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Abstract

Stirling numbers of the first kind are common in number theory and com-
binatorics; through Ewen’s sampling formula, these numbers enter into the
calculation of several population genetics statistics, such as Fu’s Fs. In pre-
vious papers we have considered an asymptotic estimator for a finite sum of
Stirling numbers, which enables rapid and accurate calculation of Fu’s Fs.
These sums can also be viewed as a cumulative distribution function; this for-
mulation leads directly to an inversion problem, where, given a value for Fu’s
Fs, the goal is to solve for one of the input parameters. We solve this inversion
using Newton iteration for small parameters. For large parameters we need to
extend the earlier obtained asymptotic results to handle the inversion problem
asymptotically. Numerical experiments are given to show the efficiency of both
solving the inversion problem and the expanded estimator for the statistical
quantities.

Keywords Stirling numbers of the first kind; Asymptotic analysis; Population genetics

statistics; Evolutionary inference from sequence alignments; Numerical algorithms; Cumu-

lative distribution function.

1 Introduction

In recent papers [1] and [2] we have discussed the sum

S′n,m(θ) =
1

(θ)n

n∑
k=m

(−1)n−kS(k)
n θk, θ > 0, (1.1)
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where S
(k)
n are the Stirling numbers of the first kind defined by

(θ)n =

n∑
k=0

(−1)n−kS(k)
n θk, (1.2)

and (θ)n is the Pochhammer symbol, defined by

(θ)0 = 1, (θ)n = θ(θ + 1) · · · (θ + n− 1) =
Γ(θ + n)

Γ(θ)
. (1.3)

The quantity S′n,m(θ) (and related quantities) is used in the calculation of several
population genetics statistics. One such statistic is Fu’s Fs,

Fs = ln
S′n,m(θ)

1− S′n,m(θ)
, (1.4)

which was shown to be capable of identifying the genetic changes responsible for
the increased fitness of a recently expanded clone of Campylobacter jejuni that is
causing an epidemic of abortion in livestock [10]. We used asymptotic approxima-
tions of the Stirling numbers derived in [8] to compute S′n,m(θ) [1]. Subsequently,
we transformed the sum into a contour integral in the complex plane, and we gave
a first-order approximation of this integral for large n, with 0 < m < n and θ > 0
[2].

Note that, because of (1.2) the sum (1.1) satisfies 0 ≤ S′n,m(θ) ≤ 1; see Figure 1.
In fact S′n,m(θ) can be viewed as a cumulative distribution function frequently used
in the derivation of several population genetics statistics, which in turn are useful
for testing evolutionary hypotheses directly from DNA sequences.

In the earlier paper [2] we have derived a new integral representation of S′n,m(θ)
and we have given a first-order asymptotic approximation in terms of an incomplete
beta function. With these results the algorithm given in a first attempt [1] could be
considerably improved in efficiency and speed.

In the present paper the main interest is the inversion problem to find θ from
the equation S′n,m(θ) = s with given s ∈ (0, 1), n and m. For small or intermediate
values of n we use a Newton iteration scheme, whereas for large n we derive more
details on the earlier derived asymptotic representation of S′n,m(θ) to develop an
asymptotic expansion of the wanted θ. Numerical experiments are given to show the
efficiency of the asymptotic expansion, of the Newton iterations, and the asymptotic
inversion problem.

2 A few details on the Stirling numbers

For a concise overview of properties, of these Stirling numbers, with a summary of
their uniform approximations, see [4, §11.3].

In Figure 1 we show two graphs of S′n,m(θ), on the left left a point plot for
0 ≤ m ≤ n, with fixed θ = 50 and n = 100, and on the right a smooth sigmoid curve
for 0 ≤ θ ≤ n with fixed m = 50 and n = 100.
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Figure 1: Left: The function S′
n,m(θ) for m = 0, 1, 2, . . . , 100; θ = 50 and n = 100.

Right: The function S′
n,m(θ) for θ ∈ [0, 100]; m = 50 and n = 100.

A key representations for the considered asymptotic problem is the Cauchy-type
integral in the complex plane

(−1)n−kS(k)
n =

1

2πi

∫
C

(z)n
zk+1

dz, (2.1)

which follows from (1.2). Here C is a contour around the origin.
Special values are

S(n)
n = 1 (n ≥ 0), S(0)

n = 0 (n ≥ 1), S(1)
n = (−1)n−1(n− 1)! (n ≥ 1), (2.2)

and there is a recurrence relation:

S
(k)
n+1 = S(k−1)

n − nS(k)
n . (2.3)

For the sums S′n,m(θ) we have a new similar result.

Theorem 2.1. The sums S′n,m(θ) satisfy for n = 2, 3, 4, . . . the recursion

(θ + n)S′n+1,m(θ) =nS′n,m(θ) + θS′n,m−1(θ), 1 ≤ m ≤ n,

S′n+1,n+1(θ) =
θn+1

(θ)n+1
,

(2.4)

with initial values

S′0,0(θ) = 1, S′1,0(θ) = 1, S′1,1(θ) = 1,

S′2,0(θ) = 1, S′2,1(θ) = 1, S′2,2(θ) =
θ

θ + 1
.

(2.5)

Proof. The proof simply follows from using the relation in (2.3). We also need

S
(n)
n = 1 and (θ)n+1 = (θ + n)(θ)n.
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Observe that there are no Stirling numbers in the recursion in (2.4), apart from
those needed to compute the starting values in (2.5). This gives a very simple
method to compute S′n,m(θ) for small or intermediate values of n. For large values
of n we prefer asymptotic representations.

The Stirling numbers are very large for large values of n and m � n, see the

value of S
(1)
n in (2.2). This makes straightforward evaluation of the sum in (1.1)

sensitive to overflow. This problem does not happen for the recursion in (2.4),
because 0 ≤ S′n,m(θ) ≤ 1.

In the initial values we see that S′n,0(θ) = S′n,1(θ) = 1 for n = 0, 1. More

generally this follows from S
(0)
n = 0 if n ≥ 1.

In the computation of cumulative distribution functions, like the classical gamma
and beta cases, it is essential to consider the complementary relations. In the present
case we use the complementary sum

T ′n,m(θ) = 1− S′n,m(θ) =
1

(θ)n

m−1∑
k=0

(−1)n−kS(k)
n θk. (2.6)

To avoid numerical cancellation when using the complementary relation, we should
compute first the primary function, that is, min(S′n,m(θ), T ′n,m(θ)), and the other one
from the complementary relation. The functions T ′n,m(θ) satisfy the same recursion
as S′n,m(θ) in (2.4), of course with different starting values.

As mentioned above, Fu’s Fs in (1.4) is of interest for population genetics appli-
cations [3]. From (2.6), we also have a complementary equation for Fu’s Fs,

Fs = ln
1− T ′n,m(θ)

T ′n,m(θ)
. (2.7)

Fu’s Fs ranges from −∞ to +∞ as θ runs through the interval (0,∞) and it vanishes
when θ equals its transition value θt for which value we have

S′n,m(θt) = T ′n,m(θt) = 1
2 . (2.8)

Both representations of Fs are needed in numerical computations, because when
S′n,m(θ) is close to 1, the form with T ′n,m(θ) in (2.7) gives a more reliable computa-
tional representation.

3 Summary of earlier results

Because it is more convenient to work with S′n+1,m+1(θ) we proceed with

Sn+1,m+1(θ) =
1

(θ + 1)n

n∑
k=m

(−1)n−kS
(k+1)
n+1 θk,

Tn+1,m+1(θ) =
1

(θ + 1)n

m−1∑
k=0

(−1)n−kS
(k+1)
n+1 θk.

(3.1)

The following result of our paper [2] is crucial for deriving asymptotic expansions
of the statistical quantities.
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Theorem 3.1. Let Cρ be a circle at the origin of the complex plane with radius ρ > 0.
Then S′n+1,m+1(θ) and T ′n+1,m+1(θ) have representations as contour integrals

S′n+1,m+1(θ) =
θm

(θ + 1)n

1

2πi

∫
Cρ

(z + 1)n
zm

dz

z − θ
, ρ > θ,

T ′n+1,m+1(θ) =
θm

(θ + 1)n

1

2πi

∫
Cρ

(z + 1)n
zm

dz

θ − z
, ρ < θ.

(3.2)

Here, n and m are positive integers, 0 ≤ m ≤ n, and θ is a real positive number.
The symbol (α)n denotes the Pochhammer symbol introduced in (1.3).

The main asymptotic results follow from representations given in [2] and are
summarised in the next theorem.

Theorem 3.2. S′n+1,m+1(θ) and T ′n+1,m+1(θ) have the representations

S′n+1,m+1(θ) = Ix(m,n−m+ 1) +R′n+1,m+1(θ), x =
τ

1 + τ
,

T ′n+1,m+1(θ) = I1−x(n−m+ 1,m)−R′n+1,m+1(θ), 1− x =
1

1 + τ
,

(3.3)

where Ix(p, q) is the incomplete beta function defined by

Ix(p, q) =
1

B(p, q)

∫ x

0

tp−1(1− t)q−1 dt, (3.4)

with

0 < x < 1, p > 0, q > 0, B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
. (3.5)

The term R′n+1,m+1(θ) can be expanded in negative powers of the large parameter
n, as will be explained in later sections. For the relation between τ and θ we refer
to Definition 3.4.

Observe that in the representations given in this theorem the complementary re-
lation in (2.6) is preserved because of the complementary property of the incomplete
beta function:

Ix(p, q) = 1− I1−x(q, p). (3.6)

3.1 The asymptotic approach

The representations given in Theorem 3.2 are obtained in [2] by using the saddle
point method. The first step is the introduction of a phase function φ(z). We write

S′n+1,m+1(θ) =
e−φ(θ)

2πi

∫
Cρ
eφ(z)

dz

z − θ
, ρ > θ, (3.7)

where Cρ is a circle as in Theorem 3.1 and

φ(z) = ln ((z + 1)n)−m ln z =

n−1∑
k=0

ln(z + 1 + k)−m ln z

= ln Γ(z + 1 + n)− ln Γ(z + 1)−m ln z.

(3.8)

5



For positive values of z, we have the limiting forms

φ(z) ∼ −m ln z, z → 0; φ(z) ∼ n ln(z + 1), z →∞, (3.9)

where the second estimate comes from Γ(z+1+n)/Γ(z+1) ∼ (z+1)n. In addition,
there is one positive minimum z0 of φ(z). A proof is given in [8].

The function
χ(t) = n ln(t+ 1)−m ln t, t > 0, (3.10)

has the same limiting behaviour as φ(z) at t = 0 and as t → ∞, and it has one
positive minimum t0 = m/(n−m). In fact, these functions behave quite similar for
positive values of their arguments, and we have the following lemma.

Lemma 3.3. Consider for positive z and t the equation

φ(z)− φ(z0) = χ(t)− χ(t0). (3.11)

Then there is a one-to-one relation between z and t when we use the following
condition: sign(z − z0) = sign(t− t0).

Proof. In Figure 1 of [2] we have drawn graphs of both functions for m = 38 and
n = 100. Both derivaties of the non-negative convex functions have a unique positive
zero z0 and t0 and their convex curves touch the positive real axis at z0 and t0. The
sign condition for the relation in (3.11) means that the left branches of the curves
correspond with functions values for z ∈ (0, z0] and t ∈ (0, t0], and the right branches
with values for z ∈ [z0,∞) and t ∈ [t0,∞). Clearly, we can uniquely determine z(t)
and t(z) for positive values of these parameters.

Before we start with deriving the asymptotic representations given in Theo-
rem 3.2 we define the following special points used in this paper.

Definition 3.4. Special points

1. The point z0, the positive minimum of φ(z) and the positive solution of the
equation φ′(z) = 0, where

φ′(z) =

n−1∑
k=0

1

z + 1 + k
− m

z

= ψ(z + n+ 1)− ψ(z + 1)− m

z
, ψ(z) =

Γ′(z)

Γ(z)
,

(3.12)

is called the saddle point of the integral in (3.7).

2. The value θt for which S′n,m(θt) = T ′n,m(θt) = 1
2 is called the transition point

of S′n,m(θ) and T ′n,m(θ).

3. The positive value of t that satisfies the relation in (3.11) when z is replaced
by θ is called τ . That is, when we write the general solution of (3.11) as t(z),
then τ = t(θ). Also, τ is the positive solution of

φ(θ)− φ(z0) = χ(τ)− χ(t0), sign(θ − z0) = sign(τ − t0). (3.13)
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The relation in (3.11) will be used as a transformation of variables (which is also
used in [8]) and (3.7) becomes

S′n+1,m+1(θ) =
e−χ(τ)

2πi

∫
Cσ

(t+ 1)n

tm
f(t) dt,

f(t) =
1

z − θ
dz

dt
,

dz

dt
=
χ′(t)

φ′(z)
, χ′(t) = (n−m)

t− t0
t(1 + t)

,

(3.14)

with t0 = m/(n−m), where we have used the relation for χ(τ) in (3.13). The value
z = θ (a pole of the integrand in (3.7)) corresponds with t = τ (see Definition 3.4),
and this means that the function f(t) will have a pole at t = τ .

The main asymptotic result of [2] is given in the following theorem.

Theorem 3.5. Let the function g(t) be defined by

g(t) = f(t)− 1

t− τ
, (3.15)

where f(t) is defined in (3.14). Then the function R′n+1,m+1(θ) of the representa-
tions given in (3.3), has the integral representation

R′n+1,m+1(θ) =
e−χ(τ)

2πi

∫
Cσ

(t+ 1)n

tm
g(t) dt, (3.16)

where Cσ is a contour around the origin and inside the domain where g(t) is analytic.
A first-order approximation is given by

R′n+1,m+1(θ) ∼ e−χ(τ)
(

n

m− 1

)
g(t0), t0 =

m

n−m
, (3.17)

where

g(t0) = f(t0)− 1

t0 − τ
, f(t0) =

1

z0 − θ

√
χ(2)(t0)

φ(2)(z0)
. (3.18)

The incomplete beta function (see (3.4)) is used with the representation

I τ
1+τ

(m,n−m+ 1) =
e−χ(τ)

2πi

∫
Cσ

(t+ 1)n

tm
dt

t− τ
. (3.19)

This function has the representation (see [6, §8.17(i)])

I τ
1+τ

(m,n−m+ 1) = (1 + τ)−n
n∑

j=m

(
n

j

)
τ j , (3.20)

and from the complementary relation in (3.6) it follows that I 1
1+τ

(n − m + 1,m)

used in (3.3) has the expansion

I 1
1+τ

(n−m+ 1,m) = (1 + τ)−n
m−1∑
j=0

(
n

j

)
τ j . (3.21)
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Remark 3.6. The role of the transition point θt in connection with Fu’s Fs is
explained before (2.8). The transition value θt can be obtained by using the inversion
methods of §4. On the other hand, the main term in the first line of (3.3) is the
incomplete beta function, which function has [5] the transition point xt close to x =
p/(p+q), which gives τ = m/(n+m+1). This point is close to t0 = m/(n+m), the
zero of χ′(t), see (3.14) and saddle point of the integral in (3.14), which corresponds
to z0, the saddle point of integral in (3.7). We conclude that the saddle point z0 is
a good approximation of the transition value θt.

4 The inversion problem

We consider the following inversion problem: let m and n be given, together with a
value s ∈ (0, 1). Then find θ such that

S′n,m(θ) = s. (4.1)

Since S′n,m(0) = 0 and S′n,m(θ)→ 1 as θ →∞, and S′n,m(θ) is an increasing function
of θ (see also Figure 1 (Right), there is a unique solution θ of this problem.

We consider two approaches to solve this problem, in the first one we use Newton
iteration and the other one is especially useful when the parameters n and m are
large enough to use asymptotic approximations.

In both methods we use a starting value θ0 that follows from the value x that
solves the reduced equation

Ix(p, q) = s, p = m, q = n−m+ 1, x =
τ

1 + τ
, (4.2)

where Ix(p, q) is the incomplete beta function used in (3.3). With this value x we
compute τ = x/(1− x) and the initial value θ0 in the Newton method then follows
from the relation between τ and θ as explained in Definition 3.4. We use the reduced
equation because we consider the incomplete beta function as the main asymptotic
approximant of S′n+1,m+1(θ). Also for small values of n and m it gives a useful
initial value θ0.

The inversion of the incomplete beta function is extensively considered in the
literature. For an approach for large variable p and q, see [7] while in [5] a fourth or-
der fixed point method and several other approaches are discussed. For an overview
of the inversion of other classical cumulative distribution functions, we refer to [9,
Chapter 42].

Remark 4.1. The inversion S′n,m(θ) = s can be replaced by the equation for the
complementary function: T ′n,m(θ) = 1 − s, which is relevant when s ∼ 1, and even
more relevant when s = 1−σ, when σ is known in detail as a small positive number.

Remark 4.2. The inversion of Fu’s Fs (see(1.4)), that is, solving the equation
Fs = f , f ∈ R, follows immediately from our methods for solving S′n,m(θ) = s. The
equation Fs = f is equivalent with solving

S′n,m(θ) =
ef

1 + ef
, T ′n,m(θ) =

1

1 + ef
. (4.3)
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When f is a large positive number, it is very relevant to solve the second equation.

4.1 The iterative inversion method

When solving the equation in (4.1) with the Newton iterative method we compute
a sequence of vales θj , j = 0, 1, . . ., from the scheme

θj+1 = θj −
f(θj)− s
f ′(θj)

, j = 0, 1, 2, . . . , f(θ) = S′n,m(θ). (4.4)

The starting value θ0 is obtained from the reduced equation in (4.2). The derivative
of S′n,m(θ) follows from the following lemma.

Theorem 4.3.

d

dθ
S′n,m(θ) = −S′n,m(θ)

n−1∑
k=0

1

k + θ
+ Ŝ′n,m(θ), (4.5)

where

Ŝ′n,m(θ) =
1

(θ)n

n∑
k=m

(−1)n−kkS(k)
n θk−1. (4.6)

These functions satisfy the recurrence relation

(θ + n)Ŝ′n+1,m(θ) = nŜ′n,m(θ) + θŜ′n,m−1(θ) + S′n,m−1(θ), 1 ≤ m ≤ n. (4.7)

Proof. First we have

d

dθ

1

(θ)n
=

d

dθ

Γ(θ)

Γ(θ + n)
=

Γ′(θ)

Γ(θ + n)
− Γ(θ)Γ′(θ + n)

Γ2(θ + n)
. (4.8)

Next we use the ψ-function, defied by ψ(z) = Γ′(z)/Γ(z), which has the recursive
property (which is also used in (3.12))

ψ(z + n) = ψ(z) +

n−1∑
k=0

1

k + z
, n = 1, 2, 3, . . . . (4.9)

This recursion easily follows from the fundamental property of the gamma function
Γ(z + 1) = zΓ(z). We find

d

dθ

1

(θ)n
= (ψ(θ)− ψ(θ + n))

1

(θ)n
. (4.10)

Combining these results we find the relation in (4.5). The proof of the recurrence
relation in (4.7) follows from the recurrence relation of the Stirling numbers in (2.3),
just as in the proof of Theorem 2.1.

A few first values of Ŝ′n,m(θ) are

Ŝ′0,0(θ) = 0, Ŝ′1,0 =
1

θ
, Ŝ′1,1 =

1

θ
,

Ŝ′2,0(θ) =
2θ + 1

θ(θ + 1)
, Ŝ′2,1 =

2θ + 1

θ(θ + 1)
, Ŝ′2,2 =

2

θ + 1
.

(4.11)

In §4.3 we give numerical examples of the Newton iteration scheme.
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4.2 The asymptotic inversion method

We consider the inversion of the full equation (4.1) with the representation of
S′n+1,m+1(θ) as given in (3.3). We concentrate on finding τ and with this infor-
mation we compute θ; see Definition 3.4. We propose the following

Proposition 4.4. Let x be the solution of the reduced equation in (4.2), with corre-
sponding τ value τ0 = x/(1−x). Then we will construct an expansion of the wanted
value τ of the form

τ = τ0 + ε, ε ∼ τ1
ν

+
τ2
ν2

+ . . . , ν = n−m, (4.12)

with

τ1 =
τ0(τ0 + 1)

τ0 − t0
ln
(
(t0 − τ0)f(t0)

)
, (4.13)

where f(t0) is given in (3.18), and

e−ξτ2 = τ1
e−ξ − 1

ξ
+

(2τ0 + 1)τ21
τ0(τ0 + 1)

e−ξ − 1 + ξ

ξ2
+

ρ′(τ0)τ31
e−ξ − 1 + ξ − 1

2ξ
2

ξ3
−

τ0(τ0 + 1)
(
G1(t0) + τ1G

′
0(t0) + 1

2ρ
′(τ0)τ21G0(t0)

)
.

(4.14)

The coefficients Gk(t) are defined in Theorem 5.1 (see also §5) and

ρ(τ) =
t0 − τ
τ(1 + τ)

, ξ = τ1ρ(τ0). (4.15)

To obtain these coefficients τj we have used a perturbation method that starts
with writing S′n+1,m+1(θ) of Theorem 3.2 in the form

I τ0+ε
1+τ0+ε

(p, q) + e−χ(τ0+ε)
(

n

m− 1

)
S(τ0 + ε) = s, (4.16)

where S(τ) is the function with expansion (see (5.1) and (3.3))

S(τ) ∼
∞∑
k=0

Gk(t0)

νk
. (4.17)

The idea is to use the expansion of ε given in (4.12) in (4.16), and expand the
relevant terms in negative powers of ν. The coefficients of the same powers of ν in
this collection should vanish. This yields equations for the coefficients τj . Because
we already calculated τ0 such that I τ0

1+τ0

(p, q) = s, we have the asymptotic equality

∞∑
k=1

εk

k!

dk

dτk
I τ

1+τ
(p, q) +

(
n

m− 1

) ∞∑
k=0

εk

k!

dk

dτk

(
e−χ(τ)S(τ)

)
= 0, (4.18)

where the derivatives are evaluated at τ = τ0. The construction of the coefficients
τj can be done with the help of symbolic calculations. The technical details of the
manipulations to find (4.13) and (4.14) are available from the authors.
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Table 1: Results for inverting equation S′
n,m(θ) = s by using Newton iteration with

starting value θ = θ0 and relative errors δj = |s/S′
n,m(θj)− 1|, j = 0, 2, 4.

m/n s θ0 δ0 θ2 δ2 θ4 δ4

10/25 0.0001 0.02 0.82 0.812 0.20e-00 0.78467 0.17e-03

10/25 0.25 4.55 0.36 3.786 0.46e-07 3.78618 0.00e-00

10/25 0.50 6.13 0.23 5.163 0.46e-03 5.16527 0.10e-14

10/25 0.75 8.21 0.12 6.970 0.26e-02 6.98945 0.98e-10

25/50 0.0001 6.20 0.64 5.70 0.46e-01 5.67813 0.40e-06

25/50 0.25 16.06 0.24 14.941 0.91e-05 14.9416 0.10e-14

25/50 0.50 19.70 0.15 18.373 0.18e-04 18.3727 0.14e-14

25/50 0.75 24.14 0.080 22.563 0.19e-03 22.5663 0.10e-14

Example 4.5. We take n = 99, m = 49 and try to find the value θ such that
S′100,50(θ) = 1

2 . This means, we try to find the transition value θt for these m and
n; see Definition 3.4. This example corresponds with the second line in Table 2. For
the asymptotic method we have the following steps.

1. Compute the saddle point z0
.
= 39.1327 by solving the equation φ′(z) = 0, see

(3.12), and t0 = 49/50 = 0.98 from χ′(t) = 0, see (3.14).

2. Compute φ(z0)
.
= 259.198 and χ(t0)

.
= 68.6165.

3. With s = 1
2 solve the equation Ix(p, q) = 1

2 , see (4.2). We find x
.
= 0.4899330675.

This gives τ0 = x/(1− x)
.
= 0.960527 and χ(τ0)

.
= 68.6215.

4. Use (3.13) to compute θ from the equation φ(θ) = φ(z0) + χ(τ0) − χ(t0)
.
=

259.203 in the interval 0, z0) (because τ0 < t0, and find θ
.
= 38.29722.

5. A first check: compute S′100,50(θ) with this value of θ and find 0.50233, with
relative error 0.0047.

6. Next compute τ1 from (4.13), with the just found value of θ that is needed
in f0 = f(t0) given in (3.18). Find τ1

.
= −0.055873923 and compute τ ∼

τ0 + τ1/ν
.
= 0.959409535, with ν = n−m.

7. Repeat the steps given above: the equation for the new θ becomes φ(θ) =
φ(z0) + χ(τ0 + τ1/ν)− χ(t0)

.
= 259.203352 and find θ

.
= 38.2492993.

8. Check: compute S′100,50(θ) with this θ and find 0.5000190, with relative error
0.38e−4.

9. With the next term in the expansion, τ ∼ τ0 + τ1/ν + τ2/ν
2, we find θ

.
=

38.248908191, and S′100,50(θ)
.
= 0.500000125, with relative error 0.25e−6.

11



Table 2: Results for computing θ from the equation S′
nm(θ) = s by using the approxi-

mation of τ in (4.12) with terms up to τj , j = 0, 1, 2; see (4.13) and (4.14). We give the
corresponding values θj and relative errors δj = |s/S′

nm(θ)− 1|.

m/n s θ0 δ0 θ1 δ1 θ2 δ2

200/250 0.0001 255.3 0.36e-2 255.339 0.24e-4 255.33835 0.13e-4

200/250 0.25 408.2 0.11e-2 408.103 0.35e-5 408.10264 0.66e-7

200/250 0.50 455.0 0.66e-3 454.911 0.21e-5 454.91098 0.18e-6

200/250 0.75 508.2 0.34e-3 508.124 0.11e-5 508.12328 0.76e-8

500/1000 0.0001 307.4 0.73e-2 307.383 0.58e-5 307.38266 0.32e-8

500/1000 0.25 378.6 0.23e-2 378.570 0.19e-5 378.56980 0.10e-8

500/1000 0.50 396.4 0.15e-2 396.387 0.11e-5 396.39298 0.20e-3

500/1000 0.75 415.1 0.77e-3 415.025 0.62e-6 415.02539 0.20e-9

4.3 Numerical results for the inversion

In Table 1 we give the results for computing θ from the equation S′n,m(θ) = s by
using Newton iteration (see §4.1). The starting value θ0 is obtained by inverting the
reduced equation in (4.2), where also the relation between x and θ is explained. In
the table we give the iterated values of θj and δj = |s/S′n,m(θj)− 1| for j = 0, 2, 4.
As can be expected by using Newton iteration, once we have a reasonable starting
value, we can obtain excellent accuracy with a few iteration steps. We even see
convergence for small values s = 0.0001, where for the corresponding θ values the
curve of S′n,m(θ) is very flat (see Figure 1, Right).

In Table 2 we give the results for computing θ by using asymptotic methods
described in §4.2. The equation S′n+1,m+1(θ) = s is approximately solved by using
the approximation of τ in (4.12) with terms up to τj , j = 0, 1, 2. As expected, we
see a better performance when we include τ1/ν and τ1/ν + τ2/ν

2.

5 Deriving the complete asymptotic expansion

The first-term approximation in our previous result in (3.16) of Theorem 3.5 will
now be extended in the following theorem.

Theorem 5.1. Let R′n+1,m+1(θ) be defined as in (3.16). Then for N = 0, 1, 2, . . .

R′n+1,m+1(θ) = e−χ(τ)
(

n

m− 1

)N−1∑
k=0

Gk(t0)

νk
+
e−χ(τ)

2πiνN

∫
Cσ

(t+ 1)n

tm
GN (t) dt, (5.1)

where ν = n−m, G0(t) = g(t), see (3.15), and other Gk(t) follow from the recursive

12



scheme

Hk(t) =
Gk(t)−Gk(t0)

t− t0
, Gk+1(t) = − d

dt

(
t(1+t)Hk(t)

)
, k = 0, 1, 2, . . . . (5.2)

Proof. We start with the representation in (3.16) and use an integration by parts
procedure, which starts by writing

G0(t) = G0(t0) + (t− t0)H0(t), G0(t) = g(t). (5.3)

This gives

R′n+1,m+1(θ) = G0(t0)e−χ(τ)
(

n

m− 1

)
+
e−χ(τ)

2πi

∫
Cσ

(t− t0)H0(t)

χ′(t)
deχ(t), (5.4)

and using χ′(t) shown in (3.14), we find

R′n+1,m+1(θ) = G0(t0)e−χ(τ)
(

n

m− 1

)
+
e−χ(τ)

2πiν

∫
Cσ

(t+ 1)n

tm
G1(t) dt, (5.5)

where

G1(t) = − d

dt

(
t(1 + t)H0(t)

)
. (5.6)

This integral has the same form as the one in (3.16), and we can continue this
method. This proves the theorem.

The first coefficients Gk(t0) of the expansion in (5.1) are

G0(t0) = g0, G1(t0) = −(1 + 2t0)g1 − t0(t0 + 1)g2,

G2(t0) = 2(1 + 2t0)g1 + (2 + 11t0 + 11t20)g2 +

5t0(t0 + 1)(1 + 2t0)g3 + 3t20(t0 + 1)2g4.

(5.7)

The coefficients gk follow from the coefficients fk in the expansion f(t) =

∞∑
k=0

fk(t− t0)k,

with f(t) defined in (3.14). We have

g(t) = f(t)− 1

t− τ
=

∞∑
k=0

gk(t− t0)k gk = fk −
(−1)k

(t0 − τ)k+1
. (5.8)

Finally, all these coefficients can be expressed in terms of the coefficients zk of
the expansion

z − z0 =

∞∑
k=1

zk(t− t0)k, (5.9)
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and these follow from substituting this expansion in the Taylor expansions of the
functions used in the transformation given in (3.11). This transformation has the
local expansions at the saddle points

(z − z0)

√√√√ ∞∑
k=2

1

k!
φ(k)(z0)(z − z0)k−2 = (t− t0)

√√√√ ∞∑
k=2

1

k!
χ(k)(t0)(t− t0)k−2, (5.10)

where the square roots are positive for positive values of z and t. The derivatives
φ(k)(z) can be expressed in terms of the derivatives of the gamma functions; see
(3.12). The derivatives χ(k)(t) at t = t0 are simple expressions.

The first coefficients zk are

z1 =

√
χ(2)(t0)

φ(2)(z0)
, z2 =

χ(3)(t0)− z31φ(3)(z0)

6z1φ(2)(z0)
. (5.11)

The first coefficients fk are

f0 =
z1

z0 − θ
, f1 =

2z2z0 − 2z2θ − z21
(θ − z0)2

f2 =
6z3z0θ + 3z1z2z0 − 3z1z2θ − z31 − 3z3z

2
0 − 3z3θ

2

(θ − z0)3
.

(5.12)

Then, the first coefficients gk follow from (5.8).

5.1 Numerical verifications of the asymptotic approximation

A convenient tool for verifying the errors in numerical calculations is the recursion
in Theorem 2.1, (2.4). We can write this in the form

nS′n,m(θ) + θS′n,m−1(θ)

(θ + n)S′n+1,m(θ)
− 1 = 0. (5.13)

Especially for large values of n (for example, n = 100.000) used in the tests we avoid
the exact evaluation of the sums in (1.1), and we accept that we do not verify a
standard relative error.

In Table 3 we show the values of the relation (5.13) in the computation of S′n,m(θ)
for n = 1000 and n = 100.000 for several values of m. In the first two parts
(n = 1.000) of the table we used the expansion in (5.1) with terms up to and
including k = 3, and in the final two parts (n = 100.000) we only used the terms
with G0(t0) and G1(t0). We have taken θ = ρz0, for the shown values of ρ. In this
way the values of S′n,m(θ) are not very small. For example, with n = 1000.000, m =
75.000, z0

.
= 136312.21, we have

ρ = 0.97 =⇒ S′n,m(θ)
.
= 0.300778124649e-04,

ρ = 1.00 =⇒ S′n,m(θ)
.
= 0.501722781430e-00.

(5.14)
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Table 3: Values of the relation (5.13) in the computation of S′
n,m(θ) for n = 1.000 and

n = 100.000 for several values of m and θ.

n = 1.000 Digits = 16 4 terms

ρ \ m 150 300 450 600 750 900

0.70 0.16e-12 0.27e-13 0.73e-13 0.10e-12 0.12e-12 0.47e-13

0.80 0.32e-12 0.13e-12 0.16e-12 0.86e-13 0.11e-12 0.88e-13

0.90 0.24e-11 0.30e-12 0.70e-13 0.60e-13 0.50e-12 0.13e-10

1.00 0.12e-11 0.19e-11 0.14e-12 0.54e-12 0.29e-11 0.79e-13

n = 1.000 Digits = 20 4 terms

ρ \ m 150 300 450 600 750 900

0.70 0.78e-15 0.58e-16 0.17e-17 0.49e-16 0.16e-16 0.24e-16

0.80 0.47e-15 0.48e-16 0.93e-17 0.16e-16 0.60e-18 0.20e-16

0.90 0.12e-15 0.36e-16 0.28e-16 0.60e-17 0.56e-16 0.20e-14

1.00 0.17e-15 0.14e-15 0.93e-16 0.37e-16 0.37e-16 0.95e-16

n = 100.000 Digits = 16 2 terms

ρ \ m 15.000 30.000 45.000 60.000 75.000 90.000

0.97 0.53e-10 0.36e-10 0.86e-11 0.82e-11 0.24e-11 0.47e-11

0.98 0.58e-11 0.12e-10 0.61e-11 0.14e-10 0.16e-11 0.17e-10

0.99 0.86e-11 0.17e-10 0.18e-10 0.16e-10 0.20e-10 0.44e-11

1.00 0.34e-09 0.28e-08 0.47e-09 0.14e-08 0.46e-11 0.19e-08

n = 100.000 Digits = 20 2 terms

ρ \ m 15.000 30.000 45.000 60.000 75.000 90.000

0.97 0.20e-14 0.21e-14 0.16e-14 0.16e-14 0.63e-15 0.97e-15

0.98 0.37e-14 0.38e-14 0.15e-14 0.29e-16 0.80e-15 0.25e-15

0.99 0.85e-14 0.10e-14 0.18e-14 0.14e-14 0.16e-14 0.64e-15

1.00 0.71e-13 0.22e-12 0.23e-13 0.15e-13 0.18e-12 0.51e-13
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The computations are done with Maple 2020, Digits=16. To show the effect of
cancellation or rounding errors, we have used the same Maple codes with Digits=20.

The first three coefficients Gk(t0) of the expansion in (5.1) are given in (5.7).
Each Gk(t0) is a linear combination of coefficients gk, k = 1, 2, . . . , 2k, and these
are defined in (5.8). When θ ∼ θt, the transition value, |t0 − τ | is small, and in
the limit τ → t0 the coefficient gk is well defined, although fk has a pole at t = t0
with corresponding z-value θ = z0 (see the definition of f(t) in (3.14)). In gk these
poles are cancelled. From an analytical point of view, everything runs fine, but the
algorithm needs special attention. For this we use expansions of gk for small values
of |t0 − τ | in the form

gk =

∞∑
j=0

gj,k(τ − t0)j , k = 0, 1, 2, . . . . (5.15)

The largest errors in the first part and third part (both with Digits=16) in Table 3
occur for ρ = 1, that is, when θ = z0, hence θ ∼ θt, the transition value. In this case
τ ∼ t0. This is related to the difficulty of computing the coefficients Gk(t0) near the
transition point θt, which is near z0, as explained in Definition 3.4 ad Remark 3.6.
This is an interesting analytical issue, but for the population genetics application
area it is less important. In fact we accept some loss of accuracy near the transition
point instead of using more complicated analytical expansions of the coefficients.

6 Conclusions

We have provided additional details for the asymptotic approximation of the cumu-
lative distribution quantities S′n,m(θ) and T ′n,m(θ) = 1 − S′n,m(θ). As a completely
new contribution, we have considered the inversion problem to compute θ, the so-
lution of the equation S′n,m(θ) = s, with given s ∈ (0, 1), m and large n. A simple
inversion method uses Newton iteration, the other one asymptotic approximations.
For this we provided additional coefficients in the earlier given asymptotic expansion.
We have shown that some loss of accuracy is localized near the transition values.
We further observe that these estimation errors can be mitigated with additional
terms of the expansion. These errors are largely in a regime where the distribution
functions are near the changeover value 1

2 , which is an interesting domain from an
analytical point of view, but where Fu’s Fs values are not important for genetic
inferences.
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