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Figure 1: Sample frames from the point cloud sequences released with this dataset.

ABSTRACT

Real-time, immersive telecommunication systems are quickly be-
coming a reality, thanks to the advances in acquisition, transmis-
sion, and rendering technologies. Point clouds in particular serve
as a promising representation in these type of systems, offering
photorealistic rendering capabilities with low complexity. Further
development of transmission, coding, and quality evaluation al-
gorithms, though, is currently hindered by the lack of publicly
available datasets that represent realistic scenarios of remote com-
munication between people in real-time. In this paper, we release
a dynamic point cloud dataset that depicts humans interacting in
social XR settings. Using commodity hardware, we capture a total
of 45 unique sequences, according to several use cases for social
XR. As part of our release, we provide annotated raw material, re-
sulting point cloud sequences, and an auxiliary software toolbox to
acquire, process, encode, and visualize data, suitable for real-time
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applications. The dataset can be accessed via the following link:
https://www.dis.cwi.nl/cwipc-sxr-dataset/.
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» Computing methodologies — 3D imaging; Point-based mod-
els; Virtual reality; « Information systems — Multimedia stream-
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1 INTRODUCTION

Photorealistic 3D (or volumetric) representations have recently
gained a lot of momentum, due to their ability of reproducing real-
life objects from multiple points of view in a lifelike manner. Point
clouds in particular have attracted a lot of interest, due to the rela-
tive ease of acquisition and lack of connectivity information. These
characteristics make them particularly suitable for real-time com-
munication between remote users, which have been made possible
by the latest advances of immersive technologies.
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Despite the significant steps forward, the maturity of current
tele-presence systems is lagging of traditional video conferencing
tools. The vast amount of data that is required for volumetric repre-
sentations poses several challenges, and demands efficient solutions
in acquisition, compression, delivery and rendering, with academic
teams, industrial markets and standardization bodies putting efforts
to further develop relevant technologies. To this aim, the accessibil-
ity to real-life acquired datasets capturing social interactions among
humans is of crucial importance, as they allow immediate evalu-
ation of novel solutions in this context and establish a common
ground for comparison purposes.

In recent years, volumetric human datasets have been acquired
using sophisticated technology and complex setups. Commonly
used technology for 3D or 4D registration includes multi-view cam-
era configurations, such as the 8i Voxelized Surface Light Field
(8iVSLF) dataset [8], the HUMBI dataset [16], the DFAUST [1], V-
SENSE volumetric video quality database [17], HHI point cloud
dataset of a boxing trainer [3], and the TotalCapture dataset [15],
among others. The Panoptic dataset [7] is acquired by a massively
multi-view system, composed of 10 Kinect cameras, along with
VGA and HD cameras, for a total of more than 500 views. More-
over, 3D body pose is given alongside the raw data. The Berkeley
Multimodal Human Action dataset [11] is captured using several
systems simultaneously: an optical motion capture system, 4 multi-
view stereo vision camera arrays, 2 Microsoft Kinect cameras, and
6 wireless accelerometers.

Despite the advent of affordable commercial devices for 3D ac-
quisition, however, there is still a shortage of public datasets of
dynamic humans acquired with commonly attainable hardware in
easily replicable setups. The Microsoft Voxelized Upper Bodies [9]
was acquired using 4 frontal RGB-D cameras. However, as the name
suggests, it only depicts the upper body of the user, thus not of-
fering a full body representation. The Human3.6M dataset [5] was
acquired using video cameras, motion capture cameras, and time-
of-flight sensors. The 11 actors were scanned using a 3-sensor 3D
scanner and then animated using the acquired poses. The Human4D
dataset [2] contains human activities simultaneously captured us-
ing motion capture and volumetric sensors. However, the strict
requirements for accurate motion capture resulted in actors wear-
ing uniform black clothing with colored markers, thus reducing the
range of textures that are present. Moreover, the datasets presented
above use older 3D sensing hardware; hence, the quality of the
volumetric acquisition does not accurately match the possibilities
offered by more recent depth-sensing equipment.

In this paper, we release the first dynamic point cloud dataset
captured by several synchronized Azure Kinect DK devices!, de-
picting humans performing common social activities in real-time
communication scenarios. The primary goal of this dataset is to
make available multi-modal recordings of humans interacting in
social contexts through tele-presence systems, using off-the-shelf
hardware that can be assembled at a reasonable cost. A secondary
goal is to explore how a capturing system of this type operates in
the real world, where occlusion, shiny surfaces or small and thin
objects may confuse the sensors. To this aim, we focus on four key
use cases of volumetric videos for social XR systems [4, 13], namely,

'https://azure.microsoft.com/en-us/services/kinect-dk/
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Figure 2: Geometrical camera arrangement, seen from the
top (left) and from the front (right).

“Education and Training”, “Healthcare”, “Communication and Social
interactions”, and “Performance and Sports”. For each use case, a
number of representative screenplays involving either 1 or 2 roles
is devised, with every screenplay thoroughly scripted and executed
once or more by different actors.

To facilitate research on adjacent computer vision communities,
as part of our release, we additionally provide the annotated raw ma-
terial that was recorded by our capturing system, which is suitable
for testing point cloud registration and reconstruction techniques,
as well as visual enhancement proposals for outlier removal, or
filling missing regions. We conclude our contributions by making
publicly available an auxiliary toolbox of software utilities built on
top of the Point Cloud Library [14], that allows for alignment and
processing of point clouds, as well as real-time capturing, encoding,
transmission, and rendering.

2 CAPTURING SETUP

For this dataset filming, a custom room setting with a recording
area of size 280x280cm was employed. The recording scene was
illuminated by 2 lamps placed diametrically opposed, and each lamp
was equipped with 2 light bulbs of model Bresser BR-JDD-6 45W
and color temperature 5500K.

To capture color and depth data, we used 7 Azure Kinect DK sen-
sors that were distributed around the recording area. In particular,
a total of 6 devices were uniformly placed over a circle of radius
140cm, such that each successive pair differs by an angle of 60°, and
were mounted on tripods at a height of 140cm. The 7th device was
placed at the center of this circle and at a height of 242cm using
an articulated arm, oriented perpendicular to the floor in order to
capture top views of the recording scene. A snapshot illustrating
the camera layout is depicted in Figure 2, while the recording area
with the physical arrangement of cameras can be seen in Figure 3.

The Azure Kinect DK is equipped with an RGB camera, a depth
sensor, and an IR emitter in addition to other hardware, such as
a microphone array, a gyroscope and an accelerometer that are
not utilized in our setup. The depth camera supports a number
of modes, which determine the resolution, frame rate, exposure
time, field of interest, and operating range of the device. Similarly,
the modes of the color camera determine the resolution, aspect
ratio, format, frame rate, and nominal field of view (FOV). Each
device also includes dedicated ports in order to enable synchronous
acquisition of a scene from multiple viewpoints.


https://azure.microsoft.com/en-us/services/kinect-dk/
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Figure 3: Physical camera arrangement.

Table 1: Usage percentage per module for the host computer,
while recording from a different number of Kinect Azure DK
devices.

Devices CPU (%) RAM (%) GPU (%) SSD (%)
1 8 24 6 4
2 16 25 8 8
3 22 28 11 12
4 32 31 13 16
5 42 33 16 20
6 49 34 19 23
7 58 35 22 28

In our capturing setup, the devices were interconnected using
3.5-mm audio cables and synchronized following a “master” and
“subordinates” architecture. Each Kinect was connected to a separate
USB 3.0 port of a host computer. For some cameras the connection
was direct, while for the more distant cameras an active USB 3.0
extender cable of 300cm length was additionally employed. The
host computer was running Windows 10 Pro x64 on an Intel Core
17-7700K CPU, with an NVIDIA GeForce GTX 1080 Ti GPU, 32
GB of RAM, and 3 Samsung 960 EVO 500GB SSDs installed. The
resource usage of each component while recording with a different
number of cameras is indicated in Table 1.

To capture audio data, a lavalier microphone was attached to
the actor’s clothing and connected to a mobile phone, which was
carried with him/her during acting.

3 SOFTWARE

Our group has developed an open source suite of libraries and tools,
named cwipc (abbreviation of CWI Point Clouds), in order to facili-
tate working with point clouds as opaque objects, similarly to how
most software works with images, or audio samples. The implemen-
tation builds on the Point Cloud Library and various vendor-specific
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capturing libraries, but this is transparent to software using the
cwipc suite.

The idea behind a cwipc object is that it represents a point cloud
as a collection of points with coordinates (x, y, z) and color values
(r, g, b), with the possibility of carrying additional data such as
the camera angle each point is captured from, global information
such as the timestamp of the capture and the voxel size, as well as
the original RGB and D images, or skeleton data. A cwipc object
can be passed between modules without knowing what is inside it,
and this can be done across implementation language boundaries
while minimizing unnecessary memory copies. The library makes
it possible to create end-to-end pipelines in order to capture, send,
receive, and render dynamic point clouds [6]. It is suitable for real-
time applications, and due to the vast amount of data that might be
carried, special care is given to memory management in order to
minimize the amount of copying needed.

The core of our suite is cwipc_util, which handles the cwipc
object implementation, its memory management and the multi-
ple language bindings (C, C++, Python and C#). It also contains
utility functions to read and write cwipc objects in PLY format,
and apply different filters and transformations to the cwipc ob-
jects. In addition, it contains a set of tools to align point clouds
obtained from multiple cameras and optionally enable auxiliary tun-
able filters (cwipc_calibrate), a customized viewer to playback
dynamic point clouds (cwipc_view), and a grabber tool that allows
to grab point cloud frames from multiple devices or from offline
prerecorded files (cwipc_grab). The suite also contains modules
to capture point clouds from one or multiple Kinect and Realsense
cameras (cwipc_kinect and cwipc_realsense2, respectively). Fi-
nally, the well-established codec described in [10] is provided as a
module of our suite, in order to enable real-time compression and
decompression (cwipc_codec) of dynamic content.

The library core is written mainly in C++, with most of the
utilities written in Python. The suite is platform-independent and
runs on Windows, Linux and MacOS (with the caveat that the
Kinect module is not available for MacOS currently, because the
underlying Kinect SDK is not available to this date). As of this
writing, the cwipc suite is provided as source code that is released
on GitHub?. This is in part due to the fact that there is no sufficiently
popular package manager that can handle multi-platform as well
as multi-language packages.

4 DATASET

To design the dataset, 4 key use cases for social XR were selected,
namely, “Education and Training”, “Healthcare”, “Communication
and Social interactions”, and “Performance and Sports”. The use
cases form our categories, as listed in Table 2. For each of them,
screenplays were carefully devised to be representative of the cor-
responding category, involving one or multiple roles for actors that
interact with each other according to necessity. In all cases, a single
actor was placed to the scene and captured, in order to ensure the
highest possible quality for each individual 3D scan. To achieve
synchronization across different actors in multi-person screenplays,
the timing of each actor’s activity was determined based on external

audio signals.

Zhttps://github.com/cwi-dis/cwipc


https://github.com/cwi-dis/cwipc

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Ignacio Reimat, Evangelos Alexiou, Jack Jansen, Irene Viola, Shishir Subramanyam and Pablo Cesar

=

Figure 4: Illustration of RGB and Depth raw data captured by 7 Kinect Azure DK devices that comprise our capturing system,
and corresponding point cloud frames that are generated offline.

Table 2: Dataset description: Every screenplay falls under a separate use case, involves one or more roles, and can be repeated
in one or more takes. For every screenplay, the total number of point cloud frames is provided, and we annotate whether the
audio was recorded in addition to the RGB-D data.

Use case ID Description Roles Takes Total frames Audio

01 Scientist explaining formula 1 1 1,177 v

02 Teacher with globe 1 1 1,117 v

03 Flight attendant 1 1 1,101 X

Education and . ’

Training 04 Padel coaching 2 1 1,744 v

05 Woman showing bottle 1 1 870 v

06 Book presentation 1 1 1,257 v

07 Woman wearing scarf 1 1 1,157 X

08 How to wear face mask 1 1 985 v

Healthcare 09 Doctor with spine model 1 1 1,087 v

10  Arm injury 2 1 2,030 v

11  Bollywood dialogue 2 1 2,768 v

Communication and 12  Watching football 2 1 1,612 v

Social interactions 13 Card trick 2 1 2,536 Ve

14 Rock-paper-scissors in VR 2 1 1,926 X

15 Basketball player 1 1 1,118 X

16  Acoustic guitar player 1 1 914 4

17  Electri it 1 1 1 596 v

Performance and ectric guttar player

Sports 18 Boxer 1 1 1,087 X

19 Boxer in VR 1 1 1,118 X

20 Karateka 1 1 829 v

21 Dancing YMCA 19 1 various X
Every screenplay was thoroughly scripted to contain relevant involved capturing multiple takes to cover all possible interactions
motions and narrations or dialogues, while particular care was de- between actors; for example, in screenplay 14 (“Rock-paper-scissors
voted in order to capture a reasonable range of variability between in VR”), sequences depicting all hand shapes are recorded for both

the actors, diverse materials, as well as kinematic complexity. That
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actors. Indicatively, challenging props, such as thin paper or card-
board, are used in screenplays 01 (“Scientist explaining formula”)
and 06 (“Book presentation”), while in screenplays 09 (“Doctor with
spine model”) and 16 (“Acoustic guitar player”) objects with high
degree of complexity for the sensor were part of the scene; that
is, the composite geometry of the spine, and the reflective mate-
rial of the guitar’s pick guard. The final screenplay 21 (“Dancing
YMCA”) is provided in 19 takes, each involving a different actor, all
synchronized to the audio cue to ease simultaneous playback.

In our recordings, a total of 23 individual actors were captured,
with 3 of them participating in two takes, while 19 out of 23 subjects
additionally performed the screenplay 21 (“Dancing YMCA”). The
actors were dressed according to their character, with more daily
clothing and relative diversity in colors and materials for more
generic roles, to better simulate real life, as can be seen in Figure 1.
The 15 out of 21 screenplays were written for a single role, whereas
the remaining involve two-person interactions. From the total of
actors, 9 are females, while the rest 14 are males. The duration of the
videos is spanning between 20-50 seconds, while the corresponding
number of point cloud frames that were extracted per sequence
(i.e., a specific combination of screenplay, role, and take) ranges
between 596 and 1, 384.

In the rest of this section, we provide a description of the system
configuration for the recordings and the processing applied to the
raw material to extract point clouds and synchronized audio files,
as well as an outline of the structure of the released material.

4.1 Hardware and software settings

To record visual information, all 7 cameras of our camera arrange-
ment were enabled. Following the selected synchronization ar-
chitecture, a script that uses 7 instances of the k4arecorder tool
provided by the Azure Kinect SDK? was created in order to launch
the 6 subordinate cameras before initiating the master. A script
example can be found among the released material.

The capturing system is suitable for real-time operation, but
for the purposes of this dataset, we opted for recording RGB-D
movies, which were subsequently post-processed to point clouds.
In particular, we selected the NFOV_UNBINNED mode for the
depth camera, and a resolution of 2048 X 1536 with aspect ratio of
4:3 for the color camera, which is preferred over 16:9 in NFOV mode
for better pixel overlap*. Both cameras were set to a frame rate of
30 frames per second (fps), delivering approximately 480 Mbps of
recorded depth and color data; that is, using all 7 devices, a total
of ~ 3.36 Gb is recorded per second. Note that the selected color
resolution is the highest in 4:3 aspect ratio that supports 30 fps.
The result of a recording is 7 video files, with each file containing
3 tracks for RGB, Depth, and Infrared data. An example of the
recorded color and depth frames, along with the corresponding
point clouds obtained can be seen in Figure 4.

The audio was recorded at 48 kHz. Audio and video streams were
synchronized manually in post-production using the cues provided
by a clapperboard. In particular, at the start of each take, the opera-
tor was entering in the recording scene holding a clapperboard in

3https://github.com/microsoft/Azure-Kinect-Sensor-SDK
*https://docs.microsoft.com/en-us/azure/kinect-dk/hardware-
specification
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view of the cameras and was clapping the filmsticks shut, which
was recorded by both the RGB-D and audio files.

Before generating the point clouds from the recorded RGB-D data
we followed a two-step offline process for the cross-calibration of
the devices. In the first step, a coarse calibration was performed us-
ing the cwipc_calibrate module of the software and the a4floor
as target. This target was placed at the floor in the center of the
recording area, as depicted in Figure 3, and is composed of 4 dis-
tinct color markers with known positions in an A4 paper. A manual
selection of the markers in the frames captured by each camera was
required. In the second step, an automatic refinement was executed
using a cumulative multi-scale ICP algorithm based on the point-
to-plane distance [12]. The result of this cross-calibration was a
configuration file (cameraconfig.xml), which contains the extrin-
sic matrices for conversion of each individual’s camera domain to
a common coordinate system.

During point cloud generation, a cylindrical filter was enabled
in order to discard regions of the scene that are irrelevant to the
recorded actor, such as the background. Moreover, erosion was ap-
plied on the depth maps, in order to compensate for the mismatch
between color and depth data that are captured from the Kinect sen-
sors. The exact configurations were adjusted per content for higher
reconstruction quality, and are reported in the cameraconfig.xml
that is coming with every sequence of this dataset.

Using the computed transformations for camera alignment, the
point cloud sequences were extracted from the prerecorded videos
using the cwipc_grab module. In order to extract one, or more
point cloud frames that correspond to a desirable part of the videos,
starting and ending timestamps should be given as arguments. The
exact inpoints and outpoints that were used per sequence, can be
also found in the released material.

Note that the recorded video and audio files start earlier and
end later than the provided point cloud sequences, in order to
contain the clapperboard for audiovisual synchronization and the
calibration target.

4.2 Dataset structure

The organization of the dataset is illustrated in Figure 5. For every
screenplay, the relevant material is enclosed in a single folder, with
sub-folders specifying the data collected for a different role and
a different take. In every sub-folder, the raw folder contains the
recorded RGB-D videos in MKV format and the audio files in WAV
format, while the ply folder includes the generated point cloud
sequences that are stored in PLY format in binary little-endian. For
the latter, the timestamp of each individual frame, expressed as the
elapsed time in microseconds since the start of the recording, is
used as naming convention (e.g., pointcloud-12345678.ply with
timestamp 12345678, captured 12.345678 seconds from when the
recording started). Sequence-specific configurations are provided
in the cameraconfig.xml, such as the camera transformation ma-
trices and the filtering parameters that were employed for point
cloud frames extraction. Finally, generic information related to a
particular sequence is given in the sequenceinfo. txt, including
the duration and the fps of the video recordings, the timestamps
in which the clapperboard shut is captured in the video and audio
files, the input and output video timestamps that were employed
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Figure 5: Organization of the dataset into folders (s: screen-
play, r: role, t: take).

to extract point cloud frames that display only the actor’s perfor-
mance (i.e., excluding clapperboard), and the corresponding count
of frames.

5 DISCUSSION

To record our dataset, we purposely selected consumer hardware,
which was placed in an easily reproducible setup. Thus, our data
mimics real-world acquisition mechanisms, which could be adopted
by research labs and future consumers alike. State-of-the-art algo-
rithms for compression, transmission, and quality evaluation of
point clouds are currently tested on professionally-acquired data;
in providing a dataset which exhibits the characteristics of user-
generated content, we aim to contribute to the development of such
algorithms beyond their current capabilities to embrace a larger,
and consumer-ready, market. Furthermore, by providing synchro-
nized dynamic human sequences involving more than one actor in
social settings, we aim to promote development in research areas
such real-time multi-party communication and user adaptation.
Using commodity depth-sensing devices comes with the limita-
tions of the visual impairments generated in the acquisition, due to
accuracy errors. Those become more visible when incorporating
data from multiple cameras, due to the non-identical behaviour of
the individual devices, the different scanning accuracy due to a dif-
ferent angle and/or distance between a common point captured by
the FOV of multiple sensors, or even due to temporal discrepancies
arising from the different shooting times of the cameras to avoid
interference. An example is provided in Figure 6, where an actor is
captured by one camera, three cameras with an offset of 120°, and
all 7 cameras of our capturing setup. As can be seen, by increasing
the number of cameras, the occluded regions are reduced at the
expense of visual distortions. In particular, the regions captured by
multiple cameras present texture impairments and outliers, due to
overlapping scans. However, the benefit of using multiple sensors
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Figure 6: An actor as captured by 1, 3, and 7 cameras, from
left to right. In the top row, geometry and texture is pre-
sented, whereas the bottom row depicts the color-encoded
geometry of the obtained point clouds from each camera.

can be seen in the geometric composition, with denser regions and
reduced holes.

The above issues denote open problems under research for the
broader computer vision community, which has allocated a sub-
stantial amount of efforts in proposing new methods for calibration,
alignment, outlier detection, geometry and/or color smoothing.
From this aspect, the raw-captured materials and the generated
point clouds of the released dataset, may additionally serve as a
benchmarking setup for testing novel post-processing solutions.

6 CONCLUSIONS

In this study, we record and release a volumetric video dataset
that depicts humans under representative social activities over real-
time tele-presence systems, with the recordings performed using
consumer market acquisition devices to better resemble real-life
settings. On top of the obtained point clouds, the raw captured
data and a toolbox of software utilities covering the entire pipeline
from real-time capturing to rendering of dynamic point clouds are
additionally published. The provided material allows for custom
point cloud generation, fosters development of real-time immer-
sive media systems, and provides a basis for the integration and
evaluation of new post-processing techniques.
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