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Abstract. The k-XOR problem can be generically formulated as the
following: given many n-bit strings generated uniformly at random, find
k distinct of them which XOR to zero. This generalizes collision search
(two equal elements) to a k-tuple of inputs.
This problem has become ubiquitous in cryptanalytic algorithms, in-
cluding variants in which the XOR operation is replaced by a modular
addition (k-SUM) or other non-commutative operations (e.g., the com-
position of permutations). The case where a single solution exists on
average is of special importance.
At EUROCRYPT 2020, Naya-Plasencia and Schrottenloher defined a
class of quantum merging algorithms for the k-XOR problem, obtained by
combining quantum search. They represented these algorithms by a set
of merging trees and obtained the best ones through linear optimization
of their parameters.
In this paper, we give a simplified representation of merging trees that
makes their analysis easier. We give better quantum algorithms for the
Single-solution k-XOR problem by relaxing one of the previous con-
straints, and making use of quantum walks. Our algorithms subsume or
improve over all previous quantum algorithms for Single-solution k-XOR.
For example, we give an algorithm for 4-XOR (or 4-SUM) in quantum
time Õ(27n/24).

Keywords: Quantum algorithms, merging algorithms, k-XOR, k-SUM, bicom-
posite search.

1 Introduction

The collision search problem for a random function can be formulated as follows:
given a random h : {0, 1}n → {0, 1}n, find a pair of distinct inputs (x, y) such
that h(x) = h(y). This problem is ubiquitous in cryptography and collision
search algorithms have been well studied. It is well known that, as formulated
here, it can be solved in about O

(
2n/2) classical queries to h and time. Using

Floyd’s cycle-finding algorithm, we need only polynomial memory.
A possible generalization would be to look for more than two elements hav-

ing the same image: the problem (multicollision search) then becomes harder.

* Part of this work was done while the author was at Inria, France.



Another would be to have more than two elements collide in the sense that they
sum to zero, or that their combination satisfies some constraint. This leads to
the Generalized Birthday Problem, or k-XOR for us, formulated by Wagner [31]:

Given k lists of random n-bit strings: L1, . . . ,Lk which can be ex-
tended at will, find a k-tuple (y1, . . . , yk) ∈ (L1 × . . . × Lk) such that
y1 ⊕ . . .⊕ yk = 0.

In [31], Wagner gave an algorithm to solve k-XOR for any k, based on the
merging building block. Although the idea of merging had been around for a
longer time, with examples like [10], this was the first generic k-list merging al-
gorithm. Later on, many works have either pursued the generic direction [28, 12],
or the optimization of more specific algorithms. For example, the best algorithms
for randomized instances of subset-sum [19, 3, 6] actually solve k-list problems
with additional constraints, and use merging as an algorithmic subroutine.

Quantum k-XOR Algorithms. Obviously, quantum k-XOR algorithms can be
used as replacements for classical ones in the context of quantum cryptanalysis.
But our need for understanding the quantum speedups for k-XOR goes further,
as quantum k-list algorithms of similar shapes have played a role in generic
decoding [21] or in lattice sieving [22]. Knowing and improving the “generic”
advantage of k-XOR algorithms may help for further improvements in these
specific settings.

Grassi et al. [17] tackled the Many-solutions case (the case initially studied by
Wagner) for a generic k. A more complete picture was obtained in [27]. Quantum
algorithms for k-XOR were extended to a whole family derived from classical
merging strategies, among which some appear to be optimal. These quantum
merging algorithms were represented syntactically as merging trees, with some
parameters to optimize linearly. Besides, this was the first study of the Single-
solution case for a generic k.

Contrary to what occurs classically, the Single-solution k-XOR problem has a
quantum time complexity advantage when k increases. For example, the Single-
solution 2-XOR problem has a quantum time complexity Õ

(
2n/3) [1], and an

algorithm of time complexity Õ
(
20.3n) for the 4-XOR problem has been given

in [5]. In [27], a closed formula for the time complexity exponent, depending on
k, was obtained. Though the algorithms differed from [5] (as they did not use
quantum walks), their complexity exponent also reached 0.3 at best.

Contributions. In this paper we give a simplified definition of merging trees,
with a better emphasis on the correspondence between classical and quantum
merging algorithms. In the Many-solutions case, we recover the algorithms of [27]
and obtain simpler proofs of their optimality in the class of merging trees. In
the Single-solution case, we simplify the presentation of [27] and modify one of
its constraints1. We obtain a new closed formula with a convergence towards
1 Our code implementing the new Mixed Integer Linear Program is available at:

https://github.com/Aschtlr/quantum-kxor As in [27], we use the MILP solver
of the SCIP suite [15, 16].
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2/7 instead of 0.3. Finally, we introduce quantum walks as a new building block
in these algorithms. They allow to reduce further the exponents, although not
below 2/7. In particular, we solve 4-SUM in quantum time Õ

(
27n/24), below the

previous Õ
(
20.3n) [5].

Organization of the Paper. We define the problem and present classical merging
algorithms in Section 2. In Section 3, we give some brief preliminaries of quan-
tum computing. In Section 4, we introduce our new definition of merging trees.
In Section 5, we explain how the trees are extended to the Single-solution case,
and we give some of our new results. Next, in Section 6, we show how to obtain
our best exponents with quantum walk algorithms for claw-finding.

2 Classical Algorithms for Many-solutions k-XOR

In this paper, we use the term “k-XOR” to refer to a simple variant of Wagner’s
Generalized Birthday Problem, where the data is generated by a single random
function h. Note that, since h is random, a solution might not exist. We include
this as a case of failure in our algorithms, as we only require them to succeed
on average. We name “k-SUM” the problem where the n-bit bitwise XOR (⊕)
is replaced by addition modulo 2n (+). Other extensions are possible provided
that merging is properly defined, as shown by Wagner [31].

Problem 1 (Many-solutions k-XOR). Given oracle access to a random function
h : {0, 1}n → {0, 1}n, find distinct inputs (x1, . . . , xk) such that h(x1) ⊕ . . . ⊕
h(xk) = 0.

We will assume that quantum access to h is given. By restricting the domain
of h to {0, 1}n/k, we obtain the Single-solution case (a single solution on average).
Here having quantum access to h is not a strong restriction, because the time
complexity of the best algorithms will exceed 2n/k, so we can query the whole
function classically, store its table, and emulate quantum access to its contents.

Query Complexity. The classical query complexity of the k-XOR problem, Single-
or Many-solutions, is Ω(2n/k). The quantum query complexity was determined
to be Ω(2n/(k+1)) by Belovs and Spalek [4] in the Single-solution case and by
Zhandry [32] in the Many-solutions case.

Time Complexity. The time complexity of the k-XOR problem is also exponen-
tial in k. We will write it in the form Õ(2αkn) or O(2αkn) where the exponent αk
depends only on k. The polynomial factors will be constant or logarithmic. All
the quantum algorithms that we will present are composing Grover’s quantum
search algorithm [18] and MNRS quantum walks [25], which achieve at most a
quadratic speedup. So this is the best we can expect.
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2.1 Classical Merging

We adopt the following conventions: lists named Li have corresponding sizes
Li = 2`in (up to a constant). We write for simplicity that Li “has size `i”. All
these parameters `i are constants.

Let L1 and L2 be two lists of n-bit strings selected uniformly and indepen-
dently at random, of respective sizes L1 ' 2`1n and L2 ' 2`2n. We assume that
they are sorted. We select a prefix t of un bits (u < 1), where un is approximated
to an integer. By merging L1 and L2 with prefix t, we say that we compute the
join list L1 ./t L2 of pairs (x1, x2) such that x1 ∈ L1, x2 ∈ L2, x1⊕x2 = t|∗. We
say that such x1 and x2 partially collide on un bits. The join list is expected to
keep track of the values of x1 and x2 that led to x1 ⊕ x2, but we omit them for
clarity.

Until Section 4 included, the prefixes will have arbitrary values. In that case,
we care only about the parameter u and we use the notation ./u. The notation
./t, with the actual value of the prefix, will be used in Section 5 and Section 6.

The merging operation is efficiently computed by iterating through the lists
to retrieve the partial collision pairs. The result is a list of average size L1L2

2un .
Indeed, when x1 ∈ L1 and x2 ∈ L2 are selected uniformly at random, then
Pr(x1 ⊕ x2 = t|∗) = 2−un. By linearity of the expectation, the average time
complexity of algorithms based on merging is easy to compute. The variance is
a more difficult problem, which was first studied by Minder and Sinclair [26,
Section 4].

In this paper, we consider the following heuristic, which is enough to ensure
the correctness of our algorithms. We show how to remove it from our algorithms
in the XOR case, up to a polynomial increase in time, in Appendix B.

Heuristic 1. If L1 and L2 have uniformly random elements, then so does the
join Lu (with the constraint on un bits).

Lemma 1 (Classical merging, adapted from [31]). The join list Lu =
L1 ./u L2 can be computed in time max(`1 + `2 − u,min(`1, `2)) (in log2). This
list is of size Lu, which has an expectation: E (Lu) = L1L2

2un . Under Heuristic 1,
the deviation from E (Lu) is exponentially small.

2.2 Wagner’s Algorithm

Wagner’s algorithm starts from lists of pairs (x, h(x)) for many arbitrary values
of x, and merges recursively the lists pairwise with increasing zero-prefixes, until
a tuple of k elements with a full-zero sum of images is found. This merging
strategy is best represented as a merging tree. It is a binary tree where each node
represents an intermediate list of `-tuples with a given size and prefix constraint
on the sum. The example of k = 4 is given in Figure 1.

We name merging algorithms the class of classical algorithms that are repre-
sented by valid merging trees. That is, the root node should have prefix length n
and expected size 1, and all intermediate nodes have parameters constrained by
the formula of Lemma 1. For any merging tree, there exists a k-XOR algorithm
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Single 4-XOR on n bits

2n/3 partial collisions
(x3, x4), h(x3)⊕ h(x4) = 0n/3|∗

2n/3 elements
(x4, h(x4))

2n/3 elements
(x3, h(x3))

2n/3 partial collisions
(x1, x2), h(x1)⊕ h(x2) = 0n/3|∗

2n/3 elements
(x2, h(x2))

2n/3 elements
(x1, h(x1))

Fig. 1. Structure of Wagner’s 4-XOR tree.

with time and memory complexities equal to the maximum of list sizes in the
tree.

In the context of Wagner’s algorithm, if k is not a power of 2, k − 2blog2(k)c

degrees of freedom are left unused. The tree has 2blog2(k)c prefixless leaves of size
2

n
blog2(k)c+1 (single elements obtained by querying h). At subsequent levels, lists

are merged pairwise on n
blog2(k)c+1 bits, so they remain of size 2

n
blog2(k)c+1 . The

final level merges on 2n
blog2(k)c+1 bits to obtain a single solution on average. The

total complexity exponent is 1
blog2(k)c+1 .

3 Quantum Preliminaries

In this paper, we assume basic knowledge of quantum computing, such as qubits,
quantum states, ket notations |·〉. However, we stress that we will only use well-
known algorithmic tools such as quantum search in a black-box way (especially
since we consider asymptotic complexities).

Aside from a few exceptions, the known quantum speedups for k-XOR [17,
27], including those of this paper, require some quantum RAM (qRAM) model.
We will use:

• Classical memory with quantum random-access (QRACM): it contains clas-
sical data, but superposition access is allowed. Assuming that the data bits
are indexed by 1 ≤ i ≤ 2m − 1, a unit cost qRAM gate is given:

|i〉 |y〉 qRAM7−−−→ |i〉 |y ⊕Mi〉 , where Mi is the data at index i.

That is, all memory cells can be accessed simultaneously in superposition.
• Quantum memory with quantum random-access (QRAQM): it also allows
superposition access, but the data can be a quantum state:

|i〉 |y〉 |M0 · · ·M2m−1〉
qRAM7−−−→ |i〉 |y ⊕Mi〉 |M0 · · ·M2m−1〉 .

The QRACM/QRAQM terminology is borrowed from [23], and corresponds
to QACM/QAQM in [27]. Both are ubiquitous in quantum algorithms, although
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QRACM is often regarded as much more reasonable than QRAQM [23]. The
qRAM gate is defined in [1, Section 6.1]. We will also briefly consider algorithms
without qRAM, using purely classical storage instead. A memory of size M is
then accessed in time Õ(M) using a sequential circuit.

Quantum Search. Grover’s quantum search [18] is one of the most well-known
quantum algorithms. We will actually make use of Amplitude Amplification, a
powerful generalization proposed by Brassard et al. [7]. It speeds up the search
for a “good” output of any probabilistic algorithm.
Theorem 1 ([7], Theorem 2). Let A be a quantum algorithm that uses no
intermediate measurements, let f : X → {0, 1} be a boolean function that tests
if an output of A is “good” and assume that a quantum oracle Of for f is given:
|x〉 |0〉 Of7−−→ |x〉 |f(x)〉. Let θa = arcsin

√
a. Then there exists an algorithm running

in time:
⌊
π

4θa

⌋
(2|A|+ |Of |+O(log |X|)) that obtains a good result with success

probability greater than max(1− a, a).
We can define a quantum sampling black-box, analogous to a classical algo-

rithm which would sample uniformly at random from some well-defined set. We
use the Sample keyword to write down such quantum algorithms in a simple
way, by using recursively the conversion given by Theorem 1. We just have to
define a search space and a testing function (the inside of the Sample block,
which may itself contain another Sample).
Definition 1. Let X be a set. A quantum sampling algorithm for X (denoted
qSample(X)) is a quantum algorithm that takes no input and creates the uniform
superposition of elements of X (that is, of basis states uniquely representing the
elements of X).

4 Quantum Algorithms for Many-solutions k-XOR

The representation of Wagner’s algorithm as a merging tree does not make any
assumption on the order in which the algorithm computes the lists. The tree
can be traversed breadth-first, in which case the merging algorithm computes
all leaves, then all nodes of depth blog2(k)c−1, then all nodes of depth blog2(k)c−
2, etc. A more interesting option is to traverse it depth-first. This well-known
technique reduces the storage from 2blog2(k)c to blog2(k)c lists.

This depth-first traversal actually rewrites the k-XOR algorithm as a se-
quence of classical Sample procedures. If the list L is a leaf node, then Sample(L)
consists in making an arbitrary query to h and returning (x, h(x)). Otherwise,
we use recursively a result equivalent to Lemma 1:
Lemma 2. Let L1 and L2 be two lists of respective sizes 2`1n and 2`2n, with L2
stored in memory, and Lu = L1 ./u L2 be the join list with an arbitrary prefix
of un bits. Let Sample(L1) be a sampling algorithm for L1. Then there exists a
sampling algorithm Sample(Lu) with average complexity:

Tc(Sample(Lu)) = Tc(Sample(L1) +O(n)) ·max(2(u−`2), 1) . (1)
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Proof. The algorithm consists in sampling x1 ∈ L1, and searching an element
x2 ∈ L2 such that x1 ⊕ x2 has the right prefix. We repeat this until such an
element is found.

Although this rewriting does not change the classical time complexity, nor
the correctness of the algorithm, it leads to the definition of quantum merging
algorithms in [27]: each Sample can be replaced by a quantum algorithm qSample,
using quantum search. Now, any merging tree does not only represent a classical
algorithm for k-XOR, but also a quantum one. Unfortunately, the trees defined
in [27] are multiary and more complex than those used classically. We will provide
in Section 4.2 a simpler definition that goes back to these binary trees.

4.1 Merging in the Quantum Setting

Quantum merging algorithms are based on a result analogous to Lemma 2: if
the list L2 is given, then from a quantum algorithm that samples from the list
L1, we can create another that samples from Lu.

Lemma 3 (Quantum merging). Let t be an arbitrary prefix of un bits. Let
L1 and L2 be two lists of respective sizes 2`1n and 2`2n. Assume that L2 is stored
either in QRACM or in classical memory.

Assume that we are given a quantum sampling algorithm qSample(L1) for
L1. Then there exists a quantum sampling for Lu = L1 ./u L2 with quantum
time complexity:

Tq(qSample(Lu))=
{

(Tq(qSample(L1))+O(n)) ·max(2
(u−`2)

2 n, 1)with QRACM(
Tq(qSample(L1))+2`2n

)
·max(2

(u−`2)
2 n, 1) without

(2)
in qRAM gates and n-qubit register operations.

Proof. We use an Amplitude Amplification, where the amplified algorithm con-
sists in sampling L1, finding whether there is a match of the given prefix in L2,
and returning the pair if it exists. Using Heuristic 1 ensures an exponentially low
error for the full procedure. Indeed, this error depends on the difference between
the average number of solutions (which dictates the number of search iterations)
and the actual one.

To obtain the time complexity, we separate two cases: if u > `2, then the
amplification really needs to take place, and it has 2(u−`2)n/2 iterations up to
a constant. Each iteration calls qSample(L1) and queries the memory. Without
QRACM, we use a circuit that performs a sequence of 2`2n classically controlled
comparisons (hence the additional term).

If u < `2, then a given element x1 ∈ L1 will have on average exponentially
many x2 ∈ L2 such that x1 ⊕ x2 = t|∗. It is possible to return the superposition
of them at no greater time cost, by organizing the QRACM in a radix tree.

Each node of the tree is indexed by a prefix, with the node of prefix t having
t|0 and t|1 as children, and leaves are the actual elements stored. To query
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Single 4-XOR
on n bits

2n/4 partial collisions
(x3, x4), h(x3)⊕ h(x4) = 0n/4|∗

2n/4 elements
(x4, h(x4))

2n/4 elements
(x3, h(x3))

2n/2 partial collisions
(x1, x2), h(x1)⊕ h(x2) = 0n/4|∗

2n/4 elements
(x2, h(x2))

2n/2 elements
(x1, h(x1))

Fig. 2. Re-optimization of 4-XOR merging (from [27]). Plain lines indicate the lists
actually stored in QRACM.

an element, we move down the tree with O(n) qRAM gates. To construct the
uniform superposition over a whole subtree, we move in superposition in both
the left and right branches (weighted by the number of leaves in both subtrees).

Because we are now using quantum search, the balanced trees such as Wag-
ner’s are not suitable anymore, and we must re-optimize the parameters. The
example of 4-XOR, which reaches a time complexity O

(
2n/4), is displayed in Fig-

ure 2. In this algorithm, we first built the two intermediate lists of size 2n/4, then
find the 4-XOR with an exhaustive search in the 2n/2-sized leaf list. This list is
not written down, as it only corresponds to a search space efficiently sampled.
Given a random (x, h(x)), we find a partial collision with the first intermediate
list, moving to the next level. Then we try to match against the second inter-
mediate list. Both operations require memory access to the lists, which becomes
QRACM access when the search is done quantumly.

4.2 Definition of Merging Trees

The goal of merging trees is to represent quantum merging strategies for k-XOR
in a purely syntactical way. Though we use the same name as [27], our definition
will largely differ.

Definition 2 (Merging trees). A k-merging tree Tk is a binary tree defined
recursively as follows:

• A node is either labeled “Sample” (S-node) or “List” (L-node)
• If k = 1, this is a leaf node T1
• If k > 1, Tk has two children: an S-node Tkl and an L-node Tkr , where
kl + kr = k.

It follows inductively that a k-merging tree has k leaf nodes. Intuitively,
an S-node represents a procedure that samples from a given list and an L-node
represents a list stored in memory, constructed with exponentially many samples.
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By convention, we draw Sample nodes (dashed) on the left and List nodes
(plain) on the right, as in Figure 2. To each node T corresponds a list L which is
either built or sampled. Since the trees are binary, we adopt a simple numbering
of lists Lji . The root node, at level 0 in the tree, is L0

0, and the two children of
Lji are numbered respectively Lj+1

2i for the sampled one and Lj+1
2i+1 for the list

one. We label a node with the following variables describing Lji :

• The width kji
• The number uji of bits set to zero (relatively to n)
• The size `ji of this list: by our conventions, `ji represents a size of 2`

j
i
n

Thus, Lji is a list of kji -tuples (x1, . . . , xkj
i
) such that x1⊕ . . .⊕xkj

i
= 0uj

i
n|∗,

of size 2`
j
i
n, which is only stored in memory if i is odd, and otherwise, represents

a search space.

Merging strategy and constraints. We constrain the variables `ji and u
j
i in order

to represent a valid merging strategy. First, we want a solution to the k-XOR
problem.
Constraint 1 (Root node). At the root node: u0

0 = 1 and `0
0 = 0.

As each node results from the merging of its two children, the number of
zeros increases. Furthermore, two siblings shall have the same number of zeros:
uj2i = uj2i+1. Otherwise, we could reduce this parameter to min(uj2i, u

j
2i+1).

Constraint 2 (Zero-prefixes). ∀i, j ≥ 1, uj2i = uj2i+1 and uj−1
i ≥ uj2i .

Finally, the size of a list is constrained by the sizes of its predecessors and
the new constraint ((uj−1

i − uj2i+1)n more bits to put to zero).

Constraint 3 (Size of a list). ∀i, j ≥ 1, `j−1
i = `j2i + `j2i+1 − (uj−1

i − uj2i+1) .

Possible extensions of this framework are discussed in [27]. None of the clas-
sical techniques of [12, 2, 13, 28, 26] seem to bring further improvements to the
k-XOR problem in the quantum setting.

4.3 From Trees to Algorithms
We attach to each node another parameter t, which represents the sample time.
Our intuition is that the time to sample from the list Lji represented by this
node will be Õ(2nt).
Constraint 4 (Sampling). Let T ji be a node in the tree, either an S-node or
an L-node. If T ji is a leaf, tji = uj

i

2 . Otherwise, T ji has an S-child T j+1
2i and an

L-child T j+1
2i+1, and:

tji =


tj+1
2i + 1

2 max
(
uji − u

j+1
2i − `

j+1
2i+1, 0

)
with QRACM

max(tj+1
2i , `j+1

2i+1) + 1
2 max

(
(uji − u

j+1
2i − `

j+1
2i+1, 0

)
without

tj+1
2i + max

(
uji − u

j+1
2i − `

j+1
2i+1, 0

)
classically

(3)
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If the node is a leaf, then we simply run Grover’s algorithm multiple times.
Equation (3) is simply a translation of (2) in the case of a specific node. The
third option needs to be added when QRACM is not available, in order to model
a situation where the best thing to do is to sample the list classically. If we do
that, then the whole branch (from this node to the root) becomes classical. Next,
we can deduce the time complexity exponent of a tree.

Definition 3. Let Tk be a k-merging tree. We define Tq(Tk) and M(Tk) as:

Tq(Tk) = max
(

max
List nodes

(
tji + `ji

)
, t00

)
and M(Tk) = max

List nodes

(
`ji

)
.

It should be noted that the list size of Sample nodes plays only a role in the
structural constraints, not in the time complexity. They should simply have a size
sufficient to ensure the existence of a solution in the tree. Thanks to Lemma 3, we
can prove that to any merging tree satisfying the constraints, there corresponds
a quantum merging algorithm.

Theorem 2 (Quantum merging strategies). Let Tk be a k-merging tree
and Tq(Tk) computed as in Definition 3. Then there exists a quantum merging
algorithm that, given access to a quantum oracle for h, finds a k-XOR.

Under Heuristic 1, this algorithm succeeds with probability more than 1 −
e−an for some constant a > 0. It runs in time O

(
n2Tq(Tk)n), makes the same

number of queries to h. It requires only O(n) computing qubits. It uses a memory
O
(
2M(Tk)n), counted in n-bit registers (either classical or QRACM).

Proof. We define recursively the correspondence Tk
A7−→ A(Tk) from a merging

tree Tk to a k-XOR algorithm A(Tk). The complexities follow from Lemma 3
and simplifying O(2αn) +O

(
2βn
)

= O
(
2max(α,β)n). A global factor O(n) comes

from the memory operations.
Let N(k, u, `) be the root node of Tk and S(k′, u′, `′) and L(k′′, u′′, `′′) its

two children, if they exist.

• If it is a Sample leaf, then A(Tk) simply consists in running Grover’s algo-
rithm in time O

(
2un/2).

• Otherwise, if it is a Sample: • we sample from the child L with A(L), and
build the list in time O

(
2(Tq(L)+`′′)n

)
. • we apply Lemma 3, using A(S) as

a sample for the child S.
• If it is a List, the situation is the same, except that we repeat the operation
exponentially many times.

4.4 Optimal Trees for Many-solutions k-XOR

Now that we have defined the set of merging trees, we can explore this space to
search for the trees Tk that minimize Tq(Tk).

Given a tree Tk, its time and memory complexity exponents Tq(Tk) and
M(Tk) are defined as the maximums of linear combinations of the parameters
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`ji , u
j
i . Thus, there exists a choice of these parameters that minimizes Tq(Tk),

under Constraint 1, 2, 3 and 4. As remarked in [27], this is a linear problem,
solvable with Mixed Integer Linear Programming (MILP). Given k, we try all
possible tree structures and find the optimal one. Note that thanks to our new
definition of merging trees, we have a much smaller set of tree shapes to explore
than in [27].

There always exists an optimal tree Tk that achieves the best time complexity
exponent. For a given k, there is sometimes more than one, but we find that it is
reached by a family of balanced trees Tk. When k is a power of 2, Tk is Wagner’s
balanced binary tree.

Definition 4 (Trees Tk). If k = 1, then Tk is simply a leaf node. If k = 2k′,
then the “Sample” child of Tk is Tk′ and the “List” child is Tk′ . If k = 2k′ + 1,
then the “Sample” child of Tk is Tk′+1 and the “List” child is Tk′ .

When QRACM is available, the authors of [27] find a complexity exponent
αk = 2κ

(1+κ)2κ+k for any k, where κ = blog2(k)c. When QRACM is not available,
and k ≥ 8, they find βk = 1

κ+1 if k < 2κ + 2κ−1 and βk = 2
2κ+3 if k ≥ 2κ +

2κ−1. In the latter case, the strategies for 2, 3, 5, 7 reach respectively β2 = 2
5

(see [11]), β3 = 5
14 (see [17]), β5 = 14

45 and β7 = 2
7 . Thanks to our rewriting

of the constraints, we are able to improve to β5 = 40
129 and β7 = 15

53 . Our new
optimality proofs are given in Appendix C and D.

5 Quantum Algorithms for Single-solution k-XOR

The algorithms of Section 4 solve the Many-solutions case (Problem 1). Following
again the study in [27], we extend the merging trees to target the Single-solution
case. In this section, we assume QRAQM.

When only a few solutions are to be found, merging does not seem to help
at first sight, since it puts more constraints on the solution tuples. However, an
interesting idea is to merge with arbitrary constraints, e.g., by choosing a prefix
t, and to repeat this for every value of t. Obviously, the set of all merging trees
obtained by looping on the value of t contains all k-tuples of elements, so the
solution cannot be missed.

This is the core idea of Schroeppel and Shamir’s 4-SUM algorithm [30]
(see Algorithm 1 and Figure 3) and more generally, the Dissection algorithms
of [13, Section 3]. In the quantum setting, it encompasses some proposed al-
gorithms such as the element distinctness (Single-solution 2-XOR) algorithm
of [9].

The classical algorithms are intended to decrease the memory usage while
keeping the time equal or close to the classical birthday bound O

(
2n/2). In

contrast, the quantum algorithms allow to decrease the time complexity with
respect to the quantum birthday bound O

(
2n/3), as shown in [5, 27].
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Algorithm 1 Schroeppel and Shamir’s algorithm, based on a repetition loop.
Input: oracle access to h : {0, 1}n/4 → {0, 1}n
Output: x1, x2, x3, x4 such that h(x1)⊕ h(x2)⊕ h(x3)⊕ h(x4) = 0

1: Create 4 lists Li, 0 ≤ i ≤ 3, of size 2n/4, where pairs x, h(x) have arbitrary indices
2: for all Prefix s of n4 bits do
3: Ls01 ←Merge(L0,L1, s) . Ls101 is of average size 2n/4×2n/4

2n/4 = 2n/4

4: Ls23 ←Merge(L2,L3, s)
5: if there is a collision between L01 and L23 then

. Happens for a single s (or with probability 2−n/4)
6: return The collision

Single 4-XOR
on n bits

Ls34
2n/4 partial collisions

(x3, x4), h(x3)⊕ h(x4) = s|∗

L4

2n/4 elements
(x4, h(x4))

L3

2n/4 elements
(x3, h(x3))

Ls12
2n/4 partial collisions

(x1, x2), h(x1)⊕ h(x2) = s|∗

L2

2n/4 elements
(x2, h(x2))

L1

2n/4 elements
(x1, h(x1))

Fig. 3. Structure of Schroeppel and Shamir’s merging tree.
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5.1 Extended Merging Trees
The extended merging trees that we use in this paper subsume those given in [27],
with a technical trick that will allow smaller complexities. The optimal strate-
gies turn out to have a very simple description. Thus, we defer their derivation
to Appendix E.1, and we focus here on the actual algorithms.

A merging tree is now extended with repetition loops. We make the selection
of some arbitrary prefixes, or more generally, sublists of list nodes. This choice
defines a subset of the merging tree. We complete the merging process. If a
solution is obtained, then this choice of subset was good. These repetition loops
are performed with quantum searches.

Note that in Section 4, we only needed QRACM, as all intermediate lists
could be written down classically, and quantum access was only necessary to
sample their elements. Here, we need to write down lists under a quantum search,
which is why QRAQM is necessary.
Remark 1 (Amending the constraints). Our improved complexities with respect
to [27] rely on the following idea. A subtree T j of width kj can cost 0 inside the
repetitions if a global cost 2 k

j

k n (in time and memory) has been already paid.
Indeed, when T j is of width 1, a full lookup table of h can be prepared beforehand
and reused instead of having to rebuild the tree in each search iteration. Likewise,
we can prepare the sorted list of all kj-tuples (which is of size

(
2nk
)kj ) in order

to retrieve quickly those having a wanted prefix.

5.2 New Results for Single-solution k-XOR
Remark 1 allows us to reach better exponents than [27], and to break the previous
lower bound of 0.3 for k-list merging.
Theorem 3 (New trees for single-solution k-XOR). Let k > 2 be an inte-
ger. The best extended merging tree (with our definition) finds a k-XOR in time
O(2γkn) where:

γk =
k +

⌊
k+6

7
⌋

+
⌊
k+1

7
⌋
−
⌊
k
7
⌋

4k . (4)

In particular, γk converges towards a minimum 2
7 , reached by multiples of 7.

The proof of this optimality is given in Appendix E. The formula of Theo-
rem 3 comes from the reduction of the constraints to a simple linear optimization
problem with two integer variables. These variables are sufficient to describe the
shape of the corresponding tree.

Optimal Trees. For k ≤ 5, the results of Theorem 3 and [27] coincide and we can
refer to [27]. The novelty of Theorem 3 appears with Algorithm 2 (Figure 4),
whose total time complexity is, up to a constant:

22n/7︸ ︷︷ ︸
Building L34

and L67

+ 2n/7︸︷︷︸
Search of s

(
2n/7︸︷︷︸

Computing L567

+ 2n/7︸︷︷︸
Search in L12

)
= O

(
22n/7

)
.
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It benefits from computing some products of lists outside the loops. Interestingly,
this also modifies the memory requirements: only 2n/7 QRAQM is required, in
order to hold L567, and 22n/7 QRACM is needed for L34 and L67.

The optimal strategy for a bigger k actually mimics the 7-XOR example. We
introduce two integer variables k1 and k2 with the values:

k1 =
⌊

3k
7

⌉
, k2 =

⌊
2k
7

⌋
−
⌊
k − 1

7

⌋
+
⌊
k − 2

7

⌋
, (5)

where
⌊ 3k

7
⌉
is the integer closest to 3k

7 , and we perform Algorithm 3. The tree
structure (Figure 5) is overly simple: there are four subtrees, each of which is
a trivial product of lists (a merge with empty prefixes). There is only a single
repetition loop, and the whole algorithm contains only two levels of quantum
search. Intuitively, the subtrees end up being “trivial” because enforcing a prefix
of length un would induce a new quantum search loop with 2un/2 iterates (all
prefixes must be searched). Instead, a better strategy is to forget the prefix and
pay the cost 2un/2 later on, when sampling the parent. A formal proof is given
in Appendix E. The fact that this choice of structure matches the complexity
given by Theorem 3 also follows from it.

Memory Complexity. Our algorithms for single-solution k-XOR reach the best
time complexity O

(
22n/7) when k is a multiple of 7, but at these points, they

require a QRACM of size 22n/7. This is suboptimal with respect to the time-
memory product. By optimizing for it, we obtained the same results as [27]. The
experiments suggest that the list sizes in the tree never exceed 2n/k in that case.
For trees with a list size fixed to 2n/k, we observe that the best time-memory
product decreases for small k, reaches a minimum at k = 17 with Õ(2 7

17n), and
increases again later, as it behaves like (k−O(

√
k))/2. More details are provided

in Appendix F.

On Memory Models. The balance between QRACM and QRAQM is interesting
here, since in general, we will use more QRACM than QRAQM. An interesting
question is whether we can completely eliminate QRAQM. In this setting, the
best procedure remains to cut the lists in three complete products of equal size,
and do a quantum search on two groups for a match on the third one. This
converges towards Õ

(
2n/3) and this complexity is reached for multiples of 3.

Another interesting question is whether one can get rid of quantum random
access, and use only plain quantum circuits. In this setting, the best algorithm for
Single-solution 2-XOR runs in time Õ

(
23n/7) using O(2n/7) qubits [20]. We can

propose an improved complexity for 4-XOR with the following: we use Schroeppel
and Shamir’s merging tree. We perform a quantum search on the right prefix
s (2n/8 iterates). At each iterate, we compute the merging tree breadth-first,
without qRAM gates, using sorting networks for the merging operations. This
costs time Õ

(
2n/4) (with a polynomial factor from sorting networks). The total

time is Õ
(
23n/8) which is smaller than O

(
23n/7). It might be possible to improve

on this with a more generic method.

14



Algorithm 2 New Single-solution 7-XOR algorithm. As a quantum algorithm,
each Sample becomes a quantum search.

Input: 7 lists Li of size 2n/7

Output: a 7-tuple (xi) ∈
∏
i
Li that XORs to 0

1: Build L67 = L6 ./0 L7 (all sums between these two lists)
2: Build L34 = L3 ./0 L4 (all sums between these two lists)
3: Sample s ∈ {0, 1}2n/7 . 2n/7 quantum search iterates
4: Build L567 = L5 ./s L67 . Time 2n/7, which is the size of the list
5: Sample x ∈ L1 × L2 . 2n/7 quantum search iterates
6: Find y ∈ L34 such that x⊕ y = s|∗
7: Find z ∈ L567 such that x⊕ y ⊕ z = 03n/7|∗
8: return “good” if x⊕ y ⊕ z = 0, “not good” otherwise
9: EndSample
10: return “good” if there is a solution x, “not good” otherwise
11: EndSample

03n/7|∗

s|∗

L67

L7L6

L5

s|∗

L34

L4L3

L12

L2L1

Fig. 4. Single-solution 7-XOR merging tree of Algorithm 2.

Root
u = k2

k
+ k−k1−k2

2k

L′, s|∗
prefix: u = k2

k

T3
width k2

T2 of width k1 − k2

L ⊆ T2, size k−k1−k2
2k

s|∗

T1
width k2

T0
width k − k1 − k2

Fig. 5. Generic merging tree that reaches the optimal complexity for Single-solution
k-XOR (see Algorithm 3).
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Algorithm 3 Generic Single-solution k-XOR algorithm. As a quantum algo-
rithm, each Sample becomes a quantum search.

Input: k lists Li of size 2n/k
Output: a k-tuple (xi) ∈

∏
i
Li that XORs to 0

1: Select k1, k2 by Equation 5
2: Build T1 and T3, each with the product of k2 lists
3: Sample s ∈ {0, 1}

k2
k
n

4: Sample Sublists L of T2 of size k−k1−k2
2k

5: Merge L with T3 to obtain a list L′ with prefix s and size k−k1−k2
2k

6: Sample x ∈ T0 . 2
k−k1−k2

2k n quantum search iterates
7: Find y ∈ T1 such that x⊕ y = s|∗
8: return “good” if there is a collision with L′, “not good” otherwise
9: EndSample
10: return “good” if there is a solution, “not good” otherwise
11: EndSample
12: return “good” if there is a solution, “not good” otherwise
13: EndSample

6 Extension with Quantum Walks

The algorithms presented so far are the best ones achievable in the restricted
model of quantum merging trees. One of the open questions left in [27] was
whether it was possible to improve generically the time complexity using quan-
tum walks. We find that this is the case, yielding a better curve than Theorem 3
that we will now explicit. In particular, we obtain the first 4-SUM algorithm
with complexity below O

(
20.3n) (obtained in [5] with a quantum walk).

Theorem 4 (Single-solution k-XOR with quantum walks). Let k > 2 be
an integer. There exists a quantum Single-solution k-XOR algorithm running in
time Õ(2γkn) where:

γk =
2k −

⌊
k
7
⌋
−
⌊
k+3

7
⌋

6k . (6)

In particular, γk converges towards a minimum 2
7 , reached by multiples of 7.

6.1 Preliminaries

In this paper, we only need quantum walks to solve the following problem.

Problem 2 (Single claw-finding). Let f, g be two functions of different domains
{0, 1}`1n, {0, 1}`2n, that we can query quantumly, with the promise that there
exists either a single claw (x, y) such that f(x) = g(y), or none. Determine the
case and find the claw.

This is an extension of the element distinctness problem, or Single-solution
2-XOR, and it can be solved by similar algorithms. In particular, we will con-
sider Ambainis’ algorithm [1] which is a quantum walk for element distinctness
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running in time O
(
22`n/3) when `1 = `2 = `. We will give some high-level ideas

and refer to [1, 5, 21] for applications of quantum walks to k-SUM algorithms.
When there is a single function h, Ambainis’ algorithm is a walk on a Johnson

graph, where a vertex represents a subset of 2nr elements, for some parameter
r. We move randomly on the walk by replacing elements, until the vertex con-
tains the wanted collision. The classical time complexity of such a random walk
(up to a logarithmic factor) is:

(
2rn + 22`n

22rn (2rn)
)
, where 22`n

22rn is the number
of “walk steps” that one should do classically before finding a marked vertex,
and 2r is the number of vertex updates before arriving to a new uniformly ran-
dom vertex. The corresponding quantum walk algorithm, either in the specific
example of Ambainis [1], or the more generic MNRS framework [25], achieves:
2rn +

√
22`n

22rn

(√
2rn
)
, using a quantum memory (QRAQM) of size 2rn and the

same number of quantum queries to h.
When there are two functions f, g with domains of different size, we will use a

random walk on a product Johnson graph, as in [21]. We choose two parameters
r1, r2; the vertices now contain 2r1n elements queried to f and 2r2n elements
queried to g, with r1 ≤ `1 and r2 ≤ `2. The quantum time complexity becomes:

2r1n + 2r2n +
√

2(`1+`2)n

2(r1+r2)n

(
2r1n/2 + 2r2n/2

)
.

By symmetry between r1 and r2, we can choose r1 = r2 = r and restrict ourselves
to a single parameter.

Theorem 5 (Adaptation of [1, 21]). There exists a quantum algorithm solv-
ing the single claw-finding problem with domains `1n and `2n, in time Õ(2τn)
and memory O(2rn), where: τ = max

(
r, `1+`2−r

2
)
, for any r such that r ≤

`1, r ≤ `2, r ≥ 0.

This algorithm succeeds with constant probability. Up to a polynomial factor,
it can be boosted to any probability exponentially close to 1, and thus, used as
a subroutine in a quantum search.

6.2 Using Quantum Walks in a Merging Tree
Since we did not include quantum walks in our merging tree framework, it re-
mains an open question whether the algorithms obtained here are the best possi-
ble. Our goal is merely to improve on what we presented above, using Theorem 5
as a building block.

We reuse the tree structure of Figure 5, where T0 to T3 are the nodes at
level 2, which are products of base lists. Thus, we reuse most of the structure
of Algorithm 3, except that the parameters will be re-optimized and that the two
innermost Sample loops are replaced by a single call to Claw-finding. This is
why we reach an improved time complexity. The new choice of k1 and k2 is:

k1 =
{⌊

k+1
7
⌋

+
⌊
k+4

7
⌋

+
⌊
k+6

7
⌋
for k ≥ 4

1, 1, 2 for k = 2, 3, 4 respectively
, k2 =

⌊
k

7

⌋
+
⌊
k + 4

7

⌋
. (7)
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Algorithm 4 Single-solution k-XOR algorithm with a quantum walk.
Input: k lists Li
Output: a k-tuple (xi) ∈

∏
i
Li that XORs to 0

1: Select k1, k2 by Equation (7)
2: Build T1 and T3, each with the product of k2 lists
3: Sample s ∈ {0, 1}

k2
k
n

4: Apply Claw-finding between the lists T0 ./s T1 and T2 ./s T3
5: return “good” if a claw is found, “not good” otherwise
6: EndSample

The key idea of Algorithm 4 is that the knowledge of T1 and T3, and the con-
straints of merging, make sure that we can run the quantum walk as expected.
That is, we can query T0 ./s T1 and T2 ./s T3 in time O(1).

By definition of k1 and k2, the product lists T0, T1, T2, T3 have respective
widths (k − k1 − k2), k2, (k1 − k2), k2. Thus, taking into account the quantum
search on the right prefix s, and using Theorem 5, we compute the following
time complexity for Algorithm 4:

2
k2
2k n
(

2rn + 2( k−k1−k2
2k + k1−k2

2k −r)n × 2rn/2
)

+ 2
k2
k n , (8)

where r is the parameter specifying the size of the vertex. The corresponding
QRACM used is 2

k2
k n, the corresponding QRAQM (for the walks) is 2rn, and

the total memory is the maximum between both.
Thus, when k1, k2 are free, the time complexity exponent t of Algorithm 4 is

solution to the following optimization problem:

(C1) t ≥ k2
2k + r (C2) t ≥ k2

k (C3) t ≥ k−k2
2k −

r
2

(C4) r ≤ k−k1−k2
k (C5) r ≤ k1−k2

k

Here (C1) and (C3) correspond to the walks, (C2) to the computation of lists
L1 and L3 outside the main loop. (C4) and (C5) are the constraints imposed on
our choice of r. Solving this optimization problem gives us the choice of k1 and
k2 specified by Equation (7), and the time complexity exponent of Theorem 4.

6.3 Results

In Figure 6, we compare Algorithm 4 with the previous work of [27] (where
the formula was γk = 1

k
k+dk/5e

4 ) and to the intermediate result of Theorem 3.
Numerical results are given in Table 1 in Appendix. Our curve improves or
subsumes all previous works on k-XOR (including the special cases of Ambainis’
algorithm for k = 2 and [5] for 4-SUM).

The algorithm for 4-SUM is very simple. We start from 4 lists. Two of them
are stored in QRACM. Then, we do a quantum search over a prefix of n

4 bits.
In order to find the good one, we search for a claw between the two level-1 lists
of size 2n4 . Thus the complexity is of order:

√
2n4 × 2n4× 2

3 = 27n/24.
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0.32

0.34

k

γ
k

[27]
Theorem 3
Theorem 5

The complexities
are Õ(2γkn),

starting from k = 3

Fig. 6. Single-solution k-XOR time complexity, and comparison with [27].

6.4 Applications

Similarly as those of [27], the algorithms of this paper apply to the class of
bicomposite problems studied by Dinur et al. [13]. This correspondence is actually
easier to see than in [27], because our algorithms have a simple description.

A prominent example of bicomposite search is multiple-encryption, where we
search for the key used by a block cipher made of a sequential composition of
independent block ciphers.

Problem 3 (r-encryption). Let E1, . . . , Er be r random block ciphers on n bits,
indexed by key spaces of the same size 2n. Assume that we are given r plaintext-
ciphertext pairs (pi, ci), encrypted by the composition of the Ei under a sequence
of independent keys k1, . . . , kr:

∀i, ci =
(
Erkr ◦ . . . ◦ E

1
k1

)
(pi), then retrieve k1, . . . , kr.

Theorem 6. For any r ≥ 2, let γr be the time complexity exponent given
by Theorem 4. Then there exists a quantum algorithm for r-encryption, of time
complexity O(2γrrn).

In particular, we obtain an algorithm for 4-encryption (Algorithm 5) that
runs in time Õ

(
27n/6) for 4n bits of key, improving the previous Õ

(
25n/4) [27].

7 Conclusion

In this paper, we simplified the analysis of quantum k-XOR algorithms and
improved the previous results for the single-solution case, leading to the best
known quantum algorithms for bicomposite search and multiple-encryption.
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Algorithm 5 4-encryption algorithm.
Input: 4 plaintext-ciphertext pairs (pi, ci)
Output: the sequence of 4 keys k1, k2, k3, k4

1: Build the list L1: {E1
k1 (p1), k1 ∈ {0, 1}n}

2: Build the list L4: {(E4
k4 )−1(c4), k4 ∈ {0, 1}n}

3: Sample s ∈ {0, 1}n
4: Define: L12 the list of all (k1, k2) such that E1

k1 (p1) = (E2
k2 )−1(s)

. It is easy to sample from L12, by taking a random key k2, computing
(E2

k2 )−1(s), and looking in L1 for a match
5: Define: L34 the list of all (k3, k4) such that E3

k3 (s) = (E4
k4 )−1(c4)

6: Search a claw between L12 and L34, if it exists: a pair (k1, k2), (k3, k4) such that
all pi encrypt to all ci

7: return “good” if a claw exists, “not good” otherwise
8: EndSample

We have found significant advantage in combiningmerging trees and quantum
walks, such as improving the previous best algorithm for 4-SUM. However, this
advantage vanishes in the long run, and both methods converge towards the
same exponent 2

7 . For now, a problem that can be reduced to k-SUM for any k
(such as subset-sum) does not see any improvement from using walks.

It is possible, although we have not attempted, to define a bigger class of
merging tree algorithms built entirely over quantum walks, possibly with nested
walks. This would be much more technical, and it is difficult to estimate whether
one would gain a significant advantage. Whether this might improve the expo-
nent 2

7 is an interesting open question.
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A Results for Single-solution k-XOR

Table 1. Quantum time and memory complexity exponents for Single-solution k-XOR
obtained with Algorithm 4. The time exponent is the best known for all values of k,
and subsumes all previous works.

Time QRACM QRAQM Parameters
k Rounded As fraction Rounded As fraction Rounded As fraction k1 k2

2 0.3333 1/3 0.0 0 0.3333 1/3 1 0
3 0.3333 1/3 0.3333 1/3 0.0 0 1 1
4 0.2917 7/24 0.25 1/4 0.1667 1/6 2 1
5 0.3 3/10 0.2 1/5 0.2 1/5 2 1
6 0.3056 11/36 0.1667 1/6 0.2222 2/9 3 1
7 0.2857 2/7 0.2857 2/7 0.1429 1/7 3 2
8 0.2917 7/24 0.25 1/4 0.1667 1/6 4 2
9 0.2963 8/27 0.2222 2/9 0.1852 5/27 4 2
10 0.3 3/10 0.3 3/10 0.15 3/20 5 3
11 0.2879 19/66 0.2727 3/11 0.1515 5/33 5 3
12 0.2917 7/24 0.25 1/4 0.1667 1/6 5 3
13 0.2949 23/78 0.2308 3/13 0.1795 7/39 6 3
14 0.2857 2/7 0.2857 2/7 0.1429 1/7 6 4
15 0.2889 13/45 0.2667 4/15 0.1556 7/45 7 4
16 0.2917 7/24 0.25 1/4 0.1667 1/6 7 4
17 0.2941 5/17 0.2941 5/17 0.1471 5/34 8 5
18 0.287 31/108 0.2778 5/18 0.1481 4/27 8 5
19 0.2895 11/38 0.2632 5/19 0.1579 3/19 8 5
20 0.2917 7/24 0.25 1/4 0.1667 1/6 9 5
21 0.2857 2/7 0.2857 2/7 0.1429 1/7 9 6
22 0.2879 19/66 0.2727 3/11 0.1515 5/33 10 6
23 0.2899 20/69 0.2609 6/23 0.1594 11/69 10 6
24 0.2917 7/24 0.2917 7/24 0.1458 7/48 11 7
...

...
...

...
...

...
...

...
...

B List Sizes and Heuristics
In this section, we prove that the list sizes do not deviate “too much” from
their expectation in the merging algorithms studied in this paper, and we show
that Heuristic 1 is not required in our quantum algorithms.

Let us consider two lists L1,L2 merged into Lu, with some prefix t of length
un. We start with the case where Lu is smaller.
Lemma 4. If `u ≤ max(`1, `2), there exists two constants a, b > 0 such that with
probability 1 − e−an, a proportion b of the elements of Lu are drawn uniformly
at random from all n-bit strings with prefix t.
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Proof. As an example of non-independence between the output pairs, let us
consider x1, y1 ∈ L1 and x2, y2 ∈ L2, then the events x1 ⊕ x2 = t|∗, y1 ⊕ x2 =
t|∗, x1 ⊕ y2 = t|∗ and y1 ⊕ y2 = t|∗ are not independent. In order to recover
independence when `u ≤ max(`1, `2), we will use an argument similar to [24].
We first need a technical result, which is a property of random mappings.

Lemma 5. Let h : {0, 1}n → {0, 1}n be a random function. Let Y (h) be the
number of elements in {0, 1}n without a preimage. Then:

Pr(Y (h) > 0.4 · 2n) ≤ 0.99872n . (9)

Proof. We write Y (h) =
∑
i∈{0,1}n Yi(h), where Yi(h) is 1 if i has no preimage by

h. The Yi(h) are not independent, but they are negatively correlated: knowing
that x has no preimage only decreases the probability that this is the case for
x′ 6= x. In that case, a Chernoff bound applies [29], and for any δ > 0:

Pr
(
Y (h) ≥ (1 + δ)2n

e

)
≤
(

eδ

(1 + δ)1+δ

) 2n
e

,

where 2n
e is the average of Y (h), which is a standard result of random map-

pings [14]. We then choose δ = 0.4e − 1 ' 0.087 and obtain the claimed bound
by rounding the term on the left side.

Assume without loss of generality that `2 ≤ `1. The idea is that since `u ≤
`1, a given element of L1 intervenes in one pair on average, which ensures the
independence of the pairs. We assume that `2 − u > 0.

First of all, we cut L2 into sublists Lx2 depending on un-bit prefixes x. Then
any element in Lu is the sum of an element x1 in L1 of prefix x, and an element
x2 of Lx2 . We use Chernoff bounds to show that the individual sizes of the Lx2
do not deviate much from their expectation E (Lx2) = 2n(`2−u). We have:

∀x, ∀δ ≤ 1,Pr(|Lx2 − E (Lx2)| ≥ δ E (Lx2)) ≤ 2e−
δ2 E(Lx2 )

3 , (10)

and by taking δ = (E (Lx2))1/3, since E (Lx2) is exponential in n, taking a union
bound over all prefixes x does not change that the probability to deviate is
vanishingly small:

Pr
(
∃x, |Lx2 − E (Lx2)| ≥ E (Lx2)2/3

)
≤ 2un+1e−

E(Lx2 )1/3

3 . (11)

Focusing on L1, we extract a sublist L′1 of its elements having distinct pre-
fixes of un bits, and we show that the size of L′1 is only smaller by a constant.
This comes from Lemma 5. If we index elements of L1 by their `1n-bit prefix,
then at least a constant proportion of these prefixes are occupied, with probabil-
ity exponentially close to 1. Combining this with Equation (11), we bound the
deviation of the merged list size from its expectation.

It remains to observe that L′1 ./ L2 ⊆ Lu contains independent sums, since
each element of L2 appears at most once. In the case where `1 = `2 = u, taking
unique prefixes for both lists L1 and L2 gives the same result.
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Lemma 4 allows to show that if all list sizes in a merging tree are decreasing,
then with probability exponentially close to 1, its time complexity is, up to a
constant, equal to the average. Indeed, we will simply use the Lemma for each
merging step individually. This includes Wagner’s algorithm [31] as a special
case.

In a generic merging tree, however, the list sizes do not always decrease. In
fact, when the initial lists are too small, the first levels of the tree will make them
increase, as remarked by Minder and Sinclair [26]. They will decrease afterwards,
because the complete merging tree ends with a single solution.

This case seems problematic at first sight, because the bigger lists of the
middle levels are not statistically close to lists of uniform bit-strings. For exam-
ple, when we take a complete cross-product of two lists, the 2(`1+`2)n resulting
elements were obtained from 2`1n + 2`2n, and there are many relations between
them. But despite this “loss of randomness”, the list behaves nicely for the sub-
sequent merging steps. The following lemma aims at capturing this intuition.

Lemma 6. Consider t lists L1, . . . ,Lt and their product L = L1 × . . . × Lt.
Assume that the Li are of exact size 2n` and contain uniformly drawn n-bit
strings. Then there exists two constants a, b > 0 such that with probability 1 −
e−an, L meets a proportion b of n`t-bit prefixes.

Proof. We detail the proof for a pair of lists (L1,L2), but the extension to t lists
is easy. We consider two independent, arbitrary ranges of `n bits, “range 1” and
“range 2”.

By Lemma 5, L1 meets a proportion b1 of bit-strings in range 1, with proba-
bility 1− ea1n for some a1, b1 > 0. We will assume that all prefixes are met (for
simplicity), but in general we must always reason with some of them missing.

We can define a random variableX1(i) that given a range-1 value i ∈ {0, 1}n`,
gives the value of the (1 − `)n remaining bits of the corresponding element in
L1. We define X2(i) similarly.

The cross-product L1×L2 can be partitioned into 2`n bins depending on the
value in range 1. Bin i contains all the X1(j) ⊕ X2(i ⊕ j) for j ∈ {0, 1}n. But
then, a given X1(j) or X2(j) intervenes only in one element: because they are
independent, we can use Lemma 5 again. This time, we show that for a given
value of i, all (up to a constant) values in range 2 are met. Because we used a
Chernoff bound, this can hold simultaneously for all range-1 values.

In the end, a constant number of range-1 values are met, and for each of
them, a constant number of range-2 values are met as well. Thus a constant
proportion of 2`-bit prefixes are met in total.

Lemma 6 contains all that we need for more general merging trees. At a given
merging step, we will not have necessarily a complete cross-product, as we might
have merged for some prefix value. But the merged list is then a sublist of the
cross-product, depending on the prefixes, and we can also bound its size.

In practice, we need to use this lemma only for our Single-solution k-XOR
algorithms, which have a very specific shape. They have three levels (see Algo-
rithm 3):
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• Level 2: 4 complete cross-products (of different sizes);
• Level 1: merging with a decreasing size;
• Level 0: merging with a single solution at most (often none).

The tree is parameterized by some guess, that will only be right once. So
we only need our algorithm to succeed once, on this guess. By Lemma 6, we
guarantee the size of the level-2 lists, but also of the level-1 lists (since there are
enough elements with the given prefixes). Then it amounts to find a collision
between them.

Quantum Complexities. If we remove Heuristic 1, the “quantum merging” lemma
(Lemma 3) is not true anymore. We cannot guarantee that the list sizes are ex-
ponentially close to their average and, in particular, all our QSample procedures
may now have constant probabilities of error.

However, fixing the Many-solutions and Single-solution k-XOR algorithms
presented in this paper is easy. In the Many-Solutions case, the optimal algo-
rithms use only a single level of Amplitude Amplification: they do not amplify
non-exact procedures. In fact, they perform only quantum searches in some lists
at the lowest level. The guarantee on all list sizes entails that these searches will
succeed with constant probability. Since the results (partial k-XORs) can always
be checked, there is only a constant increase in time complexity.

In the Single-solution case, the algorithms use a single level of quantum search
(for an intermediate prefix, and possibly, a sublist), followed by either a single
level of quantum search, or a quantum walk, that solves a Single claw-finding
problem. This “inner” procedure has a constant probability of success due to our
loose guarantees on the list sizes: we can repeat it O(n) times to make its failure
probability exponentially low. This ensures that when the solution occurs, the
“inner” procedure always finds it, and that the “good choice” for the outer search
is flagged without error. This ensures a constant probability of success.

C Proof of Optimality in the QRACM Setting

In the QRACM model, we give a new proof of the following result from [27],
based on our new definition of merging trees:

For any integer k and c > 0, the best quantum merging procedure
that samples 2cn times a k-XOR on n bits has a time complexity expo-
nent max (αk(1 + 2c), c), where αk = 2κ

(1+κ)2κ+k where κ = blog2(k)c.

Proof. We use a recurrence on k (this general statement with the parameter c
is required for a nice recurrence hypothesis). For k = 2, we have κ = 1 and
α2 = 1

3 . Finding 2cn collisions (x1, x2, h(x1)⊕h(x2) = 0), or sampling a collision
2cn times can be done in time 2( 2c

3 + 1
3 )n, using a re-optimization of the steps in

BHT collision search [8]. This works as long as c ≤ 1, i.e., 2c+ 1 ≤ 3. Thus, the
theorem is true for k = 2.
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Let us consider a merging tree Tk for some k > 2, with a list size c > 0 at
the root. The root node has two subtrees: the “list” one Tr, on the right, and
the “sampled” one Tl, on the left. Let u be the length of the zero-prefix in both
nodes. Let `r and `l be their respective sizes, let kr + kl = k be their width.

First, notice that we have 1−u−`r ≥ 0, otherwise we could reduce the value
of the parameter `r without increasing the time complexity.

We use the recurrence hypothesis on Tl and Tr, relatively to the number
of zeros u that they have (since they contain XORs on un bits instead of
n). The right list, of size u `ru , is produced in time max

(
αkr (1 + 2 `ru ), `ru

)
u =

max (αkr (u+ 2`r), `r).
Since we want to sample c times from the root node, we need to sample

c+ 1
2 (1− u− `r) times from the left list, which costs:

max
(
αkl

(
u+ 2

(
c+ 1

2(1− u− `r)
))

,

(
c+ 1

2(1− u− `r)
))

We obtain that the time complexity exponent t must be minimized under the
constraints:

(C1) t ≥ αkr (u+ 2`r) (C2) t ≥ `r
(C3) t ≥ αkl(2c+ 1− `r) (C4) t ≥ c+ 1

2 −
u
2 −

`r
2

By combining these inequalities, we will obtain information about the shape
of the optimal trees. We combine (C1), (C4) and (C3) to eliminate u and `r:

(C1) + 2αkr (C4) + αkr
αkl

(C3) ⇐⇒ t

(
1 + 2αkr + αkr

αkl

)
≥ 2αkr (2c+ 1) .

Then this inequality becomes:

t ≥ 2αkr
1 + 2αkr + αkr

αkl

(2c+ 1) = 2αkrαkl
αkl + αkr + 2αkrαkl

(2c+ 1) .

We are interested in the quantity 2αkrαkl
αkl+αkr+2αkrαkl

when kl and kr vary. We
would like to make it minimal, since this loosens the constraint on t. Thus, we
want to maximize its inverse:

1 + 1
2αkl

+ 1
2αkr

.

Since αkl is a decreasing function of kl, this sum becomes maximal when kl is
close to kr = k − kl. More precisely: if k is even, then kr = kl = k

2 gives the
smallest sum possible. If k is odd, then kl =

⌊
k
2
⌋
and kr = k −

⌊
k
2
⌋
or the

converse.
In both cases, if we write κ = blog2 kc, then

blog2 bk/2cc = blog2(k − bk/2c)c = κ− 1 .
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Using the recurrence hypothesis, we obtain that:

1 + 1
2αkl

+ 1
2αkr

= 1 +
(1 + κ− 1)2κ−1 + k −

⌊
k
2
⌋

2κ +
(1 + κ− 1)2κ−1 +

⌊
k
2
⌋

2κ

= 2κ(1 + κ) + k

2κ .

Thus, we can write: t ≥ (2c+ 1) 2κ
2κ(1+κ)+k , which gives the expected formula

for αk. The second inequality t ≥ c stems trivially from (C4).
We finish the proof of optimality by showing, also by induction on k, that

the optimization of the balanced trees Tk indeed reaches this exponent.

Lemma 7. Optimizing the balanced trees Tk yields the optimal exponents.

First, we focus on the case c ≤ αk
1−2αk , where the complexity exponent is

expected to be (2c + 1)αk, and we consider an even k. We choose u = (1 −
3αk)(2c+ 1) and `r = αk(2c+ 1). This gives that c+ 1

2 −
u
2 −

`r
2 = (2c+ 1)αk,

so (C4) is satisfied. Second, we have:

αk/2(u+ 2`r) = (2c+ 1)αk/2(1− αk) = (2c+ 1)αk

by definition of the αk (their formula implies αk/2
1+αk/2

= αk). Thus (C1) is sat-
isfied. By a similar computation, (C3) is satisfied since αk/2(2c + 1 − `r) =
αk(2c+ 1). Finally, (C2) is trivially satisfied by our choice of `r.

If k is odd, we choose

u =
(

1−3αk + 1
(1 + κ)2κ + k

)
(2c+1) and `r =

(
αk−

1
(1 + κ)2κ + k

)
(2c+1) .

Again, (C4) becomes an equality. (C1) is an equality as well, using the fact that
αkr = αbk/2c = α(k−1)/2. Indeed, we have:

αkr (u+ 2`r) = α(k−1)/2

(
1− αk −

1
(1 + κ)2κ + k

)
= (2c+ 1) 2κ−1

κ2κ−1 + (k − 1)/2

(
2κ(1 + κ) + k − 2κ − 1

(1 + κ)2κ + k

)
= (2c+ 1)αk .

The constraints (C2) and (C3) become strict inequalities, but they are also
satisfied.

When c ≥ αk
1−2αk , all the merges become classical. The only quantum opera-

tions remaining are the Grover searches in some newly inserted leaves.

D Proof of Optimality without QRACM

In the circuit model, we found that our new definition of merging trees allowed
to reduce the exponents for k = 5 and 7 that were obtained in [27]. We obtain
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Fig. 7. Optimal 5-XOR merging tree without QRACM.

β5 = 40
129 and β7 = 15

53 instead of 14
45 and 2

7 respectively. The details are given
in Figure 7 and Figure 8. For other values of k, our results coincide with [27]
and we prove:

For any integer k ≥ 8 and c > 0, the best quantum merging procedure
without qRAM that samples 2cn times a k-XOR on n bits has a time
complexity exponent max (βk(1 + c), c), where:

βk =
{ 1

κ+1 if k < 2κ + 2κ−1

2
2κ+3 if k ≥ 2κ + 2κ−1 ,

and κ = blog2 kc. This procedure samples classically all nodes, except
some leaves.

Proof. We prove this by induction on k. For small values of k, the experimental
results give us the optimal trees. We consider a merging tree Tk for k ≥ 8, with
a list size c > 0 at the root. We use the same notations as in Appendix C, and
introduce kl, kr, βkl , βkr and the variables u, `r.

Let us take some integer k ≥ 8. Having +c instead of +2c in the formula
comes from the use of a classical merging at the root. Let us remark the following:
once we know that the root merge is classical, we can deduce easily that both
subtrees must be of similar shapes, hence k` =

⌊
k
2
⌋
and kr =

⌈
k
2
⌉
or the converse.

Then we can use the recurrence hypothesis easily: the two subtrees have the
same complexity, which depends on the case for k. If k < 2κ + 2κ−1, then⌊
k
2
⌋
< 2κ−1 + 2κ−2; and conversely, if k ≥ 2κ + 2κ−1, then

⌊
k
2
⌋
≥ 2κ−1 + 2κ−2.

In order to prove that the root merge is classical, let us assume that it is
quantum instead. We use the recurrence hypothesis for both subtrees. Although
the actual optimal merging trees do not allow to sample quantumly, we suppose
that they do. Thus, sampling c+ 1

2 (1−u−`r) times from the left child is done in
time max(c+ 1

2 (1− u− `r), βkl
(
u+ c+ 1

2 (1− u− `r)
)
). Besides, for each time

we sample the left child, we also need to do a memory query on the right, which
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Fig. 8. Optimal 7-XOR merging tree without QRACM.

costs `r because we don’t have QRACM. Building the right child costs a time
at least max(βkr (u+ `r), `r) (notice that this is not tight for small kr). Let t be
the time exponent, then we have the constraints:

(C1) t ≥ βkr (u+ `r) (C2) t ≥ βkl
2 (2c+ 1 + u− `r)

(C3) t ≥ c+ 1
2 (1− u− `r) + `r

=⇒ 2t ≥ (2c+ 1− u+ `r)

By combining (C2) and (C3), we obtain:(
2
βkl

+ 2
)
t ≥ 2(2c+ 1) =⇒ t ≥ βkl

1 + βkl
(2c+ 1) = β2kl(2c+ 1)

where the last equality follows by definition of the βi. But since t ≤ βk−1(c+ 1),
we obtain that βk−1 ≥ β2kl =⇒ 2kl ≥ k − 1 =⇒ kl ≥ bk/2c.

Furthermore, at the optimal point we expect:

βkl
2 (2c+ 1 + u− `r) = 1

2(2c+ 1− u+ `r) =⇒ u = `r + βkl − 1
βkl + 1(2c+ 1) .

Next, we remark that an algorithm without QRACM should cost at least as
much as in the QRACM model, so we introduce:

(C4) t ≥ αkr (u+ 2`r) =⇒ t ≥ αkr
(

3`r + βkl − 1
βkl + 1(2c+ 1)

)
.

Since u ≥ 0, we should have `r ≥
1−βkl
βkl+1 (2c+ 1). But then we find:

t ≥ 2αkr
βkl − 1
βkl + 1(2c+ 1) .
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Since we have kl ≥ bk/2c, at the same time, we should have kr ≤ dk/2e so
kr ≤ kl + 1 and αkr ≥ αkl+1. This inequality becomes t ≥ 2αkl+1

1−βkl
βkl+1 (2c +

1). A quick computation of the first values of αi and βi shows that for kl ≥
15, 2αkl+1

1−βkl
βkl+1 ≥ βkl+1. We would thus get t ≥ βkl+1(2c + 1) ≥ βkl+1(c + 1),

which contradicts the fact that the time should get smaller as k increases.
In conclusion, while small values of k may benefit from using a quantum

search at the root of the tree (and this is indeed the case), for a general k, the
root node is a classical merge between two classically stored lists.

E Proof of Optimality for Single-solution k-XOR

We now prove Theorem 3. More precisely, we will prove the following result. It
implies the formula for the optimal complexity and the shape of the optimal
trees that we gave.

Theorem 7. For any k, the optimal time t for the Single-solution k-XOR prob-
lem, with our merging tree framework, is given by:

t = min
k1,k2∈N2,k1+k2≤k

(
max

(
k2

k
,

1
2

(
1− k1

k

)
,

1
4

(
1 + k1 − k2

k

)))
(12)

and can thus be obtained by solving a simple mixed integer linear program.

In Appendix E.1, we outline the definition of extended merging trees. In Ap-
pendix E.2, we show how this definition leads to optimal algorithms of a very
simple shape, with a constant number of parameters to optimize. We reduce the
constraints further in Appendix E.3 and finish the proof of the theorem.

E.1 Definition of Extended Merging Trees

Structurally, we still consider binary trees as in Definition 2. We adopt the same
numbering of nodes and keep the variables kji , u

j
i , `

j
i that determine the shape

of the list Lji . Thus, the tree still represents an appropriate merging operation.
We introduce a new variable r for repetitions. We cannot expect the tree to

always contain a k-XOR; instead, we will repeat the computation until we find
one (with a quantum search). Constraint 3 and 2 remain unchanged, but we
adapt the constraint for the root node:

Constraint 5 (Root node). At the root node: u0
0 + r = 1 and `0

0 = 0.

Next, we add new repetition variables rj . On most nodes we set r = 0, but
we single out the right subtrees on the main branch, as depicted on Figure 9.
Thus, there is only one non-zero repetition variable at each level, which is why
we simply number them level by level.

For each subtree T j , rj represents the number of times it must be recom-
puted. Each computation should produce a new, independent list of elements,
possibly with a new prefix.
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Root
k = k1

1 + k2
1 + k3

1 + 1

Subtree T 1

k1
1, r

1
1

L1
0

k = k2
1 + k3

1 + 1

Subtree T 2

k2
1, r

2
1

L2
0

k = k3
1 + 1

Subtree T 3

k3
1, r

3
1

L3
0

k = 1

Fig. 9. Main branch of a merging tree and all the subtrees that are attached to it.

Constraint 6 (Repetitions). We have: r =
∑
j r

j, and for each subtree T j of
width kj: r ≤ kj

k − `
j , where `j is the size of the list at the root of T j.

We still denote by tji the sampling time of a node. Constraint 4 still applies,
in its simplest form, since we use the QRAQM model only.

Constraint 7 (Sampling). Let T ji be a node in the tree, either an S-node or
an L-node. If T ji is a leaf, tji = uj

i

2 . Otherwise, T ji has an S-child Sj+1
2i and an

L-child Sj+1
2i+1, and:

tji = tj+1
2i + 1

2 max(uji − u
j+1
2i − `

j+1
2i+1, 0) . (13)

However, the total time complexity will be computed differently. Focusing on
the subtrees T j of the main branch, we let tj denote their respective complete
time complexities, that is, the time to build the whole subtree with quantum
merging.

Constraint 8 (Subtrees). Let T j be the right subtree at level i. Then:

tj = max
(

max
List nodes of T j

(tji + `ji )
)
, (14)

where the sum is over all list nodes of T j, including its own root (since this is a
list node itself).

Then, we can now define the formulas for the time and memory complexities.
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Definition 5. Let T be an extended k-merging tree. Let T 1, . . . , T p be the right
subtrees of the main branch. We define Tq(T ), Tc(T ) and M(T ) as:

M(T ) = max
List nodes

(`ji )

Tq(T ) = max
(
r

2 + t00,
r1

2 + t1,
r1 + r2

2 + t2, . . . ,
1
2

 j∑
j′=1

rj
′

+ tj , . . . ,
r

2 + tp
)

The idea of this definition is that the algorithm performs p nested loops, one
for each subtree of the main branch. We choose to nest from level 1 to p, with
the idea that bigger and more costly subtrees may be attached to nodes at lower
levels. This generic view is displayed in Algorithm 6. However in the optimal
algorithm for Single-solution k-XOR, all these levels collapse into a single one.

Algorithm 6 Generic algorithm defined by an extended merging tree.
Input: oracle access to h : {0, 1}n/k → {0, 1}n
Output: k-XOR solution tuple

1: for all Choices of T 1 do
. Either defined with a change of prefix, or a new choice of elements.

2: Build T 1

3: for all Choices of T 2 do
4: Build T 2

. . .
5: for all Choices of T p do
6: Build T p
7: Sample x ∈ Lp0
8: Find a match in T p
9: Find a match in T p−1

. . .
10: Find a match in T 1

11: if this gives a complete k-XOR to zero then
12: return the solution
13: EndSample

We can see that, with our definitions of tj , t0, rj and r, the time complexity
of Algorithm 6, up to a polynomial factor, is going to be:

2nr1

2nt1︸︷︷︸
T1

+2nr2

2nt2︸︷︷︸
T 2

+ . . .+ 2nrp
2ntp︸︷︷︸
Tp

+ 2nt
0︸︷︷︸

Sample

 . . .

 (15)

where we recover the equation of Definition 5 (in the quantum setting, all these
loops become nested quantum searches).

Correspondence between Trees and Algorithms. Similarly as in Section 4, to any
extended merging tree corresponds a classical (respectively quantum) extended
merging algorithm that has the wanted complexity.
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Theorem 8 (Quantum extended merging strategies). Let Tk be an ex-
tended k-merging tree and Tq(Tk) computed as in Definition 5. Then there exists
a quantum extended merging algorithm that, given access to a quantum oracle
for h, finds a k-XOR.

This algorithm succeeds with constant probability. It runs in time Õ
(
2Tq(Tk)n),

counted in n-qubit register operations, makes the same number of queries to
h. It uses a memory O

(
2M(Tk)n), counted in n-qubit registers (QRAQM). The

constants in the O depend on k.

Proof (sketched). We rely on Theorem 2 for the correctness of merging strategies.
Each level of quantum search builds a new subtree. The search space itself is
defined by an arbitrary prefix, either of the codomain (a merging constraint) or
of the domain (an input sublist). A given bit-string of the search space at level
j is good if, after building the corresponding subtree T j , and after running the
search at level j + 1, we find a solution k-XOR. Among all repetitions of the
subtrees T 1, . . . , T p, only one choice shall lead to a solution. We miss it if the
corresponding merging tree fails to find it, but Theorem 2 ensures a constant
probability of success.

E.2 Step 1: Reducing the Search Space

When merging, we drop many tuples. But since all possibilities must be studied
in the end, this will only create more repetitions. For example, Schroeppel and
Shamir’s algorithm requires 2n/4 repetitions due to the intermediate prefix of n4
bits. This simple fact simplifies considerably the shape of the trees.

Lemma 8. For any k, the optimal time complexity is reached by a tree where
all main subtrees are trivial merges: T i has no guessed prefix, except at its root.

Proof. Let T i be one of the subtrees of the main branch. This is a list node of
size ` and prefix u. Next, we assume that its children Ls (sampled) and Ll (built)
have a non-empty prefix u′. We have u′ ≤ u by the constraints of merging trees.

Let rl be the number of times that Ll will be repeated, let r be the additional
number of repetitions of T i. By dissociating the two, we are going to prove at
the same time that more complex repetitions loops do not bring an advantage.

We have rl ≥ u′ and r ≥ u, and the total number of repetitions of this
subtree T i is at least rl + r. We will not write the total time complexity of the
algorithm, because the other subtrees and loops intervene as well, but we focus
on the terms that are related to T i. We use placeholders (*) for the terms that
remain unchanged.

(∗) ·
(

2
nrl

2

(
Build Ll + 2nr2

(
Build T i + (∗)

)))
.

Let tl be the time to build Ll, `l its size, ts the time to sample Ls. We rewrite
this as:

(∗) ·
(

2
n(rl−u

′)+nu′
2

(
2ntl + 2nr2

(
2

(u−u′−`l)n
2 2tsn · 2n` + (∗)

)))
.
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k

T 1, k1, r1
`1, u1 = `2 = `r1

T 1
r

kr1 , `r1 = u1
No prefix

T 1
l

kl1, `l1 = `1
No prefix

T 2

k2, `2, r2
No prefix

T 3

k3, `3
No prefix

Fig. 10. Extended merging tree with three levels and a single non-empty prefix.

Now, let us simply remove the prefix u′ from both Ls and Ll. We want a list
Ll of same size as before. This is possible by reducing the width of the subtree
and / or taking a sublist of it (in which case it adds a small repetition loop). In
return, we increase the size of Ls so that it forms a bigger search space.

We do not have to loop on u′ anymore, although there are still rl − u′ ≥ 0
repetitions to take into account. The terms ts and tl are replaced by t′s ≤ ts and
t′l ≤ tl. The complexity becomes:

(∗) ·
(

2
n(rl−u

′)
2

(
2nt
′
l + 2nr2

(
2

(u−`l)n
2 2t

′
sn · 2n` + (∗)

)))
.

The only term that has increased here is the sampling of an element in the
root of T i. Since the prefix condition on u′ is removed, we have to iterate the
quantum search 2

(u−`l)n
2 times instead of 2

(u−u′−`l)n
2 times. But this increase is

balanced with the removal of u′.
Thus, any non-empty prefixes inside the main subtrees can be removed, by

increasing the sampling time of these subtrees instead. If we focus on this par-
ticular example T i, then the list child Ll is simply a list of unconstrained sums
of elements, and so is the sampled child Ls.

We can also make another remark. If u is nonzero, then it must be equal to
`l. Indeed, if u was smaller, then we might as well decrease the size of Ll and
reduce the time complexity. But if it was bigger, we would pay a term 2(u−`l)n/2

for each element of T i produced, in addition to the repetition term 2u/2. Thus
we might as well make the root list of T i bigger to compensate.

Next, we can show that the main branch of this optimal tree has, actually,
only three levels. This is represented on Figure 10.

Lemma 9. For any k, the optimal time complexity is reached by a tree where
only two nodes (children of the root) have a non-empty prefix.

Proof. Let us consider a tree with four levels, with two non-trivial prefixes u1
(at level 1) and u2 (at level 2). As an illustration, we can picture a tree like
in Figure 10 but with a non-empty prefix u2 in T 2.

We have at least two repetition loops: the outer one in which we choose
u1, then build T 1 (of size `1), and the inner one in which we choose u2, then
build T 2 (of size `2). Inside all these loops, there is a final term corresponding
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to the quantum search at the root. This term contains a factor 2(u1−u2−`1)n/2

corresponding to the search of a matching element in T 1, when we try to compute
the root of the merging tree.

Similarly to the proof of Lemma 8, we will now remove the prefix u2, but keep
the size of T 2 unchanged. As a result, we have to increase the search space for
the last quantum search. The term 2(u1−u2−`1)n/2 becomes 2(u1−`1)n/2, because
we don’t have the prefix u2 anymore. However, this is balanced by the removal
of 2u2n/2 quantum search iterates.

E.3 Step 2: Solving the Constraints

We are now considering the simple tree shape of Figure 10. There are only a
constant numbers of variables, some of which are integer: the shape of the tree
is determined by k3, k2, k

l
1, k

r
1. The other parameters are `3, `2, `1 and u1 = `2

by optimization. Overall, the structure of the corresponding algorithm is similar
to Algorithm 3. Let t be its time complexity.

Computing products of lists (i.e., nodes at level 2 in the tree) outside or
inside the repetition loops makes a change in the constraints. We find that it
is better to create them outside. There are possibly two repetition loops, with
variables r1 and r2:

r1 = u1 + kl1
k
− `1 + kr1

k
− `2 = kl1

k
− `1 + kr1

k
and r2 = k2

k
− `2 , (16)

and t satisfies the constraints:

t ≥ max
(
k2
k ,

kl1
k

)
Computation of product lists

kr1
k ≥ `2,

kl1
k ≥ `1,

k2
k ≥ `2 Limitations on the list sizes

t ≥ r1
2 + `1 Total workload of T 1

t ≥ r1
2 + r2

2 + 1
2
(
k3
k

)
Final search in T 3

which gives:

(C1) t ≥ max
(
k2

k
,
k1 − kr1

k

)
(C2) kr1

k
≥ `2,

k1 − kr1
k

≥ `1,
k2

k
≥ `2

(C3) t ≥ 1
2

(
kl1
k
− `1 + kr1

k

)
+ `1 =⇒ t ≥ 1

2

(
k1

k
+ `1

)
(C4) t ≥ 1

2 (1− `1 − `2)

We will now write a smaller set of constraints without the variables `1 and `2, and
show that they are sufficient. From (C4), (C2) and (C3) we obtain: 4t ≥ 1+k1−k2

k .
We also keep t ≥ k2

k . From (C4) and (C2) we obtain: 2t ≥ 1− `1 − `2 ≥ 1− k1
k .

To show that these constraints are sufficient, we need to exhibit a tree that
reaches the prescribed complexity for any choice of k1, k2.
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Lemma 10. Let k1, k2 be such that k1 + k2 ≤ k. Then there exists an extended
merging tree algorithm solving Single-solution k-XOR in time (exponent):

t = max
(
k2

k
,

1
2

(
1− k1

k

)
,

1
4

(
1 + k1 − k2

k

))
. (17)

k

T1, k1

`1 = k−k1−k2
2k , u1 = `2 = k2

k

`r1 = k2
k

No prefix
`l1 = k−k1−k2

2k
No prefix

T2, k2

`2 = k2
k

No prefix

T3
k3 = k − k1 − k2

Fig. 11. Tree of Lemma 10.

Proof. First of all, consider the case k1 ≤ k2, i.e., the subtree at level 2 is
bigger than the subtree at level 1. This implies in particular t ≥ k2

k ≥
k1
k and

t ≥ 1
2 (1 − k1

k ), thus t ≥ 1
3 : this is unlikely to be a good parameter choice. In

that case, we must find t ≤ max
(
k2
k ,

1
2
(
1− k1

k

))
. This is easily obtained with a

trivial tree, that has only two subtrees: one is obtained by the product of k1 lists
(time k1

k ≤
k2
k ), and the other is an exhaustive search over all k − k1 remaining

lists, in time 1
2
(
1− k1

k

)
. There are no repetitions. Notice that this is actually

the optimal strategy for k = 3, 6 with k1 = k2 = k
3 .

So we can now suppose that k1 ≥ k2. We notice that:

1
2

(
1− k1

k

)
≥ 1

4

(
1 + k1 − k2

k

)
⇐⇒ 1− 2k1

k
≥ k1 − k2

k
⇐⇒ k ≥ 3k1 − k2 .

So we next focus on the case k ≤ 3k1− k2 and we try to obtain a complexity
t ≤ max

(
k2
k ,

1
4
(
1 + k1−k2

k

))
. The merging tree that we use is drawn on Figure 11.

We attach two subtrees of width k2 and k1 to the main branch, there remains a
subtree of width k− k1 − k2 to explore exhaustively. We build the subtree T2 in
time k2

k , externally, by constructing the product of k2 lists. Then we repeat T1,
which builds a list of size `1 = k−k1−k2

2k .
With our choice of parameters, we have to iterate:

1
2

(
k1

k
− `1

)
= 1

4k (2k1 − k + k1 + k2) = 1
4k (3k1 + k2 − k)

times, which is positive, since k ≤ 3k1 − k2 ≤ 3k1 + k2. In each iteration, we
build the subtree T1 in time `1 and exhaust the subtree T3 with quantum search,
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with the same time. Thus, the total time complexity is given by:

t = max
(
k2

k
,

1
2

(
k1

k
+ `1

))
= max

(
k2

k
,

1
4

(
1 + k1 − k2

k

))
.

Finally, in the case 3k1 +k2 ≤ k, we notice that 3k1 ≤ k implies 1
2
(
1− k1

k

)
≥

1
3 , as it happened before for the case k1 ≤ k2. Further, 1

2
(
1− k1

k

)
≥ k1

k . The
same strategy works: we build an intermediate subtree with a product of k1 lists,
in time k1

k , then look for a collision on it with a single quantum search in the
product of the k − k1 remaining lists.

Thus, regardless the choice of k1 and k2, we can meet the time complexity
given by Equation (17).

Finally, we observe that the minimization over k1, k2 of this quantity gives
the formula of γk of Theorem 3, finishing the proof of the theorem:

min
k1,k2∈N2

k1+k2≤k

max
(
k2

k
,

1
2

(
1−k1

k

)
,

1
4

(
1 + k1 − k2

k

))
=
k +

⌊
k+6

7
⌋

+
⌊
k+1

7
⌋
−
⌊
k
7
⌋

4k

The minimum can be reached with the parameters given in Equation 5.

F Limiting the List Size

In this section, we study the time-memory product of merging trees when the list
size is fixed to 2n/k. This corresponds to a situation where we solve the k-XOR
problem with lists: the memory is at least 2n/k since this is the size of the initial
lists given to the algorithm. In the “oracle” version, there are some corner cases
in which the memory can even decrease below 2n/k. When optimizing for the
time-memory product, we observe this memory limitation, which is the same as
in [27]. It seems that in general, increasing the list sizes places a higher burden
on the memory complexity that it improves the time.

First of all, we remark that the result of Lemma 8 (all subtrees of the main
branch are trivial) remains valid: even if we add the memory to the objective
value, removing the internal prefixes can only decrease this objective.

Under this new constraint, we can write down the shape of an optimal tree
as follows:

• it has a main branch with p levels, subtrees Ti, and Tp is a leaf node with
up = 0. Each Ti is of width ki, and the ki decrease (otherwise, exchanging
two of the subtrees would reduce the time complexity)
• at level p on the left, there is a subtree T ′p which is of width k′p, with

∑p
i=1 ki+

k′p = k.
• each Ti induces a repetition loop with ri = 1

2
(
ki
k − `i

)
. Since the `i are of

size 1
k at most, and ki decreases with i, the number of repetitions decreases

with i
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• ∀i, `i ≤ 1
k and ui−1 = ui + `i (as before), so we still have ui =

∑p
j=i+1 `j .

Furthermore ui + `i ≤ ki
k

Thus the time complexity t satisfies the constraints:
∀i, 1

k ≥ `i ≥ 0, kik ≥
∑p
j=i `j

t ≥
∑
i ri + 1

2

(
1−

∑
i
ki

k

)
= 1

2 (1−
∑
i `i)

∀1 ≤ i ≤ p− 1, t ≥
(∑i

j=1 rj

)
+ 1

2 max
(

(
∑p
j=i+1 `j)−

blog2 kic
k , 0

)
+ `i

(18)
Contrary to the previous minimization, we will find that the depth of the

tree increases with k, and the merging is not as trivial as before. By bounding
the `i, we obtain that k1

k ≥
∑p
j=1 `j and

p
k ≥

∑p
j=1 `j . Thus, t is lower bounded

by:

t ≥ 1
2

(
1−max

(
k1

k
,
p

k

))
.

This is to say, the tree should have the bigger depth possible, while at the
same time, having the widest possible subtree at level 1. In practice, we observe
that the constraints (18) are sufficient to obtain the best trees. Both k1 and the
number of levels in the tree are of order O

(√
k
)
, which is why we will observe a

decrease of the value kt, then an increase. The minimum k = 17 is obtained by
numerical experiments.
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