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We investigate questions related to the set SEPd consisting 
of the linear maps ρ acting on Cd⊗Cd that can be written as 
a convex combination of rank one matrices of the form xx∗ ⊗
yy∗. Such maps are known in quantum information theory 
as the separable bipartite states, while nonseparable states 
are called entangled. In particular we introduce bounds for 
the separable rank ranksep(ρ), defined as the smallest number 
of rank one states xx∗ ⊗ yy∗ entering the decomposition 
of a separable state ρ. Our approach relies on the moment 
method and yields a hierarchy of semidefinite-based lower 
bounds, that converges to a parameter τsep(ρ), a natural 
convexification of the combinatorial parameter ranksep(ρ). 
A distinguishing feature is exploiting the positivity constraint 
ρ −xx∗⊗yy∗ � 0 to impose positivity of a polynomial matrix 
localizing map, the dual notion of the notion of sum-of-squares 
polynomial matrices. Our approach extends naturally to the 
multipartite setting and to the real separable rank, and it 
permits strengthening some known bounds for the completely 
positive rank. In addition, we indicate how the moment 
approach also applies to define hierarchies of semidefinite 
relaxations for the set SEPd and permits to give new proofs, 
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using only tools from moment theory, for convergence results 
on the DPS hierarchy from Doherty et al. (2002) [16].

© 2022 Published by Elsevier Inc.

1. Introduction

The main object of study in this paper is the following matrix cone

SEPd := cone{xx∗ ⊗ yy∗ : x ∈ Cd, y ∈ Cd, ‖x‖ = ‖y‖ = 1} ⊆ Hd ⊗Hd � Hd2
, (1)

sometimes also denoted as SEP when the dimension d is not important. Throughout 
Hd denotes the cone of complex Hermitian d × d matrices and Hd

+ is the subcone of 
Hermitian positive semidefinite matrices. Matrices in Hd

+ are also known as unnormal-
ized states and matrices in Hd

+ with trace 1 are called normalized states. The cone 
SEPd is of particular interest in the area of quantum information theory: its elements 
are known as the (unnormalized, bipartite) separable states on Hd ⊗ Hd and a positive 
semidefinite matrix ρ ∈ Hd ⊗Hd that does not belong to SEPd is said to be entangled. 
Entangled states can be used to observe quantum, non-classical behaviors that may be 
displayed by two physically separated quantum systems, as already pointed out in the 
early work [1]. Entanglement is now recognized as an additional important resource that 
can be used in quantum information processing to carry out a great variety of tasks 
such as quantum computation, quantum communication, quantum cryptography and 
teleportation (see, e.g., [44,58] and references therein). Therefore, deciding whether a 
state is separable or entangled is a question of fundamental interest in quantum infor-
mation theory. Gurvits [27] has shown that the (weak) membership problem for the set 
SEPd∩{ρ : Tr(ρ) = 1} is an NP-hard problem. In addition, the problem was shown to be 
strongly NP-hard in [24]. Hence it is important to have tractable criteria for separability 
or entanglement of quantum states. Throughout, we restrict for simplicity to the case 
of bipartite states, acting on two copies of Cd, but the treatment extends naturally to 
the case of m-partite states that act on Cd1 ⊗ . . . ⊗ Cdm with m ≥ 2 and d1, . . . , dm
possibly distinct. We will return below to the question of testing separability, but first 
we introduce the relevant notion of separable rank, which plays a central role in this 
paper.

The separable rank
In this work we consider the following problem: given a state ρ ∈ SEPd, what is the 

smallest integer r ∈ N such that there exist vectors a1, . . . , ar, b1, . . . , br ∈ Cd for which

ρ =
r∑

a�a
∗
� ⊗ b�b

∗
� . (2)
�=1
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This smallest integer r is called the separable rank of ρ and denoted as ranksep(ρ). One 
sets ranksep(ρ) = ∞ when ρ is entangled. The separable rank has been previously studied, 
e.g., in [55,14,8] (where it is called the optimal ensemble cardinality or the length of ρ) and 
it can be seen as a ‘complexity measure’ of the state (with an infinite rank for entangled 
states). Easy bounds on the separable rank are rank(ρ) ≤ ranksep(ρ) ≤ rank(ρ)2, where 
the left most inequality can be strict (see [14]) and the right most one follows using 
Caratheodory’s theorem [55]. We approach the problem of determining the separable 
rank from the moment perspective. We use the observation that, if ranksep(ρ) = r and 
ρ admits the decomposition (2), then the sum of the r atomic measures at the vectors 
(a�, b�) ∈ Cd × Cd is a measure μ whose expectation 

∫
1dμ is equal to r and whose 

fourth-degree moments correspond to the entries of ρ. Moreover, as we will see later, this 
measure may be assumed to be supported on the semi-algebraic set

Vρ = {(x, y) ∈ Cd ×Cd : ‖x‖2
∞, ‖y‖2

∞ ≤ √
ρmax, xx∗ ⊗ yy∗ � ρ}, (3)

where ρmax denotes the largest diagonal entry of ρ. Then we obtain a lower bound on 
the separable rank of ρ, denoted τsep(ρ), by minimizing the expectation 

∫
1 dμ over all 

measures μ that are supported on Vρ and have fourth-degree moments corresponding to 
entries of ρ (see Eq. (38)). Hence, here we view the separable rank as a moment problem 
over the product of two balls. This view will enable us to design a hierarchy of tractable 
semidefinite based parameters, denoted ξsep

t (ρ). These parameters provide lower bounds 
on the separable rank and converge to τsep(ρ) (see Section 3.2).

In view of the definition of SEPd in Eq. (1), one may also view separability of a state 
ρ as a moment problem on the bi-sphere Sd−1×Sd−1, where Sd−1 = {x ∈ Cd : ‖x‖ = 1}
denotes the (complex) unit sphere. However, this approach does not (straightforwardly) 
lead to bounds on the separable rank. Indeed, for a measure μ on the bi-sphere whose 
fourth-degree moments correspond to entries of ρ, we necessarily have

∫
1 dμ = Tr(ρ). 

To get bounds on the separable rank, it is thus crucial to use another scaling for the 
points (a�, b�) entering a separable decomposition of ρ as, for instance, the scaling used 
in Eq. (3), but other scalings are possible as indicated in Section 3.1.

Our approach extends to several other settings, in particular, to the case of multi-
partite separable states (when ρ acts on the tensor product of more than two spaces) 
and to the case of real states (instead of complex valued ones). It can also be adapted 
to the notion of mixed separable rank, where one tries to find factorizations of the form 
ρ =

∑r
�=1 A� ⊗ B� with A�, B� Hermitian positive semidefinite matrices and r as small 

as possible. In [13] it was shown that, if ρ is a diagonal matrix, then its mixed separable 
rank is equal to the nonnegative rank of the associated d × d matrix consisting of the 
diagonal entries of ρ. Vavasis [56] has shown that computing the nonnegative rank of a 
matrix is an NP-hard problem and, more recently, Shitov [49] showed ∃R-hardness of this 
problem. Hence computing the mixed separable rank has the same hardness complexity 
status as the nonnegative rank. Determining the complexity status of the separable rank 
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remains open, but there is no reason to expect that it should be any easier than the 
mixed separable rank.

When using moment methods one typically works with measures supported on semi-
algebraic sets, i.e., sets described by polynomial inequalities on the variables. In our 
approach this is also the case. Indeed the set Vρ in Eq. (3) is semi-algebraic since one 
can encode the condition xx∗⊗yy∗ � ρ by requiring all principal minors of ρ −xx∗⊗yy∗

to be nonnegative. This would however lead to a description of the set Vρ with a number 
of polynomial constraints that is exponential in d. Instead, we will directly exploit the 
constraint ρ − xx∗ ⊗ yy∗ � 0, which is of the form G(x) � 0 for some polynomial 
matrix G(x) (i.e., with entries polynomials in x, x). This constraint enables us to impose 
positivity constraints on polynomial matrix localizing maps, a matrix analog of the usual 
scalar localizing maps used in the moment method (see Section 2.2). Such polynomial 
matrix localizing constraints can also be used to bound the completely positive rank of 
a completely positive matrix, and we will show that this permits to strengthen some 
known bounds on the completely positive rank from [26] (see Section 4.3).

Our hierarchy of bounds ξsep
t (ρ) on the separable rank can also be used to detect 

entanglement. Indeed, as mentioned above, by Caratheodory’s theorem, the separable 
rank of a state ρ ∈ SEPd can be upper bounded, e.g., by rank(ρ)2 ≤ d4. We can leverage 
this fact and the asymptotic convergence of our hierarchy of lower bounds to detect 
entanglement: a state ρ ∈ Hd⊗Hd is entangled if and only if ξsep

t (ρ) > rank(ρ)2 for some 
integer t ≥ 1, i.e., there is a level of our hierarchy which is infeasible or provides a lower 
bound on ranksep(ρ) which is strictly larger than Caratheodory’s bound. In addition, 
a certificate of entanglement is then provided by the dual semidefinite program. Hence 
our hierarchy of semidefinite parameters ξsep

t (ρ) can also be used to provide a type of 
entanglement witnesses (see Section 5.1).

The Doherty-Parrilo-Spedalieri (DPS) hierarchy for SEP
As mentioned above a fundamental problem in quantum information theory is to 

have efficient criteria for checking separability or entanglement of quantum states. A 
second main contribution of our work concerns a hierarchy of outer approximations to 
the set SEP that we describe now. Doherty, Parrilo, and Spedalieri [16] designed what 
is now known as the DPS hierarchy, a hierarchy of outer approximations DPS1,t (t ≥ 1) 
for the set SEP. It is based on the principle of state extension: if ρ :=

∑
� λ�x�x

∗
� ⊗

y�y
∗
� ∈ SEPd with λ� ≥ 0 then, for any integer t ≥ 1, ρ admits an extension ρ1,t :=∑
� λ�x�x

∗
� ⊗ (y�y∗� )⊗t acting on Cd ⊗ (Cd)⊗t. The state ρ can be recovered from its 

extension ρ1,t by tracing out t − 1 of the copies of the second space and the extension 
ρ1,t satisfies several natural conditions such as symmetry (under permuting the t copies 
of the second register) and the so-called positive partial transpose (PPT) criterion from 
[31] (which states that taking the transpose of some of the copies preserves positive 
semidefiniteness). The relaxation DPS1,t consists of those ρ for which a state ρ1,t exists 
satisfying these necessary conditions. Here the state extension is one-sided (since one 
extends only in the y-direction); the two-sided analog (in both x- and y-directions) 
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has also been considered, leading to the hierarchy DPSt,t ⊆ DPS1,t (see Section 5.4
for details). For fixed t, deciding membership in DPS1,t (or DPSt,t) boils down to 
testing feasibility of a semidefinite program of size polynomial in d. The DPS hierarchy 
is complete, in the sense that we have equality: 

⋂
t≥1 DPS1,t = SEPd [16].

One can also interpret the set SEP in the language of moments of distributions on the 
bi-sphere: ρ is separable if there exists an atomic measure on the bi-sphere whose fourth-
degree moments agree with ρ (see, e.g., [17,29,38]). Another main contribution in this 
paper will be to make the links between this moment approach and the DPS hierarchy 
more apparent. These links enable us to give an alternative proof of completeness for 
the DPS hierarchy that is based on the theory of positive-operator valued measures. 
In contrast, existing proofs rely on other tools such as quantum de Finetti theorems 
or sums of squares. Indeed one can also design approximation hierarchies for SEPd, 
starting from its definition in Eq. (1) and applying the moment approach to the bi-
sphere Sd−1 ×Sd−1. Depending on the degrees that are allowed in the x, x variables and 
the y, y variables, this leads to several possible variants of relaxations for SEPd that we 
explore in Section 5.2, denoted there as Rt (when the full degree is at most 2t), Rt,t

(when the degree in x, x is at most 2t and the same for the degree in y, y) and R1,t
(when the degree in x, x is at most 2 and the degree in y, y is at most 2t). We provide 
a convergence proof for each of these hierarchies (i.e., show their completeness) using 
tools from the moment method (i.e., existence of an atomic representing measure under 
certain positivity conditions), which we apply to the setting of matrix polynomials for 
the hierarchy R1,t (see Section 5.3). In addition we show that the hierarchy R1,t (resp., 
Rt,t) coincides with the DPS hierarchy DPS1,t (resp., DPSt,t). Therefore we offer a new 
convergence proof for the DPS hierarchy that is based on the moment method.

Related literature on approximation hierarchies for SEP
There is a vast literature about the set SEP of separable states and approximations 

thereof (such as the DPS hierarchy), so we only mention here some of the results that 
are most relevant to this paper. The PPT criterion, introduced in [46,31], is a necessary 
condition for separability. While it was shown to be sufficient to ensure separability of 
bipartite states acting on C2 ⊗ C3 [59], it is in general not sufficient for separability of 
states acting on larger dimensional spaces (see, e.g., [32,59]). In fact it has been shown 
that no semidefinite representation exists for SEPd when d ≥ 3 [20]. As mentioned above, 
the authors in [16] use symmetric state extensions and the PPT conditions to define the 
hierarchy DPS1,t (t ≥ 1). They show it to be complete (i.e., ∩t≥1DPS1,t = SEP) using 
the quantum de Finetti theorem from [6] (note that this completeness proof in fact does 
not use the PPT conditions).

Navascues, Owari and Plenio [40] show a quantitative result on the convergence of 
the sets DPS1,t to SEPd. Consider ρ ∈ DPS1,t, whose membership is certified by the 
extended state ρ1,t acting on Cd ⊗ (Cd)⊗t, and let ρ1 ∈ Hd be obtained by tracing out 
the part of ρ1,t that acts on (Cd)⊗t; then ρ1 ⊗ Id is clearly separable. In [40] it is shown 
that
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ρ̃ := (1 − ε)ρ + ε
(
ρ1 ⊗

Id
d

)
∈ SEPd where ε = O

((d
t

)2); (4)

that is, by moving ρ in the direction of ρ1 ⊗ Id/d by ε = O
((

d
t

)2), one finds a separable 
state.

An entanglement witness for a state ρ is any certificate that certifies ρ /∈ SEPd. One 
way to obtain such an entanglement witness is to exhibit one of the constraints defining 
a relaxation of SEPd (such as DPS1,t) that is violated by ρ, like for example, one of the 
PPT conditions. More generally one can obtain an entanglement witness for ρ /∈ SEPd

by finding a hyperplane separating ρ and SEPd, i.e., a matrix W ∈ Hd ⊗Hd such that

Tr(Wρ) > hSEP(W ) := max{Tr(Wσ) : σ ∈ SEPd}, (5)

which shows again the importance of linear optimization over the set SEPd and of 
designing tractable relaxations for SEPd. The function hSEP(W ) in Eq. (5) is known 
as the support function of SEPd in the direction W . Analogously define the support 
function of DPS1,t as

hDPS1,t(W ) := max{Tr(Wρ) : ρ ∈ DPS1,t}.

As an application of the quantitative result in Eq. (4) the following is shown in [40]:

hSEP(W ) ≤ hDPS1,t(W ) ≤
(
1 + O

((d
t

)2))
hSEP(W ). (6)

Clearly, either Eq. (4) or Eq. (6) implies equality 
⋂

t≥1 DPS1,t = SEPd, i.e., completeness 
of the DPS hierarchy.

Fang and Fawzi [19] investigate the DPS hierarchy from the dual sum-of-squares 
perspective. In particular, they show a representation result for matrix polynomials that 
are nonnegative on the sphere, which they use to give an alternative proof for Eq. (6). 
Namely, they show that, if F is a polynomial matrix in d variables and degree 2k such 
that 0 � F (x) � I on Sd−1 then, for all t ≥ Ckd, F (x) +C ′

k

(
d
t

)2
I is a Hermitian sum-of-

squares matrix polynomial of degree 2t on Sd−1, where Ck, C ′
k are constants depending 

only k. In addition, detailed proofs are given in [19] for the description of the dual cones 
of the cones DPS1,t: while the dual cone of SEPd consists of the matrices W for which 
the polynomial pW := 〈W, xx∗ ⊗ yy∗〉 is nonnegative on the bi-sphere Sd−1 × Sd−1, the 
dual cone of DPS1,t consists of the W ’s for which the polynomial ‖y‖2(t−1)pW is a sum 
of Hermitian squares.

For the problem of approximating the support function hSEP(W ), Harrow, Natarayan 
and Wu [29] propose to strengthen the set DPS1,t by adding equality constraints arising 
from the classical optimality conditions. In this way they obtain a hierarchy of bounds for 
hSEP(W ), stronger than hDPS1,t(W ), that converges in finitely many steps to hSEP(W ).

Li and Ni [38] use the moment approach on the bi-sphere for testing separability of 
a state ρ (in the general multipartite setting). For this, given a generic sum-of-squares 
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polynomial F , they consider the problem of minimizing the expectation 
∫
Fdμ over 

the probability measures μ on the bi-sphere whose degree-4 moments correspond to the 
entries of ρ, and the corresponding moment relaxations (whose constraints are essentially 
those in the program defining the set Rt in Eq. (60)). Then a separability certificate can 
be obtained at a finite relaxation level when the optimal solution satisfies the so-called 
flatness condition. Note that the separability problem only asks for the existence of 
such a measure μ, thus, it is a feasibility problem. The optimization approach in [38], 
based on optimizing a generic polynomial F , relies on the fact that this ‘encourages’ 
flatness of an optimal solution (which then permits to get a separable decomposition 
and thus a certificate of separability). Indeed Nie [41] shows that if both the objective 
and constraints of a polynomial optimization problem are generic, then flatness occurs 
at some finite relaxation level. Dressler, Nie, and Yang [17] strengthen the approach 
in [38]: they use a symmetry argument which permits to replace the bi-sphere by its 
subset consisting of the points (x, y) ∈ Cd × Cd that have x1, y1 real and nonnegative. 
This provides a formulation that uses less real variables (2(2d − 1) instead of 4d) and 
leads to stronger and more economical moment relaxations. Separability of real states 
is considered in [43], where a similar reduction is applied, namely by restricting to the 
vectors (x, y) in the (real) bi-sphere satisfying 

∑d
i=1 xi ≥ 0 and 

∑d
i=1 yi ≥ 0.

Related literature on factorization ranks
Various notions of “factorization ranks” have been studied extensively in the liter-

ature such as (versions of) tensor ranks [34], nonnegative matrix factorization (NMF) 
rank [25], positive semidefinite matrix factorization rank [21], completely positive ma-
trix factorization rank [2]; we refer to these references and further references therein for 
details. Given the importance of factorizations for applications, designing algorithmic 
methods for finding a factorization of a given type (when it exists) is a topic of ongoing 
research (see, e.g., [25,51,52] and references therein). The above mentioned factorization 
ranks are often hard to compute (see [56,48,49] for nonnegative rank, [50] for positive 
semidefinite rank, [30] for tensor rank), which motivates the search for good bounds for a 
given factorization rank. Such bounds can be obtained using a variety of techniques. For 
example, using dedicated combinatorial methods (see, e.g., [21] and references therein), 
optimization methods (see, e.g., [22]), or using a moment-based approach as we do here. 
A moment-based approach has previously been used to derive hierarchies of bounds 
for the rank of tensors [53], for the symmetric nuclear norm of tensors [42], for the 
nonnegative rank, the completely positive rank, the positive semidefinite rank, and the 
completely positive semidefinite rank of matrices [26]. In this paper, we consider the 
separable rank, a notion which has been present in the (quantum information theory) 
literature, although no systematic study of bounds for it has been carried out so far to 
the best of our knowledge.

Contents of the paper
The paper is organized as follows. In Section 2 we introduce the preliminaries on 

polynomial optimization that we will need in the rest of the paper. In particular, in 



8 S. Gribling et al. / Linear Algebra and its Applications 648 (2022) 1–55
Section 2.2, we introduce some of the main notions in the general setting of sum-of-
squares matrix polynomials and matrix-valued linear maps. In Section 2.3 we recall the 
moment method and present the main underlying results from real algebraic geometry 
and moment theory. Since some of these results are presented in the literature in the 
real setting while we need the complex setting, we give arguments on how to extend the 
results from real to complex in Appendix A. Section 3 is devoted to the new hierarchy 
of bounds for the separable rank. In Section 4 we indicate several extensions of our 
approach, in particular for the real separable rank of real states and for getting improved 
bounds on the completely positive rank. We also present numerical results on examples 
to illustrate the behavior of the bounds in Section 4.2. Finally, in Section 5 we revisit the 
Doherty-Parrilo-Spedalieri hierarchy of relaxations for the set SEP of separable states. 
In particular, we provide a new, alternative proof for their completeness, that uses the 
tools from the moment approach previously developed.

2. Preliminaries on polynomial optimization

In this section, we group some preliminaries about polynomial optimization that we 
need in the rest of the paper; for a general reference we refer, e.g., to [35–37] and further 
references therein. We will deal with polynomial optimization in real and complex vari-
ables, which is the setting needed for the application to the set of separable states and 
the separable rank treated in this paper, and we will also need to deal with polynomial 
matrices and matrix-valued linear maps.

2.1. Polynomials, linear functionals and moment matrices

We first fix some notation that we use throughout the paper. N denotes the set of 
nonnegative integers. We set [n] = {1, 2, ..., n} for an integer n ≥ 1, [k, n] = {k, k +
1, . . . , n − 1, n} for integers k ≤ n, and |α| =

∑n
i=1 αi for α ∈ Nn.

For a complex matrix X we denote its transpose by XT and its conjugate transpose by 
X∗. For a scalar a ∈ C its conjugate is a∗ = a and its modulus is |a| =

√
a∗a. The vector 

space Cn is equipped with the scalar product 〈x, y〉 = x∗y =
∑n

i=1 x
∗
i yj for x, y ∈ Cn

and the Euclidean norm of x ∈ Cn is ‖x‖ =
√
x∗x. Analogously, Cn×n is equipped with 

the trace inner product 〈X, Y 〉 = Tr(X∗Y ) =
∑n

i,j=1 XijYij and ‖X‖ =
√

〈X,X〉 for 
X ∈ Cn×n. A matrix X ∈ Cn×n is called Hermitian if X∗ = X and we let Hn denote 
the space of complex Hermitian n ×n matrices, a matrix X ∈ Hn is positive semidefinite 
(denoted X � 0) if v∗Av ≥ 0 for all v ∈ Cn. We let Hn

+ denote the cone of Hermitian 
positive semidefinite matrices.

For a set S in a vector space, we let cone(S) and conv(S) denote, respectively, its 
conic hull and its convex hull.

Polynomials. We consider polynomials in n complex variables x1, . . . , xn and their con-
jugates x1, . . . , xn. For α, β ∈ Nn we use the short-hand xαxβ to denote the monomial
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xαxβ =
n∏

i=1
xαi
i

n∏
j=1

xj
βj .

The degree of this monomial, denoted by deg(xαxβ), is equal to |α| + |β| =
∑n

i=1 αi+βi. 
We collect the set of all monomials of degree at most t ∈ N ∪ {∞} in the vector [x, x]t
(using some given ordering of the monomials) and also set [x, x] = [x, x]∞. We interpret 
[x, x]t as a set when we write xαxβ ∈ [x, x]t. Taking the complex linear span of all 
monomials in [x, x]t gives the space of polynomials with complex coefficients and degree 
at most t:

C[x,x]t := Span {m | m ∈ [x,x]t} =
{ ∑

m∈[x,x]t

amm : am ∈ C
}
.

For t = ∞ we obtain the full polynomial ring in x, x over C, also denoted as C[x, x]. 
So any polynomial p ∈ C[x, x] is of the form p =

∑
α,β pα,βxαxβ , where only finitely 

many coefficients pα,β are nonzero; its degree is the maximum degree of the monomials 
occurring in p with a nonzero coefficient, i.e., deg(p) = maxpα,β �=0 deg(xαxβ). For con-
venience let CNn×Nn

0 denote the set of vectors a = (aα,β)(α,β)∈Nn×Nn that have only 
finitely many nonzero entries. Then any polynomial p can be written as p = a∗[x, x], 
where we set a = (pα,β) ∈ CNn×Nn

0 (the conjugate of the vector of coefficients of p).
Conjugation on complex variables extends linearly to polynomials: for p =∑
α,β pα,βxαxβ we define its conjugate polynomial p =

∑
α,β pα,βxαxβ . Then, p is 

called Hermitian if p = p. Hermitian polynomials only take real values: p(x) ∈ R for all 
x ∈ Cn. We denote the space of Hermitian polynomials by C[x, x]h. For instance, the 
polynomial p = x +x is Hermitian as well as p = ix − ix, but q = x −x is not Hermitian 
(note q(i) = 2i /∈ R), where i =

√
−1 ∈ C.

To capture positivity on the ring of polynomials, we work with the cone of Hermitian 
sums of squares. Any polynomial of the form qq (for some q ∈ C[x, x]) is called a 
Hermitian square and Σ[x, x] (or simply Σ) denotes the conic hull of Hermitian squares. 
For any integer t ∈ N we let Σ[x, x]2t = cone{pp | p ∈ [x, x]t} = Σ[x, x] ∩ C[x, x]2t (or 
simply Σ2t) denote the cone of Hermitian sums of squares with degree at most 2t.

The dual space of polynomials. The algebraic dual of the ring of polynomials C[x, x] is 
the vector space of all linear functionals on C[x, x]. To clarify, a linear functional L on 
C[x, x] is a linear map from C[x, x] to C. For every t ∈ N ∪ {∞} we denote the dual 
space of C[x, x]t by C[x, x]∗t , defined as

C[x,x]∗t = {L : C[x,x]t → C : L is linear}.

We again abbreviate C[x, x]∗∞ by C[x, x]∗. A linear functional L ∈ C[x, x]∗t is called 
Hermitian if L(p) = L(p) for all p ∈ C[x, x]t. A (Hermitian) linear functional L ∈
C[x, x]∗2t is called positive if it maps Hermitian squares to nonnegative real numbers, 
i.e., if L(pp) ≥ 0 for all p ∈ C[x, x]t.
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Example of linear functionals. For any a ∈ Cn we can define the evaluation functional 
at a, denoted La ∈ C[x, x]∗, by

La(p) = p(a) for every p ∈ C[x,x].

It is easy to see that La is Hermitian and positive.

Linear functionals applied to polynomial matrices. It will also be useful to apply lin-
ear functionals to polynomial matrices, i.e., matrices whose entries are polynomials, by 
considering an entrywise action. That is, for a polynomial matrix G = (Gij)mi,j=1 ∈
C[x, x]m×m and a linear functional L ∈ C[x, x]∗ we define

L(G) :=
(
L(Gij)

)
i,j∈[m]

∈ Cm×m.

Moment matrices. As an example, applying a linear functional to the (infinite) matrix 
[x, x][x, x]∗ leads to the notion of moment matrix. Given L ∈ C[x, x]∗2t, where t ∈
N ∪ {∞}, we define the moment matrix of L by

Mt(L) := L([x,x]t[x,x]∗t ) =
(
L(mm′)

)
m,m′∈[x,x]t

. (7)

If t is finite then the moment matrix is said to be truncated at order t. Note that L is 
Hermitian if and only if its moment matrix Mt(L) is Hermitian. Similarly, L is positive 
if and only if its moment matrix Mt(L) is positive semidefinite:

L(pp) ≥ 0 ∀p ∈ C[x,x] ⇐⇒ Mt(L) � 0. (8)

Indeed, for any p ∈ C[x, x]t, written as p = a∗[x, x]t ∈ C[x, x] with a ∈ CNn×Nn

0 , we 
have p = [x, x]∗ta and thus

L(pp) = L(a∗[x,x]t[x,x]∗ta) = a∗L([x,x]t[x,x]∗t )a = a∗Mt(L)a. (9)

More generally, if p = a∗[x, x]t and q = b∗[x, x]t with a, b ∈ CNn×Nn

0 , then L(pq) =
a∗Mt(L)b. If t = ∞ we write M(L) instead of M∞(L).

Observe that the moment matrix of an evaluation functional La at a ∈ Cd satisfies 
M(La) = [a, a]t[a, a]∗t and thus it has rank 1. Hence, if L is a linear combination of 
evaluation functionals, then its moment matrix has finite rank.

Polynomial localizing maps gL. Given a polynomial g ∈ C[x, x] and a linear functional 
L ∈ C[x, x]∗ we can define a new linear functional gL ∈ C[x, x]∗ by

gL : C[x,x] → C

p �→ L(gp).
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In this way, we can say that g acts on C[x, x]∗ by mapping L to gL. Constraints are 
often phrased in terms of the positivity of gL. As stated before, positivity of gL can be 
characterized by positive semidefiniteness of its moment matrix:

gL is positive ⇐⇒ L(g · [x,x][x,x]∗) = M(gL) � 0. (10)

If both g and L are Hermitian then gL is Hermitian and hence M(gL) is Hermitian. 
If L is an evaluation map at a point a ∈ Cn for which g(a) ≥ 0, then gL is a positive 
map since we have (gL)(pp) = g(a)|p(a)|2 ≥ 0. In the literature M(gL) is often called a 
localizing moment matrix.

2.2. SoS-polynomial matrices and matrix-valued linear maps

There is a natural extension of the previously defined concepts to the matrix-valued 
setting. This extension will be useful, in particular, to define a matrix analog of localizing 
moment constraints and to provide a moment approach to the hierarchy by Doherty, 
Parrilo and Spedalieri [16].

SoS-polynomial matrices. A polynomial matrix S ∈ C[x, x]m×m is called an SoS-
polynomial matrix if S = UU∗ for some polynomial matrix U ∈ C[x, x]m×k and some 
integer k ∈ N, or, equivalently, if S ∈ cone{
p
p∗ : 
p = (p1, . . . , pm) ∈ C[x, x]m}.

Matrix-valued linear functionals. Consider a matrix-valued linear functional

L : C[x,x] → Cm×m

p �→ L(p) =
(
Lij(p)

)
i,j∈[m],

where L = (Lij)mi,j=1 and each Lij ∈ C[x, x]∗ is a scalar-valued linear functional. Then 

L is Hermitian if L(p) = L(p)∗, i.e., Lij(p) = Lji(p) for all i, j ∈ [m], for all p ∈ C[x, x]. 
In addition L is said to be positive if it maps positive elements (i.e., Hermitian squares 
pp) to positive elements (i.e., Hermitian positive semidefinite m × m matrices), i.e., if 
the following holds:

L(pp) = (Lij(pp))mi,j=1 � 0 for all p ∈ C[x,x]. (11)

In analogy to Eq. (7) it is natural to define the moment matrix M(L) as

M(L) := L([x,x][x,x]∗) = (Lij([x,x][x,x]∗))mi,j=1 = (M(Lij))mi,j=1, (12)

which thus acts on Cm⊗C[x, x]. Clearly, M(L) is a Hermitian matrix if L is Hermitian. 
Note that M(L) can be viewed as an m × m block-matrix whose (i, j)th block is the 
moment matrix M(Lij).
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When L acts on a truncated polynomial space C[x, x]2t its moment matrix Mt(L), 
truncated at order t, is defined in the obvious way by

Mt(L) := L([x,x]t[x,x]∗t ) = (Mt(Lij))mi,j=1,

with Mt(L) = M(L) if t = ∞.
One may also define the action of L on a polynomial matrix S = (Sij)mi,j=1 ∈

C[x, x]m×m by

〈L, S〉 :=
m∑

i,j=1
Lij(Sij). (13)

If L and S are both Hermitian then 〈L, S〉 ∈ R. As before, given g ∈ C[x, x] we may 
define a new (localizing) matrix-valued linear map gL by:

gL : C[x,x] → Cm×m

p �→ (gL)(p) = L(gp) =
(
Lij(gp)

)
i,j∈[m].

Positivity of L and its moment matrix M(L). The analog of Eq. (10) does not extend to 
the matrix-valued case: If M(L) is positive semidefinite, then L is positive, but the reverse 
implication may not hold in general. In the next two lemmas, we present alternative 
characterizations for positivity of a matrix-valued map L and positivity of its moment 
matrix M(L) that make this more apparent.

Lemma 1. L is positive, i.e., Eq. (11) holds, if and only if any of the following equivalent 
conditions holds:

v∗L(pp)v =
( m∑
i,j=1

vivjLij

)
(pp) = (v∗Lv)(pp) ≥ 0

for all v ∈ Cm and p ∈ C[x,x], (14)

M(v∗Lv) � 0 for all v ∈ Cm, (15)

(v ⊗ a)∗ M(L) (v ⊗ a) ≥ 0 for all v ∈ Cm and a ∈ CNn×Nn

0 . (16)

Proof. The equivalence of Eq. (11) and Eq. (14) is clear. The equivalence of Eq. (14)
and Eq. (15) follows using Eq. (8) applied to each (scalar-valued) map v∗Lv. To see the 
equivalence of Eq. (14) and Eq. (16), write a polynomial p ∈ C[x, x] as p = a∗[x, x] with 
a = (aα,β) ∈ CNn×Nn

0 . Then, for any v ∈ Cm, following Eq. (9), we have:

v∗L(pp)v = v∗(Lij(pp))mi,j=1v = v∗(a∗M(Lij)a)mi,j=1v = (v ⊗ a)∗M(L)v ⊗ a,

using the definition of M(L) from Eq. (12). �
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Lemma 2. M(L) � 0 if and only if any of the following equivalent conditions holds:

w∗M(L)w ≥ 0 for all w ∈ Cm ⊗CNn×Nn

0 , (17)

〈L, 
p
p∗〉 =
m∑

i,j=1
Lij(pipj) ≥ 0 for all 
p = (p1, . . . , pm) ∈ C[x,x]m, (18)

〈L, S〉 ≥ 0 for all SoS-polynomial matrices S ∈ C[x,x]m×m. (19)

Proof. Eq. (17) is clear. To see the equivalence with Eq. (18) consider a vector 
w = (wi,(α,β))i,(α,β) in Cm ⊗ CNn×Nn

0 and, for each i ∈ [m], define the vector 
ai = (wi,(α,β))(α,β) ∈ CNn×Nn

0 , the corresponding polynomial pi = a∗
i [x, x], and de-

fine the polynomial vector 
p = (p1, . . . , pm) ∈ C[x, x]m. Then

w∗M(L)w = w∗(M(Lij))mi,j=1w =
m∑

i,j=1
a∗
i (Lij([x,x][x,x]∗))mi,j=1aj =

m∑
i,j=1

Lij(pipj),

implying the equivalence of Eq. (17) and Eq. (18). The equivalence with Eq. (19) follows 
since SoS-polynomial matrices are conic combinations of terms of the form 
p
p∗. �

Note that Eq. (16) is the restriction of Eq. (17), where we restrict to vectors w in 
tensor product form w = v⊗a. In addition, we recover Eq. (14) if, in Eq. (18), we restrict 
to polynomials p1, . . . , pm of the form pi = vip (for i ∈ [m]) for some p ∈ C[x, x] and 
v = (v1, . . . , vm) ∈ Cm. This shows again that Eq. (14) is more restrictive than Eq. (18). 
Summarizing, we have the following implication.

Lemma 3. If M(L) � 0 then L is positive.

Remark 4. Note that requiring positivity of the moment matrix M(L) not only provides 
a stronger condition than requiring positivity of L, but it is also a condition that is 
computationally easier to check. To make this concrete we consider the truncated case 
when L is restricted to the subspace C[x, x]2t. Then, the condition Mt(L) � 0 asks 
whether a single matrix is positive semidefinite, which can be efficiently done. On the 
other hand, asking whether L is positive on sums of squares of degree at most 2t amounts 
to checking whether Mt(v∗Lv) � 0 for all v ∈ Cm, i.e., positive semidefiniteness of 
infinitely many matrices.

Note also that Eq. (19) highlights the duality relationship which exists between m ×m

SoS-polynomial matrices and matrix-valued linear maps L with M(L) � 0.

Link to complete positivity of L. We now point out a link to the notion of complete 
positivity. Given a linear map L : C[x, x] → Cm×m and an integer k ∈ N one can define 
a new linear map
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Ik ⊗ L : C[x,x]k×k → Ck×k ⊗Cm×m

(pi′j′)ki′,j′=1 �→ (L(pi′j′))ki′,j′=1.

Then L is said to be completely positive if Ik ⊗L is positive for all k ∈ N. (See, e.g., [45]
for a general reference about completely positive maps.)

Lemma 5. L completely positive =⇒ Im ⊗ L positive =⇒ M(L) � 0.

Proof. The first implication is obvious. Assume Im ⊗ L is positive, we show that 
M(L) � 0. In view of Eq. (18) it suffices to show that 

∑m
i,j=1 Lij(pipj) ≥ 0 for all 


p = (p1, . . . , pm) ∈ C[x, x]m. As 
p
p∗ is a SoS-polynomial matrix (and thus a pos-
itive element), it follows that (Im ⊗ L)(
p
p∗) = (L(pi′pj′))mi′,j′=1 � 0. Consider the 
vector w = (wii′)i,i′∈[m] with entries wii′ = 1 if i = i′ and wii′ = 0 otherwise. Then, ∑m

i,j=1 Lij(pipj) = w∗(L(pi′pj′))mi′,j′=1w ≥ 0, as desired. �
Polynomial matrix localizing maps G ⊗ L. Given a (scalar-valued) linear map L ∈
C[x, x]∗ there is a natural generalization of the above notion of localizing map gL, 
where, instead of considering a scalar polynomial g, we consider a polynomial matrix 
G = (Gij)mi,j=1 ∈ C[x, x]m×m. Then, we can define the matrix-valued linear map L :=
(GijL)mi,j=1, that we denote by G ⊗ L, by

G⊗ L : C[x,x] → Cm×m

p �→ (G⊗ L)(p) :=
(
(GijL)(p)

)m
i,j=1 =

(
L(Gijp)

)m
i,j=1 = L(Gp).

Following Eq. (12) the moment matrix of G ⊗ L is

M(G⊗ L) = (G⊗ L)([x,x][x,x]∗) = ((GijL)([x,x][x,x]∗))mi,j=1 = L(G⊗ [x,x][x,x]∗).
(20)

Remark 6. When L = La is the (scalar-valued) evaluation map at a vector a ∈ Cn the 
moment matrix M(G ⊗ La) has indeed a tensor product structure, since we have

M(G⊗ La) = La(G⊗ [x,x][x,x]∗) = G(a) ⊗ [a, a][a, a]∗ = La(G) ⊗ La([x,x][x,x]∗).

In particular, if G(a) � 0 then we have M(G ⊗La) � 0. Therefore, M(G ⊗L) � 0 when 
L is a conic combination of evaluation maps at points at which G is positive semidefinite. 
This property motivates using such a positivity constraint in defining our bounds for the 
separable rank and the completely positive rank.

As observed above, M(G ⊗ L) � 0 implies that G ⊗ L is positive. Note that, by 
Eq. (15), G ⊗ L is positive if and only if M((v∗Gv)L) � 0 for all v ∈ Cm, while, by 
Eq. (18), M(G ⊗ L) � 0 if and only if L(
p∗G
p) ≥ 0 for all 
p ∈ C[x, x]m. In particular, 
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for a truncated linear map L ∈ C[x, x]∗2t, the condition Mt(G ⊗ L) � 0 implies any of 
the following two equivalent conditions (the truncated analogs of (14) and (15)), which 
characterize positivity of G ⊗ L on Σ2t:

L(v∗Gv · pp) ≥ 0 for all v ∈ Cm and p ∈ C[x,x]t, (21)

Mt((v∗Gv)L) � 0 for all v ∈ Cm. (22)

While it is computationally easy to check whether Mt(G ⊗L) � 0, it is not clear how to 
check the above conditions efficiently. For this reason, we will select the stronger moment 
matrix positivity condition when defining our new hierarchy of bounds for the separable 
rank. However, we note that the weaker positivity condition of the localizing map will 
be sufficient to establish convergence properties of the bounds.

2.3. The moment method

We now state several widely used definitions and results from polynomial optimization 
that we will need to design our hierarchy of bounds on the separable rank and for the 
moment approach to the DPS approximation hierarchy of the set SEP of separable 
states.

Given a set of Hermitian polynomials S ⊆ C[x, x]h we define the positivity domain of 
S as

D(S) := {u ∈ Cn | g(u) ≥ 0 for every g ∈ S}. (23)

Given a Hermitian polynomial matrix G ∈ C[x, x]m×m we define the polynomial set

SG := {v∗Gv : v ∈ Cd, ‖v‖ = 1} ⊆ C[x,x]h, (24)

so that the set

D(SG) = {u ∈ Cn | G(u) � 0} (25)

corresponds to the positivity domain of G. For t ∈ N ∪ {∞} and S ⊆ C[x, x]h the set

M(S)2t := cone{gpp | p ∈ C[x,x], g ∈ S ∪ {1}, deg(gpp) ≤ 2t}

denotes the quadratic module generated by S, truncated at order 2t when t ∈ N. If t = ∞
we simply write M(S). The quadratic module M(S) is said to be Archimedean if, for 
some scalar R > 0,

R−
n∑

xixi ∈ M(S). (26)

i=1
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Hence a quadratic module is Archimedean if it contains an algebraic certificate of bound-
edness of the associated positivity domain. The next lemma shows that, in the case when 
the algebraic certificate in (26) belongs to the quadratic module M(S)2, the linear func-
tionals that are nonnegative on M(S) are bounded. Its proof is standard (and easy) and 
thus omitted.

Lemma 7. Let S ⊆ C[x, x]h be such that R −
∑n

i=1 xixi ∈ M(S)2 for some R > 0. For 
any t ∈ N assume Lt ∈ C[x, x]∗2t is nonnegative on M(S)2t. Then we have

|Lt(w)| ≤ R|w|/2Lt(1) for all w ∈ [x,x]2t.

Moreover, if

sup
t∈N

Lt(1) < ∞, (27)

then {Lt}t∈N has a point-wise converging subsequence in C[x, x]∗.

Linear functionals and measures. The following result is central to our approach for 
approximating matrix factorization ranks. It is a complex analog of results by Putinar 
[47] and Tchakaloff [54]. For completeness, we will indicate in Appendix A.2 how to 
derive from these results the following complex analog.

Theorem 8. Let S ⊆ C[x, x]h be a set of Hermitian polynomials such that the quadratic 
module M(S) is Archimedean and consider a Hermitian linear map L : C[x, x] → C. 
Assume that L is nonnegative on M(S). Then the following holds.

(i) (based on [47]) L has a representing measure μ that is supported by D(S), i.e., we 
have L(p) =

∫
D(S) pdμ for all p ∈ C[x, x].

(ii) (based on [54]) For any integer k ∈ N, there exists a linear functional L̂ : C[x, x] →
C which coincides with L on C[x, x]k and has a finite atomic representing measure 
supported by D(S), i.e., we have

L̂(p) = L(p) for every p ∈ C[x,x]k, (28)

L̂ =
K∑
�=1

λ�Lv� , (29)

for some integer K ≥ 1, scalars λ1, λ2, ..., λK > 0 and vectors v1, v2, ..., vK ∈ D(S).

We will often apply the above theorem to a linear functional L ∈ C[x, x]∗ that 
additionally satisfies the positivity condition: (G ⊗ L)(pp) � 0 for all p ∈ C[x, x], 
for some Hermitian polynomial matrix G ∈ C[x, x]m×m. Then, in view of Lemma 1
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(combined with Eq. (21) and Eq. (22)), one may still apply Theorem 8 after replac-
ing the set S by the set S ∪ SG so that the resulting measure μ will be supported by 
D(S ∪ SG) ⊆ {x : G(x) � 0}, thus within the positivity domain of G.

Matrix-valued linear functionals and matrix-valued measures. We now mention exten-
sions of the previous results in Theorem 8 from the scalar-valued case to the matrix-
valued case, that we will use for the moment approach to the DPS hierarchy.

For the next result we use (a specification of) a result of Cimpric and Zalar [10, 
Theorem 5], which shows an operator-valued version of Theorem 8 (i). Since the latter 
is stated in the real case we indicate in Appendix A.3 how to derive from it its complex 
analog that we need for the implication (ii) ⇒ (i) in Theorem 9 below. In a nutshell, 
this implication relies on a version of Riesz’ representation theorem for positive operator 
valued linear maps (see, e.g., [28]) combined with a density argument (for going from 
polynomials to continuous functions) and Putinar’s Positivstellensatz.

Theorem 9 (based on [10]). Let S ⊆ C[x, x]h be a set of Hermitian polynomials such that 
the quadratic module M(S) is Archimedean and let L : C[x, x] → Hm be a Hermitian 
matrix-valued linear map. The following assertions are equivalent.

(i) L has a representing measure μ that is supported by D(S) and takes its values in 
the cone Hm

+ of m ×m Hermitian positive semidefinite matrices.
(ii) L is nonnegative on M(S), i.e., L(gpp) � 0 for all g ∈ S ∪ {1} and p ∈ C[x, x].
(iii) M(gL) � 0 for all g ∈ S ∪ {1}.
(iv) gL is completely positive for all g ∈ S ∪ {1}.

Proof. First we show that (i) implies (iv). Let k ∈ N, let P = (pi′j′)ki′,j′=1 ∈ C[x, x]k×k

be a polynomial matrix such that P (x) � 0 for all x ∈ Cd, and let g ∈ S ∪ {1}; we show 
that (Ik ⊗ gL)(P ) � 0. For this note that

(Ik ⊗ gL)(P ) = (gL)(pi′j′))ki′,j′=1 = (L(gpi′j′))ki′,j′=1 =
( ∫

D(S)

gpi′j′dμ
)k
i′,j′=1

� 0.

Here, the last inequality follows (for example) from Theorem 10 below, using the fact 
that g(x) ≥ 0 on D(S), P (x) = (pi′j′(x))ki′,j′=1 � 0 for all x, and μ takes its values in 
Hm

+ . Indeed, say D is an upper bound on the degree of g(x)P (x). Then, by Theorem 10
applied to L restricted to C[x, x]D, there exist an integer K ∈ N, matrices Λ� � 0 and 
vectors v� ∈ D(S) (for � ∈ [K])) such that (L(gpi′j′))ki′,j′=1 =

∑K
�=1 g(v�)Λ� ⊗ P (v�), 

which proves it is a positive semidefinite matrix. The implication (iv) =⇒ (iii) follows 
from Lemma 5 and (iii) =⇒ (ii) follows from Lemma 3.

Finally, for the implication (ii) =⇒ (i) we refer to the arguments in Appendix A.3. �
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What the above result shows is that, while in general the notions of complete positivity, 
positivity and having a positive semidefinite moment matrix are not equivalent, these 
properties become equivalent when considering a linear map L acting on an Archimedean 
quadratic module. We will apply these results to the case of the quadratic module of the 
unit sphere (with S = {1 −

∑
i xixi}) for the moment approach to the DPS hierarchy in 

Section 5.2.
Finally, there is also an analog of Theorem 8 (ii) for the matrix-valued case.

Theorem 10 (Kimsey [33]). Let S ⊆ C[x, x]h be a set of Hermitian polynomials and let 
L : C[x, x] → Hm be a Hermitian matrix-valued linear map. Assume L has a representing 
measure supported by D(S) and taking values in the cone Hm

+ . Then, for any integer 
k ∈ N , the restriction of L to C[x, x]k has another representing measure that is finitely 
atomic; that is, there exists K ∈ N, matrices Λ1, . . . , ΛK ∈ Hm

+ and vectors v1, . . . , vK ∈
D(S) such that L(p) =

∑K
�=1 Λ�p(v�) for all polynomials p ∈ C[x, x]k.

3. A hierarchy of lower bounds on the separable rank

In this section, we show how to use the polynomial optimization techniques developed 
in the previous section in order to obtain a hierarchy of lower bounds on the separable 
rank.

3.1. The parameter τsep

Consider a separable state ρ ∈ SEPd. As defined earlier, its separable rank is the 
smallest integer r ∈ N for which there exist (nonzero) vectors a1, . . . , ar, b1, . . . , br ∈ Cd

such that

ρ =
r∑

�=1

a�a
∗
� ⊗ b�b

∗
� . (30)

We mention several properties that are satisfied by the vectors a�, b� entering such a 
decomposition. First of all, the vectors a�, b� clearly satisfy the positivity condition

ρ− a�a
∗
� ⊗ b�b

∗
� � 0 for all � ∈ [r]. (31)

Let

ρmax := max
i,j∈[d]

ρij,ij

denote the maximum diagonal entry of ρ. Then, in view of (31), the vectors a�, b� also 
satisfy |(a�)i|2|(b�)j |2 ≤ ρij,ij for all i, j ∈ [d], which implies the following boundedness 
conditions
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‖a�‖2
∞ · ‖b�‖2

∞ ≤ ρmax and ‖a�‖2
2 · ‖b�‖2

2 ≤ Tr(ρ) for all � ∈ [r]. (32)

Note that we may rescale the vectors a�, b� so that additional properties can be assumed. 
For instance we may rescale them so that ‖a�‖∞ = ‖b�‖∞, in which case we may assume 
without loss of generality that

‖a�‖2
∞, ‖b�‖2

∞ ≤ √
ρmax for all � ∈ [r]. (33)

Another possibility is rescaling so that ‖a�‖2 = ‖b�‖2, in which case we could instead 
assume that

‖a�‖2
2 = ‖b�‖2

2 ≤
√

Tr(ρ) for all � ∈ [r]. (34)

Yet another possibility would be to rescale so that ‖b�‖2 =
√

Tr(ρ) for all �, in which 
case we would have

‖a�‖2
2 ≤

√
Tr(ρ), ‖b�‖2 =

√
Tr(ρ) for all � ∈ [r] (35)

or, equivalently (up to rescaling), we may assume that

‖a�‖2
2 ≤ Tr(ρ), ‖b�‖2 = 1 for all � ∈ [r]. (36)

To fix ideas we will now apply the first rescaling (33), so that each (a�, b�) belongs to 
the set

Vρ :=
{

(x, y) ∈ Cd ×Cd | xx∗ ⊗ yy∗ � ρ, ‖x‖∞, ‖y‖∞ ≤ ρ1/4
max

}
. (37)

We will consider the impact of doing other rescalings as in Eq. (34), Eq. (35) or Eq. (36)
later on in the paper in numerical examples. However, as will be noted in Remark 12, 
the localizing constraints corresponding to the scaling (33) already imply the localizing 
constraints corresponding to the inequalities in (32).

From Eq. (30) we have

1
r
ρ = 1

r

r∑
�=1

a�a
∗
� ⊗ b�b

∗
� ∈ conv{xx∗ ⊗ yy∗ : (x, y) ∈ Vρ},

which motivates defining the following parameter

τsep(ρ) := inf
{
λ : λ > 0, 1

λ
ρ ∈ conv{xx∗ ⊗ yy∗ : (x, y) ∈ Vρ}

}
. (38)

From the above discussion, this parameter gives a lower bound on the separable rank.

Lemma 11. For any ρ ∈ SEPd, we have τsep(ρ) ≤ ranksep(ρ). Moreover, if ρ /∈ SEPd

then τsep(ρ) = ranksep(ρ) = ∞.
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The parameter τsep(ρ) does not seem any easier to compute than the separable rank. 
It, however, enjoys an additional convexity property that the combinatorial parameter 
ranksep(ρ) does not have. In the next section, we will present a hierarchy of lower bounds 
on ranksep(ρ), constructed using tools from polynomial optimization. These bounds arise 
from convex (semidefinite) programs, they in fact also lower bound the (weaker) param-
eter τsep(ρ) and will be shown to asymptotically converge to it.

3.2. Polynomial optimization approach for τsep and ranksep

As above, let ρ ∈ SEPd be given, together with a decomposition (30) with r =
ranksep(ρ), where we assume that the points (a�, b�) belong to the set Vρ in (37). We ex-
plain how to define bounds for ranksep(ρ) by using the moment method from Section 2.3.

For this let us consider the linear functional

L =
r∑

�=1

L(a�,b�), (39)

the sum of the evaluation functionals at the points entering the decomposition (30). 
Then L acts on the polynomial space C[x, y, x, y], where it is now convenient to denote 
the 2d variables as x = (x1, . . . , xd) and y = (y1, . . . , yd), corresponding to the ‘bipar-
tite’ structure in Eq. (30). By construction, L corresponds to a finite atomic measure 
supported on the set Vρ. Moreover we have

L(1) =
r∑

�=1

L(a�,b�)(1) =
r∑

�=1

1 = r = ranksep(ρ)

and the fourth-degree moments are given by the entries of ρ:

L(xx∗ ⊗ yy∗) = ρ.

In addition, since each (a�, b�) belongs to the set Vρ, it follows that

M(Gρ ⊗ L) = L(Gρ ⊗ [x,y,x,y][x,y,x,y]∗) � 0 and L ≥ 0 on M(Sρ),

after defining the Hermitian polynomial matrix

Gρ(x,y) := ρ− xx∗ ⊗ yy∗ ∈ C[x,y,x,y]d
2×d2

4 (40)

and the localizing set of Hermitian polynomials

Sρ =
{√

ρmax − xixi,
√
ρmax − yiyi : i ∈ [d]

}
⊆ C[x,y,x,y]h2 . (41)

To see that M(Gρ ⊗ L) � 0 we use Remark 6. Recall also the definition of the set SGρ

of localizing polynomials corresponding to the polynomial matrix Gρ in (40):
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SGρ
= {v∗Gρv : v ∈ Cd ⊗Cd} ⊆ C[x,y,x,y]h4 .

Then, by construction, the combined positivity domains of the sets S and SGρ
recover 

Vρ:

D(SGρ
∪ Sρ) = Vρ =

{
(x, y) ∈ Cd ×Cd | xx∗ ⊗ yy∗ � ρ, ‖x‖∞, ‖y‖∞ ≤ ρ1/4

max

}
.

Remark 12. Note that the localizing constraints for the inequalities in (32) are implied 
by the localizing constraints for Sρ ∪SGρ

. This follows from the following two identities:

ρmax − xixiyjyj = (√ρmax − xixi)yjyj + √
ρmax(

√
ρmax − yjyj) ∈ M(Sρ)4,

Tr(ρ) − (
∑
i

xixi)(
∑
j

yjyj) =
∑
i,j

(ρij,ij − xixiyjyj) ∈ M(SGρ
)4.

Moreover, let us recall for future reference that

M(Gρ ⊗ L) � 0 =⇒ L ≥ 0 on M(SGρ
), (42)

which follows from Lemma 1 and the characterization of positivity of Gρ ⊗ L from 
Eq. (22). The above observations motivate introducing the following parameters. For 
t ∈ N ∪ {∞} with t ≥ 2, define the parameter

ξsep
t (ρ) := inf

{
L(1) | L : C[x,y,x,y]2t → C Hermitian s.t.

L(xx∗ ⊗ yy∗) = ρ,

L ≥ 0 on M(Sρ)2t,

Mt−2(Gρ ⊗ L) = L(Gρ ⊗ [x,y,x,y]t−2[x,y,x,y]∗t−2) � 0
}
.

(43)

For t = ∞ the parameter ξsep
∞ (ρ) involves linear functionals acting on the full polynomial 

space C[x, y, x, y]. In addition, we let ξsep
∗ (ρ) denote the parameter obtained by adding 

the constraint rank(M(L)) < ∞ to the definition of ξsep
∞ (ρ). One can show that the 

function ρ �→ ξsep
t (ρ) is lower semicontinuous, the proof is analogous to that of [26, 

Lemma 7] and thus omitted. In addition, as we will see in Remark 30, if the program 
defining ξsep

t (ρ) (t ≥ 2) is feasible then ρ satisfies the PPT criterion, i.e., ρTB � 0, where 
ρTB is obtained by taking the partial transpose of ρ on the second register (see (70)).

As is well-known, for finite t ∈ N, the bound ξsep
t (ρ) can be expressed as a 

semidefinite program since nonnegativity of L on the truncated quadratic module 
M(Sρ)2t can be encoded through positive semidefiniteness of the moment matrix 
Mt(L) = L([x, y, x, y]t[x, y, x, y]∗t ) and of the localizing moment matrices Mt−1(gL) =
L(g[x, y, x, y]t−1[x, y, x, y]∗t−1) for all g ∈ Sρ.

By the above discussion, for any ρ ∈ SEPd we have the following chain of inequalities:

ξsep
2 (ρ) ≤ ξsep

3 (ρ) ≤ · · · ≤ ξsep
∞ (ρ) ≤ ξsep

∗ (ρ) ≤ ranksep(ρ) < ∞. (44)
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We will now show that the bounds ξsep
t (ρ) in fact converge to the parameter τsep(ρ). In 

a first step we observe that the parameters ξsep
t (ρ) converge to ξsep

∞ (ρ) and after that we 
show that ξsep

∞ (ρ) = ξsep
∗ (ρ) = τsep(ρ).

Lemma 13. Let ρ ∈ SEPd. The infimum is attained in problem (43) for any integer t ≥ 2
or t = ∞, and we have limt→∞ ξsep

t (ρ) = ξsep
∞ (ρ).

Proof. First we show that problem (43) attains its optimum. For this note that, in 
view of Eq. (44), we may restrict the optimization to linear functionals L satisfying 
L(1) ≤ ranksep(ρ). By the definition of Sρ in (41), the quadratic module M(Sρ) is 
Archimedean since, with R = 2d√ρmax, R −

∑d
i=1(xixi + yiyi) ∈ M(Sρ)2. As L is 

nonnegative on M(Sρ)2t, we can apply Lemma 7 and conclude that

|L(w)| ≤ R|w|/2L(1) for any w ∈ [x,y,x,y]2t.

Hence we are optimizing a linear objective function over a compact set, and thus the 
optimum is attained. So, for each integer t ≥ 2, let Lt be an optimum solution of problem 
(43). As supt Lt(1) ≤ ranksep(ρ) < ∞, we can conclude from Lemma 7 that there exists 
a linear functional L ∈ C[x, y, x, y]∗ which is the limit of a subsequence of the sequence 
(Lt)t. Then L is feasible for ξsep

∞ (ρ), which implies ξsep
∞ (ρ) ≤ L(1) = limt→∞ Lt(1) =

limt ξ
sep
t (ρ). Note that this L is optimal for ξsep

∞ (ρ). �
Lemma 14. For any ρ ∈ Hd ⊗Hd we have ξsep

∞ (ρ) = ξsep
∗ (ρ) = τsep(ρ).

Proof. As ξsep
∞ (ρ) ≤ ξsep

∗ (ρ) it suffices to show that ξsep
∗ (ρ) ≤ τsep(ρ) and τsep(ρ) ≤

ξsep
∞ (ρ).

First we show ξsep
∗ (ρ) ≤ τsep(ρ). If τsep(ρ) = ∞ there is nothing to prove. So assume 

we have a feasible solution: ρ = λ 
∑K

�=1 μla�a
∗
� ⊗ b�b

∗
� , where λ > 0, (a�, b�) ∈ Vρ, μ� > 0

and 
∑

� μ� = 1. Define the linear functional L = λ 
∑K

�=1 μ�L(a�,b�). Then L is feasible for 
ξsep
∗ (ρ) with L(1) = λ. Hence, ξsep

∗ (ρ) ≤ L(1) = λ, which shows ξsep
∗ (ρ) ≤ τsep(ρ).

Now we show τsep(ρ) ≤ ξsep
∞ (ρ). If ξsep

∞ (ρ) = ∞ there is nothing to prove. So assume 
L is a feasible solution to ξsep

∞ (ρ). Then, in view of Eq. (42), L ≥ 0 on M(Sρ ∪ SGρ
). 

As M(Sρ) is Archimedean we can apply Theorem 8 (with k = 4) and conclude that 
the restriction of L to C[x, y, x, y]4 is a conic combination of evaluations at points in 
D(Sρ ∪ SGρ

) = Vρ. In other words, there exist (a�, b�) ∈ Vρ and scalars μ� > 0 such that 
L(p) =

∑K
�=1 μ�p(a�, b�) for any p ∈ C[x, y, x, y]4. In particular, we have L(1) =

∑K
�=1 μ�

and ρ = L(xx∗ ⊗ yy∗) =
∑K

�=1 μ� a�a
∗
� ⊗ b�b

∗
� . This implies that 1

L(1)ρ belongs to 
conv{xx∗ ⊗ yy∗ : (x, y) ∈ Vρ} and thus τsep(ρ) ≤ L(1), showing τsep(ρ) ≤ ξsep

∞ (ρ). �
As observed earlier already, since SEPd is a d4-dimensional cone, by Carathéodory 

theorem we have ranksep(ρ) ≤ d4 for any ρ ∈ SEPd (or, even stronger, ranksep(ρ) ≤
rank(ρ)2). Based on this one can also use the bounds ξsep

t (ρ) to test (non-)membership 
in SEPd. The bound rank(ρ)2 in Lemma 15 below can of course be replaced by any 
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other valid upper bound on the separable rank. Such a valid bound can be obtained, e.g., 
using the birank of ρ, defined as the pair (rank(ρ), rank(ρTB )). Indeed, as ranksep(ρ) =
ranksep(ρTB ), we have

max{rank(ρ), rank(ρTB )} ≤ ranksep(ρ) ≤ (min{rank(ρ), rank(ρTB )})2. (45)

Lemma 15. Let ρ ∈ Hd ⊗Hd. Then, ρ ∈ SEPd if and only if ξsep
t (ρ) ≤ rank(ρ)2 for all 

integers t ≥ 2.

Proof. The ‘only if’ part follows from ξsep
t (ρ) ≤ ranksep(ρ) ≤ rank(ρ)2 when ρ ∈ SEPd. 

Conversely, assume ξsep
t (ρ) ≤ rank(ρ)2 for all integers t ≥ 2. Then, we can use the same 

argument as in the proof of Lemma 13 and conclude the existence of L ∈ C[x, y, x, y]∗
feasible for ξsep

∞ (ρ), so that ξsep
∞ (ρ) ≤ L(1) < ∞. Then, by Lemma 14, we have τsep(ρ) <

∞, which shows ρ is separable. �
Remark 16. Note that all the results in this section remain valid if, in the definition (43) of 
the parameter ξsep

t (ρ), we omit the ‘tensor-type’ constraint Mt−2(Gρ⊗L) � 0. Using this 
additional constraint permits however to define stronger bounds on the separable rank. 
The results also remain valid if, instead of the polynomials in the set Sρ, we use either 
of the following sets of polynomials: {±(‖x‖2 − ‖y‖2), 

√
Tr(ρ)− ‖y‖2} corresponding to 

(34), or {
√

Tr(ρ) − ‖x‖2, ±1(
√

Tr(ρ) − ‖y‖2)} corresponding to (35) (or, equivalently, 
{Tr(ρ) − ‖x‖2, ±(1 − ‖y‖2)} corresponding to (36)).

3.3. Block-diagonal reduction for the parameter ξsep
t (·)

In this section we indicate how to rewrite the program (43) defining ξsep
t (ρ) in a more 

economical way. Observe that all the terms of each of the localizing polynomials g ∈ Sρ

and the matrix Gρ have the same degree in x and in x, and also the same degree in y
and in y. This enables us to show (see Lemma 17) that we may restrict the optimization 
in (43) to linear functionals L that satisfy the condition

L(xαxα′
yβyβ′

) = 0 if |α| �= |α′| or |β| �= |β′|. (46)

Note that this implies in particular that L(xαxα′yβyβ′) = 0 if |α+α′| or |β+β′| is odd.
The computational advantage is that, if L satisfies (46), then the moment matrix 

Mt(L) and the localizing moment matrices Mt−1(gL) and Mt−2(Gρ ⊗ L) have a block-
diagonal form. To see this consider first the matrix Mt(L), which is indexed by the 
set

It := {(α, α′, β, β′) ∈ (Nd)4 : |α + β + α′ + β′| ≤ t} (47)

(where the tuple (α, α′, β, β′) corresponds to the monomial xαxα′yβyβ′). Let us partition 
It into sets depending on two integers r = |α| − |α′| and s = |β| − |β′|. For r, s ∈
{−t, −t + 1, . . . , t} let
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Itr,s := {(α, α′, β, β′) ∈ It : |α| − |α′| = r, |β| − |β′| = s}, (48)

then we have

It =
t⋃

r,s=−t

Itr,s.

Then, with respect to this partition of its index set, the matrix Mt(L) is block-diagonal 
and thus Mt(L) � 0 if and only if its principal submatrices indexed by the sets Itr,s are 
positive semidefinite. The analogous reasoning applies to each localizing moment matrix 
Mt−1(gL) for g ∈ Sρ (indexed by It−1) and to Mt−2(Gρ ⊗ L) (indexed by It−2).

Lemma 17. In the definition of the parameter ξsep
t (ρ) we may restrict the optimization 

to linear functionals satisfying the additional condition (46).

Proof. Assume L is feasible for ξsep
t (ρ); we construct another feasible solution L̃ with the 

same objective value: L̃(1) = L(1), and satisfying (46). For this define L̃(xαxα′
yβyβ′) =

L(xαxα′
yβyβ′) if |α| = |α′| and |β| = |β′|, and L̃(xαxα′

yβyβ′) = 0 otherwise. Then, 
L̃(1) = L(1) and, by construction, L̃ satisfies (46). We claim that L̃ is feasible for program 
(43). Clearly, we have L̃(xx∗ ⊗ yy∗) = ρ. We now show that Mt(L̃) � 0, Mt−1(gL̃) � 0
for g ∈ Sρ, and Mt−2(Gρ ⊗ L̃) � 0.

We first show that Mt(L̃) � 0. We use the partitioning It = ∪t
r,s=−tI

t
r,s of the row/col-

umn indices.
As the principal submatrix of Mt(L̃) indexed by Itr,s only involves evaluations of L

at monomials of the form xγxγ′
yδyδ′ with |γ| = |γ′| and |δ| = |δ′|, it coincides with 

the principal submatrix of Mt(L) indexed by Itr,s and thus it is positive semidefinite. 
Hence, by construction, the matrix Mt(L̃) is block-diagonal with respect to the partition 
It = ∪t

r,s=0Ir,s of its index set, with positive semidefinite diagonal blocks, which implies 
Mt(L̃) � 0.

Consider now a localizing polynomial g ∈ Sρ. Note that all its terms have the same 
degree in x and x and also the same degree in y and y (equal to 0 or 1). We consider 
the partition of the index set of Mt−1(gL) as It−1 = ∪t−1

r,s=−t+1I
t−1
r,s . Again, the principal 

submatrix of Mt−1(gL) indexed by It−1
r,s involves only values L̃(xγxγ′

yδyδ′) with |γ| =
|γ′| and |δ| = |δ′| and thus it coincides with the principal submatrix of Mt−1(gL) indexed 
by It−1

r,s . Hence, the matrix Mt−1(gL̃) is block-diagonal with respect to the partition 
It−1 = ∪It−1

r,s of its index set, with positive semidefinite diagonal blocks, which implies 
Mt−1(gL̃) � 0.

The analogous reasoning applies to showing that Mt−2(Gρ ⊗ L̃) � 0. For this we con-
sider the partition of its index set [d]2×It−2 into ∪t−2

r,s=−t+2([d]2×It−2
r,s ) and observe that 

Mt−2(Gρ⊗ L̃) is block-diagonal with respect to this partition, with positive semidefinite 
diagonal blocks. �
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An alternative way to arrive at Eq. (46) by exploiting sign symmetries. Let T be the 
circle group, the multiplicative group of all complex numbers of modulus 1:

T = {z ∈ C : |z| = 1}.

The set SEPd is naturally invariant under the action of (wx, wy) ∈ T × T on vectors 
(x, y) ∈ Cd × Cd given by (wx, wy)(x, y) = (wxx, wyy) (and its extension to states). 
Indeed, we have

(wx, wy) · (xx∗ ⊗ yy∗) = (wxx)(wxx)∗ ⊗ (wyy)(wyy)∗ = xx∗ ⊗ yy∗.

Likewise, the localizing constraints are invariant under this group action, and this group 
action extends to the linear functionals L used as variables in the definition of ξsep

t (ρ). 
Since T×T admits a Haar measure, in the derivation of ξsep

t (ρ) we may therefore restrict 
to linear functionals that are invariant under this group action. That is, we may assume 
that

L(xαxα′
yβyβ′

) = w
|α|−

∣∣α′∣∣
x w

|β|−
∣∣β′∣∣

y L(xαxα′
yβyβ′

) for all (wx, wy) ∈ T × T .

This implies that

L(xαxα′
yβyβ′

) = 0 if |α| �= |α′| or |β| �= |β′|.

Indeed, suppose for example that |α| − |α′| =: r �= 0. Then using the above with wx =
eiπ/r shows that L(xαxα′

yβyβ′) = −L(xαxα′
yβyβ′) and hence L(xαxα′

yβyβ′) = 0.
Note that Dressler, Nie and Yang [17] used this same group action to argue that, 

alternatively, one may restrict to (x, y) ∈ Cd × Cd having leading coordinates that are 
real nonnegative: x1, y1 ≥ 0. While this permits to eliminate variables (and work with 
2(2d −1) instead of 4d real variables), this reduction does not permit to block-diagonalize 
the moment matrices as indicated above. We also refer to [23] and the recent paper [57]
for more details about exploiting sign symmetries.

Block-diagonal reduction example. To illustrate the effect of the block-diagonalization 
we consider an example with ρ ∈ H3 ⊗H3 � H9 (i.e., d1 = d2 = 3) and relaxation order 
t = 3. In Table 1 we indicate the respective sizes of the matrices involved in the program 
for ξsep

3 (ρ) with and without block-diagonalization (in column ‘block’ and ‘non-block’, 
respectively). There, ‘# entries’ stands for 

∑
i m

2
i , where mi are the sizes of the matrices 

involved in the program, and ‘# variables’ indicates the total number of variables in 
each case. The last line indicates the typical run time for such an instance, we collect 
the computational details later in Section 4.2. Note that the full program cannot be 
solved and thus block-diagonalization is crucial to enable computation. For the next 
case (d1, d2) = (2, 6) or (4, 4) one can compute the bound of order t = 2 but not the 
bound of order t = 3 even after block-diagonalization.
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Table 1
Matrix sizes block- vs. non-block-diagonalized.

Matrix Block Non-block
M3(L) 25 × (12 × 12 to 96 × 96) 455 × 455
M2(gL) 78 × (6 × 6 to 38 × 38) 6 × (91 × 91)
M1(Gρ ⊗ L) 5 × (36 × 36 to 108 × 108) 234 × 234

# entries 110480 286624
# variables 6952 18564

run time 4.6 min memory error

Remark 18. As observed above, using the block-diagonalized version of the program for 
ξsep
3 (ρ) is crucial to be able to compute the bounds for some larger matrix sizes. We 

note however that the optimal solution to this program will not satisfy the flatness 
condition rankMt(L) = rankMt−1(L) (with t = 2, 3). Indeed one can check that this 
flatness condition can hold only in the trivial case ρ = 0. Intuitively this can be (roughly) 
explained by noting that, due to its symmetric structure, L tends to lie within the interior 
of the feasible region. Hence our approach, which produces lower bounds on ranksep(ρ), 
can be viewed as being complementary to the approach in, e.g., [17,38,43], which uses 
flatness to produce separable decompositions of ρ and thus upper bounds on ranksep(ρ).

4. Extensions and connections to other matrix factorization ranks

Here we explain some simple extensions of the approach given in the previous section 
to related notions of factorization ranks.

Without going into details let us mention that the approach generalizes in a straight-
forward way to the separable rank of multipartite separable quantum states. In that case 
we have an n-partite quantum state ρ acting on (Cd)⊗n, and separability means that ρ
belongs to the set

cone{x1x
∗
1 ⊗ x2x

∗
2 ⊗ . . .⊗ xnx

∗
n : x1, . . . , xn ∈ Cd, ‖xi‖ = 1 (i ∈ [n])}.

In addition, one can use a different local dimension di for each part (i.e., xi ∈ Cdi).
The approach also extends to an alternative (but equivalent) definition of separability, 

which uses mixed states instead of pure states, i.e., where one requires ρ to be of the 
form ρ =

∑r
�=1 A� ⊗ B� with A�, B� ∈ Hd

+. Analogously, the smallest such integer r is 
called the mixed separable rank of ρ. This notion has been considered, e.g., in [12,13,17]
and mixed separable decompositions are called S-decompositions in [43] (which deals 
with real states). To define bounds on the mixed separable rank one can follow the same 
approach as in Section 3 but one here has to introduce more variables. Indeed, we now 
need variables x = (xij)1≤i≤j≤d and y = (yij)1≤i≤j≤d to model the entries of the matrices 
A� ∈ Hd

+ and B� ∈ Hd
+ (while we previously only needed variables (xi)i∈[d] and (yi)i∈[d]

to model the vectors a� ∈ Cd and b� ∈ Cd) and one should assume that the corresponding 
Hermitian matrices X = (xij) and Y = (yij) are positive semidefinite. One may again 
scale the variables so that they satisfy a boundedness condition |xij |, |yij | ≤

√
ρmax. 
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This enables to design hierarchies of lower bounds that converge to the mixed separable 
analog of the parameter τsep(ρ). The details are analogous and thus omitted.

In what follows we mention two other possible extensions, for the real separable rank 
and for the completely positive rank, where we give some more details as well as some 
numerical results.

4.1. Specialization to bipartite real states

The treatment in Section 3 for the separable rank can be adapted in an obvious manner 
to the case of the real separable rank. Here we are given a real symmetric bipartite state 
ρ ∈ Sd ⊗ Sd, where Sd is the set of real symmetric d × d matrices. Then ρ is called real 
separable if it admits a decomposition (30) with all vectors a�, b� ∈ Rd real valued, and 
the smallest r for which such a decomposition exists is the real separable rank, denoted 
rankRsep(ρ). Note that it can be that a real state is separable but not real separable; this 
is the case for the state Sep3 discussed in Section 4.2. One can define in an analogous 
manner the corresponding parameter τRsep(ρ) and the hierarchy of bounds ξsep,R

t (ρ) that 
converge asymptotically to τRsep(ρ). The difference in the formulation of these parameters 
is that we now replace the complex conjugate by the real transpose operation and work 
with linear functionals L acting on the real polynomial space R[x, y]2t. So the parameter 
ξsep,R
t (ρ) reads

ξsep,R
t (ρ) := inf

{
L(1) | L : R[x,y]2t → R s.t.

L(xxT ⊗ yyT ) = ρ,

L ≥ 0 on M(Sρ)2t,

Mt−2(Gρ ⊗ L) = L(Gρ ⊗ [x,y]t−2[x,y]Tt−2) � 0
}
.

(49)

Again we may impose an additional block-diagonal structure on the positive semidefinite 
matrices entering this program. Indeed, since the polynomials involved in the constraints 
leading to the above program have the property that all their terms have an even degree 
in x and an even degree in y, we may assume that the variable L satisfies the condition

L(xαyβ) = 0 if |α| or |β| is odd. (50)

Note that this is the real analog of condition (46) in the complex case. The additional 
constraint (50) permits to replace each of the positive semidefinite constraints for the 
matrices Mt(L), Mt−1(gL) for g ∈ Sρ, and Mt−2(Gρ ⊗ L) by four smaller positive 
semidefinite constraints, each of size roughly 1/4 of the original size. For this let It denote 
the index set of the matrix Mt(L) which we partition into It = ∪a,b∈{0,1}I

t
a,b, where Ita,b

consists of the pairs (α, β) ∈ It with given parity |α| ≡ a, |β| ≡ b modulo 2. Then, with 
respect to this partition of its index set, the matrix Mt(L) is block-diagonal and thus 
Mt(L) � 0 if and only if Mt(L)[Ita,b] � 0 for a, b ∈ {0, 1}. The same block-diagonalization 
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Table 2
Examples and numerical bounds level t = 2.

ρ (d1, d2) birank(ρ) ξsep
2 (ρ) ξsep,R

2 (ρ) ranksep(ρ) time
S1 S2 S3 S1 S2 S3

Sep1 [7] (2, 2) (2, 2) 2.0 1.0 1.0 2.0 1.0 1.0 2 < 1
Sep2 [7] (2, 2) (3, 3) 1.421 1.0 1.0 1.421 1.0 1.0 3 < 1
Sep3 [7] (2, 3) (4, 6) 1.333 1.0 1.0 * * * 6 < 1
Sep4 [17] (3,3) (2,2) 1.0 1.0 1.0 1.0 1.953 1.0 2 < 1
Sep5 [17] (2,2) (4,4) 1.069 1.0 1.0 N/A N/A N/A ≤ 7 < 1
Sep6 [17] (3,3) (7,7) 1.053 1.0 1.0 N/A N/A N/A ≤ 9 < 1
Ent1 [9] (3, 3) (4, 4) 2.069 * 1.525 2.069 * 1.525 ∞ < 1
Ent2 [17] (2,2) (2,4) * * * N/A N/A N/A ∞ < 1

Table 3
Examples and numerical bounds level t = 3.

ρ (d1, d2) birank(ρ) ξsep
3 (ρ) ξsep,R

3 (ρ) ranksep(ρ) time
S1 S2 S3 S1 S2 S3

Sep1 (2, 2) (2, 2) 2.0 2.0 2.0 2.0 2.0 2.0 2 < 1
Sep2 (2, 2) (3, 3) 1.909 2.0 2.178 1.909 2.0 2.178 3 2
Sep3 (2, 3) (4, 6) 2.423 3.0 2.790 * * * 6 25
Sep4 (3,3) (2,2) 1.652 2.0 - 1.65 2.0 1.0 2 261
Sep5 (2,2) (4,4) 1.988 2.048 2.079 N/A N/A N/A ≤ 7 4
Sep6 (3,3) (7,7) 2.715 3.326 - N/A N/A N/A ≤ 9 290
Ent1 (3, 3) (4, 4) - - * - * * ∞ 67

Table 4
Examples and numerical bounds level t = 4.

ρ (d1, d2) birank(ρ) ξsep
4 (ρ) ξsep,R

4 (ρ) ranksep(ρ) time
S1 S2 S3 S1 S2 S3

Sep1 (2, 2) (2, 2) 2.0 2.0 2.0 2.0 2.0 2.0 2 105
Sep2 (2, 2) (3, 3) 3.0 3.0 3.0 3.0 3.0 3.0 3 332
Sep5 (2,2) (4,4) 4.0 4.0 4.0 N/A N/A N/A ≤ 7 161

Run time given in seconds
*: Infeasibility certificate returned
-: Solver could not reach a conclusion (not a memory error)
N/A: Not Applicable
We indicate using boldface when a bound (after rounding up) equals the separable rank.

applies to the matrices Mt−1(gL) for g ∈ Sρ. For the matrix Mt−2(Gρ ⊗ L) we consider 
the block-diagonalization obtained by partitioning its index set as ∪a,b∈{0,1}([d2] ×It−2

a,b ).
Some numerical results on the behavior of the bounds will be given in the next section.

4.2. Numerical results for bipartite complex and real states

Here we collect some numerical results that illustrate the behavior of the bounds 
ξsep
t (ρ) and ξsep,R

t (ρ) for different choices of localizing constraints, see Tables 2 to 4 for 
examples at order t = 2, 3, 4 respectively. Computations were made in Windows using 
Julia [3], JuMP [18] and MOSEK [15] with hardware specifications: i7-8750 CPU with 
32 Gb Memory.3 For our examples we will use the separable states Sep1, Sep2, and 

3 The code is available at: https://github .com /JAndriesJ /sep -rank.

https://github.com/JAndriesJ/sep-rank
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Sep3, and the entangled state Ent1 that we describe now. For numerical stability we do 
the computations with a scaling of these states so that they have trace equal to 1. We 
present the examples in matrix form with lines drawn to indicate the block structure 
ρ =

((
ρij,i′j′

)
j,j′∈[d2]

)
i,i′∈[d1]

. Zero-valued entries are left blank.

Sep1 :=

⎡⎢⎢⎢⎣
1

1

⎤⎥⎥⎥⎦ ; Sep2 :=

⎡⎢⎢⎢⎣
2 1 1 1
1 1 1 1
1 1 1 1
1 1 1 2

⎤⎥⎥⎥⎦

Sep3 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4
4 2 2
2 2 1 −1

1 2 1 −1
−1 1 5 1

2 −1 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
; Ent1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
2 1

1
2 1

1 1
2

1 1 1
2 1

1 2
1 1

2
1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The separable states Sep1, Sep2, and Sep3 were previously studied for example in [7], 
where it was moreover shown that for a separable state ρ with local dimensions (d1, d2) =
(2, 3) and birank (r, s) one has ranksep(ρ) = max{r, s}. The entangled state Ent1 was 
constructed by Choi in [9] as the first example in dimension (d1, d2) = (3, 3) of an 
entangled state ρ that satisfies the PPT condition. In addition we revisit four examples 
taken from [17]. They include three separable states, named here Sep4, Sep5 and Sep6 
and corresponding to Examples 3.8, 3.10 and 3.11 in [17], and one entangled state, named 
here Ent2 and corresponding to Example 3.9 in [17].

In Section 3.1 we provided three different choices of localizing constraints in (33), (34)
and (36), that we denote here as S1, S2 and S3, respectively. The examples show that 
the different choices lead to incomparable bounds. Indeed, let us the notation S1 < S2 
as short hand for “there exists a ρ such that ξsep

t (ρ) (using scaling S1) < ξsep
t (ρ) (using 

scaling S2)”. Then at level t = 2 the state Sep1 demonstrates both S3 < S1 and S2 < S1, 
and at level t = 3 Sep2 demonstrates both S2 < S3 and S1 < S3 and Sep3 demonstrates 
both S1 < S2 and S3 < S2. A case where the various constraints differ in ability to detect 
entanglement is provided by the state Ent1 at order t = 2. On the other hand, for the 
state Ent2, all three scalings detect entanglement at order t = 2 (thus at the same order 
as for the approach in [17]).

As mentioned in Section 4.1, there exist real states ρ ∈ Sd⊗Sd that are separable but 
do not admit a decomposition using real vectors a�, b� ∈ Rd. Our bound ξsep,R

2 (ρ) provides 
a proof of the latter for the state Sep3: its real separable rank is infinity since our lower 
bound is infeasible (i.e., there exists a dual certificate that proves rankRsep(Sep3) = ∞).
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Fig. 1. Scatter plot of ξsep
3 (ρ) vs computation time (seconds) for 100 random matrices, grouped and colored 

by rescalings S1, S2 and S3.

Finally we note that one sometimes needs to go beyond level t = 2 (and thus beyond 
the PPT criterion) to reveal entanglement: with the localizing constraints S3 the bound 
for Ent1 is feasible at t = 2, but infeasible at t = 3. Going to a higher level naturally 
increases the size of the SDP. For the examples Sep3, Sep4, Sep6, and Ent1 this prevented 
us from computing level t = 4.

In addition, we show in Fig. 1 a scatter plot of the bound ξsep
3 (ρ) vs. its computation 

time in seconds for 100 random complex matrices ρ grouped and colored by the respective 
scalings S1, S2 and S3. These matrices are defined by ρ =

∑5
j=1 a

(j)(a(j))∗ ⊗ b(j)(b(j))∗, 
where a(j), b(j) ∈ C3 are random vectors whose entries are of the form x + i y with x, y ∈
N (0, 1). (We also normalize the trace here for numerical stability.) This construction 
guarantees separability and provides the upper bound ranksep(ρ) ≤ 5. Such states also 
satisfy the reverse inequality ranksep(ρ) ≥ 5 almost surely (since rank(ρ) = 5 almost 
surely). We use this class of examples merely to test the quality of the bounds. From 
the figure we can draw the following observations. First, the bounds are concentrated 
around the means 2.7, 3.4 and 3.3 for the scalings S1, S2 and S3, respectively. Second, 
in this class of examples the S1 rescaling yields inferior bounds as compared to S2 and 
S3. Third, out of the hundred examples and for the three different scalings considered, 
no bound exceeded the value 4.

4.3. Stronger bounds for the completely positive rank

For a given integer d ∈ N, the cone of completely positive d × d matrices is defined as

CPd := cone{xxT : x ∈ Rd
+}.

The cone of completely positive matrices and its dual, the cone of copositive matrices, 
are well known for their expressive power. For example, many NP-hard problems can be 
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formulated as linear optimization problems over these cones [11,5]. We refer to [2] for 
many structural properties about the cone CPd. As in the case of separable states, given 
a completely positive matrix A one can ask what is the smallest integer r ∈ N such that 
A admits a decomposition of the form

A =
r∑

�=1

a�a
T
� (51)

for entrywise nonnegative vectors a� ∈ Rd
+ (� ∈ [r]). The smallest such r is called the 

completely positive rank of A and denoted as rankcp(A). In [22] the authors defined the 
parameter τcp(A) as

τcp(A) := inf
{
λ : λ > 0, 1

λ
ρ ∈ conv{xxT : x ∈ Rd

+, xxT ≤ A, xxT � A}
}

(52)

to lower bound the completely positive rank (as well as an SDP-based bound τ sos
cp (A)). 

In [26] the authors studied (among others) the completely positive rank from the poly-
nomial optimization perspective and derived a hierarchy of semidefinite programming 
bounds, denoted here as ξcp

t,(2019)(A). There the fact was used that, if xxT � A, then also 

(xxT )⊗� � A⊗� for all � ∈ N and therefore the following constraints are valid

L((xxT )⊗�) � A⊗� for all � ∈ N (53)

for the linear functional arising from the atomic decomposition (51). Based on this the 
following bounds are defined in [26] and shown to converge to τcp(A) as t → ∞:

ξcp
t,(2019)(A) := inf

{
L(1) : L ∈ [x]∗2t,

L(xxT ) = A,

L ≥ 0 on M({
√
Aiixi − x2

i : i ∈ [d]})2t,
L ≥ 0 on M({Aij − xixj : i, j ∈ [d], i �= j})2t,

L((xxT )⊗�) � A⊗� for all � ∈ [t]
}
.

(54)

The same convergence result holds if we replace the last constraint in (54) with the 
constraint

L ≥ 0 on M({vT (A− xxT )v : v ∈ Rd})2t. (55)

Using the same reasoning as in Section 3.2, we see that we can strengthen the parameter 
ξcp
t,(2019)(A) by adding the constraint

Mt−1((A− xxT ) ⊗ L) = L((A− xxT ) ⊗ [x]t−1[x]Tt−1) � 0. (56)
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Let ξcp
t (A) denote the parameter defined in this way, so that ξcp

t,(2019)(A) ≤ ξcp
t (A). 

Note that Lemmas 1 and 3 show that Eq. (56) implies Eq. (55). We now show that 
Eq. (56) in fact implies Eq. (53), which means that adding Eq. (56) strengthens both 
approaches provided in [26]; we present below numerical examples that illustrate this. To 
do so, we introduce the following notation. Let 〈x〉 denote the vector of noncommutative 
monomials in the variables x1, . . . , xd. Then we can define the noncommutative localizing 
matrix

Mnc((A− xxT ) ⊗ L) := L((A− xxT ) ⊗ 〈x〉〈x〉T ). (57)

Note that M((A −xx∗) ⊗L) � 0 if and only if Mnc((A −xx∗) ⊗L) � 0 (since the latter 
is obtained by duplicating rows/columns of the former).

Lemma 19. Consider A ∈ Rd×d and L ∈ R[x]∗. If L(xxT ) = A and M((A −xxT ) ⊗L) �
0, then Eq. (53) holds, i.e.,

L((xxT )⊗�) � A⊗� for all � ∈ N.

Proof. As observed above, M((A −xxT ) ⊗L) � 0 if and only if Mnc((A −xxT ) ⊗L) � 0. 
Note that for each � ∈ N, the matrix Mnc((A − xxT ) ⊗ L) contains L((A − xxT ) ⊗
(xxT )⊗�−1) as a principal submatrix. To see this write the vector 〈x〉 of noncommutative 
monomials as 1 ⊕�∈N x⊗� by grouping the monomials according to their degree. With 
respect to this partition of its index set the matrix Mnc((A −xx∗) ⊗L) has the matrices 
L((A − xx∗) ⊗ (xx∗)⊗�−1) as its diagonal blocks. Since Mnc((A − xx∗) ⊗ L) � 0, we 
obtain

A⊗ L((xxT )⊗�−1) � L((xxT )⊗�) for all � ∈ N.

Combined with L(xx∗) = A this permits to show Eq. (53):

L((xxT )⊗� � A⊗ L((xxT )⊗(�−1) � A⊗2 ⊗ L((xxT )⊗(�−2) � · · ·

� A⊗(�−1) ⊗ L(xxT ) = A⊗�. �
We conclude this section with some numerical results. To demonstrate the impact 

of the constraints (56) we compare our bounds ξcp
3 (A) to the bounds ξcp

3,(2019)(A) from 
[26] on the cp-rank of some matrices A known to have a high cp-rank, taken from [4]. 
The boldface entries in Table 5 show a strict improvement in the bounds. For these 
computations we used the high precision solver SDPA-GMP [39] because MOSEK [15]
and SDPA [61,60] could not certify solutions.4

4 The code is available at: https://github .com /JAndriesJ /ju -cp -rank.

https://github.com/JAndriesJ/ju-cp-rank
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Table 5
Bounds for completely positive rank at level t = 3.

A rank(A) n �n2

4 � ξcp
3,(2019)(A) ξcp

3 (A) rankcp(A)
M7 7 7 12 10.5 11.4 14
M̃7 7 7 12 10.5 10.5 14
M̃8 8 8 16 13.82 14.5 18
M̃9 9 9 20 17.74 18.4 26

5. Entanglement witnesses

The moment approach we have developed in the previous section for bounding the 
separable rank of a state ρ can be viewed as searching for a (non-normalized) measure 
on the product of two balls, with the additional property that, for any point (x, y) in 
its support, we have ρ − xx∗ ⊗ yy∗ � 0. We will first observe in Section 5.1 how this 
approach can also be used to detect entanglement, i.e., non-membership in the set SEP.

As mentioned earlier one can also capture the set SEP by viewing it as a moment 
problem on the bi-sphere (the product of two unit spheres). In the rest of this section 
we will show that this second moment approach corresponds exactly to the well-known 
state extension perspective that leads to the Doherty-Parrilo-Spedalieri hierarchy of ap-
proximations of SEP from [16].

5.1. Entanglement witnesses based on the hierarchy of parameters ξsep
t (ρ)

Our approach to design lower bounds on the separable rank also directly leads to a 
way to detect non-membership in the set SEP or, in other words, to a way to witness 
entanglement of a state. Indeed, as shown in Lemma 15, a state ρ is separable if and 
only if ξsep

t (ρ) ≤ rank(ρ)2 for all t ≥ 2. In other words, ρ is entangled if and only if 
ξsep
t (ρ) > rank(ρ)2 for some integer t ≥ 2 (which includes ξsep

t (ρ) = ∞ in case the 
program defining ξsep

t (ρ) is infeasible).
In order to get a certificate of entanglement it is therefore convenient to consider the 

dual semidefinite program to the program (43) defining the parameter ξsep
t (ρ), which 

reads:

sup
{
〈ρ,Λ〉 | Λ ∈ Cd×d ⊗Cd×d Hermitian s.t. 1 − 〈Λ, xx∗ ⊗ yy∗〉 ∈ M(Sρ)2t

+ cone{〈Gρ, 
p
p
∗〉 : 
p ∈ (C[x,x,y,y]t−2)d

2}
}
.

(58)

Lemma 20. For any integer t ≥ 2, the matrix Λ = 0 is a strictly feasible solution for (58).

Proof. First we observe that, for small λ > 0, the matrix Λ = λ ·Id2 is a feasible solution 
for (58). For this we show that the polynomial 1 −λ〈I, xx∗⊗yy∗〉 = 1 −λ 

∑
i

∑
j xixiyjyj

lies in the quadratic module M(Sρ)2t for small λ > 0. We know that there exists a scalar 
R > 0 such that R−

∑
i xixi−

∑
j yjyj ∈ M(Sρ). Then also R−

∑
i xixi and R−

∑
i yiyi
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lie in M(Sρ)2t, as well as (R−
∑

i xixi)(R +
∑

i yiyi) and (R +
∑

i xixi)(R−
∑

i yiyi). 
Adding up the latter two polynomials we obtain that the polynomial R2−

∑
i

∑
j xixiyjyj

belongs to M(Sρ)2t, which shows that Λ = λ · Id2 is feasible for all 0 < λ ≤ R−2.
We now show that any Λ satisfying ‖Λ‖ ≤ R−2 is feasible (which shows there is a ball 

contained in the feasible region of (58)). For this write

1 − 〈Λ, xx∗ ⊗ yy∗〉 = 1 − 〈‖Λ‖Id2 , xx∗ ⊗ yy∗〉︸ ︷︷ ︸
(a)

+ 〈‖Λ‖Id2 − Λ, xx∗ ⊗ yy∗〉︸ ︷︷ ︸
(b)

.

In the first part of the proof we have shown that term (a) belongs to M(Sρ)2t if ‖Λ‖ ≤
R−2. In addition, term (b) is a sum of squares since ‖Λ‖Id2 − Λ is positive semidefinite. 
Together, this shows 1 − 〈Λ, xx∗ ⊗ yy∗〉 ∈ M(Sρ)2t and therefore Λ is feasible. �

As a consequence, strong duality holds between the program (43) defining ξsep
t (ρ) and 

its dual (58). That is, if the program (58) is bounded then its optimal value is finite 
and equal to ξsep

t (ρ) and, otherwise, its optimal value is equal to ∞ and thus ξsep
t (ρ)

is infeasible. Therefore, we obtain that ρ is entangled if and only if, for some integer 
t ≥ 2, there exists a matrix Λ ∈ Cd×d ⊗ Cd×d which is feasible for (58) and satisfies 
〈ρ, Λ〉 > rank(ρ)2. In that case such matrix Λ provides a certificate that the state ρ is 
entangled.

5.2. The Doherty-Parrilo-Spedalieri hierarchy: moment perspective

Recall definition (1) of the set of separable states SEPd, so ρ ∈ SEPd if and only if 
it is of the form

ρ =
r∑

�=1

λ� a�a
∗
� ⊗ b�b

∗
� , (59)

where λ� > 0, a�, b� ∈ Cd with ‖a�‖ = 1 = ‖b�‖. To this decomposition we can associate 
a linear functional on C[x, x, y, y] that is a conic combination of evaluation functionals 
at points on the bi-sphere: L =

∑r
�=1 λ�L(a�,b�). By construction, this linear functional 

is positive on Hermitian squares, it vanishes on the ideal generated by 1 − ‖x‖2 and 
1 − ‖y‖2 (called the bi-sphere ideal for short) and it satisfies L(xx∗ ⊗ yy∗) = ρ. This 
naturally suggests a hierarchy of outer approximations to the set SEP: a state ρ belongs 
to the t-th level of this hierarchy if there exists an L that satisfies these constraints for 
polynomials of degree at most 2t. Formally, we consider the set

Rt := {ρ ∈ Hd ⊗Hd : ∃L : C[x,x,y,y]2t → C Hermitian s.t.

L(xx∗ ⊗ yy∗) = ρ,

L = 0 on I(1 − ‖x‖2, 1 − ‖y‖2)2t,

M (L) � 0}.

(60)
t
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We will show in Section 5.4 that this set is in fact closely related to the DPS hierarchy 
of outer approximations to the set SEPd: if we introduce separate degree-bounds on the 
x, x variables and the y, y variables, then we recover the original formulation from [16].

First we note that we can easily show that the sets Rt converge to SEP, i.e., SEPd =⋂
t≥2 Rt, using the tools from polynomial optimization (Theorem 8).

Proposition 21. We have: SEPd =
⋂

t≥2 Rt.

Proof. Assume ρ ∈
⋂

t≥2 Rt, we show ρ ∈ SEPd. For any t ≥ 2 let Lt be an associated 
certificate of membership in Rt. Then we have Lt(1) = Lt(‖x‖2‖y‖2) = Tr(ρ). Hence it 
follows from Lemma 7 that the sequence (Lt)t has a pointwise converging subsequence, 
with limit L ∈ C[x, x, y, y]∗. Then L ≥ 0 on Σ and L = 0 on I(1 −‖x‖2, 1 −‖y‖2). Using 
Theorem 8 we can conclude that there exist scalars μ� > 0 and points (a�, b�) ∈ Cd×Cd

with ‖a�‖ = ‖b�‖ = 1 such that L(p) =
∑K

�=1 μ�p(a�, b�) when p has degree at most 4. 
In particular, we obtain

ρ = L(xx∗ ⊗ yy∗) =
K∑
�=1

μ� a�a
∗
� ⊗ b�b

∗
� ,

which shows that ρ ∈ SEPd. �
Next, we reformulate the positivity condition Mt(L) � 0 in a way that will be useful for 

making the link to the DPS hierarchy. As observed in Section 3.3, we may additionally 
require the linear functionals in Eq. (60) to satisfy the constraint Eq. (46), which we 
repeat here for convenience:

L(xαxα′
yβyβ′

) = 0 if |α| �= |α′| or |β| �= |β′|. (61)

This permits to block-diagonalize the associated moment matrix Mt(L) according to the 
partition given in Eqs. (47) and (48), thus permitting to replace the constraint Mt(L) � 0
by Mt(L)[Itr,s] � 0 for r, s ∈ [−t, t]. In fact, using the bi-sphere ideal constraint, one can 
reduce the size of these matrices even further and replace the matrices Mt(L)[Itr,s] by 
their submatrices Mt(L)[I=t

r,s], where the sets I=t
r,s ⊆ Itr,s are defined by

I=t
r,s :=

{
(α, α′, β, β′) ∈ (Nd)4 : |α + α′ + β + β′| = t, |α| − |α′| = r, |β| − |β′| = s

}
.

(62)
In other words we can show the following reformulation of the set Rt:

Rt =
{
ρ ∈ Hd ⊗Hd : ∃L : C[x,x,y,y]2t → C Hermitian s.t.

L(xx∗ ⊗ yy∗) = ρ,

L = 0 on I(1 − ‖x‖2, 1 − ‖y‖2)2t,

M (L)[I=t] � 0 for all r, s ∈ {−t,−t + 1, . . . , t}
}
.

(63)
t r,s
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We will show this result in a slightly different setting (closer to that of the original 
formulation of the DPS hierarchy). Similar arguments as those used in the proof of 
Lemma 22 below can be used to show the equivalence between (60) and (63).

In order to connect the moment approach on the bi-sphere to the original formulation 
of the DPS hierarchy we need to introduce a separate degree bound on the x, x variables 
and the y, y variables. For integers k, t ≥ 1 we let C[x, x, y, y]k,t (resp., C[x, x, y, y]=k,=t) 
denote the set of polynomials that have degree at most k (resp., equal to k) in x, x and 
degree at most t (resp., equal to t) in y, y, and we set

Σ2k,2t = cone{pp : p ∈ C[x,x,y,y]k,t} = Σ ∩C[x,x,y,y]2k,2t,

Σ=2k,=2t = Σ ∩C[x,x,y,y]=2k,=2t.

We define the sets

Rk,t := {ρ ∈ Hd ⊗Hd : ∃L : C[x,x,y,y]2k,2t → C Hermitian s.t.

L(xx∗ ⊗ yy∗) = ρ,

L = 0 on I(1 − ‖x‖2, 1 − ‖y‖2)2k,2t,

L ≥ 0 on Σ2k,2t}.

(64)

Note the inclusion Rk,t ⊆ Rk+t. The two regimes that we will be interested in are k = 1
and k = t since, as we will show in Section 5.4, the sets R1,t and Rt,t (for t ∈ N) coincide 
with the approximation hierarchies DPS1,t and DPSt,t from [16].

We will give a more economical reformulation for the positivity condition on L in 
Proposition 23. For this we first show that for linear functionals L that vanish on the 
bi-sphere ideal and satisfy (61) the following two positivity conditions are equivalent: 
L ≥ 0 on Σ2k,2t and L ≥ 0 on Σ=2k,=2t. That is, we only need to require positivity on 
homogeneous polynomials.

Lemma 22. Let L ∈ C[x, x, y, y]∗2k,2t be such that L = 0 on I(1 −‖x‖2, 1 −‖y‖2)2k,2t and 
L satisfies Eq. (61). Then we have L ≥ 0 on Σ2k,2t if and only if L ≥ 0 on Σ=2k,=2t.

Proof. Assume L ≥ 0 on Σ=2k,=2t. We show that L is positive on Hermitian squares in 
Σ2k,2t. Let p ∈ C[x, x, y, y]k,t, we want to show that L(pp) ≥ 0. For this we decompose 
p as p = p00 + p01 + p10 + p11, where, for a, b ∈ {0, 1}, we group in pab the terms of p
that involve a monomial xαxα′yβyβ′ with |α+α′| ≡ k−a modulo 2 and |β+β′| ≡ t − b

modulo 2. Then we have

L(pp) =
∑

L(pabpab),

a,b∈{0,1}



S. Gribling et al. / Linear Algebra and its Applications 648 (2022) 1–55 37
where we use Eq. (61) to see that L(pabpa′b′) = 0 if (a, b) �= (a′, b′). Hence it remains to 
show that L(pabpab) ≥ 0 for a, b ∈ {0, 1}. Write pab =

∑
cαα′ββ′xαxα′

yβyβ′ . We define 
the polynomial

qab =
∑

cαα′ββ′xαxα′
yβyβ′‖x‖k−a−|α+α′|‖y‖t−b−|β+β′|.

Note that in each term the powers of ‖x‖ and ‖y‖ are by construction both even and 
nonnegative and therefore the polynomial qab is homogeneous of degree k−a in x, x and 
of degree t − b in y, y. Since L vanishes on the truncated ideal generated by 1 − ‖x‖2

and 1 − ‖y‖2 we have

L(pabpab) = L(qabqab) = L(qabqab‖x‖2a‖y‖2b) ≥ 0,

where the last inequality follows from the fact that qabqab‖x‖2a‖y‖2b ∈ Σ=2k,=2t. �
We now proceed to define the analog of Eq. (62) for the (k, t)-setting. Given two 

integers r ∈ {−k, −k+2, −k+4, . . . , k} and s ∈ {−t, −t +2, −t +4, . . . , t} define the set 
of (exponents of) monomials

I=k,=t
r,s :=

{
(α, α′, β, β′) ∈ (Nd)4 :|α + α′| = k, |α| − |α′| = r,

|β + β′| = t, |β| − |β′| = s
}
.

(65)

Note that we restrict our attention to r ≡ k mod 2 and s ≡ t mod 2. If r, s do not satisfy 
these conditions then I=k,=t

r,s = ∅. We then have the following semidefinite representation 
of Rk,t.

Proposition 23. For k, t ∈ N we have

Rk,t =
{
ρ ∈ Hd ⊗Hd : ∃L : C[x,x,y,y]2k,2t → C Hermitian s.t.

L(xx∗ ⊗ yy∗) = ρ,

L = 0 on I(1 − ‖x‖2, 1 − ‖y‖2)2k,2t,

Mk,�(L)[I=k,=t
r,s ] � 0 for all r ∈ [−k, k], s ∈ [−t, t]

}
.

(66)

Proof. As mentioned above, we may add the constraint (61) to the program (64). It then 
follows from Lemma 22 that we may replace the condition L ≥ 0 on Σ2k,2t with L ≥ 0
on Σ=2k,=2t. Finally we observe that the index sets I=k,=t

r,s block-diagonalize M=k,=t(L). 
Indeed, let p ∈ C[x, x, y, y]=k,=t and write p =

∑
r,s pr,s where pr,s is the polynomial 

corresponding to the terms of p with exponents in I=k,=t
r,s . Then pr,spr′,s′ is a linear 

combination of monomials of the form

xαxα′
yβyβ′

xγxγ′
yδyδ′ ,
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where we have the following for the degrees in x, x. By assumption |α| − |α′| = r and 
|γ| −|γ′| = r′, and therefore the degree in x minus the degree in x is (|α| + |γ′|) − (|α′| +
|γ|) = r − r′. Similarly, the degree in y minus the degree in y equals s − s′. Hence, if 
(r, s) �= (r′, s′), then Eq. (61) shows that L(pr,spr′,s′) = 0. �

Finally, we observe the following alternative formulation of the positivity conditions 
in Eq. (66) in terms of the noncommutative moment matrices (cf. Eq. (57)):

Mk,t(L)[I=k,=t
r,s ] � 0

⇐⇒ L
(
(xx∗)⊗(k+r)/2 ⊗ (xx∗)⊗(k−r)/2 ⊗ (yy∗)⊗(t+s)/2 ⊗ (yy∗)⊗(t−s)/2) � 0.

(67)

Although less efficient, this reformulation will permit to connect the program (66) to the 
original formulation of the DPS hierarchy DPS1,t (see the proof of Proposition 29).

The analog of Proposition 21 holds for the sets Rk,t:⋂
k,t≥1

Rk,t =
⋂
t≥2

Rt,t = SEPd;

the argument is similar, based on standard tools from polynomial optimization (Theo-
rem 8). In fact, even the (weaker) sets R1,t already converge to SEP, i.e., we have⋂

t≥2
R1,t = SEPd; (68)

in other words, in the moment approach it is sufficient to let only the degree in y, y grow. 
We will show this in Theorem 25 below, using the tools about matrix-valued polynomial 
optimization (Theorem 9).

5.3. Convergence of the sets R1,t to SEP

We first reformulate the set R1,t from Eqs. (64) and (66) (case k = 1) in terms of 
matrix-valued linear functionals L on the polynomial space C[y, y].

Lemma 24. For t ∈ N we have

R1,t =
{
ρ ∈ Hd ⊗Hd : ∃L : C[y,y]2t → Hd Hermitian s.t.

L(yy∗) = ρ,

L = 0 on I(1 − ‖y‖2)2t,

Mt(L) � 0
}
.

(69)

Proof. Let us use R̂1,t to denote the set defined in (69). We show that R1,t = R̂1,t using 
the formulation of R1,t given in Eq. (64).
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First consider ρ ∈ R1,t and let L : C[x, x, y, y]2,2t → C be an associated certificate. 
Define L : C[y, y]2t → Hd by

L(p) = L(xx∗p) =
(
L(xixjp

)d
i,j=1 for all p ∈ C[y,y]2t.

So L = (Lij)di,j=1 with Lij(p) = L(xixjp). By construction L(yy∗) = ρ. To see that 
L = 0 on I(1 − ‖y‖2)2t, it suffices to observe that, for any p ∈ I(1 − ‖y‖2)2t and 
any i, j ∈ [d], the polynomial xixjp lies in I(1 − ‖x‖2, 1 − ‖y‖2)2,2t. To show that 
Mt(L) � 0 we use (the degree truncated version of) Lemma 2. That is, we use that 
Mt(L) � 0 is equivalent to 

∑
i,j∈[d] Lij(pipj) ≥ 0 for all (p1, . . . , pd) ∈ (C[y, y]t)d. 

We have 
∑

i,j∈[d] Lij(pipj) = L((
∑

i xipi)(
∑

i xipi)∗) ≥ 0, where the last inequality 
follows from the fact that (

∑
i xipi)(

∑
i xipi)∗ ∈ Σ2,2t. This shows that if ρ ∈ R1,t, then 

ρ ∈ R̂1,t.
Conversely, let ρ ∈ R̂1,t and let L : C[y, y]2t → Hd be an associated certificate. 

We write L(p) =
(
Lij(p)

)
i,j∈[d] with Lij ∈ C[y, y]∗2t for all i, j ∈ [d]. We define a 

linear functional L on C[x, x, y, y]2,2t as follows. For a polynomial p ∈ C[y, y]2t we set 
L(p) =

∑
i∈[d] Lii(p) and, for each i, j ∈ [d], we set L(xixjp) = Lij(p). We extend L to 

C[x, x, y, y]2,2t by setting L(xαxβp) = 0 for all α, β ∈ Nd with (|α|, |β|) /∈ {(0, 0), (1, 1)}, 
and then extending by linearity. We show that L is a certificate for ρ ∈ R1,t. First 
observe that L(xx∗ ⊗ yy∗) =

(
L(xixjyy∗)

)
i,j∈[d] = L(yy∗) = ρ. By construction we 

have L((1 −
∑

i xixi)p) = 0 for all p ∈ C[y, y]2t. Moreover, by assumption, L((1 −∑
i yiyi)p) = 0 for all p ∈ C[y, y]2t−2. Using the construction of L, this implies that 

L((1 −
∑

i yiyi)p) = 0 for all p ∈ C[x, x, y, y]2,2t−2. Together, this shows that L = 0 on 
I(1 − ‖x‖2, 1 − ‖y‖2)2,2t.

It remains to show that L ≥ 0 on Σ2,2t. Let p ∈ C[x, x, y, y]1,t, we show that 
L(pp) ≥ 0. For this, write p = p0 + p1 + p2, where p0 has degree 0 in x, x, p1 has degree 
(1, 0) in (x, x), and p2 has degree (0, 1) in (x, x). By definition, L(papb) = 0 if a �= b

and thus L(pp) = L(p0p0) +L(p1p1) +L(p2p2). We have L(p0p0) =
∑d

i=1 Lii(p0p0) ≥ 0, 
since Mt(Lii) � 0 for each i ∈ [d] as Mt(L) � 0. Next we show that L(p1p1) ≥ 0. 
To do so, write p1 =

∑d
i=1 xiqi where qi ∈ C[y, y]t for i ∈ [d]. It then fol-

lows that L(p1p1) =
∑d

i,j=1 L(xixjqiqj) =
∑d

i,j=1 Lij(qiqj) = 〈L, 
q
q∗〉 ≥ 0 where 

q = (q1, . . . , qd) ∈ (C[y, y]t)d and the last inequality follows from Mt(L) � 0 (us-
ing Lemma 2). This also directly implies that L(p2p2) ≥ 0. It follows that L ≥ 0 on Σ2,2t
and thus ρ ∈ R1,t. �

We can now show the convergence of the sets R1,t to SEP. The proof is analogous 
to that of Proposition 21, except that it now relies on the results for matrix-valued 
polynomial optimization (Theorems 9 and 10).

Theorem 25. We have SEPd =
⋂

t≥2 R1,t.

Proof. Assume ρ ∈
⋂

t≥2 R1,t and for each t ≥ 2 let Lt be a corresponding certificate 
for membership in R1,t. Using Lemma 7 one can show that the sequence (Lt)t has a 
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pointwise converging subsequence. Let L be its limit. It then follows from Theorems 9
and 10 that there exists a K ∈ N, matrices Λ1, . . . , ΛK ∈ Sd

+, and vectors v1, . . . , vK ∈ Cd

with ‖vi‖ = 1 such that

L(p) =
K∑

k=1

Λkp(vk) for all p ∈ C[y,y]2.

In particular,

ρ = L(yy∗) =
K∑

k=1

Λk ⊗ vkv
∗
k,

which shows that ρ ∈ SEPd. �
5.4. The Doherty-Parrilo-Spedalieri hierarchy: state extension perspective

In the previous section we introduced the sets Rk,t for integers k, t ≥ 1 and we 
mentioned that there are two regimes of interest: k = 1 and k = t, leading to the two 
hierarchies R1,t and Rt,t. We now show that these hierarchies in fact coincide with the 
DPS hierarchies, denoted here as DPS1,t and DPSt,t, that are defined in terms of (one-
sided and two-sided) state extensions [16]. For ease of notation, we will mostly focus on 
the first regime and show the equality R1,t = DPS1,t; the arguments naturally adapt 
to the second regime to show Rt,t = DPSt,t. This permits to recover the convergence of 
the DPS hierarchy to SEP from the corresponding convergence result for the sets R1,t
(Theorem 25) obtained via the moment approach.

We begin with giving the original formulation of the DPS hierarchy DPS1,t in terms 
of (one-sided) state extensions. To do so, we require a few definitions.

Given a bipartite state ρ ∈ Hd ⊗Hd it is convenient to denote the two vector spaces 
(aka registers) composing the tensor product space on which ρ acts as A and B. Then we 
may also denote ρ as ρAB . The partial trace of ρAB with respect to the second register 
is the operator ρA = TrB(ρ) that acts on the first register and is defined by tracing out 
the second register. In the same way, ρB = TrA(ρ) is the second partial trace, which 
acts on the second register and is obtained by tracing out the first one. Concretely, say 
ρ = (ρij,i′j′)i,j,i′,j′∈[d] after fixing a basis of Cd ⊗Cd. Then we have

ρA = TrB(ρ) =
( d∑

j=1
ρij,i′j

)d
i,i′=1

and ρB = TrA(ρ) =
( d∑

i=1
ρij,ij′

)d
j,j′=1

.

The partial transpose ρTB of ρ with respect to the second register B is defined by

(ρTB )ij,i′j′ = ρij′,i′j for all i, i′ ∈ [d], j, j′ ∈ [d] (70)
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and TB denotes the corresponding transpose operator that acts on Hd ⊗ Hd by taking 
the partial transpose on the second register, so that TB(ρ) = ρTB . The partial transpose 
ρTA with respect to the first register is defined analogously by (ρTA)ij,i′j′ = ρi′j,ij′ for 
all i, i′, j, j′ ∈ [d]. Note that ρTA = (ρTB )T = ρTB if ρ is Hermitian, and thus ρTB � 0
implies ρTA � 0.

Given an integer t ≥ 2 the construction of the relaxation DPS1,t relies on the following 
observation: If ρAB has a decomposition as in (59) then one may introduce t copies of 
the second register and define the following extended state ρAB[t] acting on Cd⊗ (Cd)⊗t:

ρAB[t] :=
r∑

�=1

λl x�x
∗
� ⊗ (y�y∗� )⊗t. (71)

There is a natural action of the symmetric group Sym(t) on (Cd)⊗t, defined by σ(v1 ⊗
. . . ⊗ vt) = vσ(1) ⊗ . . . ⊗ vσ(t) for v1, . . . , vt ∈ Cd and σ ∈ Sym(t), and extended to 
the space (Cd)⊗t by linearity. Let Sym((Cd)⊗t) denote the invariant subspace of (Cd)⊗t

under this action and let Πt denote the projection from (Cd)⊗t onto its invariant subspace 
Sym((Cd)⊗t), defined by

Πt(w) = 1
t!

∑
σ∈Sym(t)

σ(w) for w ∈ (Cd)⊗t.

Then, IA ⊗ Πt acts onto Cd ⊗ (Cd)⊗t.
We now present some natural properties that the extended state ρAB[t] from (71)

satisfies:

(1) ρAB[t] is positive semidefinite.
(2) ρAB = TrB[2:t](ρAB[t]), where, in TrB[2:t](ρ(AB[t]), we trace out the last t − 1 copies 

of the second register B.
(3) (IA ⊗ Πt)ρAB[t](IA ⊗ Πt) = ρAB[t] , i.e., ρAB[t] is symmetric in the last t registers.
(4) IA ⊗ T⊗s

B ⊗ I
⊗(t−s)
B (ρAB[t]) � 0 for any 1 ≤ s ≤ t.

For property (2) we use the fact that each vector y� lies in the unit sphere and the last 
property (4) follows from the fact that TB(yy∗) = (yy∗)T = y y∗ and thus

IA ⊗ T⊗s
B ⊗ I

⊗(t−s)
B (ρAB[t]) =

r∑
�=1

λ�x�x
∗
� ⊗ (y� y∗� )⊗s ⊗ (y�y∗� )⊗(t−s) � 0

if ρAB[t] satisfies (71). Property (4) is known as the positive partial transpose (PPT) cri-
terion or as the Peres-Horodecki criterion [31]. Clearly, in view of the symmetry property 
(3), taking the partial transpose of any s copies (thus not only the first s ones) among 
the t copies of the second register preserves positivity. The above properties are used to 
define the hierarchy DPS1,t.
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Definition 26. For an integer t ≥ 2 the DPS relaxation of order t is defined as

DPS1,t :=
{
ρAB ∈ Hd ⊗Hd : ∃ρ1,t Hermitian linear map acting on Cd ⊗ (Cd)⊗t s.t.

(72)

TrB[2:t](ρ1,t) = ρAB , (73)

(IA ⊗ Πt)ρ1,t(IA ⊗ Πt) = ρ1,t, (74)

IA ⊗ T⊗s
B ⊗ I

⊗(t−s)
B (ρ1,t) � 0 for all s ∈ {0} ∪ [t]

}
. (75)

Remark 27. In the definition of the set DPS1,t only one part of the system is extended, 
which is why we refer to this as a one-sided state extension. One can define a stronger 
relaxation of SEP by considering a two-sided state extension. Given two integers k, t ≥ 2
one can define DPSk,t as the set of states ρAB that have an extension ρk,t acting on 
(Cd)⊗k⊗ (Cd)⊗t, which satisfies the appropriate analogs of the above properties (1)-(4). 
One may consider in particular the case k = t, leading to the sets DPSt,t that satisfy

SEPd ⊆ DPSt,t ⊆ DPS1,t.

Doherty, Parrilo and Spedaglieri [16] show that the relaxations DPS1,t converge to 
SEP.

Theorem 28 ([16]). We have SEPd ⊆ DPS1,t+1 ⊆ DPS1,t and SEPd =
⋂

t≥1 DPS1,t. 
As a consequence, we also have SEPd =

⋂
t≥1 DPSt,t.

We now show that equality R1,t = DPS1,t holds for all t ∈ N. Therefore, Theo-
rem 28 follows directly from Theorem 25. Using similar arguments one can also show 
that DPSk,t = Rk,t and thus DPSt,t = Rt,t.

Proposition 29. For any integer t ≥ 2 we have R1,t = DPS1,t.

Proof. Assume first ρAB ∈ R1,t, with certificate L satisfying Eq. (64) (with k = 1, � = t). 
We claim that ρ1,t := L(xx∗⊗(yy∗)⊗t) is a certificate for membership of ρAB in DPS1,t. 
Indeed, Eq. (73) holds since TrB[2:t](ρ1,t) = L(xx∗ ⊗ yy∗) = ρAB follows using the bi-
sphere ideal condition on L. The symmetry condition in Eq. (74) holds for ρ1,t since L
acts on commutative polynomials, and the PPT condition in Eq. (75) holds for ρ1,t as a 
consequence of the positivity condition: L ≥ 0 on Σ2,2t.

Conversely, assume that ρAB ∈ DPS1,t, with state ρ1,t as certificate satisfying 
(72)-(75). We construct a linear functional L acting on C[x, x, y, y]2,2t that certifies 
membership of ρAB in R1,t, i.e., satisfies the program (64) (with k = 1). In a first step 
we set

L(xx∗ ⊗ (yy∗)⊗t) := ρ1,t. (76)
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In other words we set

L(xixi′yj1yj′1 · · · yjtyj′t) := (ρ1,t)i�j,i′�j′

for any i, i′ ∈ [d] and 
j = (j1, . . . , jt), 
j′ = (j′1, . . . , j′t) ∈ [d]t. Using the symmetry 
condition (74), it follows that this definition does not depend on the order of the variables 
yj (or yj).

Indeed, by Eq. (74) we know that

(ρ1,t)i�j,i′�j′ = (ρ1,t)iσ(�j),i′τ(�j′) for all i, i′ ∈ [d],
j, 
j′ ∈ [d]t

for all permutations σ, τ ∈ Sym(t), where σ(
j) = (jσ(1), jσ(2), . . . , jσ(t)) for 
j =
(j1, . . . , jt), which shows that

L(xixi′yj1yj′1 · · · yjtyj′t) = L(xixi′yjσ(1)yj′τ(1)
· · · yjσ(t)yj′τ(t)

).

This shows that ρ1,t defines a linear functional L acting on polynomials with degree 1
in x, degree 1 in x, degree t in y, and degree t in y. We now show how to extend this 
linear functional L to C[x, x, y, y]2,2t in such a way that it becomes a certificate for 
ρAB ∈ R1,t.

First we extend L to all monomials xαxα′
yβyβ′ with degree at most 2 in x, x and 

degree at most 2t in y, y. For this we set

L(xαxα′
yβyβ′

) := 0 if |α| �= |α′| or |β| �= |β′|. (77)

Otherwise, |α + α′|, |β + β′| are even and we set

L(xαxα′
yβyβ′

) := L(‖x‖2−|α+α′|‖y‖2t−|β+β′|xαxα′
yβyβ′

).

By construction, L is Hermitian (since ρ1,t is Hermitian) and L vanishes on I(1 −‖x‖2, 1 −
‖y‖2)2,2t.

It remains to show that L ≥ 0 on Σ2,2t. In view of Lemma 22, it suffices to show 
that L ≥ 0 on Σ=2,=2t, or, equivalently, that the moment matrix M=1,=t(L), indexed by 
monomials xαxα′

yβyβ′ with |α + α′| = 1 and |β + β′| = t, is positive semidefinite. In 
view of (77) the matrix M=1,=t(L) is block-diagonal with respect to the partition of its 
index set according to the value of (|α|, |β|), i.e., according to the partition of I=1,=t =⋃

r,s I
=1,=t
r,s defined in Eq. (65) with −1 ≤ r ≤ 1, −t ≤ s ≤ t and r ≡ 1, s ≡ t modulo 2. 

So we are left with the task of showing that all diagonal blocks M=1,=t(L)[I=1,=t
r,s ] are 

positive semidefinite. For this we use Eq. (67) to obtain that

M=1,=t(L)[I=1,=t
r,s ] � 0 ⇐⇒ L(xx∗⊗( r+1

2 ) ⊗ xx∗⊗( 1−r
2 ) ⊗ yy∗⊗( t+s

2 ) ⊗ yy∗⊗( t−s
2 )) � 0.

This holds for all r, s such that −1 ≤ r ≤ 1, −t ≤ s ≤ t, r ≡ 1, s ≡ t modulo 2 if and 
only if
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L(xx∗ ⊗ yy∗⊗(t−s′) ⊗ yy∗⊗s′) � 0, L(xx∗ ⊗ yy∗⊗(t−s′) ⊗ yy∗⊗s′) � 0

for all s′ ∈ {0} ∪ [t] (setting s′ = t−s
2 ). In view of Eq. (76) we obtain that

L(xx∗ ⊗ yy∗⊗(t−s′) ⊗ yy∗⊗s′) = IA ⊗ I
⊗(t−s′)
B ⊗ T⊗s′

B (ρ1,t) (78)

and, since L is Hermitian,

L(xx∗ ⊗ yy∗⊗(t−s′) ⊗ yy∗⊗s′) = L(xx∗ ⊗ yy∗⊗(t−s′) ⊗ yy∗⊗s′)

= IA ⊗ T⊗(t−s′)
B ⊗ I⊗s′

B (ρ1,t).

Therefore, the positive semidefiniteness of all the diagonal blocks composing the matrix 
M=1,=t(L) follows from the PPT condition (75) combined with the symmetry condition 
(74) and the fact that the conjugate of a Hermitian positive semidefinite matrix remains 
positive semidefinite. �
Remark 30. Note that it follows from relation (78) in the above proof that, if ρ =
L(xx∗ ⊗ yy∗) where the linear functional L satisfies L ≥ 0 on Σ2,2, then ρ satisfies the 
PPT condition (75). In particular this implies that the PPT condition is contained in 
the definition of the parameter ξsep

t (ρ): if the program (43) defining ξsep
t (ρ) is feasible 

(for t ≥ 2), then ρ satisfies the PPT condition.
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Appendix A. Deriving the complex results from their real analogs

In this appendix we show how the proofs of Theorems 8 and 9 can be obtained from 
their real versions in [47,54,10]. We begin with recalling in Section A.1 the links between 
the main properties of the complex objects introduced in the paper and their real analogs. 
Then we give the proof of Theorem 8 in Section A.2 and of Theorem 9 in Section A.3.

A.1. Preliminaries on changing variables from complex to real

Vectors and matrices. Throughout we set i =
√
−1 ∈ C. Then any complex scalar 

x ∈ C can be written (uniquely) as x = xRe+i xIm, where xRe := Re(x) and xIm := Im(x)
denote, respectively, the real and imaginary parts of x. This notation extends to vectors 
and matrices by letting the maps Re(·) and Im(·) act entrywise. Any vector x ∈ Cn can 
be written x = xRe + i xIm with xRe := Re(x), xIm := Im(x) ∈ Rn. This gives a bijection

φ : Cn → Rn ×Rn ; x �→ (xRe,xIm). (79)
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Similarly, for a complex matrix G ∈ Cm×m′ set GRe := Re(G), GIm := Im(G) ∈ Rm×m′

and define the 2m × 2m′ real matrix

GR :=
[
GRe −GIm
GIm GRe

]
. (80)

Then G ∈ Cm×m is Hermitian, i.e., G∗ = G, if and only if GRe = GT
Re and GT

Im = −GIm. 
Moreover, for G ∈ Cm×m Hermitian and w ∈ Cm we have the identity

w∗Gw = (wRe−iwIm)T (GRe+iGIm)(wRe+iwIm) =
[
wT

Re wT
Im
] [GRe −GIm

GIm GRe

] [
wRe
wIm

]
,

(81)
which implies the well-known equivalence

G � 0 ⇐⇒ GR =
[
GRe −GIm
GIm GRe

]
� 0.

Polynomials. Polynomials in C[x, x] with complex variables x ∈ Cn can be transformed 
into polynomials in R[xRe, xIm] with real variables xRe, xIm ∈ Rn, via the change of 
variables x = xRe + i xIm. In this way, any p ∈ C[x, x] corresponds to a unique pair of 
real polynomials

pRe(xRe,xIm) :=Re(p(xRe + i xIm,xRe − i xIm)) ∈ R[xRe,xIm],

pIm(xRe,xIm) :=Im(p(xRe + i xIm,xRe − i xIm)) ∈ R[xRe,xIm]

satisfying the identity

p(x,x) = p(xRe + i xIm,xRe − i xIm) = pRe(xRe,xIm) + i pIm(xRe,xIm). (82)

Note that the degrees are preserved: degx,x(p) = max{degxRe,xIm
(pRe), degxRe,xIm

(pIm)}. 
A polynomial p is Hermitian, i.e., p = p, if and only if pIm = 0. Hence, the map

Re : C[x,x]h → R[xRe,xIm] ; p(x,x) �→ pRe(xRe,xIm) (83)

is injective. This map is also surjective: take any f ∈ R[xRe, xIm] and define the polyno-
mial p(x, x) := f(x+x

2 , x−x
2i ) ∈ C[x, x], then p is Hermitian and satisfies f = pRe. Finally, 

since any pp is Hermitian we have

Re(pp) = p2
Re + p2

Im.

Hence sums of Hermitian squares in C[x, x] are mapped to real sums of squares in 
R[xRe, xIm] and vice versa.
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Polynomial matrices. For vectors and matrices with polynomial entries in C[x, x], 
the maps Re(·) and Im(·) act entrywise. Additionally, for a polynomial matrix G ∈
C[x, x]m×m′ , we can define the real polynomial matrix GR ∈ R[xRe, xIm]2m×2m′ using 
relation (80), where GRe, GIm are defined entrywise: if G = (Gij) then GRe = ((Gij)Re)
and GIm = ((Gij)Im). Then G is Hermitian if and only if GR is symmetric and as we 
next observe this correspondence extends to sums of squares.

Lemma 31. Let G ∈ C[x, x]m×m be a polynomial matrix and let GR ∈ R[xRe, xIm]2m×2m

be the corresponding real polynomial matrix defined via (80). Then G is a Hermitian 
SoS-polynomial matrix if and only if GR is a (real) SoS-polynomial matrix.

Proof. Assume G is a Hermitian SoS-polynomial matrix. Let G = UU∗ with U ∈
C[x, x]m×k. Applying the change of variables from complex to real we get

G(x,x) = GRe(xRe,xIm) + iGIm(xRe,xIm)

= U(xRe + i xIm,xRe − i xIm)U∗(xRe + i xIm,xRe − i xIm)

= (URe + iUIm)(UT
Re − iUT

Im) = UReU
T
Re + UImUT

Im + i
(
UImUT

Re − UReU
T
Im
)
.

This implies GRe = UReU
T
Re + UImUT

Im and GIm = UImUT
Re − UReU

T
Im, and thus

GR :=
[
GRe −GIm
GIm GRe

]
=
[
UReU

T
Re + UImUT

Im −(UImUT
Re − UReU

T
Im)

UImUT
Re − UReU

T
Im UReU

T
Re + UImUT

Im

]
=
[
URe −UIm
UIm URe

] [
UT

Re UT
Im

−UT
Im UT

Re

]
=: UR(UR)T ,

which shows GR is an SoS-polynomial matrix. The converse result follows from retracing 
the above steps. �
Quadratic modules. Given a set S ⊆ C[x, x]h of Hermitian polynomials we define its 
real analog by applying the map Re(·) from (83) elementwise to the set S and set

SRe := Re(S) = {pRe : p ∈ S} ⊆ R[xRe,xIm]. (84)

Given a Hermitian polynomial matrix G ∈ C[x, x]m×m we define the set of Hermitian 
polynomials

SG := {w∗Gw : w ∈ Cm} ⊆ C[x,x]h

and, for the corresponding real symmetric matrix GR ∈ R[xRe, xIm]2m×2m defined via 
(80), we define the set of real polynomials

SGR

:= {(wRe, wIm)TGR(wRe, wIm) : w ∈ Cm} ⊆ R[xRe,xIm].
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These two sets satisfy the expected correspondence:

SGR

= Re(SG),

since, in view of relation (81), we have Re(w∗Gw) = (wRe, wIm)TGR(wRe, wIm) for all 
w ∈ Cm.

This correspondence extends to the (real part of the) truncated complex quadratic 
module M(S)2t generated by S ⊆ C[x, x]h and the truncated real quadratic module 
generated by the corresponding set SRe ⊆ R[xRe, xIm] via (84), which is denoted here as 
MR(SRe)2t and defined by

MR(SRe)2t := cone{gRef
2 : f ∈ R[xRe,xIm] , g ∈ S, deg(gRef

2) ≤ 2t}.

Namely, we have

Re(M(S)2t) = MR(SRe)2t.

Indeed we have Re(gpp) = gRe(p2
Re + p2

Im) and the next relation, collected for further 
reference:

gpp ∈ M2t(S) ⇐⇒ Re(gpp) = gRe(p2
Re + p2

Im) ∈ MR
2t(SRe) for all p ∈ C[x,x], g ∈ S.

(85)

Lemma 32. For any S ⊆ C[x, x]h, the (complex) quadratic module M(S) is Archimedean 
if and only if the real quadratic module MR(SRe) is Archimedean.

Proof. Directly from Eq. (85) since, for any scalar R ∈ R, R2 −x∗x ∈ M(S) if and only 
if Re(R2 − x∗x) = R2 − xT

RexRe + xT
ImxIm ∈ MR(SRe). �

Positivity domains and measures. There is a natural correspondence between the com-
plex positivity domain D(S) of a set S ⊆ C[x, x]h and the real positivity domain of the 
corresponding set SRe ⊆ R[xRe, xIm], which is denoted DR(SRe) and defined by

DR(SRe) := {(wRe, wIm) ∈ R2n : gRe(wRe, wIm) ≥ 0 ∀ g ∈ S}.

Indeed, in view of Eq. (83) and using the complex/real bijection map φ from (79), we 
have

DR(SRe) = φ(D(S)).

Given a measure μR on R2n we define the complex measure μ on Cn as μ = μR ◦ φ, the 
push-forward of μR by the map φ−1, so that
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∫
Cn

p(x)dμ =
∫

R2n

p ◦ φ−1(xRe,xIm)dμR

=
∫

R2n

pRe(xRe,xIm)dμR + i
∫

R2n

pIm(xRe,xIm)dμR
(86)

for any p ∈ C[x, x] (using (82)).
If μR is supported by DR(SRe) (i.e., μR(R2n \ DR(SRe)) = 0), then μ is supported 

by D(S) (i.e., μ(Cn \ D(S)) = 0). This follows from the fact that φ(Cn \ D(S)) =
R2n \ DR(SRe).

Linear functionals. For a linear functional L : C[x, x] → C we have L(p) = Re(L(p)) +
i Im(L(p)) for all p ∈ C[x, x]. Recall that L is Hermitian if L(p) = L(p). For any 
Hermitian L, we can define a real linear functional LR : R[xRe, xIm] → R by

LR(f) := L
(
f
(x + x

2 ,
x − x

2i
))

for any f ∈ R[xRe,xIm]. (87)

For a Hermitian polynomial p ∈ C[x, x]h, by Eq. (83) we have pRe(x+x
2 , x−x

2i ) = p(x, x)
and thus

L(p) = LR(pRe) for any p ∈ C[x,x]h. (88)

Then for any p ∈ C[x, x] we have

L(p) = L
(
pRe
(x + x

2 ,
x − x

2i
))

+ iL
(
pIm
(x + x

2 ,
x − x

2i
))

= LR(pRe) + iLR(pIm). (89)

In particular, we have L(pp) = LR(p2
Re + p2

Im) for any p ∈ C[x, x]. This implies that L
is positive (on Hermitian sums of squares) if and only if LR is positive (on real sums of 
squares). Since Re(·) preserves degrees, the restriction of LR to R[xRe, xIm]t corresponds 
to the restriction of L to C[x, x]t. This gives the following correspondence for truncated 
quadratic modules.

Lemma 33. Given S ⊆ C[x, x]h, a Hermitian linear map L ∈ C[x, x] → C, the 
corresponding set SRe ⊆ R[xRe, xIm] and the corresponding real linear map LR ∈
R[xRe, xIm] → R we have

L ≥ 0 on M(S)2t ⇐⇒ LR ≥ 0 on MR(SRe)2t for any t ∈ N ∪ {∞}.

Proof. This follows from the linearity of L and LR since, by Eq. (85), gpp ∈ M(S) if and 
only if Re(gpp) = gRe(p2

Re + p2
Im) ∈ MR(SRe) and, by Eq. (88), L(gpp) = LR(gRe(p2

Re +
p2
Im)). �
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Finally note that an evaluation functional Lw at a point w ∈ Cd corresponds to 
the evaluation functional L(wRe,wIm) at the point (wRe, wIm) ∈ R2d since, for every p ∈
C[x, x], we have

Lw(p) = p(w,w) = pRe(wRe, wIm) + i pIm(wRe, wIm)

= LR
(wRe,wIm)(pRe) + iLR

(wRe,wIm)(pIm).

Matrix-valued linear functionals. Consider a complex matrix-valued linear map

L : C[x,x] → Cm×m, p �→ L(p) :=
(
Lij(p)

)
i,j∈[m],

where each Lij : C[x, x] → C is scalar-valued. Then L is Hermitian if and only if, for all 
p ∈ C[x, x], we have L(p) = L(p)∗, i.e.,(

Re(Lij(p)) + i Im(Lij(p))
)m
i,j=1

=
(
Re(Lji(p)) − i Im(Lji(p))

)m
i,j=1

or, equivalently, Re(Li,j(p)) = Re(Lj,i(p)) and Im(Li,j(p)) = −Im(Lj,i(p)) for all i, j ∈
[m]. This implies that if L is Hermitian and p is Hermitian then the complex matrix 
L(p) is Hermitian.

Assume L is Hermitian. Then we define the real matrix-valued linear functional

LR : R[xRe,xIm] → R2m×2m, f ∈ R[xRe,xIm] �→ LR(f)

LR(f) :=
(
L
(
f
(x + x

2 ,
x − x

2i
)))R

=
[

Re(L(f(x+x
2 , x−x

2i ))) −Im(L(f(x+x
2 , x−x

2i )))
Im(L(f(x+x

2 , x−x
2i ))) Re(L(f(x+x

2 , x−x
2i )))

]
.

(90)
Since f(x+x

2 , x−x
2i ) is Hermitian it follows that −Im(L(f(x+x

2 , x−x
2i ))) = Im(L(f(x+x

2 ,
x−x
2i )))T . Hence LR takes its values in the cone S2m of symmetric matrices.

Lemma 34. Given a Hermitian linear map L : C[x, x] → Cm×m and the corresponding 
map LR from (90), g ∈ C[x, x]h and p ∈ C[x, x] we have the following equivalence

L(gpp) � 0 ⇐⇒ LR(gRe(p2
Re + p2

Im)) � 0.

Proof. From Eqs. (80), (83) and (90) we obtain that

0 � L(gpp) ⇐⇒ 0 �
[
Re(L(gpp)) −Im(L(gpp))
Im(L(gpp)) Re(L(gpp))

]
= LR(gRe(p2

Re + p2
Im)),

because gpp is Hermitian. �
Corollary 35. Given S ⊆ C[x, x]h, a Hermitian linear map L : C[x, x] → Cm×m is 
positive on M(S) if and only if the corresponding real linear map LR from (90) is 
positive on MR(SRe).
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A.2. Deriving Theorem 8 from its real analog

We can now derive Theorem 8, which we stated for complex polynomials, from the 
following well-known results for real polynomials from [47] and [54].

Theorem 36. Let S ⊆ R[x] such that MR(S) is Archimedean and let L : R[x] → R be a 
linear map that is nonnegative on MR(S). Then the following holds.

(i) (Putinar [47]) There exists a measure μR that is supported on DR(S), the positivity 
domain of S defined by

DR(S) = {a ∈ Rn : g(a) ≥ 0 for all g ∈ S},

such that L(f) =
∫
fdμ for all f ∈ R[x].

(ii) (Tchakaloff [54]) For any integer k ∈ N there exists a linear map L̂ : R[x] → R such 
that

L̂(f) = L(f) ∀f ∈ R[x]k and L̂ =
K∑
�=1

λ�La�

for some integer K ≥ 1, scalars λ1, . . . , λK > 0 and vectors a1, . . . , aK ∈ DR(S).

We now indicate how to derive Theorem 8 from Theorem 36. For this consider S ⊆
C[x, x]h and a linear map L : C[x, x] → C. Assume M(S) is Archimedean and L ≥ 0
on M(S). We consider the set SRe ⊆ R[xRe, xIm] of real polynomials defined via (84)
and the associated linear map LR : R[xRe, xIm] → R defined via (87). By Lemma 32 the 
quadratic module MR(SRe) is Archimedean and, by Lemma 33, LR ≥ 0 on MR(SRe). 
Hence we can apply Theorem 36 to SRe and LR.

By Theorem 36 (i), there exists a (real) measure μR that is supported by DR(SRe)
and satisfies LR(f) =

∫
fdμR for all f ∈ R[xRe, xIm]. Consider the (complex) measure 

μ defined by relation (86), which is therefore supported by the set D(S). We claim that 
μ is a representing measure for L. Indeed, for p ∈ C[x, x], using (89) we have

L(p) = LR(pRe) + iLR(pIm) =
∫

pRedμ
R + i

∫
pImdμR =

∫
pdμ.

This completes the proof of Theorem 8 (i). We now derive its part (ii).
Fix an integer k ∈ N. By Theorem 36 (ii), there exists L̂ : R[xRe, xIm] → R such 

that L̂(f) = LR(f) for all f ∈ R[xRe, xIm]k and L̂ =
∑K

�=1 λ�La� for some K ∈ N, 
λ� > 0 and a� ∈ DR(SRe). Define the complex linear map L̃ : C[x, x] → C by L̃(p) :=
L̂(pRe) + i L̂(pIm) for any p ∈ C[x, x]. Then, in view of (89), we have L̃(p) = L(p) for any 
p ∈ C[x, x]k. For each � ∈ [K] let w� be the complex vector such that (w�

Re, w
�
Im) = a�. 

Then each w� belongs to D(S) and we have
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L̃(p) = L̂(pRe) + i L̂(pIm) =
∑
�

λ�(pRe(a�) + i pIm(a�)) =
∑
�

λ�p(w�),

which shows L̃ =
∑

� λ�Lw� , and thus concludes the proof of Theorem 8 (ii).

A.3. Deriving Theorem 9 from its real analog

In this section we prove the implication (ii) =⇒ (i) in Theorem 9 from its real analog 
in [10], which we restate below for convenience.

Theorem 37. [10] Let S ⊆ R[x] be a set of polynomials such that the quadratic module 
MR(S) is Archimedean. Let L : R[x] → Sm be a matrix-valued linear functional that is 
positive on MR(S), i.e., L(gf2) � 0 for all g ∈ S ∪ {1} and f ∈ R[x]. Then there exists 
a matrix-valued measure μ that is supported on DR(S) and takes values in the cone Sm

+
of m ×m positive semidefinite matrices such that L(f) =

∫
fdμ for all f ∈ R[x].

We now indicate how to derive the implication (ii) =⇒ (i) in Theorem 9 from 
Theorem 37. For this let S ⊆ C[x, x]h such that M(S) is Archimedean and let 
L : C[x, x] → Hm which is Hermitian and satisfies L(gpp) � 0 for all g ∈ S and 
p ∈ C[x, x]. Then the set SRe ⊆ R[xRe, xIm] from (84) has a Archimedean quadratic 
module MR(SRe) by Lemma 32. Consider the linear map LR : R[xRe, xIm] → S2m de-
fined via (90). Then, by Lemma 34, LR is positive on MR(SRe). Hence we can apply 
Theorem 37 and conclude that LR has a representing measure μR, which is supported on 
DR(SRe) and takes values in the cone S2m

+ . We will now construct a (complex) measure 
μ, which represents L and is supported on the set D(S), using the following two claims.

Claim 38. The map LR takes values in the set W :=
{[

A BT

B C

]
∈ S2m : A = C, BT =

−B
}
.

Proof. Since LR takes values in S2m it has the following block-form

LR =
[
LR

11 (LR
21)T

LR
21 LR

22

]
,

where LR
11 and LR

22 take values in Sm, LR
21 takes values in Rm×m and, by construction,

LR
11(f) = LR

22(f) = Re
(
L
(
f
(x + x

2 ,
x − x

2i
)))

, LR
21(f) = Im

(
L
(
f
(x + x

2 ,
x − x

2i
)))
(91)

and (LR
21(f))T = −Im(L(f(x+x

2 , x−x
2i ))) for any f ∈ R[xRe, xIm]. Hence (LR

21)T = −LR
21

and thus LR takes values in W as desired. �
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Claim 39. Without loss of generality we may assume the measure μR takes values in 
W ∩ S2m

+ .

Proof. We can write the measure μR in block-form as

μR =
[
μR11 (μR21)T

μR21 μR22

]
,

where each block is a measure taking its values in Rm×m. Then we can define the 
following new matrix-valued measure

μ′ := 1
2

[
μR11 + μR22 −(μR21 − (μR21)T )

(μR21 − (μR21)T ) μR11 + μR22

]
=:
[
μ′

11 −(μ′
21)T

μ′
21 μ′

11

]
.

First, by construction, μ′ takes its values in the set W. Second, μ′ takes its values in 
S2m

+ . Indeed, by Theorem 37, μR takes values in S2m
+ and we have

μ′ = 1
2

[
0 −Im
Im 0

]
μR
[

0 Im
−Im 0

]
+ 1

2μ
R.

Finally, μ′ also represents LR. Indeed, for any f ∈ R[xRe, xIm] we have LR
11(f) = LR

22(f)
and −LR

21(f) = (LR
21(f))T by Claim 38. This implies

LR
11(f) = 1

2(LR
11(f) + LR

22(f)) = 1
2

∫
f(dμR11 + dμR22) =

∫
fdμ′

11,

LR
21(f) = 1

2(LR
21(f) − (LR

21(f))T ) = 1
2

∫
f(dμR21 − d(μR21)T ) =

∫
fdμ′

21,

and thus LR(f) =
∫
fdμ′. Therefore we may replace the measure μR by μ′, which shows 

the claim. �
We now define the complex measure μ by setting

dμ := dμR11 ◦ φ + i dμR21 ◦ φ, (92)

where φ is the complex/real bijection in Eq. (79). So μ takes values in Cm×m. As shown 
above in Claim 39, μR takes values in the set W ∩ S2m

+ . Hence, in view of Eq. (80), we 
can conclude that μ takes its values in Hm

+ . In addition, as μR is supported by DR(SRe), 
it follows that μ is supported by D(S). Finally, we verify that μ represents L. Indeed, 
for any p ∈ C[x, x], using (91) we obtain

L(p) = L
(
pRe
(x + x

2 ,
x − x

2i
))

+ iL
(
pIm
(x + x

2 ,
x − x

2i
))

= (LR
11(pRe(xRe,xIm)) + iLR

21(pRe(xRe,xIm)))
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+ i
(
LR

11(pIm(xRe,xIm)) + iLR
21(pIm(xRe,xIm))

)
=
∫

pRedμ
R
11 + i

∫
pRedμ

R
21 + i

∫
pImdμR11 −

∫
pImdμR21

=
∫

(pRe + i pIm)dμR11 + i
∫

(pRe + i pIm)dμR21

=
∫

(pRe + i pIm)(dμR11 + i dμR21)

=
∫

pdμ.

This concludes the proof of the implication (ii) =⇒ (i) in Theorem 9.
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