the cell Reynolds number Re∆x = Re∆x should satisfy
Re∆x < 2, which is satisfied by picking ∆x sufficiently small. The largest value for Re is 100, and
therefore picking N(1) = 100 satisfies the cell Reynolds condition.

The parametric solution is constructed using an accuracy tolerance εacc = 10−6, which corre-
sponds to the desired accuracy of the surrogate. The training tolerance is set to a value which is two
orders of magnitude smaller, ε = 10−8, following the rule explained in section 5. As mentioned in
section 4.2, we start with 10 samples on the coarsest level (8 training samples, 2 validation sam-
ples), and apply the MLNN method from there on. The error between our approximate solution
(3.11) and the exact solution (3.28) for a varying number of levels is shown in figure 3.6. The er-
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ror increases with increasing Reynolds number, due to the more difficult approximation of the thin
boundary layer at high Reynolds numbers. The spacing between the errors for different levels at
a specific Reynolds number (left figure) indicates that the method is indeed second order accurate.
As expected, we see a clear decrease in required number of samples with increasing level, which
indicates that the transfer learning is positively affecting the required number of samples on each
level. Furthermore, the difference in training time for each consecutive neural network is negligible
when compared to the cost of a single high-fidelity solve.
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Neural network mappings P(i)

The neural network mappings P(i), i = 2,3,4,5 are shown in figure 3.7. Important to note is that
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Figure 3.7: Advection diffusion equation. The neural network mappings for the advection-diffusion test-case
in (x,Re)-space.

P(i), i = 2,3,4,5 are approximately equal, apart from a scaling factor, which is the key insight
utilised by our transfer-learning approach. This is as expected, because it can be shown that discrete
solutions of this particular steady-state advection-diffusion boundary value problem satisfy the con-
ditions outlined in [23] (Theorem 2.1) so that expansion (18) holds [33, 34], and therefore theorem
1 holds for this case. As mentioned before, when the level increases, the error between consecutive
levels decreases. As a result, less samples are required to approximate these high-level mappings,
which decreases the required number of high-fidelity samples.

Extrapolation capabilities

Figure 3.6 shows that the MLNN method is suitable for efficiently constructing parametric solu-
tions inside the training domain Re ∈ [1,100]. However, extrapolation outside the domain where
the neural networks are trained, is difficult in general. Figure 3.8 shows the errors between our
approximate solution, based on P(i), i = 2,3,4,5 and computed with (3.11), and the exact solution
(3.28) for Re > 100. The errors in the approximate solution increase rather drastically when using
the trained neural networks outside the training domain. As a result, the trained neural networks
are not suitable for constructing accurate solutions outside the training domain, when deviating too
far from the domain boundaries [25]. This is a common problem in machine learning. Fixing this
problem is not the scope of this manuscript.

Comparison with MLSC

We compare the computational cost of MLNN and MLSC (as proposed in [12]) for the case of
constructing a surrogate with a specified accuracy. The computational cost comprises CPU time for
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the trained neural networks outside the training domain. As a result, the trained neural networks
are not suitable for constructing accurate solutions outside the training domain, when deviating too
far from the domain boundaries [25]. This is a common problem in machine learning. Fixing this
problem is not the scope of this manuscript.

Comparison with MLSC

We compare the computational cost of MLNN and MLSC (as proposed in [12]) for the case of
constructing a surrogate with a specified accuracy. The computational cost comprises CPU time for
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Figure 3.8: Advection diffusion equation. Extrapolation errors outside the training domain Re ∈ [1,100].

both solving the underlying differential equation and sampling procedure, i.e., training the neural
networks (MLNN) or constructing the Clenshaw-Curtis grids (MLSC). The dependence of the com-
putational cost on the implementation is negligible, because MLSC requires a minimum amount of
implementation whereas training and constructing the neural networks for the MLNN method are
performed using Tensorflow, which is a highly optimised library for machine learning. Both ap-
proaches use a sampling threshold on each level of ε = 10−10. The levels are determined by the
grid resolution which is refined with a factor 2 for subsequent levels. As both approaches use the
same solver with the same grid resolution on each level, we are able to compare both approaches
directly. The computational costs are scaled with respect to the maximum computational cost of
the MLSC approach and the results are shown in figure 3.9. Notice that the error on the horizontal
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Figure 3.9: Advection diffusion equation. The scaled computational cost when constructing a surrogate for
a range of accuracies.

axis is directly related to the number of levels that are used in both approaches. The MLNN method
requires more computational time for the approximation on the first level when compared to the
MLSC. However, the transfer learning approach significantly reduces the required number of sam-
ples on subsequent levels. As a result, MLNN appears to be more computationally efficient with
increasing surrogate accuracy.



112

Performance in high-dimensional random space

In this section we show how the MLNN performs in a high-dimensional random space. We again
consider the steady state advection diffusion equation, but now with a spatially varying Reynolds
number:

du
dx

− 1
Re(x)

d2u
dx2 = 0, u(0) = 0, u(1) = 1, x ∈ [0,1] , (3.31)

where the Reynolds number is represented by:

Re(x) =
Nz−1

∑
i=0

zixi , (3.32)

where the uncertainties are zi ∈ [1,100/Nz], such that Re(x) ∈ [1,100]. We will study how the re-
quired computational cost, i.e., constructing training/validation set and training the neural networks,
for constructing a surrogate ũ(5). To get an impression of how the method scales to multiple dimen-
sions, we show the computational cost per dimension and scale it with respect to the computational
cost required for Nz = 1. The results are shown in figure 3.10. We see a clear decrease in the
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Figure 3.10: Advection diffusion equation. (left) Scaled computational cost per dimension for the MLNN
when constructing ũ(5). The costs per dimension are scaled with respect to the cost required when Nz = 1.
(right) comparison with the MLSC method for constructing a surrogate model for u(5). The computational
costs are scaled with respect to the computational costs required when using the MLSC method.

required computational cost per dimension, which stagnates around Nz = 7, which indicates that
the curse of dimensionality still exists. Furthermore, we see that MLSC outperforms MLNN up to
Nz = 5, after which the MLNN method is superior.

Fully connected vs. Convolutional

This subsection shows that convolutional neural networks outperform fully-connected neural net-
works when applied to the steady-state advection diffusion equation. In order to fairly compare
both the fully-connected and convolutional approach, we keep the number of learnable parameters
in both approaches the same and also apply hyperparameter tuning for the number of layers and
neurons per layer in the fully-connected neural network approach. The maximum allowed number
of fully-connected layers/neurons for P(i) is chosen such that the total number of learnable parame-
ters is not higher than the number of learnable parameters used in the convolutional approach. The
scaled computational cost to achieve a certain accuracy is shown in figure 3.11. We see that the
CNN architecture has a slight advantage over using a fully connected neural network. This advan-
tage increases with the complexity of the underlying problem, but is not shown in the remainder of
this paper for repetitiveness.
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Performance in high-dimensional random space

In this section we show how the MLNN performs in a high-dimensional random space. We again
consider the steady state advection diffusion equation, but now with a spatially varying Reynolds
number:

du
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− 1
Re(x)

d2u
dx2 = 0, u(0) = 0, u(1) = 1, x ∈ [0,1] , (3.31)

where the Reynolds number is represented by:

Re(x) =
Nz−1

∑
i=0

zixi , (3.32)

where the uncertainties are zi ∈ [1,100/Nz], such that Re(x) ∈ [1,100]. We will study how the re-
quired computational cost, i.e., constructing training/validation set and training the neural networks,
for constructing a surrogate ũ(5). To get an impression of how the method scales to multiple dimen-
sions, we show the computational cost per dimension and scale it with respect to the computational
cost required for Nz = 1. The results are shown in figure 3.10. We see a clear decrease in the
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required computational cost per dimension, which stagnates around Nz = 7, which indicates that
the curse of dimensionality still exists. Furthermore, we see that MLSC outperforms MLNN up to
Nz = 5, after which the MLNN method is superior.

Fully connected vs. Convolutional

This subsection shows that convolutional neural networks outperform fully-connected neural net-
works when applied to the steady-state advection diffusion equation. In order to fairly compare
both the fully-connected and convolutional approach, we keep the number of learnable parameters
in both approaches the same and also apply hyperparameter tuning for the number of layers and
neurons per layer in the fully-connected neural network approach. The maximum allowed number
of fully-connected layers/neurons for P(i) is chosen such that the total number of learnable parame-
ters is not higher than the number of learnable parameters used in the convolutional approach. The
scaled computational cost to achieve a certain accuracy is shown in figure 3.11. We see that the
CNN architecture has a slight advantage over using a fully connected neural network. This advan-
tage increases with the complexity of the underlying problem, but is not shown in the remainder of
this paper for repetitiveness.

10

0

0.899

-2
10

-4
10

-8
10

-6

(1)
( )

2
LN

exc X
u u - |‖ ‖ 

1

sc
al

ed
 c

o
m

p
u

ta
ti

o
n

al
 c

o
st

Convolutional

Fully-connected
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6.2 Steady-state Burgers equation
In this section we increase the complexity of the previous test-case by introducing a non-linearity
in the underlying differential equation. We study the following:

• Construction of a parametric solution for a non-linear 1D differential equation.

• Behaviour of P(i) for a non-linear differential equation.

• Comparison with MLSC [12].

• Performance in high-dimensional random space.

Parametric solution

In order to study how the MLNN method performs in the presence of non-linearities in the under-
lying equation, we consider the non-linear steady-state Burgers equation:

1
2

du2

dx
− 1

Re
d2u
dx2 = 0, u(0) = 0, u(1) = 1, x ∈ [0,1] , (3.33)

where Re is again the Reynolds number and is assumed to be uncertain, i.e., z = Re. The effect of
the non-linearity increases for increasing Reynolds number. In the linear advection-diffusion case
we considered Re ∈ [1,100], but this range is increased to have a more pronounced non-linear effect
in the solution at higher Reynolds numbers. As a result, we aim to construct a parametric solution
for u as a function of Re ∈ [1,1000].

The equations are discretised using a finite-difference approach on an equidistant grid with a
resolution of ∆x with N+1 grid-points. The solution vector on the computational grid u= (ui)

N
i=0 ≈

(u(xi))
N
i=0, with xi = i∆x where ∆x = 1/N, is obtained by solving the following non-linear system:

F(u) = 0 , (3.34)

where

F(u) =




u0
1

4∆x (u
2
2 −u2

0)−
1

Re∆x2 (u2 −2u1 +u0)
...

1
4∆x (u

2
N −u2

N−2)−
1

Re∆x2 (uN −2uN−1 +uN−2)

uN −1




. (3.35)
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This non-linear system is solved using Newton iteration and the complete discretisation scheme
is second order accurate. We choose to increase the fidelity by increasing the number of grid-
points with a factor 2 for consecutive levels, i.e., N(i) = 2N(i−1), and picking N(1) = 300. The
grid-resolution of the first level is picked such that we produce stable results for Re ∈ [1,1000].
The parametric solution for Re ∈ [1,1000] is shown alongside the solution error convergence for
Re = 1000 in figure 3.12. As for the the linear case, the tolerance for the training procedure is set to
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Figure 3.12: Burgers equation. (left) The parametric solution for the Burgers equation computed with
N = 105 grid points. (right) The convergence of the error in the solution for Re = 1,10,1000 as a function of
the number of grid points. The reference solution is computed with N = 108.

ε = 10−8 and the accuracy tolerance is set to εacc = 10−6. As mentioned in section 4.2, we start with
10 samples on the coarsest level (8 training samples, 2 validation samples), and apply the MLNN
method from there on. The error between our approximate solution (3.11) and the converged solu-
tion, with a varying number of levels, is shown in figure 3.13. Again, we see a decrease in required
number of samples with increasing level. The error increases with increasing Reynolds number,
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Figure 3.13: Burgers equation. (left) Error convergence for different number of total levels. (right) Sample
placement on each level.

due to the more difficult approximation of the thin boundary layer at high Reynolds numbers and
possibly the increasing effect of the non-linearity in the underlying equation.

Neural network mappings P(i)

The neural network mappings P(i), i = 2,3,4,5 are shown in figure 3.14. The approximated map-
pings P(i) differ slightly for consecutive levels, which is caused by the increasing effect of the
non-linearity in the underlying PDE for higher Reynolds numbers. Note that for Re ∈ [1,100] the
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due to the more difficult approximation of the thin boundary layer at high Reynolds numbers and
possibly the increasing effect of the non-linearity in the underlying equation.

Neural network mappings P(i)

The neural network mappings P(i), i = 2,3,4,5 are shown in figure 3.14. The approximated map-
pings P(i) differ slightly for consecutive levels, which is caused by the increasing effect of the
non-linearity in the underlying PDE for higher Reynolds numbers. Note that for Re ∈ [1,100] the
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Figure 3.14: Burgers equation. The neural networks mappings for the Burgers test-case in (x,Re)-space.

mappings for the consecutive levels are very similar, just as with the linear advection-diffusion
equation.

To summarise, the MLNN method shows similar result when comparing it to the linear advection-
diffusion test-case. The number of samples required on each level increased, due to the more com-
plex error responses e(i)(z), which is caused by the increasing non-linearity in the underlying PDE
with increasing Reynolds number. However, as the error responses are still similar, our proposed
transfer learning approach is a very efficient way to learn the neural network mappings with increas-
ing i.

Comparison with MLSC

We compare the computational cost of MLNN and MLSC for the case of constructing a surrogate
with a certain accuracy. The computational cost is computed in the same way as described in
section 6.I.4 and the results are shown in figure 3.15. The MLNN method requires significantly
more computational time for the approximation on the first level when compared to the MLSC.
Again we benefit by using our approach for higher accuracy levels.

Performance in high-dimensional random space

In this section we show how the MLNN performs in a high-dimensional random space for an un-
derlying non-linear PDE. We again consider the steady-state Burgers equation, but with a spatially
varying Reynolds number:

1
2

du2

dx
− 1

Re(x)
d2u
dx2 = 0, u(0) = 0, u(1) = 1, x ∈ [0,1] , (3.36)
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Figure 3.15: Burgers equation. The scaled computational cost when constructing a surrogate for a range of
accuracies.

where the Reynolds number is represented by:

Re(x) =
Nz−1

∑
i=0

zixi , (3.37)

where the uncertainties are zi ∈ [1,100/Nz], such that Re(x) ∈ [1,100]. The setup of this test-
case is similar to the one used in section 6.I.5. We will study how the required computational
cost, i.e., the cost of constructing training/validation set and training the neural networks, and the
cost for constructing a surrogate ũ(5), scales. To get an impression of how the method scales to
multiple dimensions, we show the computational cost per dimension and scale it with respect to
the computational cost required for Nz = 1. The results are shown in figure 3.16. We see a clear

sc
al

ed
 (c

o
m

p
u

ta
ti

o
n

al
 c

o
st

)1/
N

z

Nz

1
0

1

10

sc
al

ed
 c

o
m

p
u

ta
ti

o
n

al
 c

o
st

Nz

1
0

2

1

10

MLNN

MLSC

Figure 3.16: Burgers equation. (left) Scaled computational cost per dimension for the MLNN when con-
structing ũ(5). The costs per dimension are scaled with respect to the cost required when Nz = 1. (right)
comparison with the MLSC method for constructing a surrogate model for u(5). The computational costs are
scaled with respect to the computational cost required when using the MLSC method.

decrease in the required computational cost per dimension, which stagnates around Nz = 8, which
indicates that the curse of dimensionality still exists. Furthermore, we see that MLSC outperforms
MLNN up to Nz = 3, after which the MLNN method is superior.

6.3 Steady-state incompressible Navier-Stokes equations
In this section we study the following:



non-intrusive solver enhancement · 117

0.921

10

0
-2

10
-4

10
-8

10
-6

(1)
( )

2
LN

exc X
u u - |‖ ‖ 

1

sc
al

ed
 c

o
m

p
u

ta
ti

o
n

al
 c

o
st

MLNN

MLSC

Figure 3.15: Burgers equation. The scaled computational cost when constructing a surrogate for a range of
accuracies.

where the Reynolds number is represented by:

Re(x) =
Nz−1

∑
i=0

zixi , (3.37)

where the uncertainties are zi ∈ [1,100/Nz], such that Re(x) ∈ [1,100]. The setup of this test-
case is similar to the one used in section 6.I.5. We will study how the required computational
cost, i.e., the cost of constructing training/validation set and training the neural networks, and the
cost for constructing a surrogate ũ(5), scales. To get an impression of how the method scales to
multiple dimensions, we show the computational cost per dimension and scale it with respect to
the computational cost required for Nz = 1. The results are shown in figure 3.16. We see a clear
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structing ũ(5). The costs per dimension are scaled with respect to the cost required when Nz = 1. (right)
comparison with the MLSC method for constructing a surrogate model for u(5). The computational costs are
scaled with respect to the computational cost required when using the MLSC method.

decrease in the required computational cost per dimension, which stagnates around Nz = 8, which
indicates that the curse of dimensionality still exists. Furthermore, we see that MLSC outperforms
MLNN up to Nz = 3, after which the MLNN method is superior.

6.3 Steady-state incompressible Navier-Stokes equations
In this section we study the following:

• Construction of a parametric solution for the 2D steady-state incompressible Navier-Stokes
equations.

• Behaviour of P(i) for the steady-state incompressible Navier-Stokes equations.

• Comparison with MLSC [12].

Parametric solution

This test-case discusses the steady-state flow over a backward-facing step, which is a common fluid
mechanics problem. The governing equations are the steady-state incompressible Navier-Stokes
equations in dimensionless form:

∇ ·u = 0 , (3.38a)

(u ·∇)u =−∇p+
1

Re
∇2u , (3.38b)

where u = (u,v) is the velocity field, p the modified pressure, and Re the Reynolds number which
is assumed to be uncertain, i.e., z = Re. The incompressible Navier-Stokes equations are hard to
solve due to the non-linearity and the implicit coupling between mass conservation (3.38a) and
momentum conservation (3.38b) by means of the pressure.

The set of steady state Navier-Stokes equations (3.38a)-(3.38b) are accompanied with a proper
set of boundary conditions on a specified domain. In this section we consider the boundary con-
ditions and domain that correspond to the backward-facing step problem, of which a schematic
representation is shown in figure 3.17. The domain comprises a rectangle with length 15 and height
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Figure 3.17: Schematic of the backward-facing step problem.

1 with solid boundaries, except for the upper part of the inlet (x = 0) and the full outlet (x = 15).
A Poiseuille flow is imposed at the upper part of the inlet, while a pressure outlet condition is en-
forced at the outlet. The solver [35] is verified by comparing solutions for different mesh-sizes with
a reference solution, which is believed to be an accurate benchmark for Re = 800 [36]. The flow
is highly dependent on the Reynolds number, and the solutions for Re = 100 and 800 are shown in
figure 3.18. The Reynolds number determines the size and location of the recirculating flow region
right after the step and near the top boundary. The flow develops to a steady Poiseuille flow after
a distance which is determined by the Reynolds number. However, in this case the flow is not yet
fully developed and that is why we impose no Poisseuille boundary conditions at the outlet. The
u-velocity profiles at x = 7 and x = 15 are shown in figure 3.19.

The solutions on the first level are computed on a 240×16 grid, and consist of the three quan-
tities (u,v,p). We choose to increase the fidelity by increasing the number of grid points with a
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Figure 3.18: Examples of flows over a backward facing step at different Reynolds numbers.
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Figure 3.19: The u-velocity profiles for backward facing step at x = 7 and x = 15 for two different Reynolds
numbers.

factor 2 for consecutive levels, i.e., (N(i)
x ,N(i)

y ) = 2(N(i−1)
x ,N(i−1)

y ). All three quantities (u,v,p) are
given as input to the neural network as a 2D 3-channel convolutional input. The tolerance for the
training procedure is set to ε = 10−6 and an accuracy tolerance εacc = 10−4 is used. We start with
10 samples on the coarsest level (8 training samples, 2 validation samples), and apply the MLNN
method from there on. The normed error difference for different numbers of levels, between our
approximate solution and the solution computed on a fine 3840×256 grid (corresponding to level
5), is shown in figure 3.20. The number of samples required for approximating the mappings ac-
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Figure 3.20: Navier-Stokes equations. (left) Error convergence for different number of total levels. (right)
Sample placement on each level.

curately, increases when compared to the previous test-cases. This is due to the increase in degrees
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numbers.

factor 2 for consecutive levels, i.e., (N(i)
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y ). All three quantities (u,v,p) are
given as input to the neural network as a 2D 3-channel convolutional input. The tolerance for the
training procedure is set to ε = 10−6 and an accuracy tolerance εacc = 10−4 is used. We start with
10 samples on the coarsest level (8 training samples, 2 validation samples), and apply the MLNN
method from there on. The normed error difference for different numbers of levels, between our
approximate solution and the solution computed on a fine 3840× 256 grid (corresponding to level
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curately, increases when compared to the previous test-cases. This is due to the increase in degrees

of freedom in the neural networks, as the 2D multi-channel inputs require 2D convolutional layers,
instead of the 1D convolutional layers that were used in the previous test-cases. Furthermore, the
mappings are more complex when compared to the previous two test-cases.

Neural network mappings P(i)

The neural network mappings P(i), i = 2,3,4 are shown in figure 3.21. It is striking that, even
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Figure 3.21: Navier-Stokes equations. The neural networks mappings for the Navier-Stokes test-case in
(x,y,Re)-space.

for this complex non-linear test-case, the neural network approximations still show very similar
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behaviour for consecutive levels. We stress again that this is the property that is utilised by our
proposed transfer-learning approach to reduce the total number of samples required.

Comparison with MLSC

We compare the computational cost for MLNN and MLSC when constructing a surrogate with a
certain accuracy. The computational cost is computed in the same way as described in section 6.I.4
and the results are shown in figure 3.22. Again, the MLNN method requires more computational
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Figure 3.22: Navier-Stokes equations. The scaled computational cost when constructing a surrogate for a
range of accuracies.

time for the approximation on the first level when compared to MLSC. However, for this non-linear
test-case, the MLNN method outperforms the MLSC approach in terms of computational cost when
constructing a surrogate of accuracy less than 10−4.

6.4 Surrogate modelling for 3D fluid sloshing
As mentionded before, the focus of this part of the thesis is to enhance PIC/FLIP solutions. In
this section we investigate the MLNN method to construct a surrogate for unsteady fluid sloshing
in a 3D rectangular tank with 2 uncertainties. These surrogates are perfectly suited for accurate
uncertainty propagation. The solver is discussed in more detail in section P of Part II.

Uncertainties

We prescribe a rotational tank motion by altering the gravity vector as is described in section P. 3.
The gravity vector is defined as

g = 9.81(sin(ψ)cos(φ),sin(φ),−cos(ψ)cos(φ)) , (3.39)

where the two angles ψ and φ represent rotation in the x,y-plane and y,z-plane, respectively. These
angles are assumed to change during the simulation as a function of time, given by

ψ(t) =
{

Asin(2λ t), t < 2π
λ ,

0, t ≥ 2π
λ ,

φ(t) =
{

Asin(λ t), t < 2π
λ ,

0, t ≥ 2π
λ ,

(3.40)

where the amplitude A and period λ of the oscillation are assumed to be uncertain, i.e., z = (A,λ )
and are assumed to be uniformly distributed on the intervals IA = [π

8 ,
3π
8 ] and Iλ = [ 1

2 ,
3
2 ], respec-

tively. This particular motion leads to heavy sloshing inside the tank and is suitable for testing the
applicability of the MLNN method to a highly irregular fluid motion.
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time for the approximation on the first level when compared to MLSC. However, for this non-linear
test-case, the MLNN method outperforms the MLSC approach in terms of computational cost when
constructing a surrogate of accuracy less than 10−4.

6.4 Surrogate modelling for 3D fluid sloshing
As mentionded before, the focus of this part of the thesis is to enhance PIC/FLIP solutions. In
this section we investigate the MLNN method to construct a surrogate for unsteady fluid sloshing
in a 3D rectangular tank with 2 uncertainties. These surrogates are perfectly suited for accurate
uncertainty propagation. The solver is discussed in more detail in section P of Part II.

Uncertainties

We prescribe a rotational tank motion by altering the gravity vector as is described in section P. 3.
The gravity vector is defined as

g = 9.81(sin(ψ)cos(φ),sin(φ),−cos(ψ)cos(φ)) , (3.39)

where the two angles ψ and φ represent rotation in the x,y-plane and y,z-plane, respectively. These
angles are assumed to change during the simulation as a function of time, given by

ψ(t) =
{

Asin(2λ t), t < 2π
λ ,

0, t ≥ 2π
λ ,

φ(t) =
{

Asin(λ t), t < 2π
λ ,

0, t ≥ 2π
λ ,
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where the amplitude A and period λ of the oscillation are assumed to be uncertain, i.e., z = (A,λ )
and are assumed to be uniformly distributed on the intervals IA = [π

8 ,
3π
8 ] and Iλ = [ 1

2 ,
3
2 ], respec-

tively. This particular motion leads to heavy sloshing inside the tank and is suitable for testing the
applicability of the MLNN method to a highly irregular fluid motion.

The QoI

When performing PIC/FLIP simulations, the shape of the fluid surface is our main interest, which
follows directly from the particle positions. As a result, the QoI is defined as the number of particles
contained within each grid cell at a given time level, which is chosen to be t = 3π . At this time
instant, the tank rotation is back to its initial position, which allows us to compare the QoI.

Fidelities

As most of the computational expense in a PIC/FLIP simulation comes from the grid-based com-
putations, we define the fidelity as the grid resolution. The time-step is tuned accordingly to sat-
isfy the stability condition with safety factor 0.8 [1]. The solutions on the first level are com-
puted on a fixed grid of 32 × 16 × 16 cells. We choose to increase the fidelity by increasing
the number of grid cells in every spatial direction with a factor 2 for consecutive levels, i.e.,
(N(i)

x ,N(i)
y ,N(i)

z ) = 2(N(i−1)
x ,N(i−1)

y ,N(i−1)
z ). Obtaining a fully converged solution for this test-case

is difficult and we therefore consider as reference solution a solution that is computed on a fine
256×128×128 grid, which corresponds to the 4th level. The QoI defined on the low-fidelity grid
is given as input to the neural network as a 3D 1-channel convolutional input. An example of a low
and a high-fidelity simulation result for A = π

4 and λ = 1 is shown in figure 3.23.
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Figure 3.23: 3D Sloshing. Example simulation for A = π
4 and λ = 1. Isosurface generation is used to

convert the particle positions to a fluid surface, which can then be rendered [37].

Parametric solution

The number of particles in each of the low-fidelity grid cells, i.e., the QoI, is a function of the
uncertain parameters A and λ . The MLNN method is used to construct a surrogate model of the
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QoI in the random space spanned by the uncertain parameters. The goal is to approximate the
solution that is computed on the high-fidelity 256× 128× 128 reference grid, which corresponds
to the 4th level in the MLNN approach. Minimising the samples on the 4th level required for
accurate surrogate construction is paramount for the feasibility of the MLNN approach. As before,
the tolerance for the training procedure is set to ε = 10−6 and an accuracy tolerance εacc = 10−4

is used. Errors are computed using a reference surrogate that is constructed using high-fidelity
simulations (on level 4) with a 25×25 Gauss-Legendre grid [38] and the L2-norm is taken over the
solutions in the entire parameter space. The resulting error convergence for the QoI is shown in
figure 3.24.
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Figure 3.24: 3D Sloshing. Error convergence of the surrogate for the QoI constructed with the MLNN
method.

For these non-linear fluid motions, the surrogate construction is challenging, which can be noticed
in the required number of samples on each level. The figure shows that constructing the surrogate
requires significantly more samples on each level when compared to previous test-cases, which is
caused by having two uncertainties and by the complexity of the test-case. However, there is still a
significant decrease in the required number of samples when increasing the level, which shows the
good applicability of our transfer learning approach also for this complex test-case.

Comparison with MLSC

The MLNN method is again compared with the MLSC method and the results are summarised in
figure 3.25.
Our approach requires slightly more computational time for the approximation on the first level
when compared to MLSC. On second and higher levels, our method shows a significant gain in
computational efficiency when compared to the MLSC method, which is more pronounced than in
previous test-cases. In this case, the MLNN method has a clear advantage when used for surrogate
construction with medium to high level of accuracy.

7 Conclusion
In this chapter we have presented a novel method for surrogate construction. The method is based
on a multi-level expansion of the solution and constructs approximations of the relative global
discretisation error on different levels to enhance low-fidelity solutions. Inspired by the idea that
these errors can be expressed in terms of the solution, the approximations of the error on each
level are constructed using convolutional neural networks that apply a non-linear mapping of the
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Figure 3.25: 3D Sloshing. Comparison with MLSC.

solution values to the difference between the solutions computed on the corresponding level and
the subsequent level. Transfer learning reduces the amount of training samples that are required to
properly train the neural networks.

The MLNN method has been employed for surrogate construction for several parametric partial
differential equations: steady 1D advection diffusion equation, steady 1D Burgers equation, steady
2D incompressible Navier-Stokes equations, and unsteady 3D incompressible Navier-Stokes. We
justified the use of transfer learning for these specific test-cases by studying the neural network
mappings. We expect the applicability of transfer learning to generalise to other types of differen-
tial equations, provided that they possess similar smoothness properties, which is necessary for the
error behaviour to be similar at different levels. In all test-cases, fast convergence is obtained, lead-
ing to an accurate surrogate model already at a relatively low number of model runs. We compared
our approach to MLSC. The transfer learning reduces the number of samples on the higher levels,
and therefore significantly decreases the computational cost when medium/high fidelity samples are
expensive to sample or when a surrogate is wanted with a high accuracy, which effectively increases
the number of required levels. The conclusion is that our method outperforms MLSC when either
the PDEs are sufficiently complex, or when a highly accurate surrogate model is required. For
example, for the complex test-case of a liquid sloshing in a tank, our approach leads to a computa-
tional cost saving of a factor 2 compared to MLSC, when requiring medium to high accuracy. The
resulting surrogate model can be directly used as a computationally inexpensive tool for uncertainty
quantification.

Furthermore, the method can be applied to unsteady problems, but is not optimal for it in its
current form. Either the neural networks have to be retrained for different time instances, or the
temporal component should be added as an extra dimension to the convolutional layers and the out-
put of the neural networks.

What did we achieve?
This chapter discussed how to non-intrusively enhance the solutions coming from a low-fidelity
solver. The non-intrusive approach is easy to implement as it does not require the underlying solver
to be altered, but it does not allow for efficient solution enhancement involving a time dependency.
How to effectively deal with this issue is discussed in chapter 4.
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solution values to the difference between the solutions computed on the corresponding level and
the subsequent level. Transfer learning reduces the amount of training samples that are required to
properly train the neural networks.

The MLNN method has been employed for surrogate construction for several parametric partial
differential equations: steady 1D advection diffusion equation, steady 1D Burgers equation, steady
2D incompressible Navier-Stokes equations, and unsteady 3D incompressible Navier-Stokes. We
justified the use of transfer learning for these specific test-cases by studying the neural network
mappings. We expect the applicability of transfer learning to generalise to other types of differen-
tial equations, provided that they possess similar smoothness properties, which is necessary for the
error behaviour to be similar at different levels. In all test-cases, fast convergence is obtained, lead-
ing to an accurate surrogate model already at a relatively low number of model runs. We compared
our approach to MLSC. The transfer learning reduces the number of samples on the higher levels,
and therefore significantly decreases the computational cost when medium/high fidelity samples are
expensive to sample or when a surrogate is wanted with a high accuracy, which effectively increases
the number of required levels. The conclusion is that our method outperforms MLSC when either
the PDEs are sufficiently complex, or when a highly accurate surrogate model is required. For
example, for the complex test-case of a liquid sloshing in a tank, our approach leads to a computa-
tional cost saving of a factor 2 compared to MLSC, when requiring medium to high accuracy. The
resulting surrogate model can be directly used as a computationally inexpensive tool for uncertainty
quantification.

Furthermore, the method can be applied to unsteady problems, but is not optimal for it in its
current form. Either the neural networks have to be retrained for different time instances, or the
temporal component should be added as an extra dimension to the convolutional layers and the out-
put of the neural networks.

What did we achieve?
This chapter discussed how to non-intrusively enhance the solutions coming from a low-fidelity
solver. The non-intrusive approach is easy to implement as it does not require the underlying solver
to be altered, but it does not allow for efficient solution enhancement involving a time dependency.
How to effectively deal with this issue is discussed in chapter 4.
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Publication in preparation

Traditional fluid flow predictions require large computational resources. Despite recent progress
in parallel and GPU computing, the ability to run fluid flow predictions in real-time is often in-
feasible. Recently developed machine learning approaches, which are trained on high-fidelity
data, perform unsatisfactorily outside the training set and remove the ability of utilising legacy
codes after training. We propose a novel methodology that uses a deep learning approach that
can be used within a low-fidelity fluid flow solver to significantly increase the accuracy of the
low-fidelity simulations. The resulting solver enables accurate while reducing computational
times up to 100 times. The deep neural network is trained on a combination of low- and
high-fidelity data, and the resulting solver is referred to as a multi-fidelity solver. The pro-
posed methodology is demonstrated by means of enhancing a fluid flow simulator, known as
PIC/FLIP, which is a popular fluid flow simulator in the field of computer generated imagery.

Background
As stated in the introduction, the goal of part II is to increase the accuracy of fast, but inaccurate so-
lutions. The resulting accurate low-fidelity solver can then be used to efficiently sample a QoI, even
in high-dimensional random spaces. This chapter discusses an intrusive way to enhance such a low-
fidelity solver. In fluid dynamics, a distinction can be made between low-fidelity and high-fidelity
simulations. Low-fidelity simulations are computationally cheap to perform, but have limited ac-
curacy, as they do not capture all the underlying physics or do not resolve all scales. On the other
hand, high-fidelity simulations incorporate all the relevant physical phenomena and corresponding
scales, but may require a tremendous amount of computational resources. This makes it difficult to
this date to perform accurate fluid simulations in real-time.

In order to address the problem of computational expense, various types of methods have been
introduced. A commonly used method is Principal Component Analysis [39, 40], which provides
the desired speed-up by transforming the dynamics of the fluid simulation to operations on linear
combinations of snapshots, therefore restricting the richness of the dynamics. Recently developed
data-driven methods use machine learning algorithms [29, 41, 42], such as regression forests and
neural networks, that are trained on a large set of high-fidelity fluid flow simulation data. After
training, these approaches are able to simulate fluid flows in real-time. However, they often perform
unsatisfactorily outside the training set resulting in unrealistic fluid flow. This extrapolation problem
is a weakness of almost all machine learning approaches but can be partially overcome by supplying
the machine learning algorithm with more information about the underlying physics problem during
training [41]. Furthermore, these recent deep learning methods have not yet been combined with
existing fluid flow solvers, which have been developed and validated over many years.

Multi-fidelity neural networks for real-time fluid flow predictions
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The highlights of the new approach are:

• Deconvolutional neural network for mapping quantities that are defined on a low-resolution
grid to their high-resolution counterparts;

• Intrusive use of the neural network in a PIC/FLIP solver;

• Reasonable generalisation properties outside the training set.
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1 Our approach in short
We propose a novel method that enhances a low-fidelity fluid flow solver by training a deep neural
network that maps values from a low-resolution computational grid to a high-resolution compu-
tational grid. This neural network is then used intrusively to enhance low-fidelity simulations at
each time step. The input and output of the neural network are the current state of the low-fidelity
simulation and the approximate high-fidelity current state, respectively. Compared to data-driven
approaches that are purely trained on high-fidelity data, the crucial advantage of our model+data-
driven approach is that the low-fidelity simulation is acting as a preconditioner, as it already com-
prises parts of the physics involved in the problem. Our proposed multi-fidelity approach is able to
significantly enhance the accuracy of low-fidelity fluid flow predictions, even outside the training
set.

2 Deep learning for enhancing low-fidelity fluid flow predictions
Our approach is to incorporate a deep neural network in the PIC/FLIP solver (discussed in chapter
P of Part II, page 82) that effectively increases the resolution of the computational grid by mapping
a coarse-grid velocity field to its corresponding fine-grid counterpart, reducing the dominant errors
that are caused by computing the incompressible velocity field and grid to particle transfer on a
coarse grid. The resulting PIC/FLIP solver will be subsequently called the multi-fidelity PIC/FLIP,
as it utilises both low and high-fidelity data to train the deep neural network. A schematic overview
of the steps in a low-fidelity and multi-fidelity PIC/FLIP solver is shown in figure 4.1.

(multi-fidelity) PIC/FLIP simulation loop

ENFORCE INCOMPRESSIBILITY

MULTI-FIDELITY STEP

PARTICLES TO GRID GRID TO PARTICLES ADVECT PARTICLES...
t     t+∆t

σ

σ

σ

σ

σ

σlow-fidelity
grid velocities

high-fidelity
grid velocities

Figure 4.1: Steps in the simulation loop for a single time step in the (multi-fidelity) PIC/FLIP solver.

In order to train a neural network, we need to specify [24, 25]:

1. Why this approach?

2. Define low-fidelity and high-fidelity,

3. Input/output quantities for the neural network,

4. Training data,

5. Neural network architecture,

6. Training procedure.

The steps are discussed individually in the next subsections.
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In order to train a neural network, we need to specify [24, 25]:

1. Why this approach?

2. Define low-fidelity and high-fidelity,

3. Input/output quantities for the neural network,

4. Training data,

5. Neural network architecture,

6. Training procedure.

The steps are discussed individually in the next subsections.

2.1 Why this approach?
The core idea is to learn low-level features of the low-fidelity simulations and map them to the
corresponding fine-grid counterpart at every time step. Recent work shows that neural networks are
perfectly suited for predicting fluid flows [43, 44, 45]. However, they are often used non-intrusively
as a post-processing tool or as a standalone solver. Strictly enforcing physical laws inside the
neural network is challenging and often not possible. Using neural networks intrusively in a solver
allows the neural network to optimally utilise these physical laws provided by the solver optimally.
Enhancing coarse-grid solutions by using low-level features is not new. It is done in for instance
turbulence simulations using Large-Eddy Simulation (LES) [46], where sub-grid features on a grid
are modelled using quantities on that very grid only.

2.2 Defining low and high-fidelity PIC/FLIP
In order to apply our method for enhancing a low-fidelity PIC/FLIP solver, we need to define low
and high-fidelity. As the computational bottleneck occurs in the computations on the grid, both the
low and high-fidelity computations use the same number of particles, but differ in grid resolution.
To clarify, a high-fidelity simulation corresponds to simulations on a fine-resolution computational
grid with resolution ∆sHF where we place np,init = 8 particles in a wet cell during the initialisation,
while a low-fidelity simulation corresponds to computations on a coarse-resolution computational

grid with resolution ∆sLF and where we place 8
(

∆sLF
∆sHF

)3
particles in a wet cell during initialisa-

tion. Hence, the low-fidelity simulations have the same number of particles as the high-fidelity
simulations and the combination of upscaling the resolution of the low-fidelity velocity grid and
a large number of particles may result in an increase in accuracy. The grid resolutions ∆sHF and
∆sLF are specified in section 4. Lastly, the time step of the enhanced low-fidelity solver needs to
be such that the simulation remains stable when upscaling the velocity field. Therefore, we take
the low-fidelity time-step the same as the high-fidelity time-step, which latter is chosen such that
the high-fidelity simulation is stable. Even though a stable high-fidelity time-step is often orders of
magnitude smaller than its low-fidelity counterpart, an upscaled low-fidelity solution is still bene-
ficial as most of the computations are performed on a coarse grid which significantly reduces the
time it takes to perform a single time-step when compared to high-fidelity computations.

2.3 Input/output quantities for the neural network
Our approach uses a deep neural network to enhance low-fidelity simulations at each time step.
The inputs for the neural network have to be quantities that can be computed directly from the
low-fidelity simulations at the current and/or previous time levels.

The choice of input and output quantities is motivated by the fact that the main error is caused
by performing velocity calculations on a coarse grid. The input for the neural network is only the
current state of the simulation as seen by the computational grid:

• Scaled number of particles Ps
i, j,k in each grid cell:

Ps
i, j,k := min


1,

Pi, j,k

np,init

(
∆sLF
∆sHF

)3


 , (4.1)

where Pi, j,k is the number of particles in grid cell i, j,k.

• The face velocities defined on the low-fidelity grid uLF .
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The scaled number of particles indicates if the cell is dry (Ps
i, j,k = 0), fully wet (Ps

i, j,k = 1), or partially
wet (0 < Ps

i, j,k < 1). The np,init in the definition of the scaled number of particles comes from the
number of particles that are placed in a wet cell in the initialisation of a high-fidelity simulation
(see section P. 1), and the ratio ∆sLF

∆sHF
accounts for the difference in the number of particles placed

in a wet cell in the initialisation. The scaled number of particles is also bounded to be within the
interval [0,1]. One can use the positions of all particles directly as input for the neural network,
but we opt for using the scaled number of particles per cell as input, which significantly reduces
the dimensionality of the input when many particles are simulated, at a slight reduction in the
information content.

The outputs of the neural network are the new face velocities uHF , which are defined on the
high-fidelity grid, hence, effectively increasing the resolution of the grid. This new and improved
velocity field is then fed back into the solver and used to calculate the new particle velocities in the
grid to particles transfer at the current time level with a smaller interpolation error (P.17).

2.4 Training data
The neural network is trained on a set of data that comprises both low- and high-fidelity data.
The low-fidelity data is used as input for the neural network, while the high-fidelity data acts as
a reference in the cost function, which is discussed in section 2.6. The amount of data required
in the training set may vary depending on the application and is often found heuristically [25].
Furthermore, a validation set is constructed, which is used to tune the neural network architecture
and hyperparameters, and a test set is used to test how well the network generalises.

We focus on performing sloshing simulations [47]. Sloshing is the movement of a liquid con-
tained inside a (possibly moving) object. These types of fluid flow simulations are relevant in many
industry and computer generated imagery applications. For our application we construct the data
set that is used for training, validation and testing, as is shown in figure 4.2.
The procedure in figure 4.2 performs a specified number of time steps and the motion of the rectan-
gular tank is imposed by rotating the gravity vector in the simulation, i.e., ψ(t = 0) = φ(t = 0) = 0
and g(t) = 10(sin(ψ)cos(φ),sin(φ),−cos(ψ)cos(φ)), where the angles change randomly over
time. After the data set has been constructed, we split the entire set in 70% training, 20% vali-
dation and 10% testing samples [25].

The number of time steps, angle increments ∆ψ, ∆φ , and the filling height determine how well
the neural network performs and this will be studied in detail in section 3.

2.5 Neural network architecture
Various options for the neural network type are available, e.g., fully-connected multilayer percep-
trons (MLPs), convolutional neural networks (CNNs) or recurrent neural networks (RNNs), and
determining which type to choose is often difficult. In general, the optimal neural network architec-
ture depends on the application and a proper network type and architecture is often found by using
expert knowledge.

Fully-connected, convolutional, recurrent, or ...?
In this study, there is a clear spatial component in both the input and the output of the neural network
while there is no temporal component in the randomly picked training data. As a result, we opt for
using a CNN architecture due to its inherent spatial nature. Furthermore, it reduces the total number
of degrees of freedom significantly as compared to using an MLP architecture. The spatial nature
of CNNs is caused by using local filters that take a weighted sum of neighbouring velocity values
to compute a new velocity value. If we increase the number of layers, then the amount of neigh-
bouring velocity values, that are used to calculate a new velocity value, increases. We do not know
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Figure 4.2: Schematic of how the data set is constructed that is used for training, validation, and testing.
The magnitudes of the changes in angles ∆ψ and ∆φ depend on the dimensions of the tank.

beforehand how many neighbouring velocity values should be used for accurately approximating
the new velocity values and the number of CNN layers is therefore considered a hyperparameter in
our approach.

How to increase the dimensions of the low-fidelity input to match the dimensions of the high-
fidelity output?
When only using convolutional layers, the dimensionality of the input cannot be increased. This is
problematic, because the goal of the neural network is to increase the effective grid resolution of
the low-fidelity grid. To clarify, the low-fidelity input is of lower dimension than the high-fidelity
output. This can be fixed by adding fully-connected layers after the convolutional part of the neu-
ral network. However these fully-connected layers significantly increase the number of degrees of
freedom in the neural network and this leads to an increase of required number of training data.
Constructing a larger training set requires more or longer high-fidelity simulations and is unwanted
due to computational expense. The transposed convolutional layer, also known as deconvolutional
layer [48, 49], solves this issue by performing a transposed matrix multiplication of the convolution
matrix, which effectively increases the dimensions of the input and removes the need for adding
fully-connected layers at the end of the network architecture. A schematic of the difference be-
tween a standard 2D convolutional layer and a 2D transposed convolutional layer is shown in figure
4.3.
The transpose convolutional layer is characterised by the number of filters, the filter size and the
stride [25].

How to build the complete network architecture?
The complete neural network consists of a combination of both convolutional and transpose con-
volutional layers. The deconvolutional layers are used to increase the dimensionality of the neural
network output, while the convolutional layers are used to effectively map the low-fidelity velocities
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Figure 4.3: A standard 2D convolutional layer and a 2D transposed convolutional layer of a single kernel
for a 1-channel input.

to the high-fidelity velocities. A schematic overview of the complete network architecture is shown
in figure 4.4.
The architecture is defined as follows:

• The network starts with a number of 3D standard convolutional layers with a specific number
of filters (discussed later).

• After the first layer the network consists of groups of a single 3D transpose convolution, and
NCNN 3D standard convolutional layers, where NCNN is a hyperparameter.

– The transpose convolutional layers increase the dimensions of their input with a factor
2 in every dimension, by using a 2×2-filter and a stride 2.

– The standard convolutional layers use a 3×3-filter, which is a commonly used filter size
in deep convolutional neural networks [25].

– Zero padding is used at the standard convolutional layers to keep the input and the output
dimensions of these layers unaltered.

The number of pairs is determined by the input (low-fidelity grid) and the output (high-fidelity grid)
and the number of filters for each pair of deconvolution and convolutional layers decreases with
a factor 4, ending with a single filter for the output layer representing the high-fidelity velocity
field. For example, if the input corresponds to a low-fidelity grid of 16× 16× 16 cells and the
output corresponds to a high-fidelity grid of 256×256×256 cells, 4 pairs of transpose and standard
convolutional layers are needed to match the dimensions of the output, where the first convolutional
layer uses 64 filters. To ensure that this makes sense, we require that the number of cells in each
dimension in the high-fidelity grid is a multiple of 2 of the number of cells in the same dimension
in the low-fidelity grid.
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to the high-fidelity velocities. A schematic overview of the complete network architecture is shown
in figure 4.4.
The architecture is defined as follows:

• The network starts with a number of 3D standard convolutional layers with a specific number
of filters (discussed later).

• After the first layer the network consists of groups of a single 3D transpose convolution, and
NCNN 3D standard convolutional layers, where NCNN is a hyperparameter.

– The transpose convolutional layers increase the dimensions of their input with a factor
2 in every dimension, by using a 2×2-filter and a stride 2.

– The standard convolutional layers use a 3×3-filter, which is a commonly used filter size
in deep convolutional neural networks [25].

– Zero padding is used at the standard convolutional layers to keep the input and the output
dimensions of these layers unaltered.

The number of pairs is determined by the input (low-fidelity grid) and the output (high-fidelity grid)
and the number of filters for each pair of deconvolution and convolutional layers decreases with
a factor 4, ending with a single filter for the output layer representing the high-fidelity velocity
field. For example, if the input corresponds to a low-fidelity grid of 16× 16× 16 cells and the
output corresponds to a high-fidelity grid of 256×256×256 cells, 4 pairs of transpose and standard
convolutional layers are needed to match the dimensions of the output, where the first convolutional
layer uses 64 filters. To ensure that this makes sense, we require that the number of cells in each
dimension in the high-fidelity grid is a multiple of 2 of the number of cells in the same dimension
in the low-fidelity grid.

convolution transpose convolution

Figure 4.4: The complete neural network architecture with hyperparameter NCNN = 2. The architecture
consists of a combination of convolutional and transpose convolutional layers.

The network architecture is further characterised by the activation function used for each layer.
In this chapter, we use a linear output activation to allow for unbounded values, and an exponential
linear unit (ELU) [50] activation function for the remaining layers:

σ(z) =
{

z , z > 0 ,
γ(ez −1) , z ≤ 0 ,

(4.2)

where γ is a hyperparameter. We prefer the ELU activation function over conventional activation
functions, such as (leaky-)ReLU and hyperbolic tangent, as it can cope better with the dying neuron
problem, is easy to evaluate, suffers less from the vanishing gradient problem when compared to
hyperbolic tangent activation [51], and because there is evidence that it speeds up training when
compared to ReLU [50].

2.6 Training the neural network
The cost function c is a function of the weights and biases and indirectly depends on the hyperpa-
rameters. To prevent overfitting, regularisation will be used [25].

The randomly generated training data in section 2.4 is used to train neural networks with differ-
ent choices for the hyperparameters discussed in section 2.5. The cost function that is minimised is
given by:

cλ (W ) =
Nt

∑
i=1

‖(NN(uLF
i ,pcell,i)−uHF

i ‖2
2 +λ (‖W‖2

2) , (4.3)

where W are the trainable parameters (filter coefficients, biases) of the neural network NN, and
where λ is the regularisation parameter, an additional hyperparameter for which a proper value
needs to be determined during training. The cost function is minimised using the Adam optimizer
with default parameter values β1 = 0.9, β2 = 0.999 and a step size α that is treated as a hyper-
parameter. Additionally, batch minimisation with batch size 256 is used to resolve out-of-memory
errors, which may occur when passing a large dataset entirely for minimising the cost function.

We find proper values for the hyperparameters (NCNN ,γ,λ ,α) by performing a grid search on
the tensor grid H with 4 values for each hyperparameter. The 4 values for each hyperparameter are:

• Number of CNN layers after a deconvolution layer: NCNN ∈ {1,2,3,4} ,

• ELU shape parameter: γ ∈ {0.0001,0.001,0.01,0.1} ,
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• Regularisation constant: λ ∈ {10−8,10−6,10−4,10−2} ,

• Optimiser step size: α ∈ {0.0001,0.001,0.01,0.1} .

As a result, we need to train 44 = 256 neural networks, one for each different combination of the
hyperparameters. From this set of trained neural networks, the optimal network is defined as the
one that has the smallest validation error

arg min
(NCNN ,γ,λ ,α)∈H

[
Nv

∑
i=1

‖(NN(uLF
i ,pcell,i)−uHF

i ‖2
2

]
. (4.4)

The test set can be used to determine if the found optimal neural network generalises well to unseen
data. The resulting neural network is used to enhance the low-fidelity PIC/FLIP simulations.

3 Results
This section discusses the results of training and applying a multi-fidelity PIC/FLIP solver for fluid
sloshing. The Tensorflow library for Python3 [52] is used for constructing and training the neural
networks, and it runs on 4 NVIDIA GTX 1080Ti GPUs. The PIC/FLIP solver is also implemented
to run on 4 NVIDIA GTX 1080Ti GPUs. The section is divided into four parts:

• Enhancing low-fidelity PIC/FLIP sloshing simulations.

• Generalisation capabilities for solver parameters.

• Generalisation to a 3D dambreak problem.

• A discussion of weaknesses of the multi-fidelity PIC/FLIP solver.

For all simulations we take a computational domain (x,y,z) ∈ [0,10]× [0,5]× [0,5], unless stated
otherwise. The high-fidelity PIC/FLIP solutions are computed with a cell width of ∆s= 1/50 (500×
250×250 cells) and simulate up to 250 million particles. The low-fidelity PIC/FLIP solutions are
computed with ∆s = 1/10 (100× 50× 50 cells) and simulate up to 2 million particles. The grid
resolution of the low-fidelity simulations is chosen such that it is able to run in real-time, while the
high-fidelity simulation grid contains 125 times more grid cells and can not be performed in real-
time. The time step needs to be the same for both fidelities and is set to ∆t = 1/350 which results
in stable low- and high-fidelity simulations. Lastly, the picness f is set to 0.99 for both fidelities,
which is a commonly used value in literature for simulating free surface water flow [2].

3.1 Enhancing low-fidelity PIC/FLIP sloshing simulations
We show that the proposed multi-fidelity approach can indeed enhance low-fidelity PIC/FLIP slosh-
ing simulations.

The type of solutions that are enhanced
In order to study the effectiveness of a multi-fidelity PIC/FLIP solver, we prescribe a rotational tank
motion by altering the gravity vector:

g = 9.81(sin(ψ)cos(φ),sin(φ),−cos(ψ)cos(φ)) , (4.5)

where ψ and φ are given by:

ψ(t) =
{

sin(2t) , t < 2π ,
0 , t ≥ 2π ,

φ(t) =
{

sin(t) , t < 2π .
0 , t ≥ 2π .

(4.6)
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ing simulations.

The type of solutions that are enhanced
In order to study the effectiveness of a multi-fidelity PIC/FLIP solver, we prescribe a rotational tank
motion by altering the gravity vector:

g = 9.81(sin(ψ)cos(φ),sin(φ),−cos(ψ)cos(φ)) , (4.5)

where ψ and φ are given by:
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This particular motion induces heavy liquid sloshing in the tank and is perfectly suited for testing
our method. The filling height is varied to study generalisation capabilities of the method, and
ranges between (0,100)%.

Construction of the training set
The procedure for constructing the training data is shown in figure 4.2. A summary of all training
parameters is given by:

• Data set: 106 generated training samples (see figure 4.2) with a filling height of 40%, ∆ψ,∆φ
are picked randomly every time step in the ranges [−2∆t,2∆t], [−∆t,∆t], respectively.

– 70% training,

– 20% validation,

– 10% testing,

• Training parameters: batch-size=256 , number of epochs=1000.

The training set only comprises samples with a single filling height of 40%, which corresponds to a
filling height that allows for heavy sloshing motions and therefore a wide range of fluid configura-
tions. This allows us to study if the neural network generalises well to cases with a different filling
height. The range for (∆ψ,∆φ) corresponds to the same oscillation frequency as the one in (4.6).
However, the probability that the tank motion (4.6) is comprised in the training data is negligible.

Training the neural networks
A total of 256 neural networks need to be trained (1 for each set of hyperparameters), and the re-
sulting training and validation errors are shown in figure 4.5.
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Figure 4.5: The mean and envelope of both the training and validation error. The envelope shows the
minimum and maximum values over all 256 trained neural networks.

We clearly see that all 256 trained neural networks converge to a similar error in the training set,
while the variation in the validation error is more pronounced. This indicates under/overfitting and
a lack of generalisation capabilities for specific hyperparameter values. Remarkable is that the 103
networks with the largest validation errors are the networks where NCNN = 1,2, which indicates that
these relatively local multi-fidelity velocity approximations are not capable of generalisation out-
side the training set. This indicates that to approximate a local multi-fidelity velocity, we may need
a large area of surrounding low-fidelity velocities. This global character of the required approxi-
mation may be caused by the incompressibility of the fluid, which leads to a coupling of velocities
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by means of the pressure Poisson equation (P.12), which is also felt globally. The hyperparameters
(NCNN ,γ,λ ,α) = (3,0.01,10−4,0.001) satisfy (4.4), and the trained neural network with these hy-
perparameter values is used in the remainder of this chapter.

Enhancing solution with the same filling height as used during training
First, we start by using the trained neural network to enhance a sloshing simulation with the motion
given by (4.6), given a filling height of 40%. Notice that this is the same filling height that is used
for constructing the training set and is therefore considered a consistency test for the trained neural
network. The low-fidelity, multi-fidelity, and high-fidelity PIC/FLIP simulations are compared at
t = π,3π . The rendered comparison is shown in figure 4.6.
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Figure 4.6: Rendered fluid surface for the three different fidelities at t = π,3π with a filling height of 40%.
The white particles are passive tracers that represent foam and spray, which are added in a post-processing
stage based on physics phenomena described in [53]

We clearly see a qualitative improvement in the shape of the fluid surface. Notice that the multi-
fidelity solution at t = π shows smaller scale droplets when compared to the low-fidelity solution,
which is caused by effectively increasing the resolution of the grid. Furthermore, the multi-fidelity
and the high-fidelity solutions at t = 3π show a similar fluid surface, while the low-fidelity fluid
surface has a completely different shape.

To study the difference between the three fidelities quantitatively, we perform a simulation until
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We clearly see a qualitative improvement in the shape of the fluid surface. Notice that the multi-
fidelity solution at t = π shows smaller scale droplets when compared to the low-fidelity solution,
which is caused by effectively increasing the resolution of the grid. Furthermore, the multi-fidelity
and the high-fidelity solutions at t = 3π show a similar fluid surface, while the low-fidelity fluid
surface has a completely different shape.

To study the difference between the three fidelities quantitatively, we perform a simulation until

t = 4π for each of the three fidelities, and compare the so-called fluid-match. The fluid-match is
defined as the percentage of the total volume of fluid that coincides with the fluid stemming from a
high-fidelity solution. This is used as a measure to quantify how close a solution is to the reference
high-fidelity solution. To clarify, if the fluid-match is 100%, then the fluid surface in the performed
simulation is the same as the high-fidelity fluid surface. Notice that this does not necessarily mean
that the neural network velocities are the same as the high-fidelity velocities. A quantitative com-
parison between the different fidelities is shown in figure 4.7.
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Figure 4.7: Fluid-match, multi-fidelity (MF) incompressibility computed with (P.9), and multi-fidelity relative
velocity error

A smooth initial part of the fluid-match resembles the period before the fluid impacts the bound-
aries of the domain. After the first impact, the fluid-match oscillates. When simulating for a longer
period, the fluid-match converges back to almost 100%, due to the fluid coming to rest again. No-
tice that the fluid-match is not exactly 100% after the fluid being almost at rest, which is due to
the fact that the PIC/FLIP solver does not preserve fluid volume in the presence of large particle
velocities. These large velocities may result in particles being more densely clustered which causes
the fluid volume to shrink. We clearly see a significant improvement in fluid-match when using the
multi-fidelity PIC/FLIP solver, while not significantly increasing computational time. The neural
network produces slightly compressible face-velocities, which may also cause the shrinking and
growing of the total fluid volume. Lastly, the multi-fidelity and high-fidelity velocity fields show
a gradual increase of mismatch in velocity values. The oscillating behaviour with large outliers of
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the velocity mismatch is caused by the difference in droplet distributions, as shown in figure 4.6
at t = π . These droplets often have high velocities and a slight difference in droplet positions may
cause a large mismatch in the face velocities. However, because these large outliers in velocity
mismatch are caused by droplets, this large mismatch is not seen in the fluid-match, as they only
affect the flow locally in a small part of the computational domain. To summarise, the multi-fidelity
solver significantly increases accuracy in terms of fluid-match for a sloshing simulation with the
same filling height that was used during training, but generates slightly compressible velocity fields.

Enhancing solutions with different filling heights
Enhancing solutions where the filling height differs from the filling height that was used during
training is more difficult, as the trained neural network has never seen inputs that are associated
with different filling heights. Figure 4.8 shows how well the neural network generalises for filling
heights outside the training set.
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Figure 4.8: Error in enhanced sloshing simulations for filling heights that were not used during training.
The errors are computed over the interval t ∈ [0,4π].

The multi-fidelity solver outperforms the low-fidelity solver for a significant portion of filling
heights (indicated by the green area in figure 4.8). The low-fidelity fluid-match shows improvement
with increasing filling height, eventually leading to out-performance of the multi-fidelity solver.
This increasing trend is caused by the fact that fluid sloshing does not affect the fluid-match signif-
icantly when the filling height reaches close to 100% (completely filled tank without fluid sloshing
for which low-fidelity is already close to high-fidelity simulation). To summarise, the multi-fidelity
solver is able to the generalise to other filling heights, but leads to inaccurate results when devi-
ating too much from the training set. Furthermore, without a high-fidelity reference, which is not
available after training, it is difficult to predict the limits of the generalisation capabilities of the
trained neural network. This is a common problem in machine learning and is an active field of
research.
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3.2 Generalisation capabilities for solver parameter changes
The filling height is only one out of several parameters that were used in the sloshing test-case.
Studying how the multi-fidelity solver generalises when changing solver parameters provides infor-
mation on how sensitive the neural network is to the training data. In this section we show how the
multi-fidelity solver generalises when changing the following parameters:

• Time step: ∆t ∈ [ 1
275 ,

1
500 ].

– The time step is picked such that the high-fidelity simulations are stable, which makes
it easy to compare all three fidelities.

• Computational domain size scaling: c∆s ∈ [ 1
2 ,

3
2 ].

– While keeping the number of cells in the low- and high-fidelity simulations the same,
we can change ∆s → c∆s∆s to effectively increase the size of the computational domain.

• Number of particles in wet cell during initialisation: np,init ∈ [4,12].

– The wet cells in the multi-fidelity simulation are initialised with np,init

(
∆sLF
∆sHF

)3
particles

(np,init = 8 was used for training).

• Picness parameter: f ∈ [0,1].

– Determines how diffusive the fluid motions are. Changing this value significantly changes
the behaviour of the fluid ( f = 0.99 was used for training).

• Gravity vector scaling: cg ∈ [5,15].

– The gravity vector will be defined as g = cg(sin(ψ)cos(φ),sin(φ),−cos(ψ)cos(φ))
(cg = 9.81 was used for training). The value for cg determines the strength of the gravi-
tational force and changing this value significantly changes fluid behaviour.

The fluid-matches for the low- and multi-fidelity simulations are compared for the sloshing simula-
tion characterised by the sloshing motion (4.6) for t ∈ [0,4π]. The results are shown in figure 4.9.
We clearly see that the multi-fidelity solver generalises well for all solver parameters apart from
the picness parameter f and gravity scaling constant cg. The parameters ∆t, ∆s and np,init do not
significantly change the fluid motions and the neural network will receive inputs that are similar
to the training data. As a result, the multi-fidelity solver attains a significant increase in accuracy
when compared to the low-fidelity solver. The parameters f and cg do significantly change the
fluid behaviour though, which results in neural network inputs that significantly deviate from the
training data. To summarise, for a large portion of the parameter value ranges the multi-fidelity
solutions show an increase in accuracy when compared to the low-fidelity solutions. However, it is
not possible to generalise to cases where cg and f deviate significantly from the training data.

3.3 Generalisation to a 3D dambreak problem
It was shown in sections 3.1 that the trained neural network, that was used in the multi-fidelity
solver, was able to generalise to different filling heights and solver parameters values. However,
the simulations were still similar in the sense that the prescribed motion (4.6) was the same and the
initial fluid configuration was similar. In this section we show that the trained neural network is able
to generalise to a different test-case as well.

We consider a wet dambreak problem of which the initial fluid configuration is shown in figure
4.10.
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Figure 4.9: Generalisation capabilities for different solver parameters. The green regions indicate the
fraction of parameter values for which the multi-fidelity fluid-match is higher than the low-fidelity fluid-match
for the sloshing simulation for t ∈ [0,4π].
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Figure 4.10: The initial fluid configuration of the wet dambreak problem.

This particular configuration is chosen such that the total volume corresponds to a 30% filling
height. This allows us to study if the neural network generalises to a case with a different filling
height than the one that was used for training, and was also initialised in a different configuration.
This dambreak problem leads to a breaking wave that impacts the left domain boundary. The low
and multi-fidelity solutions are compared for t ∈ [0,15], i.e., the period before, during, and after the
wave impact. A qualitative and quantitative comparison of the three fidelities is shown in figure
4.11.
Both the low- and multi-fidelity simulations show good agreement with the high-fidelity solution.
The effectiveness of the neural network approach is again investigated through the fluid-match,
which shows an increase of accuracy for the multi-fidelity solution, even for this dambreak problem
for which the training set was not tailored. However, the multi-fidelity solution shows tiny oscil-
lations on the fluid surface, which is caused by oscillatory velocity predictions. The frequency of
the oscillation corresponds to the largest frequency that can be resolved on the high-fidelity com-
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Figure 4.11: Low-, multi-, and high-fidelity solutions for the dambreak problem.

putational grid. The oscillations immediately appear in the first few time steps of the multi-fidelity
simulation and grow slightly until the wave impacts the domain boundary. This phenomenon is most
likely caused by the configuration of the initial condition which is not comprised in the training set.
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Even though these oscillations are unwanted, they do not affect the accuracy of the multi-fidelity
solution severely. In order to possibly remove the unwanted oscillations, one may enlarge the train-
ing set to encapsulate more test-cases. To summarise, these results indicate that the generalisation
to other test-cases is possible, but a carefully constructed training set may be needed to remove
unwanted artefacts in the enhanced velocity field.

3.4 Weaknesses of the multi-fidelity PIC/FLIP solver

It was shown that our approach is able to generalise to solver parameters and test-cases slightly
outside the training set. However, the problem of generalisation to cases further away from the
training data still exists. In this section we give an overview of the problems we encountered
during training of the neural network and of the limitations of the proposed approach. In short the
limitations of our multi-fidelity approach are:

• Sensitivity to solver parameters.

• Does not generalise to other test-cases.

• Difficult to obtain physical interpretation of the multi-fidelity approach.

Sensitivity to solver parameters
As is shown in figure 4.9, the neural network is able to simulate cases with slightly different solver
parameters. It is possible to construct a training set that comprises simulations with multiple solver
parameters, which increase the range of solver parameters for which the multi-fidelity solver pro-
duces satisfactory results. However, as the training set is constructed with low- and high-fidelity
data, we need to make sure that the high-fidelity simulations are stable, which results in a small
time step. We chose to use this small time step for the low-fidelity simulations, which results in
a multi-fidelity solver that also uses a similar small time step. An alternative is to construct the
training set with low-fidelity simulations, computed with a large time step, and a high-fidelity coun-
terpart, computed with a small time step. The resulting training set then comprises all low-fidelity
data and the sub-sampled high-fidelity simulation data at the same time levels as the low-fidelity
simulation. This approach leads to unstable multi-fidelity solutions, which indicates that the multi-
fidelity solver needs to satisfy similar stability conditions as the high-fidelity solver.

Generalisation to other test-cases
We showed that the neural network, which was trained on sloshing simulation data, is able to gen-
eralise to a wet dambreak problem. This is a promising result, but using the multi-fidelity solver for
still more differing cases led to unsatisfactory results. In figure 4.12 we show three example high-
fidelity simulations where the multi-fidelity solver became unstable after only a few time steps.
These cases all have features that the neural network has never encountered before, i.e., a dry bed,
static obstacles in the flow, moving obstacles moving through the fluid. This is consistent with the
results in [41, 29] where it is noted that generalisation is often an issue when using neural networks
for fluid flow predictions. A carefully constructed training set may be needed to be able to gener-
alise to a wide range of test-cases.

Physical interpretation of the multi-fidelity approach
The idea of our approach is to learn low-level features of the low-fidelity simulations and map these
to the corresponding fine-grid counterpart. An in-depth analysis of why this approach works when
using neural networks is challenging, due to the inherent non-linearities of the neural networks and
the underlying physics.
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dry-bed dambreak

dambreak with obstacle

moving obstacle

wet dambreak wih obstacles

Figure 4.12: Three example high-fidelity simulations where the multi-fidelity solver fails. The dry-bed
dambreak consists of a column of fluid that is released at t = 0, resulting in a wave impact on the domain
boundary. The dambreak with obstacle uses the same initial fluid configuration as shown in figure 4.10, but
has solid obstacles (orange boxes) in the middle of the domain. The moving obstacle case consists of an
obstacle (orange box) that is moving in a sinusoidal motion through a tank that is 40% filled with fluid.

4 Conclusion

We investigated the use of deep deconvolutional neural networks to enhance a low-fidelity PIC/FLIP
fluid solver. An important novelty of our approach is that it is used intrusively in the low-fidelity
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solver and is able to enhance the solution at every time step. This is different from the common non-
intrusive approaches that use neural networks either as a standalone solver or as a post-processing
tool. The neural network in this chapter was trained on randomly generated fluid sloshing data.
After training, the neural network provided a significant increase in accuracy when compared to
the low-fidelity solution, for the case of a sloshing simulation that was not comprised in the train-
ing data. Even though the neural network introduced small oscillations on the fluid surface when
enhancing a dambreak problem solution, it was still able to significantly enhance accuracy for this
problem, which hints at the generality of our approach.

Our approach still has some issues. Firstly, the choice for the time step is rather restrictive; it
needs to be kept small to keep the multi-fidelity solution stable. Secondly, our approach fails to
enhance solutions that introduce new phenomena that were not encountered in the training set, e.g.,
obstacles in the flow. The neural network velocity predictions became unstable immediately, lead-
ing to non-physical large velocity values, but we expect that a carefully constructed training set may
alleviate this issue. Lastly, a common issue when using neural networks is that an in-depth analysis
of why they work is challenging, due to the inherent non-linearities of the neural networks and the
underlying physics.

What did we achieve?
This chapter discussed how to intrusively enhance accuracy of a low-fidelity solver. The enhanced
solutions lead to a more accurate prediction of the QoI and can be used to sample the random space
efficiently without a heavy computational burden. The difference with the non-intrusive approach
from chapter 3 is that the intrusive approach allows for efficient treatment of a time dependency,
hence allowing to march accurate low-fidelity solutions in time. This comes at a cost, i.e., the
underlying low-fidelity solver needs to be altered by adding an extra neural network mapping step,
which was not the case in the non-intrusive approach.
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[29] L. Ladický, S. Jeong, N. Bartolovic, M. Pollefeys, M. Gross, Physicsforests: real-time fluid
simulation using machine learning, in: ACM SIGGRAPH 2017, 2017, pp. 22–22.

[30] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks 61 (2015)
85–117.

[31] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural net-
works?, in: Proceedings of the 27th International Conference on Neural Information Process-
ing Systems - Volume 2, NIPS’14, MIT Press, Cambridge, MA, USA, 2014, pp. 3320–3328.



148

[32] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, TensorFlow: A system for large-scale
machine learning, in: 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), 2016, pp. 265–283.

[33] E. Bertolazzi, G. Manzini, A second-order maximum principle preserving finite volume
method for steady convection-diffusion problems, SIAM Journal on Numerical Analysis 43
(2005) 2172–2199.

[34] H. Dret, B. Lucquin, The Variational Formulation of Elliptic PDEs, Partial Differential Equa-
tions: Modeling, Analysis and Numerical Approximation, Springer International Publishing,
2016, pp. 117–143.

[35] B. Sanderse, ECNS: Energy-Conserving Navier-Stokes solver verification of steady laminar
flows, ECN, 2011.

[36] D. K. Gartling, A test problem for outflow boundary conditions—flow over a backward-facing
step, International Journal for Numerical Methods in Fluids 11 (7) (1990) 953–967. arXiv:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.1650110704.

[37] A. J. C. Crespo, J. M. Dominguez, B. D. Rogers, M. Gomez-Gesteira, S. Longshaw,
R. Canelas, R. Vacondio, A. Barreiro, O. Garcia-Feal, DualSPHysics: Open-source parallel
CFD solver based on Smoothed Particle Hydrodynamics (SPH), Computer Physics Commu-
nications 187 (Supplement C) (2015) 204–216.

[38] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach,
Princeton University Press, 2010.

[39] S. S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD, Journal of
Scientific Computing 15 (4) (2000) 457–478.

[40] C. Audouze, F. D. Vuyst, P. B. Nair, Reduced-order modeling of parameterized PDEs us-
ing time–space-parameter principal component analysis, International Journal for Numerical
Methods in Engineering 80 (8) (2009) 1025–1057.
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C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng,
TensorFlow: Large-scale machine learning on heterogeneous systems, software available from
tensorflow.org (2015).
URL https://www.tensorflow.org/

[53] M. Ihmsen, N. Akinci, G. Akinci, M. Teschner, Unified spray, foam and air bubbles for
particle-based fluids, The Visual Computer 28 (2012) 669–677.





Closure



152

This thesis provided four new ways to perform forward propagation of parametric uncertainties
through a computational model. Our findings will now be synthesised, which will conclude this
thesis.

Conclusions
Conclusion 1: Efficient sampling vs. solver enhancement? There is no winner, only synergy
Part I of this thesis focussed on efficient sample placement for UQ in order to reduce the overall
computational cost. Part II explored a completely different approach, where the solver was enhanced
(non-)intrusively in order to reduce the computational cost of performing a single sample, while
keeping the same accuracy. If one has to choose between using an efficient sample approach or
using a neural network to enhance the solver, then one needs to keep in mind what the underlying
problem is. If the random space is high-dimensional and/or when there are discontinuities in the
QoI response, then it is wise to start by checking if efficiently placing samples using the methods
in Part I is sufficient to create an accurate surrogate. If the only problem is the computational time
required to produce a single solution, then the methodology described in Part II is beneficial. An
overview of the different scenarios and which method to use is given below:

• Does the QoI have a discontinuous response?
Part I chapter 1

• Is the random space not a hypercube?
Part I chapter 2

• Is the underlying model a PDE and fast to sample from?
Part I chapter 2

• Is the underlying model computationally expensive to sample and is the QoI indepen-
dent of time?
Part II chapter 3

• Is the underlying model computationally expensive to sample and is the QoI depending
on time?
Part II chapter 4

Additionally, as both approaches are independent, one may choose to combine both approaches,
i.e., first decrease computational time of a single sample using the methodologies discussed in Part
II, and then perform efficient sample placement based on the algorithms discussed in Part I.

Conclusion 2: Non-intrusive vs. intrusive machine learning? Go for intrusive if possible
Part II of this thesis showed how machine learning can be used to enhance the accuracy of low-
fidelity solutions of a computational solver, both in an intrusive and non-intrusive manner. We
tested both approaches for enhancing solutions coming from a PIC/FLIP fluid flow solver. The
non-intrusive approach showed a great amount of flexibility due to its appearance in the UQ chain
as a post-processing tool. This flexibility comes at the cost of applicability, i.e., the non-intrusive
approach does not properly deal with a temporal coordinate in the solution, and the method has to be
applied multiple times when the QoI is time dependent. As opposed to this, intrusively using neural
networks inside a legacy solver shows great potential in terms of accuracy and computational cost
and even allows for some generalisation outside the training set. There is no rule of thumb (yet)
on where and how to incorporate a neural network into a computational solver, as it completely

depends on the mathematical model and numerical discretisation and it is therefore difficult to ex-
trapolate the conclusions drawn from the PIC/FLIP test case to other test cases.

Conclusion 3: Discontinuities are hard to deal with, but also hard to come by
Part I showed how to properly deal with discontinuities in the QoI when sampling. Algorithms
that focus on either smooth or discontinuous solution approximation become inaccurate when con-
structing a surrogate for the other case, which may lead to an increase in overall computational time
and/or accuracy of the constructed surrogate. With our MST-ME method we demonstrated that
it is possible for an algorithm to make a distinction between a smooth response or discontinuous
response and devise proper sample placement in both cases. However, it is important to note that
when coming up with test cases for this work, it was hard to construct a relevant test case in which
there was a discontinuity present in the QoI. This finding strengthens our approach as it indeed turns
out that the presence/absence of discontinuities in the QoI is uncertain, which makes it difficult to
choose between an algorithm that is suited for approximating either only smooth or only discontin-
uous QoIs.

Conclusion 4: We do not always need machine learning
In Part II of this thesis we focused on using neural networks (non-)intrusively in a solver to enhance
its accuracy. The question that arises is whether we really need to use machine learning for this.
The non-intrusive approach uses a neural network that functions as a mapping between a coarse
and a fine grid. The multi-level approach in Part II does not need a neural network until the point
where the goal is to construct a solution approximation with an error close to machine precision. To
clarify, training the neural networks can sometimes be costly and does not provide sufficient ben-
efits over a more conventional approach like MLSC when the goal is to construct approximations
with accuracies that are orders of magnitude larger than machine precision. However, when the
goal is to enhance a time-dependent low-fidelity solution by using the intrusive approach, the neural
networks are crucial as the amount of data in the training set increases swiftly and often highly
non-linear mappings are required to enhance such low-fidelity solutions.

Conclusion 5: When using machine learning, finding solid mathematical foundation is difficult
As mentioned in Part II, there is mathematical foundation for the approximation properties of multi-
layer perceptrons. In computational engineering, where a solid mathematical foundation is benefi-
cial, this simple neural network architecture seems like a suitable candidate to use. However, we
experienced that finding an optimal neural network architecture and proper training parameters is
not trivial as in some cases we lack a mathematical foundation to thoroughly explain our choices.
This issue is reflected by the vastly improving field of explainable-AI, whose goal is to gain under-
standing on how these neural network models operate and make decisions.
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Outlook
The work presented in this thesis showed new methods for efficient sampling and solver enhance-
ment, with as goal to perform fast and efficient UQ. Besides the significant improvement already
realised over conventional methods like SC, there is still a lot of room for further improvement. A
list of possible extensions for the works shown in this thesis is given below:

• Part I: sampling for discontinuous responses

– Not all discontinuities in the QoI response have endpoints that coincide with the bound-
ary of the random space. One could extend the discontinuity finding such that it is
able to connect discontinuities that do not divide the random space into multiple simply
connected subdomains.

– In the MST-ME method not all samples are used when constructing the interpolant.
Accounting for stability in the interpolant during sampling may result in a sample dis-
tribution that can be used entirely when constructing the final interpolant.

• Part I: PDE-informed sampling

– The method currently uses a Chebyshev basis defined on the smallest hypercube com-
prising the entire (non-hypercube) random space. This basis may be far from optimal
when the random space has an exotic shape. Therefore, constructing a suitable basis that
exploits the shape of the underlying random space may benefit the sampling approach.

• Part II: non-intrusive solver enhancement

– The Monte-Carlo sampling used to construct the training/validation data for the neural
network mappings is far from optimal. Constructing sample locations based on for
instance Part I, chapter 2 may lower the required computational cost.

• Part II: intrusive solver enhancement

– The proposed intrusive approach fails to generalise to fluid flow simulations that intro-
duce new phenomena, e.g., obstacles in the flow. One may carefully construct training
data to improve generalisation capabilities, without significantly increasing computa-
tional cost for training the neural network.

– The time step that needs to be chosen to keep the multi-fidelity approach stable is rather
restrictive. One may opt to use an adaptive grid to make the multi-fidelity simulations
stable, even for larger time steps.
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