
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

HMACCE: Establishing Authenticated and
Confidential Channel from Historical Data for

Industrial Internet of Things
Chenglu Jin, Zheng Yang, Tao Xiang, Sridhar Adepu and Jianying Zhou

F

Abstract—Industrial Internet of Things (IIoT) is a new paradigm for
building intelligent industrial control systems, and how to establish a
secure channel in IIoT for machine-to-machine (M2M) communication
is a critical problem because the devices in IIoT suffer from various
attacks and may leak confidential information. Traditional authenticated
and confidential channel establishment (ACCE) protocols neither apply
for resource-constrained IIoT devices nor satisfy leakage resilience. In
this paper, we introduce a new security notion: historical data based
multi-factor ACCE (HMACCE) to address this issue and propose two
HMACCE protocols. Our HMACCE protocols use three authentication
factors, i.e., a symmetric secret key, historical data, and a set of secret
tags associated with the historical data, to establish a secure commu-
nication channel between the client and the server. The key idea is to
use the secret key managed by an IIoT edge device to quickly verify the
relationship between the historical data and its associated tags stored
on the server. Our HMACCE has the following remarkable features.
First, it is lightweight and tailored for resource-constrained IIoT devices.
Second, it is bounded historical tag leakage resilience, which means
that if a small portion of the secret tags is leaked to an adversary, it will
not affect its security with an overwhelming probability. Moreover, as a
security enhancement service, our HMACCE can be easily integrated
with legacy IIoT devices by running simple authenticated key exchange
protocols.

Index Terms—Industrial IoT, Historical Data, Authentication, Authenti-
cated Confidential Channel Establishment, Multi-Factor Authentication,
Security Enhancement Service.

1 INTRODUCTION

Industrial Internet of Things (IIoT) is a variant of Internet-of-
Things (IoT), which enables internet connectivity and com-
munication between internet-enabled devices and systems.

Chenglu Jin and Zheng Yang contribute equally and share the first authorship.
They are sorted alphabetically in the author list. The Southwest University is
the first affiliation to finish this work.

• C. Jin is with CWI Amsterdam, Science Park 123 1098 XG Amsterdam,
Netherlands. E-mail: chenglu.jin@cwi.nl

• Z.Yang is with Southwest University, No.2 Tiansheng Road Beibei Dis-
trict,Chongqing 400715,P.R.China; Email: youngzheng@swu.edu.cn

• Tao Xiang is with Chongqing University, No.174 Shazhengjie, Shapingba,
Chongqing, 400044, China. E-mail: txiang@cqu.edu.cn. Tao Xiang is the
corresponding author.

• S. Adepu is with the University of Bristol, Beacon House, Queens Road,
Bristol, BS8 1QU, UK. E-mail:sridhar.adepu@bristol.ac.uk

• J. Zhou is with the iTrust, Singapore University of Technology and Design,
8 Somapah Rd, Singapore, 487372. E-mail:jianying zhou@sutd.edu.sg

That is, IIoT mainly aims to enable intelligence in tradi-
tional Cyber-Physical Systems (CPSs), like water treatment
systems and power grids. These systems are critical for
the daily life of millions of people. However, the security
of this kind of system is always an afterthought, which
opens a tremendous attacking surface on CPSs for malicious
adversaries [1]. Even worse, many legacy devices with very
limited or no security protection are still in use. Since they
have been running for decades, it becomes a non-trivial task
to upgrade or replace them. Therefore, security enhance-
ments of legacy devices are highly demanded in practice
now. As the first step towards a secure system, we need to
protect the communication between the devices in the field
and the servers/control centers because most of the devices
are required to report their status and data acquired in the
field to the server, and they accept commands from the
server. In the context of CPS, this kind of server is usually
called supervisory control and data acquisition (SCADA)
system.

In the existing literature, many end-to-end encryption
and message authentication methods were suggested be-
tween controllers and SCADA system [2], [3], [4], but none
of them answered the question about how to establish
such a secure communication channel. Of course, one can
simply use single factor authenticated key exchange (AKE)
protocols [5], [6] or authenticated and confidential channel
establishment (ACCE) protocols [7], [8], but can we enhance
their security by introducing additional authentication factors? 1

Because it is a machine-to-machine (M2M) authentication,
the existing two/multi-factor authenticated key exchange
(AKE) protocols [9], [10], [11], [12], [13], which usually use
passwords or fingerprints as the second factor, do not apply
here. Multi-factor M2M AKE might be instantiated from the
generic framework [14] by Fleischhacker et al., which allows
one to build a protocol by securely mixing multiple types
and quantities of authentication factors such as low-entropy
(one-time) passwords/PINs, high-entropy private/public
keys and biometric factors. However, their framework does
not cover the authentication factors that are lightweight

1. Note that an ACCE protocol can be built from an AKE protocol and
an authenticated encryption scheme, so one can consider AKE as one
of the most important building blocks of ACCE. However, the security
notion of ACCE does not directly imply that of AKE. We refer readers
to Section 2 and [7] for more detail about ACCE.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Fig. 1: Overview of Our HMACCE Protocol.

while being able to satisfy partial leakage resilience. In
general, the servers in geographically concentrated cyber-
physical systems, like manufacturing systems and nuclear
plants (as in the instance of Stuxnet [1]), are more vulnerable
than the individual devices/controllers, because they are
more likely to be accessible via the Internet by remote
attackers. Hence, we want to find a new authentication
factor on the server side with a stronger security level than
a conventional secret key stored even on the same machine.

Recall that CPS devices keep sending data to the SCADA
system for monitoring. Actually, for data analysis, the his-
torical data in most of the SCADA systems is collected and
stored in a dedicated process historian instead of their main
servers [15]. This directly implies that the historical data
has a different security level from secret keys. Moreover,
a secret key, usually hundreds of bits, can be leaked very
fast in a security breach, but a large database on the same
server will clearly at least slow down the secret leakage
by a few orders of magnitude and consequently implies a
different security level. Therefore, a secret key, a database
of historical data stored in a historian, and a database of
data associated tags stored on a SCADA server are the
perfect authentication factors with three different security
levels, such that compromising one factor does not lead to
a corruption of another authentication factor in practice. As
another fact, the historical data and its tag (discussed later)
are growing all the time, so a piece of historical data leaked
in the past may not be valid as an authentication factor soon
after. This makes a successful impersonation even harder.

Existing Historical Data based Authentication Protocols.
The concept of using historical data as an authentication
factor was introduced in [16] and further developed in [17]
at ESORICS’16. The early scheme [16] uses the historic data
straightforwardly as a symmetric key shared between the
client and the server. This imposes a non-trivial storage
overhead to the client, which is sometimes infeasible for
a resource-constrained CPS device. Recently Chan et al.
[17] introduced a scalable historical data based two-factor
authentication scheme (which will be referred to as the
CWZT scheme). Namely, the first authentication factor is
a long-term symmetric key, and the second authentication
factor is a dynamically growing set of secret tags associated
with historical data. The CWZT protocol is wisely derived
from the proof of retrievability (PoR) protocol [18], in which
the server authenticates itself to the client by proving that

it possesses all historical data sent by the client. As one of
their major contributions, the CWZT protocol only requires
the client to store a small constant-sized secret (e.g., 512
bits), which well fits CPS devices. Chan et al. also introduced
historical tag leakage resilience in a bounded-storage model
[19], [20] as its security feature so that partial historical tag
leakage does not affect much of its security.

Vulnerabilities of the CWZT Protocols. (1) According to
our analysis in Section 4, the CWZT protocol is vulnerable
to a tag stealing attack. In short, we show that an adversary
can steal all the historical tags through legitimate interac-
tions with the server, given only one piece of historical tag
(associated with one data piece) that is somehow leaked.
Note that the partial historical tag leakage is allowed in the
adversarial model of the CWZT protocol and was claimed as
one of the major contributions in [17]. (2) In [17], the authors
suggested using the first authentication factor to protect
the transmission of the second authentication factor (tags).
This completely deviates from the motivation of having two
authentication factors. Thus how to secure the transmission
of data and tags from the client to the server based on
a leakage resilient multi-factor session key establishment
procedure is still an open problem.

Our Contributions. Since we need a secure channel to
transmit the authentication factors, we formalize our con-
structions by a new security notion, historical data based
multi-factor ACCE (HMACCE). Due to the vulnerabilities
and limitations of the existing authentication protocols men-
tioned above, we cannot simply extend the existing authen-
tication protocols to an authenticated and confidential chan-
nel establishment (ACCE) protocol. We have to reconsider
the fundamental authentication problem based on historical
data and redesign a new ACCE protocol from scratch.
More specifically, we made four significant contributions as
follows:
1) We analyze the state-of-the-art historical data based au-

thentication protocol (the CWZT protocol [17] proposed
at ESORICS’16) and propose a tag-stealing attack that
breaks the security claim of the CWZT protocol via
legitimate interactions.

2) To build a solid theoretical foundation of our proposed
HMACCE protocols, we are the first to formally de-
fine two indistinguishability-based security models for
HMACCE, and later we analyze our proposed protocols
in these security models.

2

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

3) As one of the main contributions of this paper, we intro-
duce two HMACCE protocols ΠwoFS (without forward
secrecy) and ΠFS (with forward secrecy) and proved their
security in the random oracle model.

4) To show the impact of our protocols in the real world, we
demonstrate how our protocols can be deployed in the
field to enhance the security services of legacy devices.
Also, we implemented ΠwoFS and ΠFS, and evaluated
their performance experimentally.

Technical Overview. An overview of our first HMACCE
protocol ΠwoFS is presented in Figure 1. The client de-
vice and the server share a master key (mk) as their first
authentication factor. When the client sends data to the
server, it generates a secret tag associated with the data
using a tag generation key K . The server stores all tuples
{(Datai, tagi)} separately as its second and third authen-
tication factors, respectively, while the client only needs to
store K as its second authentication factor. The client only
has two authentication factors due to its limited storage
space, i.e., not storing any historical data. In our HMACCE
protocols, both parties can use their authentication creden-
tials to run the key exchange procedure to generate a session
key for a secure channel that protects the underlying data
and tag transmission.

In addition, ΠwoFS has a remarkable security feature
called historical tag leakage resilience, such that a small
portion of tag leakage will not affect the security of ΠwoFS

much. Notice that although this feature was first introduced
in [17], they failed to achieve it due to the tag stealing attack
we will introduce in Section 4. Also, because of the clear
separation of the two authentication factors in ΠwoFS, ΠwoFS

can be easily used to enhance the security of legacy CPS
devices. An additional device with the second factor can be
attached to a legacy device (with the first factor embedded),
intercept its traffic, and complete most of the computation
in ΠwoFS.

One limitation of ΠwoFS is that it can only defend against
static bounded-leakage regarding the historical tags, and
it does not provide perfect forward secrecy. In a static
bounded-leakage model, the adversary can only learn a
fraction of the secret tags at the beginning of the security
game. Nevertheless, the static bounded-leakage resilience is
still valuable and useful for HMACCE in practice since the
leaked tags will be outdated quickly when the historical
data is growing. Theoretically, an attacker may try to adap-
tively attack many sessions as formulated in the seminal
work about entity authentication model [21]. To achieve this
adaptive bounded-leakage resilience and perfect forward
secrecy, we design the second HMACCE protocol ΠFS. In
ΠFS, we use the first protocol ΠwoFS as a compiler to trans-
form any passively secure two-message key exchange (TKE)
protocols to be actively secure HMACCE protocols. Because
the session key does not depend on the authentication keys
(unlike ΠwoFS), ΠFS can resist adaptive bounded-leakage,
i.e., the adversary can get access to a bounded number of
valid historical tags at any time in the security experiment.

2 RELATED WORK

Lightweight AKE Protocols. Due to the limitations of
power constrained devices, e.g., sensor networks or IoT

devices, researchers have been dedicated to developing
lightweight multi-factor AKE protocols in conjunction with
specific communication models or application scenarios.
For example, the lightweight multi-factor AKE protocols
proposed in [9], [13], [22] are designed for wireless sen-
sor networks (WSNs), and there are many protocols [11],
[23] for Internet-of-Things (IoT). In [24], Chattaraj et al.
proposed an AKE protocol for cloud computing services.
For different application scenarios and computation power
of players, different authentication factors might be in-
volved. The commonly used authentication factors are long-
term symmetric keys and users’ passwords. To enhance
its security, a protocol might also incorporate biometric
factors [9], [11] with more entropy than a password into
authentication. However, none of the above lightweight
AKE protocols cover the leakage resilient property in our
proposals. Recently, Haase and Labrique [25] proposed
a verifier-based password-authenticated key-exchange (V-
PAKE) called AuCPace, which can tolerate public-key-
infrastructure (PKI) failures while using in IIoT applications.
However, this scheme is not a pure M2M AKE scheme since
it involves human authentication. Moreover, this scheme
does not support the leakage resilience and legacy compli-
ance properties which are addressed in our scheme. In short,
none of the above lightweight AKE protocols can realize the
leakage resilience property.

Comparison between ACCE and AKE. Unlike AKE pro-
tocols satisfying session key indistinguishability property,
a secure ACCE (Authenticated and Confidential Channel
Establishment) protocol guarantees indistinguishability be-
tween different messages transmitted in the channel [7], [8].
Informally speaking, an ACCE channel can guarantee that
data transmitted over this channel is confidential (indistin-
guishable), and the channel also preserves the authenticity
and integrity of the messages. Therefore, a sequence of
messages read from this channel corresponds exactly to the
sequence of messages sent by the honest and legitimate
sender, and these messages are not known to attackers. Also,
ACCE and AKE are highly related since ACCE protocols
can be constructed by a stateful length-hiding authenticated
encryption and an authenticated key exchange protocol.

Cryptographic Primitives for Perfect Forward Secrecy
(PFS). Considering the importance of PFS, many AKE
schemes are proposed with PFS based on Diffie-Hellman
key exchange (DHKE), e.g., [9], [11], [26], [27], [13]. Fortu-
nately, some results (e.g., [28], [29]) have shown that DHKE
protocols are feasible to be realized with the elliptic curves
cryptography (ECC) optimized for embedded systems. We
also instantiate our protocol ΠFS with ECC based DHKE
protocol for comparison.

Generic AKE Compilers. A research line related to our
second protocol ΠFS is the AKE compiler that securely
combines authentication protocols (AP) with passively se-
cure key exchange protocols (KE) in a modular and generic
manner, e.g., [30], [31], [14], [32]. However, no existing
AKE compilers leverage historical data based authentication
protocol as a building block. Our protocol ΠFS presents a
new way to realize ACCE compilers.

3

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

3 PRELIMINARIES

General Notations. Let κ ∈ N denote the security parameter
and 1κ be a string of κ ones. We let [n] = {1, . . . , n} ⊂ N
denote the set of integers between 1 and n. We write a $←
S to denote the operation sampling a uniformly random
element from a set S. We let ‖ denote the concatenation
(operation) of two strings.

Random Oracles. Bellare and Rogaway [33] first used the
random oracle as a tool to prove the security of crypto-
graphic schemes. In this paper, we assume that the hash
function h(·) is modeled as a random oracle. A random
oracle is stateful. Namely, on input of a value m ∈ {0, 1}∗,
the random oracle query h(m) proceeds as follows: (i) With
respect to the first query on m, the oracle returns a true
random value rm from the output space, and records the
tuple (m, rm) into its query list HL; (ii) If m ∈ HL, then the
oracle returns its associated random value rm recorded in
HL. As in [34], we use a uniformly random salt χ $← X as
input of h to sample a random oracle h(χ, ·), where X is
the salt space. When the salt is clear in the context, we may
write h(·) instead of h(χ, ·) for simplicity. The random salt
can be used to prevent vulnerabilities introduced in [34].

Stateful Length-Hiding Authenticated Encryption. We
review the stateful length hiding authenticated encryp-
tion (SLHAE) security that is originally defined by Pater-
son et al. [35] and also used by Jager et al. [7], [8] for their
analysis of TLS 1.2.

Here a stateful symmetric encryption scheme consists of two
algorithms StE = (StE.Enc,StE.Dec). Algorithm (C, st′e)

$←
StE.Enc(k, `c, H,m, ste) takes as input a secret key k from
the key spaceKSLHAE (i.e., k ∈ KSLHAE), an output ciphertext
length `c ∈ N, some header data H ∈ {0, 1}∗, a plaintext
m from the message space MSLHAE (i.e., m ∈ MSLHAE),
and the current state ste ∈ {0, 1}∗, and outputs either a
ciphertext C ∈ {0, 1}`c and an updated state st′e or an error
symbol ⊥ if for instance the output length `c is not valid for
the message m.

Algorithm (m′, st′d) = StE.Dec(k,H,C, std) takes as
input a key k, header dataH , a ciphertext C , and the current
state std ∈ {0, 1}∗, and returns an updated state st′d and a
value m′ which is either the message encrypted in C , or a
distinguished error symbol⊥ indicating thatC is not a valid
ciphertext. Both encryption state ste and decryption state
std are initialized to an empty string ∅. Algorithm StE.Enc
may be probabilistic, while StE.Dec is always deterministic.
One could refer to [35] for more details.

The security of a SLHAE is formally defined in Ap-
pendix A. Informally, SLHAE should satisfy both the con-
fidentiality and integrity requirements of a communication
channel.

Passively Secure Two-message Key Exchange. We consider
a two-message key exchange (TKE) protocol in which the
session key is established within only two protocol passes.
In each protocol pass, a single message is sent by a party.
We further assume that each protocol player does not
hold any long-term secret key for simplicity. Specifically,
a general TKE protocol may consist of three polynomial
time algorithms (TKE.Setup,TKE.MSG,TKE.SKG) which
are defined as follows:

• pms← TKE.Setup(1κ): On input 1κ, the setup algorithm
outputs pms, a set of system parameters. We assume the
other algorithms may implicitly use pms.

• mid1
$← TKE.MSG(id1, rid1 ,mid2): The message genera-

tion algorithm takes as input a party’s identity id1, a
randomness rid1

$← RTKE and a message mid2 ∈ MTKE

received from party id2, and outputs a message mid1 ∈
MTKE to be sent, where RTKE is the randomness space
and MTKE is the message space. Note that if id1 is the
sender then mid2 = ∅.

• K ← TKE.SKG(id1, rid1 , id2,mid2): The session key gener-
ation algorithm takes as input the participants’ identities
id1 and id2, the randomness rid1 and the received message
mid2 from party id2, and outputs a session key K ∈ KTKE,
where KTKE is the session key space.

A TKE is secure under passive attacks, meaning an
adversary cannot distinguish an established secret key from
a random string just by passively observing the communica-
tion between the two parties. A formal definition of the cor-
rectness and security of TKE can be found in Appendix A.

4 CRYPTANALYSIS OF THE CWZT SCHEME

In this section, we revisit the security property of CWZT
scheme [17, §5.1] regarding the resilience to the leakage of
historical tags. We will introduce an attack to subvert the
leakage resilience of CWZT scheme. Note that leakage re-
silience is an intrinsic property that distinguishes historical
data relevant authentication factors from other symmetric
key based authentication factors.

4.1 Protocol Review
We first briefly review the CWZT scheme. Let Zp be an
abelian group with prime order p that has κ bits. The CWZT
protocol makes use of two pseudorandom functions f :
{0, 1}κ × {0, 1}∗ → Zp and E : {0, 1}κ × {0, 1}κ → {0, 1}κ,
and a cryptographic hash function h : {0, 1}∗ → Zp. The
protocol running between a verifier idC and a prover idS is
shown in Figure 2.

4.2 A Tag Stealing Attack
Here we introduce an attack where an attacker A who
knows one secret tuple (h(dj), tj) is able to steal all the
other historical tags, i.e., {(h(di), ti)}i∈[L],i6=j . In our attack,
we exploit the fact that there is no authentication to the
verifier. This fact enables an attacker masquerading the
verifier idC to choose two malicious selection sets I1 and
I2, which only differ in one index that is associated with
the target token, which we want to steal. In a nutshell, we
need two assumptions that (i) A has corrupted the first
authentication key sk1

idC,idS
= sk1

idS,idC
, and (ii) A learns one

secret tuple (h(dj), tj) with an arbitrary index j. Note that
this is allowed by the CWZT scheme [17].

In the following, we show how the attacker A steals the
i∗-th token (for i∗ ∈ [L] and i∗ 6= j) holding by prover idS.
• A somehow corrupts sk1

idC,idS
and (dj , tj).

• Amasquerades as the verifier idC to choose a randomness
r and a selection set I1, such that i∗ /∈ I1 and j ∈ I1.

• A sends (I1, r) to idS in a session, and receives the authen-
tication messages (X1, Y1).

4

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Verifier idC Prover idS
Initialization

sk1idC,idS
:= mk

$← {0, 1}κ −
sk1idC

−−−−−−−−−−−−−−−−−−→ sk1idS,idC
:= sk1idC,idS

K
$← Zp, K′ $← {0, 1}κ secure channel

L := 0
sk2idC,idS

:= (K,K′) sk2idS,idC
:= D = ∅

Tag Generation: for the i-th data

ki := f(K′, i) −
i, di, ti

−−−−−−−−−−−−−−−−−−→
ti := K · h(di) + ki

L := L + 1 store (i, di, ti)→ D
Online Authentication

Sample z random indices:
I := (I1, I2, . . . , Iz)

$← [L] r′ := E(sk1idS,idC
, r)

r
$← {0, 1}κ −

I, r
−−−−−−−−−−−−−−−−−−→ for i ∈ I: (di, ti)← D

r′ := E(sk1idC,idS
, r) X :=

∑
i∈I f(r′, i) · h(di)

KI :=
∑
i∈I f(K′, i) · f(r′, i) ←−

X,Y
−−−−−−−−−−−−−−−−−− Y :=

∑
i∈I f(r′, i) · ti

Y ′ := KI + K ·X
accept iff Y ′ = Y

Fig. 2: The CWZT Protocol [17].

h(di∗) =
X2 −X1 + f(r′, j) · h(dj)

f(r′, i∗)
=

(
∑
i∈I1\j f(r′, i) · h(di) + f(r′, i∗) · h(di∗))−

∑
i∈I1\j f(r′, i) · h(di)

f(r′, i∗)
. (1)

ti∗ =
Y2 − Y1 + f(r′, j) · tj

f(r′, i∗)
=

(
∑
i∈I1\j f(r′, i) · ti + f(r′, i∗) · ti∗)−

∑
i∈I1\j f(r′, i) · ti

f(r′, i∗)
. (2)

• In another session, A chooses a selection set I2 by re-
placing the index j with i∗, and sends (I2, r) to idS in
another session, and receives the authentication messages
(X2, Y2).

• A computes r′ := E(sk1
idC,idS

, r), f(r′, j), and f(r′, i∗).
• Then A can obtain h(di∗) and ti∗ by Equation 1 and

Equation 2, respectively.
By repeating the above attack steps, the attacker can

obtain other authentication tokens as he/she wishes.
Attack Discussion. Note that the computation on the au-
thentication proof Y is a linear combination of the secrets
derived from those authentication factors (i.e., ephemeral
key f(r′, i) generated based on the symmetric key sk1

idS,idC
and historical tags ti). However, the ephemeral keys de-
rived by the first authentication factor sk1

idS,idC
cannot pro-

vide any protection for the historical tags in the computation
of Y since sk1

idS,idC
might be corrupted. Hence, the security

of those authentication factors should be considered inde-
pendently in the protocol design. Since the verifier (i.e., the
client idC) cannot be explicitly authenticated (within two
passes), the selection set I can be malicious, which implies
that the authentication proof Y is generated maliciously
as well. Hence, the selection set should be determined by
both parties instead. Based on the above observations, we
will show how to avoid this problem in our HMACCE
constructions.

5 HMACCE SECURITY MODEL

In this section, we define new indistinguishability-based
security models for historical data based multi-factor au-

thenticated and confidential channel establishment proto-
cols (HMACCE), and we will formulate the security goals
that our upcoming HMACCE protocols can achieve.
Threat Model. Our security model follows the security
models of ACCE in literature [7], [8], [36], [37]. In contrast
to previous models, we particularly formulate the authen-
tication factors related to historical data and the security
property regarding leakage resilience. Namely, we allow the
adversary (1) to have full knowledge of all public parame-
ters in the protocol and have full control over the network,
so he/she can send, eavesdrop, intercept, and alter messages
in the network. (2) The adversary is also allowed to corrupt
authentication factors used in the protocol, including keys
and historical data. (3) The adversary can request to reveal
the derived secret key of any party. (4) The adversary is
allowed to get access to the randomness used by any party.
(5) The adversary can also register additional malicious
clients and authentication keys. (6) The adversary has access
to an encryption oracle and a decryption oracle used in the
protocol.
Execution Environment. Here, we consider an environment
where two honest parties exist, i.e., an honest client idC

∗

and an honest server idS
∗. In the following, we let ID

be a general identity to denote one of the honest parties
in {idC∗, idS∗}.2 However, we would allow an adversary
to register new malicious clients. The client idC and the
server idS would share a long-term symmetric authenti-

2. Here, we only consider two honest parties for simplicity. Multiple
honest parties’ security can be asymptotically derived from the two-
party case.

5

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

cation key sk1
idC,idS

as the first authentication factor. The
second authentication key of a client is denoted by sk2

idC,idS
(which is used to verify the authentication message from
idS). Besides the first symmetric authentication factor shared
with the client, the server idS would store distinct au-
thentication factors, i.e., historical data D1 and the cor-
responding secret historical tags D2, where each piece of
historical data is associated with a secret historical tag. We
denote them by sk2

idS,idC
= D1 and sk3

idS,idC
= D2 such

that skαidS,idC = (skαidS,idC(1), skαidS,idC(2), . . . , skαidS,idC(L)) for
α ∈ {2, 3} that comprises of the sub-authentication keys
denoted by skαidS,idC(i) for i ∈ [L], where L ∈ N is the
number of the stored historical data. Moreover, each party
also maintains states {csti} denoting the i-th authentica-
tion factor corruption status csti ∈ {exposed, fresh} for
i ∈ {1, 2, 3}. For example, if sk2

idS,idC
is corrupted, the

party idS must have cstiidS,idC = exposed. We assume the
authentication factors of a party are stored independently
so that the corruption of a factor does not affect the others.
To emulate the protocol executions, we assume that each

party ID can carry out at most ρ ∈ N sessions that are
modeled by a set of oracles {πuID : i ∈ [`], u ∈ [ρ]}. All
oracles can have access to the authentication keys of their
owner. Moreover, we assume each oracle πuID maintains a
list of independent internal state variables: (i) ΦuID – session
decision ΦuID ∈ {accept, reject}; (ii) piduID – the identity of
the intended communication partner; (iii) Ku

ID – session key
of πuID; (iv) TuID – protocol messages orderly sent and received
by πuID; (v) buID ∈ {0, 1} – a bit sampled by the challenger for
each oracle πuID at the beginning of the game and used in the
security game of SLHAE.

We assume that the session key Ku
ID will be assigned

with a non-empty value if and only if ΦuID = accept, which
means that the session key is accepted by the corresponding
party. 3

Adversarial Model. To model the power of an active ad-
versary A, we realize A as a probabilistic polynomial time
(PPT) algorithm that can ask the following queries:
• Send(ID, u,m)4: The adversary can send any message m

to the oracle πuID via this query. Oracle πuID will respond to
the next protocol message m∗ (if any) to be sent according
to the protocol specification and its internal states. An
oracle of the honest client idC

∗ is initiated via sending
the oracle the first message m = > consisting of a special
initialization symbol >. The oracle variables will be up-
dated accordingly (following the protocol specification)
after each Send query.

• RevealKey(ID, u): The oracle πuID responds with the value
of Ku

ID.
• Corrupt1(ID1, ID2): For honest parties (ID1, ID2) ∈
{idC∗, idS∗}, this query returns the first authentication key
sk1

ID1,ID2
of an honest party ID1, and sets cst1ID1,ID2

=
cst1ID2,ID1

:= exposed.

3. Note that, throughout the paper, the superscript u of an oracle or a
state of an oracle is the index of the oracle, while the other superscripts
are 1, 2 or 3 (e.g., sk1idC,idS

, sk2idC,idS
, and sk3idC,idS

) denoting which
authentication factor it is referring to. The subscript always represents
the ID of a user.

4. The Send query allows all interactions between the adversary and
any parties. It essentially covers the adversarial capabilities in the
traditional Dolev-Yao model [37].

• Corrupt2(ID1, ID2): For honest parties (ID1, ID2) ∈
{idC∗, idS∗}, this query returns the second authentication
key sk2

ID1,ID2
of an honest party ID1, and sets cst2ID1,ID2

:=
exposed.

• Corrupt3: This query returns the third authentication key
sk3

idS∗,idC∗ , and sets cst3idS∗,idC∗ := exposed.
• RevealR(ID, u)5: This query returns the randomness (e.g.,

the ephemeral Diffie-Hellman key) generated by πuID.
• HTLeak(i): This query returns the i-th sub-key
sk3

idS∗,idC∗(i).
• RegClient(idCi, sk

1
idCi,idS

∗ , sk2
idCi,idS

∗ , sk2
idS∗,idCi

, sk3
idS∗,idCi

):
This query allows the adversary to register malicious
clients and authentication keys. If idCi exists, then the old
keys will be replaced with the input ones.

• Encrypt(ID, u,m0,m1, `c, H): This query takes as input
two messages m0 and m1, length parameter `c, and
header data H . If ΦuID 6= accept then πuID returns ⊥. Oth-
erwise, it proceeds as the ENC oracle query in Figure 5,
depending on the session key Ku

ID, the random bit buID,
and the other internal states of πuID (e.g., cnte and ste).

• Decrypt(ID, u, C,H): This query takes as input a cipher-
text C and header data H . If πuID has ΦuID 6= accept then
πuID returns ⊥. Otherwise, it proceeds as the DEC oracle in
Figure 5, depending on the session key Ku

ID, the random
bit buID, and the other internal states of πuID (e.g., cntd, std,
and phase).

Secure HMACCE Protocols. We first review a notion called
matching conversations [21] to formulate the relation between
two sessions. We will use a variant that is refined in [7].
Matching Conversations. An oracle πuID is said to have a
matching conversation to an oracle πvpiduID

, if either (i) πuID
has sent all protocol messages, and T vpiduID

is a prefix of TuID,
or (ii) πvpiduID has sent all protocol messages, and TuID is a prefix
of T vpiduID . We also call πvpiduID meeting all above conditions to
be the partner oracle of πuID.
Correctness. We say an HMACCE protocol Π is correct, if
two accepted oracles πuidC∗ and πvidS∗ have matching conver-
sations, then both oracles should generate the same session
key.

We will use a variable MN ∈ {FS,woFS} to denote
the HMACCE security either with PFS (Perfect Forward
Secrecy) or without PFS (woFS). In the following, we present
a unified security experiment with/without FS based on
MN. For an HMACCE protocol without PFS, we only define
static historical tag leakage. However, for an HMACCE
protocol with PFS, we define adaptive historical tag leakage.
HMACCE Security Experiment (Π,MN): A challenger C will
play a game with an adversary A based on a target
HMACCE protocol Π and the security variable MN. In
the initialization phase of the game, C first implements a
collection of oracles {πuID : ID ∈ {idC∗, idS∗}, u ∈ [ρ]} and
randomly samples {buID : ID ∈ {idC∗, idS∗}, u ∈ [ρ]} for the
honest client idC

∗ and the honest server idS
∗, respectively.

All authentication keys are generated according to the pro-
tocol specifications. C gives the adversary A all identities

5. The RevealR query models the session-state reveal capability in-
troduced in the CK model [36]. That is, we specifically define the
state that can be leaked, to be the randomness sampled during the
protocol execution. All other intermediate secret values for session key
generation should be well protected without being compromised.

6

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

as input. There are two phases in the game, and in each
phase, distinct queries can be asked. In the first phase, A is
allowed to ask queries to HTLeak to model static historical
tag leakage. A can send C a symbol ` to switch to the next
phase. In the second phase, A can ask a polynomial number
of queries to Send, Corrupt1, Corrupt2, Corrupt3, RevealKey,
RevealR, RegClient, Encrypt, and Decrypt. If MN = woFS, the
HTLeak query is not allowed in the second phase. However,
if MN = FS, the adversary can query HTLeak in this phase
to model adaptive leakage. Eventually,Amay terminate and
output a tuple (ID, u, b′) as its guess for the bit buID of πuID,
where the oracle πuID will be called as the test oracle.

The difference between static and adaptive historical tag
leakage is whether the HTLeak query is allowed in the
second phase of the above security experiment. We give a
formulation of full corruption (of a party) as follows so that
partial corruption is its complement.

Full Corruption. We define the full corruption of a party
ID ∈ {idC, idS} via a function FullC which takes as input
two identities (idC, idS) and the number ql of HTLeak query
that is allowed, and outputs 1 to denote full corruption of
ID and 0 otherwise. FullC(ID, idC, idS, ql) = 1 if one of the
following conditions holds:
1) idC was taken as input to any RegClient query;
2) cst1idC,idS = cst2idC,idS = exposed;
3) cst1idS,idC = cst2idS,idC = cst3idS,idC = exposed;
4) cst1idS,idC = cst2idS,idC = exposed and A asked more than ql

HTLeak queries;
5) ID = idC and cst1idS,idC = cst3idS,idC = exposed;
6) ID = idC, cst1idC,idS = exposed and A asked more than ql

HTLeak queries.
The last two conditions are added because idC has one less
authentication factor than idS. Basically, we shall model the
authentication for a specific party ID ∈ {idC, idS} when
FullC(ID, idC, idS, ql) = 0.

In the following security definition, we let ID∗ denote
the party submitted to the Encrypt query for the test and let
ĨD∗ denote the identity that is required to provide explicit
authentication.

Definition 1 (HMACCE Security). We say a PPT adversary
A (t, ε, ql,MN)-breaks an HMACCE protocol Π in the
security experiment with MN, if A runs in time t, and
one of the following conditions is satisfied:

• Authentication: When A terminates, then with probabil-
ity ε there exists an oracle πu

ĨD∗ such that

– FullC(ĨD∗, ĨD∗, pidu
ĨD∗ , ql) = 0 when πu

ĨD∗ accepts, and
– πu

ĨD∗ has no unique partner oracle at the party pidu
ĨD∗ .

We say that πu
ĨD∗ accepts maliciously if it accepts satisfying

the above conditions.
• Channel Confidentiality : When A terminates and out-

puts a tuple (ID∗, u, b′), and
– A asked an Encrypt(ID∗, u, ·, ·, ·, ·) query without fail-

ure, and
– if MN = woFS then FullC(ID∗, ID∗, piduID∗ , ql) = 0 and
FullC(piduID∗ , ID∗, piduID∗ , ql) = 0, and

– if MN = FS then FullC(ID∗, ID∗, piduID∗ , ql) = 0 and
FullC(piduID∗ , ID∗, piduID∗ , ql) = 0 when πuID∗ accepts, and

– A neither asked RevealKey(ID∗, u) nor RevealR(ID∗, u),
and

– if πvpidu
ID∗

is a partner oracle of the test ora-
cle πuID∗ , A queried neither RevealKey(piduID∗ , v) nor
RevealR(piduID∗ , v),

and then the probability b′ equals to the bit buID satisfies
|Pr[b′ = buID∗]− 1/2| ≥ ε. We say that A answers the
encryption-challenge correctly if b′ = buID∗ and all above
conditions are met.

We say that an HMACCE protocol is (t, ε, ql,MN)-secure,
if there exists no PPT adversary that (t, ε, ql,MN)-breaks
it.

Remark 1. Here, we define a model with static creden-
tials for a fixed period of time. However, our model
can be extended to analyze multiple instances of time
periods (e.g., using a sliding window approach as in
our construction) if each time window has independent
static credentials. In a protocol design, honest parties
can switch to the next time window when the authen-
tication credentials for the current time window have
been used for a predefined number of authentication. It
is further elaborated in our constructions in Section 6.
Since the authentication credentials used in TWi (Time
Window i) are generated within TWi−1, the leakage
of authentication credentials (including data and tags)
occurs in TWi−1. Nevertheless, we stress that such leak-
age is already covered by our defined queries, i.e., the
exposed session key in TWi−1 (e.g., caused by RevealKey
query) may be the ‘reason’ of the HTLeak query in TWi.
Note that, in our formalization of HTLeak and Corrupt
queries, we do not constrain what caused the leakage or
corruption. In other words, such leakage or corruption
can be caused by attacks (e.g., session key compromise)
launched in TWi−1. Hence, we can focus on the security
formalism of a one-time window. If the secure channel
established in a one-time window is secure, then the
authentication credentials transmitted within this time
window are secure as well, which lays the foundation
of the security of the next time window. Meanwhile, the
synchronization of time windows can refer to other time-
based cryptographic primitives, such as time-based one-
time passwords [38], [4], [39].

6 AN EFFICIENT HMACCE PROTOCOL

In this section, we develop an efficient HMACCE Protocol
in the random oracle model denoted by ΠwoFS. The main
construction idea of ΠwoFS is to directly use authentication
factors to derive a session key.

Protocol Description. Let Zp be a cyclic group with a
prime order p that has a bit-length `p, and Z∗p = Zp/{0}.
In our protocol, we need a cryptographic hash function
h : {0, 1}∗ → Zp, and a stateful length hiding authenticated
encryption StE = (StE.Enc,StE.Dec). We assume that
the server chooses a uniform salt χidS for each client to
randomize the hash function, which is implicitly used as
input of h. Let `r be a bit-length defining a randomness
space. In our protocols, the historical data is considered
as one of the authentication factors, so we assume it to

7

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

client idC server idS
Initialization

sk1idC,idS
:= mk

$← {0, 1}κ −
sk1idC

−−−−−−−−−−−−−−−−−−→ sk1idS,idC
:= sk1idC,idS

sk2idC,idS
:= K

$← Z∗p secure channel sk2idS,idC
:= D1 = {(i, di, h(di||i))}i∈[L]

cnt := 0 sk3idS,idC
:= D2 = {(i, ti)}i∈[L]

ste := ∅ std := ∅
Online Authentication and Key Exchange

Sample z distinct random indices: Sample z distinct random indices:

IC := (i1, i2, . . . , iz)
$← SI IS

$← SI\IC

r1
$← {0, 1}`r −

IC , r1
−−−−−−−−−−−−−−−−−−→ r2

$← {0, 1}`r

I := IC ∪ IS ←−
IS , r2, X,M

−−−−−−−−−−−−−−−−−− I := IC ∪ IS
sid := idC||r1||idS||X||r2||I for i ∈ I: (h(di||i), ti)← D1&D2

KI :=
∑
i∈I h(K||i) X :=

∑
i∈I h(di||i)

Y ′ := KI + K ·X Y :=
∑
i∈I ti

M ′ := h(mk||Y ′||sid||‘Auth’) sid := idC||r1||idS||X||r2||I
reject if M 6= M ′ M := h(mk||Y ||sid||‘Auth’)

accept Ks := h(mk||Y ′||sid||‘SeK’) Ks := h(mk||Y ||sid||‘SeK’)
Tag Generation: for the i-th data

ki := h(K||i) −
Ci

−−−−−−−−−−−−−−−−−−→ (mi, st
′
d) := StE.Dec(Ks, H,Ci, std)

ti := K · h(di||i) + ki accept if mi 6= ⊥
mi := i||di||ti i||di||ti ← mi

(Ci, st
′
e)

$← StE.Enc(Ks, `c, H,mi, ste) store (i, di, h(di||i))→ D1

cnt := cnt + 1 store (i, ti)→ D2

Fig. 3: An Efficient HMACCE Protocol ΠwoFS.

be unpredictable and have some min-entropy6. As stated
in [41], any unpredictable string (regardless of its min-
entropy) with bit-length that is larger than `p, in the random
oracle model, can be used to extract an unpredictable `p-
bit uniform random string in Zp. To avoid the leakage of
historical data and tags being over the security threshold,
we adopt a sliding window alike approach. We let SI be a set
with size L, which stores the indices of historical data and
tags that will be used for authentication and key exchange.
We assume that the indices in SI can be used at most φ
times, so once they have been used φ times, we will refresh
SI with the following L unused historical data and tags from
(D1,D2).

The protocol ΠwoFS running between a client idC and
a server idS is shown in Figure 3, which consists of three
phases described below.
• Initialization. In this phase, the client idC and the server
idS first randomly generate a symmetric authentication
key sk1

idC,idS
= sk1

idS,idC
:= mk

$← {0, 1}κ which is used as
the first authentication factor. The second authentication
factor of idC is randomly chosen as sk2

idC,idS
= K

$← Z∗p,
whereas the second and third authentication factors of
idS are initialized with random sets (sk2

idS,idC
, sk3

idS,idC
) =

(D1,D2) = ({(i, di, h(di||i))}i∈[L],{(i, ti)}i∈[L]). That is,
to bootstrap the protocol, we require the client to ran-
domly generate L data and compute the corresponding
tags inD2 with the method described in the tag generation
phase using K . Also, since we assume no adversary exists
during the initialization phase, the transmission of the L

6. As a validation of this assumption, we evaluated the min-entropy
of sensor measurements in real industrial control systems based on one
dataset of the operations of a real-world water treatment system [40].
The min-entropy of the sensor data in each stage is between 4.52 and
7.80 when the system is running.

dummy data and tags does not require encryption. In
practice, one can encrypt the data and tag transmission
using the first authentication factor mk or the previous
secure session key when applicable.

• Tag Generation. When the client idC sends a data piece di
to the server idS, idC would compute an authentication tag
ti based on sk2

idC,idS
= K . Each tag is generated as ti :=

K · h(di||i) + ki (mod p), where ki := h(K||i). After the
tag is generated, idC would locally increase the tag counter
cnt by one, encrypt the message mi = i||di||ti to yield the
ciphertext (Ci, st

′
e)

$← StE.Enc(Ks, `c, H,mi, ste), and
send Ci to idS. Then idS decrypts Ci to get the plaintext
(mi, st

′
d) = StE.Dec(Ks, H,Ci, std), and privately stores

the tuple (i, di, h(di||i)) → D1 and (i, ti) → D2, i.e.,
sk2

idS,idC
(i) = (i, di, h(di||i)) and sk3

idS,idC
(i) = (i, ti). In the

first communication after a new channel is established,
the server will verify whether the ciphertext sent by the
client can be successfully decrypted. If yes, the server
accepts the client as an authenticated entity. Note that a
session key may be used to transmit multiple data and
corresponding tags. We assume the client should generate
at least L data and tag pairs in one window.

• Authentication and Confidential Channel Establish-
ment Phase. The client idC and the server idS would in-
teractively run the authenticated and confidential channel
establishment protocol online to generate a session key
Ks as shown in Figure 3. One of the key procedures
of confidential channel establishment is the key exchange
phase which is used to generate a session key shared by
two communication partners. The established session key
will be used to protect the underlying data and tag trans-
mission using StE. During this phase, both parties would
first exchange two random nonces r1, r2

$← {0, 1}`r ,
and two random index selection sets (IC , IS) with z dis-

8

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

tinct random indices in each set, where IC
$← SI and

IS
$← SI\IC . Let I = IC ∪ IS . Next, idS makes use of its

historical data (indexed by I) to compute a message X :=∑
i∈I h(di||i) (mod p), and an intermediate secret Y :=∑
i∈I ti (mod p). In our scheme, the hash values of data

are not secrets. Next, Y is used as a secret seed to generate
the authentication message M := h(mk||Y ||sid||‘Auth’)
and the final session key Ks := h(mk||Y ′||sid||‘SeK’),
where sid is the session identifier concatenating the proto-
col messages and identities of participants. The messages
(X,M) are sent to idC for authentication. To verify M , idC
computes KI :=

∑
i∈I h(K||i) (mod p), Y ′ := KI +K ·X

(mod p), and M ′ := h(mk||Y ′||sid||‘Auth’). If M ′ 6= M ,
then idC rejects the session. Otherwise, it generates the
session key as idS. We assume that two parties synchro-
nize a variable ξ which stores the times of the selection
set SI that has been used. If ξ = φ, then all indices in SI
plus L, i.e., sliding to the next time window. Moreover,
the entity authentication of the client is verified when the
server receives a valid ciphertext.

Construction Discussions. To improve the CWZT protocol,
we modify and add several critical steps to fix the vulner-
abilities of the CWZT protocol and achieve the HMACCE
functionality. Below, we highlight our main differences with
the state-of-the-art CWZT protocol [17].

• Security improvement for authentication. In Section 4, we
have shown an attack to subvert the leakage resilient
security property of the CWZT scheme, that an attacker
who corrupts the first authentication factor and one piece
of data and its tag can then steal all other secret tags. To
circumvent this attack, the server in ΠwoFS contributes a
random set IS , such that the subset of selected historical
data is determined by both parties (see Figure 3), instead
of only relying on the client.

• New confidential channel establishment feature. Unlike the
CWZT protocol, our protocol realizes the full-fledged
authenticated and confidential channel establishment
(achieving both authentication and channel confidential-
ity security goals). Our protocol enables both parties to
establish an authenticated and confidential channel for
securely transmitting the new authentication factors (i.e.,
data and its associated tags) so that the historical data
based authentication and key exchange make sense.

• Other security considerations. We consider data and its tag
as distinct authentication factors because they are stored
separately. The adversary who only corrupts the tags or
the data cannot actively impersonate the server to the
client. For instance, if the adversary does not know the
data, then it is unable to generate a valid X to make the
client accept M . Moreover, unlike the CWZT protocol,
each party should contribute a nonce ri (for i ∈ {1, 2})
so that the session identifier is unique in each session to
resist replay attacks.

• Performance improvement. Unlike the CWZT protocol, our
protocol does not derive many session-specific ephemeral
keys from the first authentication factor to protect Y . Since
Y is protected by a hash function in our scheme, we
could simplify its computation to achieve better perfor-
mance. As a result, we roughly save 3× hash operations
compared to the CWZT protocol, although we provide an

additional key exchange functionality.
Limitations. One of the limitations of ΠwoFS is that it cannot
provide forward secrecy when all secrets used to compute
a session key Ks of a player are compromised. If the client
is not fully corrupted, then along with the growth of the
second authentication factor, the newly generated session
key, depending on the selection set (which is chosen from
an increasingly larger range), can still be secure. As we will
show in the security proof that the probability regarding
the event: all indices of a selection set chosen in a session
are compromised by the adversary before, is negligible with
a proper choice of z (e.g., z = 163 for 128 bits security).
Thus, the attacker needs to either keep stealing the second
and third authentication factors or compromise the client’s
device, which might be located in a more physically secure
place in CPSs.

Another limitation of ΠwoFS is that it can only satisfy
static historical tag leakage. When the HTLeak query can be
asked adaptively, the adversary will be able to ask HTLeak
queries with indices that appeared in the Encrypt query to
break the confidential channel security. In addition, if the
adversary obtained more than ql tags, then the key exchange
security is jeopardized since the session key is derived from
those tags. This limitation of ΠwoFS is caused by the side-
effect of using the secret tags for both authentication and
key exchange features.
Theorem 1. Suppose that the hash function h is indis-

tinguishable from a random oracle in time th and
with at most qh queries, the stateful length hiding
authenticated encryption StE is (tSLHAE, εSLHAE)-secure,
and each data piece is unpredictable. Then ΠwoFS is
(t′, εΠwoFS

, ql,woFS)-secure with t′ = (th + tSLHAE) ≈
t, φ ≤ ql, and εΠwoFS

≤ ρ2

2`r−1 + 14ρ · (ql
L−z)z +

(14ρ+22+6L)·qh
2`p

+ (2ρ2 + 6ρ) · εSLHAE.

Security Analysis. We divide adversaries into two cat-
egories to analyze the authentication and key exchange
respectively:
(i) Authentication-adversary can succeed in making an oracle
accept maliciously; (ii) Encryption-adversary is able to answer
the encryption-challenge correctly.

To prove Theorem 1, we present two lemmas. Each
analyzes one of the security properties of the proposed pro-
tocol. Specifically, Lemma 1 bounds the success probability
εauth of authentication-adversaries, and Lemma 2 bounds
the advantage εenc of encryption-adversaries. Then we have
εΠwoFS

≤ εauth + εenc.
The full proof of Theorem 1 is given in [42]. In the

following, we just present the outline of the proof.
Lemma 1. For any adversary A running in time t′ ≈ t,

the probability that there exists an oracle Πu
idC∗ that

accepts maliciously is at most εauth ≤ ρ2

2`r
+ 6ρ · (qlL)z +

(6ρ+9+3L)·qh
2`p

+ 6ρ · εSLHAE.

The proof of this lemma has four main steps. First,
we exclude the collision among the random nonces, which
occurs with negligible probability ρ2

2`r
due to the birthday

paradox. Let S be the set of indices submitted to the HTLeak
query. Then, in a second step, when the third authentication
factor is not corrupted (which occurs with probability 1/3

9

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

since there are 3 authentication factors), then the probability
that an oracle πuidC∗ accepts maliciously and sends out a
selection set I∗C such that I∗C ⊆ S is about 1−(Pr[I∗C ⊆ S])ρ =
1−(1−(qlL)z)ρ < ρ·(qlL)z . This implies that at least one factor
of a party, which is not fully corrupted, is not known by the
adversary. Hence, the adversary is only able to obtain the
session key by its random guesses. In the last step, we can
exclude the attacks of adversaries by injecting ciphertexts
that are not sent by a fresh oracle due to the security of
SLHAE.

Lemma 2. For any adversary A running in time t′ ≈ t, the
advantage of an adversaryAwhich answers encryption-
challenge better than a random guess is at most εenc ≤
ρ2

2`r
+ 8ρ · (ql

L−z)z + (8ρ+13+3L)·qh
2`p

+ 2ρ2 · εSLHAE.

The proof of this lemma mainly relies on authentication
security and compromised secret tags. The key issue here
is whether the adversary knows all secret tags used to
compute the session key of the test oracle. Note that the
adversary can only manipulate the selection set of the client
IC , which is not authenticated. Hence, the probability that
the selection set I∗S used by the test oracle such that I∗S ⊆ S
is about ρ · (ql

L−z)z which can be negligible with proper
parameters. Because of the security of StE, the adversary
is not able to distinguish which message (m0 or m1) is
encrypted.

Discussion. Note that our formal model and security anal-
ysis cover the Ephemeral Secret Leakage (ESL) attacks due
to the formalization of the RevealR query. An attacker is
allowed to get all randomness used by a party in a session.
Our security proof shows that our protocol is secure in our
security model.

Resilience against Quantum Attacks. Industrial control
system devices usually have a long lifespan, so the threats
of quantum computers become a practical concern for ΠwoFS

if deployed. As we showed in Theorem 1, the security of
ΠwoFS can be reduced to the security of the underlying
hash function and stateful length hiding authenticated en-
cryption. These two functions can be instantiated by SHA-
3/SHA-2 and AES, respectively, as used in the selected
algorithms in the NIST PQC competition [43]. We know that
idealized hash function and stateful length hiding authenti-
cated encryption are mainly subject to the attack of Grover’s
algorithm [44], which likely requires the output/key size
to be doubled for achieving the same security level under
quantum attacks as the security level used to hold for
classical adversaries. Moreover, since ΠwoFS is a generic
construction based on hash functions and stateful length
hiding authenticated encryption, one can always drop in
post-quantum secure algorithms to instantiate the building
blocks if new breakthroughs in quantum cryptanalysis on
concrete algorithms are made.

7 AN HMACCE PROTOCOL WITH STRONGER SE-
CURITY

In this section, we propose an HMACCE protocol called
ΠFS, which overcomes the limitations of ΠwoFS. The idea
of the construction of this protocol is to use the authen-
tication procedure as a compiler to transform a general

passively secure two-message key exchange protocol to
achieve HMACCE security. To realize our idea, we need
to add one more authentication message to achieve mutual
explicit authentication for both parties before the session key
is used. Compared with ΠwoFS, the protocol ΠFS can achieve
not only PFS but also the resilience of adaptive historical tag
leakage. Also, ΠFS can still guarantee authentication and
key exchange security when all tags are corrupted, but the
historical data is not corrupted. It is because the session key
in ΠFS no longer depends on the tags.

Protocol Description. In this protocol, one more primitive
is needed, i.e., a TKE protocol with parameters pms ←
TKE.Setup(1κ). We assume that the randomness space of
TKE is RTKE = {0, 1}`r . We depict the protocol ΠFS in
Figure 4.

Theorem 2. Suppose that the hash function h is indistin-
guishable from a random oracle in time th and with at
most qh queries, and each data piece is unpredictable,
the stateful length hiding authenticated encryption StE
is (tSLHAE, εSLHAE)-secure, and the two-message key ex-
change protocol TKE is (tTKE, εTKE)-passively-secure.
Then ΠFS is (t′, εΠFS

, ql,FS)-secure with t′ = (tSLHAE +

tTKE + th) ≈ t, φ ≤ ql, and εΠFS
≤ ρ2

2`r−1 + 18ρ · (ql
L−z)z +

(18+6L+18ρ)·qh
2`p

+ (ρ2 + 4ρ) · εTKE + (ρ2 + 12ρ) · εSLHAE.

Similarly, we prove Theorem 2 via the following two
lemmas. Lemma 3 bounds the success probability εauth
of authentication-adversaries, and Lemma 4 bounds the
advantage εenc of encryption-adversaries. Then we have
εΠFS
≤ εauth + εenc.

In the following, we just present the outline of the proof.

Lemma 3. For any adversary A running in time t′ ≈ t, the
probability that there exists an oracle Πu

ID∗ that accepts
maliciously is at most ρ2

2`r
+ 2ρ · εTKE + 9ρ · (ql

L−z)z +
(9+3L+9ρ)·qh

2`p
+ 6ρ · εSLHAE.

Lemma 4. For any adversary A running in time t′ ≈
t, the advantage of an adversary A which answers
encryption-challenge correctly better than a random
guess is at most ρ2

2`r
+ 9ρ · (ql

L−z)z + (9+3L+9ρ)·qh
2`p

+
(ρ2 + 2ρ) · εTKE + (ρ2 + 6ρ) · εSLHAE.

Basically, the proof of this theorem can be extended
from the proof of Theorem 1. We outline our proof idea
as follows. The authentication messages M1 and M2 are
computed in a similar way as M in ΠwoFS, therefore we can
reduce the authentication security regarding M1 and M2

in a similar way as the proof of Theorem 1 when the tags
leakage is below a threshold. The advantage of an adversary
A breaking the authentication of ΠFS is twice of breaking the
authentication of ΠwoFS. Also, the random values r1 and r2

in ΠwoFS are replaced with m1 and m2 in ΠFS, because of
the security of the TKE protocol [31, Lemma1].

Moreover, if there is no adversary that can break the
authentication property of ΠFS, then there would be only
a passive adversary between the test oracle and its partner
oracle (which must exist due to the explicit authentication
messages M1 and M2). This fact enables us to reduce the
channel confidentiality of ΠFS to the security of TKE. We
present the formal security reduction in [42].

10

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

client idC server idS
The Initialization and Tag Generation phases are identical to those of ΠwoFS

Online Authentication and Key Exchange
Sample z distinct random indices: Sample z distinct random indices:

IC := (i1, i2, . . . , iz)
$← SI IS :

$← SI\IC
r̃1

$← {0, 1}`r r̃2
$← {0, 1}`r

m1 ← TKE.MSG(idC, r̃1, ∅) −
IC ,m1

−−−−−−−−−−−−−−−−−−→ m2 ← TKE.MSG(idS, r̃2,m1)

I = IC ∪ IS ←−
IS , X,m2,M2

−−−−−−−−−−−−−−−−−− I = IC ∪ IS
sid := idC||idS||X||m1||m2||I for i ∈ I: (h(di||i), ti)← D1&D2

KI :=
∑
i∈I h(K||i) X :=

∑
i∈I h(di||i)

Y ′ := KI + K ·X Y :=
∑
i∈I ti

M ′2 := h(mk||Y ′||sid||‘Auth’||2) sid := idC||idS||X||m1||m2||I
reject if M2 6= M ′2 M2 := h(mk||Y ||sid||‘Auth’||2)

Kke ← TKE.SKG(idC, r̃1, idS,m2) M ′1 := h(mk||Y ||sid||‘Auth’||1)

M1 := h(mk||Y ′||sid||‘Auth’||1) −
M1

−−−−−−−−−−−−−−−−−−→ reject if M1 6= M ′1
Kke ← TKE.SKG(idS, r̃2, idC,m1)

accept Ks := h(Kke||sid) accept Ks := h(Kke||sid)

Fig. 4: An HMACCE Protocol ΠFS with Perfect Forward Secrecy.

Resilience against Quantum Attacks. Similar to ΠwoFS, the
security of ΠFS can be reduced to the underlying hash func-
tion, stateful length hiding authenticated encryption, and
two-message key exchange protocol (TKE). Unlike the two
symmetric key cryptographic primitives, some TKE proto-
cols do suffer dramatically from the attacks of quantum
computers. For example, elliptic curve based TKE can be
broken by Shor’s algorithms [45]. However, post-quantum
secure TKE also exists (e.g., based on ideal lattices [46]), and
it can be instantiated in a post-quantum secure ΠFS.

8 SECURITY ENHANCEMENT SERVICE FOR
LEGACY DEVICES

In this section, we show an important practical aspect of
our proposed protocols, i.e., they can strengthen the secu-
rity of existing legacy devices as an independent security
enhancement service (i.e., without modifying the original
legacy devices).

Here we consider a legacy device that has a symmetric
key mk shared with the server (i.e., the first authentication
factor in our scheme). In case the legacy devices do not
have an ACCE built in, it becomes trivial for us to enhance
their security. We can simply add a new device like what
the authors did in [2] to intercept the traffic of legacy
devices and run the complete HMACCE protocols with
the server. In this way, almost any ACCE/AKE protocols
can be legacy-compliant. However, the practical difficulty is
how to be compatible with legacy devices that run common
ACCE protocols. A common (toy) ACCE solution deployed
on a legacy device can be that two parties generate the
session key (or the authentication message) in a form Ks :=
h(mk, rC ||rS ||aux), where rC and rS are nonces selected by
the client and the server respectively, and aux may contain
other protocol messages if any (e.g., Diffie-Hellman public
keys). Our HMACCE protocols can be simply adapted to
enhance the security of such a legacy device with the above
toy ACCE without modifying its original operations. To
deploy our protocol, a separate secure device, storing the
tag key K of the client, is directly and securely connected
to the legacy device (e.g., via local LAN cables). After the

new device executes our HMACCE protocol steps except
for the session key generation, it only needs to send the
secret hash value H(Y ||sid||‘SeK’) to the legacy device as
the rS in the toy ACCE scheme. The server can compute the
same session key in exactly the same way. Meanwhile, we
can choose to drop the explicit authentication message M
in our protocol depending on whether the legacy protocol
has explicit message authentication steps7. In the last step
of ΠFS, the secret key is derived as Ks := h(Kke||sid). If we
want to adapt this protocol to legacy devices, the secret key
will be Ks := h(mk||Kke||sid), and the proxy device can
help compute h(Kke||sid) and send the result to the legacy
device as rS .

To apply the above security enhancement in practice,
we only need to check whether the legacy device runs an
ACCE protocol in the above form of the toy example. One
famous protocol instance meeting our requirement is the
Transport Layer Security (TLS) Protocol with pre-shared
key cipher-suits [47], [8], which are proposed for power-
constrained devices (such as EMV card). For example, our
first protocol ΠwoFS can be used to enhance the security
of TLS PSK, and the second protocol ΠFS is suitable for
TLS DHE PSK, where TLS PSK uses only symmetric key
(PSK) for authentication, and TLS DHE PSK uses a Diffie-
Hellman exchange authenticated with a pre-shared key.
Besides, the TLS protocols have explicit authentication steps.

9 COMPARISON

Here we briefly compare our proposed schemes with recent
lightweight authenticated key exchange protocols, i.e., He
et al. [13], Challa et al. [11], AuCPace [25], and Yang et
al. [49]. Although some of these protocols are designed
for a three-party scenario, two-party AKE procedures are
also involved. We compare these four protocols from the
following perspectives: (i) authentication factors, (ii) main

7. The CWZT scheme is not legacy-compliant since the computation
of Y needs two authentication factors, so it should be deployed in one
device where both authentication factors are stored together.

11

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Protocol Authentication
Factors

Security Properties Comm.
Passes

Comm.
Bits

Computation
CostM-Auth IA-SKS B-Leak PFS

He et al.[13] PW+LSK ×
√

×
√

2 5888 21H+4MUL
Challa et al.[11] Bio+PW+LPK ×

√
× × 2 2528 1FE+14MUL+12H

AuCPace [25] PW
√ √

×
√

8 2176 14H +7MUL
Yang et al.[48] PW +LSK

√ √
×

√
3 5376 27H

ΠwoFS LSK+HT+HD
√ √ √

(static) × 2 3992/5656* 326H+ 1AED

ΠFS LSK+HT+HD
√ √ √

(adaptive)
√

3 4748/6493* 328H+4MUL+1AED

TABLE 1: Comparison. * denotes the numbers of transmitted bits for 80/128 bits security levels, respectively.

security properties, (iii) number of communication passes,
(iv) bits transmitted in the protocol, and (iv) computation
cost. To compare the computational cost, we instantiate our
protocol ΠRO

FS with the elliptic curve cryptography (ECC)
based Diffie-Hellman key exchange protocol (as the other
compared protocols). To show the number of bits transmit-
ted in the authentication phase of the protocols, we use the
parameters in Section 10. Moreover, we let ‘FE’ denote a
fuzzy extractor operation to obtain a secret from biometrics.
Let ‘M-Auth’ denote mutual authentication, ‘B-Leak’ denote
bounded leakage, and ‘IA-SKS’ denote implicit authentica-
tion with session key security. To compare the computation
cost, let ‘H’ denote a hash operation, ‘MUL’ denote an ECC
multiplication, and ‘AED’ denote the SLHAE encryption
and decryption. Let ‘Bio’ denote the biometric authenti-
cation factor, ‘PW’ denote the password, ‘HD’ denote the
historical data, ‘HT’ denote historic tags, ‘LSK’ denote the
long-term symmetric key, and ‘LPK’ denote the long-term
public key. We summarize the comparison in Table 1.

Although our protocols are less efficient than He et al.
and Yang et al. protocols, we provide one more security
property, i.e., bounded-leakage resilience. Since a hash op-
eration is not expensive, the overall performance of ΠwoFS is
still practical (as shown in Table 2) for constrained devices.
Note that the size of the transmitted data is dominated by
the bits representing IC and IS . In case the bandwidth is
highly constrained, one can possibly use a pseudorandom
number generator to generate IC and IS on both sides, then
only two seeds of the pseudorandom number generator
need to be transmitted, instead of two sets of indices.

10 EXPERIMENTAL RESULTS

Implementation Parameters. We consider the upper-bound
of the sessions of each party to be ρ = O(230) in practice,
ql
L−z ≈ 1/2, qh = 230 and L = 215. In the following, we
list the parameters used in our implementation of ΠwoFS

and ΠFS based on the corresponding security levels: (i) for
the security level κ = 80, we use `r = 142, z = 114, and
`p = 144; (ii) for the security level κ = 128, we use `r = 190,
z = 163, and `p = 193.

Experiments Setup. We used one PC (with Intel Core i7-
8565U processor) as a server, and a Raspberry Pi 3 plus (with
a Quad Core A53 (ARMv8) 1.4GHz CPU and 1GB RAM)
is taken as the proxy device on the client side. We used
an 8-bit Arduino as the legacy device. Our implementation
is based on MIRACL cryptographic library [50], where the
hash function used is SHA256, and the TKE protocol used
in our second protocol is the Diffie-Hellman key exchange

protocol based on the 224-bit/256-bit standard elliptic curve
(over GF (p)) provided by MIRACL. The stateful length-
hiding authenticated encryption is instantiated by 256-bit
AES-GCM-SIV. The computation on the legacy devices is
based on Arduino Cryptography Library [51].8

Performance Evaluation. We first measured the tag genera-
tion time on the client. It takes 6.21 ms to generate a tag and
encrypt the data and tag, assuming the data size is 1KB. On
the server side, due to the high efficiency of AES-NI, it only
takes 0.85 µs to decrypt one package sent from the client.
Also, we measured the time consumed by the authentication
procedure and the key generation procedure separately on
the server, the client (proxy device), and the legacy device.
Since the computation on legacy devices is just 2 or 3
hash functions, if all the computation on the client side is
performed by the proxy device, we observe no noticeable
difference in performance. The performance in Table 2 is
reported in milliseconds. ‘Auth’ denotes the performance of
all other steps in authentication, and ‘KE’ denotes the time
for the ephemeral key and the session key generations. The
performance bottleneck is clearly on the client side because
it is a resource-constrained embedded system device, and it
needs 2z hash operations for one authentication. However,
even for 128 bits security, the latency on the client side in
ΠwoFS totals only 22.149 ms, which is efficient enough to be
deployed in real-world applications.

11 CONCLUSIONS AND OPEN PROBLEMS

In this paper, we have shown two ways to build multi-factor
ACCE protocols based on historical data in the random
oracle model. The proposed protocols are efficient enough
for resource-constrained devices in CPS or IoT. In particular,
the first protocol only requires a few hash operations on the
client. One open problem worth solving in the future is how
to construct an HMACCE protocol in the standard model.
Its challenge is to generate a pseudorandom seed from the
authentication tags. As another interesting future work, one
can consider building threshold HMACCE (e.g., following
the idea in [53]) to further enhance the security against the
compromise of authentication credentials.

REFERENCES

[1] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,”
White paper, Symantec Corp., Security Response, vol. 5, no. 6, p. 29,
2011.

8. It might be interesting to evaluate our protocols (as future work)
on other CPS devices with special hardware architecture (e.g., pro-
grammable logic controller [52]).

12

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

ΠwoFS ΠFS

Server Client Legacy Server Client Legacy
Auth 0.167/0.241 14.102/20.043 2.106 2.483/4.824 63.894/106.474 4.210
KE 0.035/0.041 0.297/0.328 2.106 2.282/4.373 51.192/87.379 2.106

TABLE 2: The performance of the proposed HMACCE protocols for (80-bit security/128-bit security), measured in ms. The
latency of the legacy device remain the same because it only computes 2 or 3 SHA256 evaluations in both cases.

[2] J. H. Castellanos, D. Antonioli, N. O. Tippenhauer, and M. Ochoa,
“Legacy-compliant data authentication for industrial control sys-
tem traffic,” in ACNS. Springer, 2017, pp. 665–685.

[3] C. Jin, S. Valizadeh, and M. van Dijk, “Snapshotter: Lightweight
intrusion detection and prevention system for industrial control
systems,” in ICPS. IEEE, 2018, pp. 824–829.

[4] C. Jin, Z. Yang, M. van Dijk, and J. Zhou, “Proof of aliveness,”
in Proceedings of the 35th Annual Computer Security Applications
Conference. ACM, 2019, pp. 1–16.

[5] K. A. R. Craig Trivelpiece and R. Campero, “Machine-to-machine
and machine to cloud end-to-end authentication and security,”
October 2016, uS Patent 15/091,634.

[6] A. Esfahani, G. Mantas, R. Matischek, F. B. Saghezchi, J. Rodriguez,
A. Bicaku, S. Maksuti, M. G. Tauber, C. Schmittner, and J. Bastos,
“A lightweight authentication mechanism for M2M communica-
tions in industrial iot environment,” IEEE IoT-J, vol. 6, no. 1, pp.
288–296, 2019.

[7] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “On the security
of TLS-DHE in the standard model,” in CRYPTO, ser. LNCS, vol.
7417. Springer, 2012, pp. 273–293.

[8] Y. Li, S. Schäge, Z. Yang, F. Kohlar, and J. Schwenk, “On the
security of the pre-shared key ciphersuites of TLS,” in PKC, ser.
LNCS, vol. 8383. Springer, 2014, pp. 669–684.

[9] A. K. Das, S. Kumari, V. Odelu, X. Li, F. Wu, and X. Huang, “Prov-
ably secure user authentication and key agreement scheme for
wireless sensor networks,” Security and Communication Networks,
vol. 9, no. 16, pp. 3670–3687, 2016.

[10] R. Zhang, Y. Xiao, S. Sun, and H. Ma, “Efficient multi-factor
authenticated key exchange scheme for mobile communications,”
IEEE Trans. Dependable Secur. Comput., vol. 16, no. 4, pp. 625–634,
2019.

[11] S. Challa, M. Wazid, A. K. Das, N. Kumar, G. R. Alavalapati,
E. Yoon, and K. Yoo, “Secure signature-based authenticated key
establishment scheme for future iot applications,” IEEE Access,
vol. 5, pp. 3028–3043, 2017.

[12] S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena, “Two-
factor authentication with end-to-end password security,” in PKC,
ser. LNCS, vol. 10770. Springer, 2018, pp. 431–461.

[13] J. He, Z. Yang, J. Zhang, W. Liu, and C. Liu, “On the security
of a provably secure, efficient, and flexible authentication scheme
for ad hoc wireless sensor networks,” I. J. of Distributed Sensor
Networks, vol. 14, no. 1, pp. 1–11, 2018.

[14] N. Fleischhacker, M. Manulis, and A. Azodi, “A modular frame-
work for multi-factor authentication and key exchange,” in SSR,
2014, pp. 190–214.

[15] SIEMENS, “Simatic process historian.” [Online]. Available:
https://sie.ag/2RUJZOU

[16] A. C. Chan, “Efficient defence against misbehaving TCP receiver
dos attacks,” Computer Networks, vol. 55, no. 17, pp. 3904–3914,
2011.

[17] A. C. Chan, J. W. Wong, J. Zhou, and J. C. M. Teo, “Scalable
two-factor authentication using historical data,” in ESORICS, ser.
LNCS, vol. 9878. Springer, 2016, pp. 91–110.

[18] H. Shacham and B. Waters, “Compact proofs of retrievability,” J.
Cryptology, vol. 26, no. 3, pp. 442–483, 2013.

[19] Y. Aumann, Y. Z. Ding, and M. O. Rabin, “Everlasting security
in the bounded storage model,” IEEE Trans. Info. Theory, vol. 48,
no. 6, pp. 1668–1680, 2002.

[20] S. Dziembowski, “Intrusion-resilience via the bounded-storage
model,” in TCC, ser. LNCS, vol. 3876. Springer, 2006, pp. 207–224.

[21] M. Bellare and P. Rogaway, “Entity authentication and key dis-
tribution,” in CRYPTO, ser. LNCS, vol. 773. Springer, 1993, pp.
232–249.

[22] J. Zhang, H. Zhong, J. Cui, Y. Xu, and L. Liu, “SMAKA: secure
many-to-many authentication and key agreement scheme for ve-
hicular networks,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp.
1810–1824, 2021.

[23] M. Wazid, A. K. Das, V. Odelu, N. Kumar, M. Conti, and M. Jo,
“Design of secure user authenticated key management protocol
for generic iot networks,” IEEE IoT-J, vol. 5, no. 1, pp. 269–282,
2018.

[24] D. Chattaraj, M. Sarma, and A. K. Das, “A new two-server authen-
tication and key agreement protocol for accessing secure cloud
services,” Computer Networks, vol. 131, pp. 144–164, 2018.

[25] B. Haase and B. Labrique, “Aucpace: Efficient verifier-based PAKE
protocol tailored for the iiot,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2019, no. 2, pp. 1–48, 2019.

[26] Z. Yang, J. Lai, C. Liu, W. Liu, and S. Li, “Simpler generic
constructions for strongly secure one-round key exchange from
weaker assumptions,” Comput. J., vol. 60, no. 8, pp. 1145–1160,
2017.

[27] Z. Yang and J. Lai, “New constructions for (multiparty) one-round
key exchange with strong security,” SCIENCE CHINA Information
Sciences, vol. 61, no. 5, pp. 059 102:1–059 102:3, 2018.

[28] X. Jia, D. He, L. Li, and K. R. Choo, “Signature-based three-factor
authenticated key exchange for internet of things applications,”
Multimed. Tools. Appl., vol. 77, no. 14, pp. 18 355–18 382, 2018.

[29] Y. Chen, L. López-Santidrián, J. Martı́nez, and P. Castillejo, “A
lightweight privacy protection user authentication and key agree-
ment scheme tailored for the internet of things environment:
Lightpriauth,” J. Sensors, vol. 2018, p. 7574238, 2018.

[30] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “Generic compilers
for authenticated key exchange,” in ASIACRYPT, ser. LNCS, vol.
6477. Springer, 2010, pp. 232–249.

[31] Y. Li, S. Schäge, Z. Yang, C. Bader, and J. Schwenk, “New modular
compilers for authenticated key exchange,” in ACNS, ser. LNCS,
vol. 8479. Springer, 2014, pp. 1–18.

[32] Z. Yang, C. Liu, W. Liu, S. Luo, H. Long, and S. Li, “A
lightweight generic compiler for authenticated key exchange from
non-interactive key exchange with auxiliary input,” I. J. Network
Security, vol. 18, no. 6, pp. 1109–1121, 2016.

[33] M. Bellare and P. Rogaway, “Random oracles are practical: A
paradigm for designing efficient protocols,” in ACM CCS. ACM,
1993, pp. 62–73.

[34] Y. Dodis, S. Guo, and J. Katz, “Fixing cracks in the concrete:
Random oracles with auxiliary input, revisited,” in EUROCRYPT,
ser. LNCS, vol. 10211, 2017, pp. 473–495.

[35] K. G. Paterson, T. Ristenpart, and T. Shrimpton, “Tag size does
matter: Attacks and proofs for the TLS record protocol,” in ASI-
ACRYPT, ser. LNCS, vol. 7073. Springer, 2011, pp. 372–389.

[36] R. Canetti and H. Krawczyk, “Analysis of key-exchange proto-
cols and their use for building secure channels,” in International
conference on the theory and applications of cryptographic techniques.
Springer, 2001, pp. 453–474.

[37] D. Dolev and A. Yao, “On the security of public key protocols,”
IEEE Transactions on information theory, vol. 29, no. 2, pp. 198–208,
1983.

[38] D. Kogan, N. Manohar, and D. Boneh, “T/key: Second-factor
authentication from secure hash chains,” in CCS. ACM, 2017,
pp. 983–999.

[39] Z. Yang, C. Jin, J. Ning, Z. Li, A. Dinh, and J. Zhou, “Group time-
based one-time passwords and its application to efficient privacy-
preserving proof of location,” in ACSAC. ACM, 2021, pp. 497–512.

[40] J. Goh, S. Adepu, K. N. Junejo, and A. Mathur, “A dataset to
support research in the design of secure water treatment systems,”
in International Conference on Critical Information Infrastructures
Security. Springer, 2016, pp. 88–99.

[41] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay
functions,” in CRYPTO, ser. LNCS, vol. 10991. Springer, 2018,
pp. 757–788.

[42] C. Jin, Z. Yang, S. Adepu, and J. Zhou, “HMAKE: legacy-compliant
multi-factor authenticated key exchange from historical data,”
IACR Cryptol. ePrint Arch., p. 450, 2019.

13

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

[43] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijn-
eveld, and P. Schwabe, “The sphincs+ signature framework,” in
Proceedings of the 2019 ACM SIGSAC conference on computer and
communications security, 2019, pp. 2129–2146.

[44] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, 1996, pp. 212–219.

[45] J. Proos and C. Zalka, “Shor’s discrete logarithm quantum algo-
rithm for elliptic curves,” arXiv preprint quant-ph/0301141, 2003.

[46] J. Zhang, Z. Zhang, J. Ding, M. Snook, and Ö. Dagdelen, “Authen-
ticated key exchange from ideal lattices,” in Annual international
conference on the theory and applications of cryptographic techniques.
Springer, 2015, pp. 719–751.

[47] T. Dierks and E. Rescorla, “The transport layer security (tls) pro-
tocol version 1.2,” Internet Engineering Task Force (IETF), Tech.
Rep., 2008.

[48] C. Wang, D. Wang, Y. Tu, G. Xu, and H. Wang, “Understanding
node capture attacks in user authentication schemes for wireless
sensor networks,” IEEE Transactions on Dependable and Secure Com-
puting, 2020.

[49] Z. Yang, J. He, Y. Tian, and J. Zhou, “Faster authenticated key
agreement with perfect forward secrecy for industrial internet-of-
things,” IEEE Trans. Ind. Informatics, vol. 16, no. 10, pp. 6584–6596,
2020.

[50] “Miracl cryptographic library,” 2018. [Online]. Available:
https://bit.ly/2MltKVG

[51] “Arduino cryptography library,” 2017. [Online]. Available:
https://github.com/rweather/arduinolibs

[52] Z. Yang, Z. Bao, C. Jin, Z. Liu, and J. Zhou, “Plcrypto: A symmetric
cryptographic library for programmable logic controllers,” IACR
Trans. Symmetric Cryptol., vol. 2021, no. 3, pp. 170–217, 2021.

[53] W. Li, H. Cheng, P. Wang, and K. Liang, “Practical threshold multi-
factor authentication,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp.
3573–3588, 2021.

[54] K. G. Paterson, T. Ristenpart, and T. Shrimpton, “Tag size does
matter: Attacks and proofs for the TLS record protocol,” in ASI-
ACRYPT, ser. LNCS, vol. 7073. Springer, 2011, pp. 372–389.

ACKNOWLEDGMENT

This work is supported by supported by the National Key
R&D Program of China under Grant No. 2022YFB3103500,
the Natural Science Foundation of China under Grant
Nos. (61872051, 62072062, and U20A20176), the Natu-
ral Science Foundation of Chongqing under Grant No.
CSTB2022NSCQ-MSX0437, and the Fundamental Research
Funds for the Central Universities under Grant No. SWU-
KR22003. Chenglu Jin’s work was done when he was with
the University of Connecticut and partially supported by
AFOSR MURI under award number FA9550-14-1-0351. We
would like to thank SUTD iTrust for sharing the dataset of
the SWaT testbed.

Chenglu Jin is a tenure-track researcher in the
Computer Security Group at Centrum Wiskunde
& Informatica (CWI Amsterdam), Netherlands.
Prior to joining CWI Amsterdam, he was an
assistant research professor at New York Uni-
versity. He got his Ph.D. degree from the Uni-
versity of Connecticut in 2019. He also holds a
Master’s degree and a Bachelor’s degree from
New York University and Xidian University, re-
spectively. His research interests are hardware
security, cyber-physical system security, and ap-

plied cryptography.

Zheng Yang received his Ph.D. degree from
Horst Görtz Institute for IT Security, Ruhr-
University Bochum, in 2013. He is currently a
Professor with the College of Computer and In-
formation Science, Southwest University, China.
He was a post-doc researcher with the Univer-
sity of Helsinki, and the Singapore University of
Technology and Design. His main research inter-
ests include information security, cryptography,
and privacy.

Tao Xiang received the B.Eng., M.S., and Ph.D.
degrees in computer science from Chongqing
University, Chongqing, China, in 2003, 2005,
and 2008, respectively. He is currently a Pro-
fessor with the College of Computer Science,
Chongqing University. He has published over
90 papers on international journals and confer-
ences. He also served as a referee for numer-
ous international journals and conferences. His
research interests include multimedia security,
cloud security, and privacy and cryptography.

Sridhar Adepu is a Lecturer with the Univer-
sity of Bristol. He got his a PhD degree from
the Information Systems Technology and Design
pillar at the Singapore University of Technology
and Design (SUTD). His research focuses on
security of cyber-physical systems. Prior to his
PhD study, Sridhar was a research assistant at
iTrust, SUTD. Sridhar holds a Masters degree
in Computer Science from National Institute of
Technology Rourkela, India.

Jianying Zhou is a full professor at Singapore
University of Technology and Design (SUTD),
and Co-Center Director for iTrust. Before join-
ing SUTD, he was a principal scientist and the
head of Infocomm Security Department at In-
stitute for Infocomm Research, A*STAR. Prof.
Zhou received PhD in Information Security from
Royal Holloway, University of London. His re-
search interests are in applied cryptography and
network security, cyber-physical system security,
mobile and wireless security. Prof. Zhou is a co-

founder & steering committee co-chair of International Conference on
Applied Cryptography and Network Security (ACNS). He is also steering
committee chair of ACM AsiaCCS, and steering committee member of
Asiacrypt and ISC.

14

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

ENC(m0,m1, `c, H): DEC(C,H):
cnte := cnte + 1 cntd := cntd + 1

(C(0), st
(0)
e)

$← StE.Enc(k, `c, H,m0, ste) If b = 0, then return ⊥
(C(1), st

(1)
e)

$← StE.Enc(k, `c, H,m1, ste) (m, std) = StE.Dec(k,H,C, std)
If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If cntd > cnte or C 6= Ccntd or H 6= Hcntd , then phase := 1

(Cu, Hu, ste) := (C(b), H, st
(b)
e) If phase = 1 then return m

Return Cu Return ⊥

Fig. 5: ENC and DEC Oracles for the Stateful LHAE Security Experiment.

APPENDIX A
FORMAL SECURITY DEFINITIONS OF CRYPTO-
GRAPHIC BUILDING BLOCKS

A.1 Stateful Length-Hiding Authenticated Encryption

The security of SLHAE [54] is formalized in the following
security game between a challenger C and an adversary A.
Figure 5 describes how the oracles ENC and DEC respond
to A’s queries. The values cnte, cntd, and phase are all
initialized to 0 at the beginning of the security game.
• The challenger C selects b $← {0, 1}, k $← KSLHAE, sets
ste := ∅, and std := ∅,

• A may adaptively query the encryption oracle ENC qe
times and the decryption oracle DEC qd times.

• Finally, A outputs its guess b′ ∈ {0, 1}.

Definition 2. We say that the stateful symmetric encryption
scheme StE = (StE.Enc,StE.Dec) is (t, εSLHAE)-secure ,
if any adversary running in time t has an advantage
of at most εSLHAE to output b′ such that b′ = b, i.e.,
|Pr [b′ = b]−1/2| ≤ εSLHAE,while the number of allowed
queries (qe + qd) is upper bounded by t.

A.2 Passively Secure Two-message Key Exchange

We say that the TKE.SKG algorithm is correct, if
for all random values rid1 , rid2

$← RTKE and mes-
sages mid1

$← TKE.MSG(id1, rid1 , ∅) and mid2
$←

TKE.MSG(id2, rid2 ,mid1), it holds that TKE.SKG(id1, rid1 ,
id2,mid2) = TKE.SKG(id2, rid2 , id1,mid1).

We define a security experiment for passively secure
TKE protocols as follows.
Security Experiment: The security experiment is carried out
as a game between a challenger C and an adversaryA based
on a protocol TKE. During the setup phase, C generates
the parameters pms ← TKE.Setup(1κ) and two identities
{ID1, ID2} of protocol participants. The adversary is given
pms and all identities as input. Next, A will interact with
C via asking at most d ∈ N times Execute(id1, id2) query;
for each Execute query, C runs a fresh protocol instance
between id1 and id2, and returns the corresponding protocol
messages’ transcript T and session key K to A. At some
point,A submits a challenge request ./. Upon receiving ./, C
runs a new protocol instance obtaining the transcript T ∗ and
the session key K∗1 , samples a random key K∗0 , and tosses a
fair coin b ∈ {0, 1}. Then, C returns (T ∗,K∗b) to A. After the
challenge query, A may continue making Execute(id1, id2)
queries. Finally, A may terminate and output a bit b′.

Definition 3. We say that a two-message key exchange pro-
tocol TKE is (t, εTKE)-passively-secure if for all probabilis-
tic polynomial time (PPT) adversaries running the above
experiment in time t, it holds that |Pr[b = b′]− 1/2| ≤
εTKE.

15

