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Persistence of heavy-tailed sample averages: principle
of infinitely many big jumps”
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Abstract

We consider the sample average of a centered random walk in R? with regularly
varying step size distribution. For the first exit time from a compact convex set A not
containing the origin, we show that its tail is of lognormal type. Moreover, we show
that the typical way for a large exit time to occur is by having a number of jumps
growing logarithmically in the scaling parameter.
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1 Introduction

We consider an exit problem for the sample mean of an R¢valued random walk
with zero mean, where the step size has a distribution which is of multivariate regular
variation. Specifically, let (X; : ¢« > 1) be an i.i.d. sequence of random variables in
R? (d € IN) such that X has a multivariate regularly varying distribution with index o
(written as X € RV(q, 1)) where X denotes a generic step. Therefore, there exists an
increasing sequence of positive real numbers (a,, : n > 1) with a,, T co and a non-null
Radon measure p on Z(R%\ {0}) with x(R?\ R?) = 0 such that

lim nP(a,'X € B) = u(B) (1.1)

n—oo

for every B € #(R%\ {0}) satisfying u(0B) = 0 (OB denotes the boundary of B) and
0 ¢ B (B denotes the closure of B). The limit measure x necessarily obeys a homogeneity
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Persistence of heavy-tailed random walk

property, that is, there exists & > 0 such that p(uo B) = v~ *u(B) (Where uo B = {u-x:
x € B}) for every u > 0 and B € Z(R?\ {0}). We assume that

a>1. (1.2)
Additionally, we assume that the R?-valued random vector X satisfies
EX =0. (1.3)

With (X, :4=1,...,n), we associate the random walk

k
Sy = Z Xis
i=1
for all £ € IN. In this paper, we investigate the behavior of the survival probability
P, =P (k7'S, € Aforallk € {1,2,...,n}) (1.4)

as n — oo, where A is a compact convex set with non-empty interior that does not
contain the origin and

P(X; € A°) >0, (1.5)

where A° denotes interior of the set A. This assumption implies that P, > 0 for every n.
On the other hand, (1.3) and the LLN subsequently imply that P, — 0 and our aim is to
establish its convergence rate.

Our motivation behind this investigation is two-fold. First of all, P, is an example of
so-called persistence probability, that is the probability that sample average ‘persists’ in
the set A for at least n steps. It can also be interpreted as the survival function P(74 > n)
of the first time the sample average Sy /k exits from the set A.

Persistence probabilities and related exit problems have recently received a lot of
attention in probability theory and theoretical physics. In many situations of interest, for
a stochastic process in discrete or continuous time and some exit time 74, it turns out
that the behavior is either polynomial-like, that is lim,,—, y oo log P(74 > n)/logn = —¢, or
exponential-like, that is lim,_, o, log P(74 > n)/n = —¢ for a non-negative parameter ¢
called the persistence exponent (or survival exponent). This exponent usually does not
depend on the initial position of the process under consideration. Random walks and
Brownian motions have been analysed in [13, 15, 20, 26, 34, 33]. For results on Gaussian
processes, see [10, 16, 25], and references therein. If the process under consideration
is stationary and one-dimensional, and the set A is a shifted half-line, the law of 74
corresponds to a first passage time. In this case, fluctuation theory (see [14]) may be
applied; see e.g. the survey [3] for an overview concerning mainly Lévy processes and
(integrated) random walks. Other one-dimensional processes have been studied; see for
example [21] for autoregressive sequences. Recent work on time-homogeneous Markov
chains can be found in [2]. When Ee{XY) < oo for all A € R? (hence X ¢ RV(a, 1)), the
behavior of P, can be derived from Mogulskii’s theorem, cf. [11, Thm. 5.1.2, p. 176].
For a recent survey on persistence probabilities we refer to [8].

Our investigation distinguishes from the above-mentioned works by focusing on the
sample average Sy /k, k > 1, which is a time-inhomogeneous R?-valued Markov chain. As
mentioned in [8], the study of sample averages, and more generally occupation measures,
is challenging. In the case investigated here, we find out that the asymptotics of P, is of
lognormal type. That is, there exists a constant ¢ depending on the shape of the set A
and « such that

log P,

nEI—sr-loo (logm)? =9 (1.6)
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Thus, the behavior of P, is fundamentally different from the two earlier described cases.
We manage to identify ¢ explicitly. For example, if d = 1 and A = [a,b] with 0 < a < b,
then the persistence exponent equals

B (a—1)
0= 2(logb —loga)

In the case d > 2, we provide a simple variational characterization of ¢.

An explanation of this untypical asymptotics brings us to our second motivation of
this paper, which is to obtain a sharper understanding of the nature of heavy-tailed
large deviations. In turns out that the problem we consider exhibits a new qualitative
phenomenon in the following sense: we prove that the typical way of getting a large
exit time is by having a number of jumps which is growing logarithmic in the scaling
parameter n. Hence persistency in our case is caused by infinitely many large jumps. In
other words, the principle of a single big jump used in a significant number of studies
(see [19] and references therein) does not hold here.

In addition, heavy-tailed sample-path large deviations theorems such as recently
derived in [29] do not apply either. In [29], a sample-path large deviations result for
the rescaled random walk S, (t),t € [0,1], with S, (t) = Sj,,j/n and Sy = S, has been
developed in the case d = 1. For a large collection of sets F, the results in [29] imply
that

logP(Sn €F> =—(140(1))Jp(a—1)logn (1.7)

as n — 4oo with some rate function Jr. This result can be applied to investigate the
probability, for fixed € > 0,

Peny = P(Sk/k € [a,b] forall k € {[em,...,n}). (1.8)

If —loge/log(b/a) is not an integer, it can be shown that

1 ’ =1. 1.9
oo [—log e/ log(b/a)] (e — 1) log n (1.9)

The intuition, which can be made precise using the conditional limit theorems in [29], is
that the most likely way for Si/k to stay in the set [a, ] for k € {[en],...,n} is by having
—loge/log(b/a) large jumps. In the case we are interested in, O(1) jumps will not be
sufficient for Sy /k to be persistent. Therefore, P, has different asymptotics. Moreover,
note that it is tempting to proceed heuristically, and take e = 1/n in (1.9). Apart from not
being rigorous, the resulting guess of ¢ would actually be off by a factor 1/2.

There exist several approaches that can be used to derive the existence, as well
as expressions of persistence exponents. In the case of more general processes, the
Markovian structure is typically exploited. This allows to relate the persistence exponent
to an eigenvalue of an appropriate operator, allowing to marshal analytic methods. This
idea is related to identifying so-called quasi-stationary distributions (see [4] for the
Brownian motion, [6, 13, 23] for random walks and Lévy processes, [9, 17] for time-
homogeneous Markov processes and [1, 18, 24] for continuous-time branching processes
and Fleming-Viot processes).

Our work is based on constructing a typical path for the random walk and showing that
this path, sometimes also called the optimal path, is the most likely way for persistence to
occur. For d = 1 the optimal path is depicted in Figure 1 (where the jumps are coloured
by red) and it is constructed in the following way. Fix a positive finite integer c¢;. Suppose
that the path stays inside the envelope [ak, bk] for all k € {1,2,...,¢;1} and the path is at
bc; at time c;. Because of the zero drift assumption, the random walk stays around bc; as
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long as possible, that is until time |bcy/a| + 1. At time |bey /a] + 1, it makes the first big
Jjump so that it reaches to the maximum height (b|bc; /a]| + b) possible and stays there as
long as possible, that is until |b%c;/a?| + 1. Then it again makes a jump. This strategy
can be applied recursively, and the resulting path turns out to be the optimal sample
path for the event {S; € [ak, bk] for all £ € IN}. Suppose that T; denotes the time of the
i-th jump whose size is denoted by J;. Then we will show that a random time 7; can be
replaced by (b/a)’ for large enough i with high probability. Let K,, denote the number of
big jumps needed until time n, i.e. K,, =sup{i > 1:T; < n}. Then K, can be replaced
by (logb/a)~!logn for large n with high probability. As we said above, the optimal path
can be represented by the random measure

KTI,
> Jibr,, (1.10)
i=1

where 4, is a Dirac measure putting unit mass at . Moreover, the probability of
a jump of size J; during (T;_,T;] is of order (b/a)"*~®). Therefore P, is roughly of
order [[\%%"(b/a)'~®). This produces the required estimate log P, < —(a — 1)(logb/a)~"
(logn)?/2 where we write [(n) < k(n) if wik(n) < I(n) < wok(n) for some constants w;
and wo.

The main idea works also in dimension d > 1 by choosing an ‘optimal’ direction ¢*
that is attaining the supremum 7* = sup,ez(4) Up/ Ly, f. (2.2) below. Using this, we
create a convenient inner set of A that is big enough to achieve a sharp enough lower
bound for P,. For this inner set, we take a carefully constructed hypercuboid. A key
property is then a certain closure property of a class of hypercuboids under a direct sum
operation. Another essential feature of our approximation by a sequence of hypercuboids
is that we need to allow the fluctuation of the random walk in some directions though
the large jumps happen in the optimal direction ¢* only; see Figure 2.

P

€1 |ber /al |b%c1 /a? | |b3cy/ad

Figure 1: Optimal path for one-dimensional case

This paper is organized as follows. In Section 2, we present the main results The-
orem 2.1 (d-dimensional random walk with d > 2) and Theorem 2.2 (d = 1) and their
consequences along some important examples. In Theorem 2.1, we have assumed the
angular measure to be absolutely continuous (with respect to the Lebesgue measure on
the surface of the unit sphere) and so, this result does not apply to the d-dimensional ran-
dom walk with independent coordinates (angular measure becomes purely atomic). So
in subsection 2.2, we present the persistence exponent for a multi-dimensional random
walk such that the co-ordinates are independent and the exponent of regular variation
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might not be the same for every co-ordinate. In section 3, we present the proof of
Theorem 2.1. The proof is divided into two parts. In subsection 3.1 and subsection 3.2,
we derive upper and lower bound for the persistence exponent respectively. We further
show that the upper and lower bound match and hence, Theorem 2.1 follows. The auxil-
iary results needed to derive the lower bound for the persistence exponent are proved in
subsection 4.1. In subsection 4.2, we present a sketch of the proof of Theorem 2.2.

2 Main results

In the definition of regular variation on R4, we have seen that there exists a Radon
measure 4 satisfying the homogeneity property. We first consider d > 2. The homogeneity
property of ; implies that u can also be written as a product measure on (0, 00) x §¢1
where $¢7! = {x € R?: ||x|| = 1} and ||x|| = \/2? + 22 + ... + z2. The distance between
two sets will be denoted by dist(A4,B) = inf{||x —y|| : x € A,y € B}. We need to
introduce the polar coordinate transformation to write down the product measure form
of yu. The polar co-ordinate transformation is given by 7' : R% \ {0} ~ (0,00) x $9~1, with
T(x) = (||x||,x/[|x||). This has inverse transformation 7 : (0,00) x $¢71 — R?\ {0}
given by 7% (r,a) = r - a, where r - a denotes scalar multiplication of the vector a and
a positive real number r. The vector a can be interpreted as the direction and r is the
distance in the direction a.

It is known (e.g. Theorem 6.1 in [28]) that (1.1) is equivalent to the existence of a
Radon measure ¢(-) on $9~! such that

Tim P ((a; ' IX, (IX]) 7 X) € € x D) = va(C)s(D), @.1)

where C € %((0,0)) and D € £(3¢"1) and v,(-) is a measure on (0,00) such that
Vo(x,00) = 27 for any « > 0. We will assume that the spectral (angular) measure ¢ is
absolutely continuous with respect to the Lebesgue measure on the unit sphere. Note
that the spectral measure may not satisfy this assumption: for example it can be atomic
if we consider the case where the components of the random vector X are independent.
Note also that the polar transform is a non-linear transform, that is, the polar transform
of a random walk is not a random walk. Thus, the polar transform can not be used
directly to get a one-dimensional positive random walk and compute the persistence
exponent from this simpler object. But this decomposition helps to understand the limit.
Intuitively, it is clear that the persistence exponent must be based on the radial part of
the set under consideration.

We write Z(B) := {||x||~! - x : x € B} for any measurable subset B € Z(R¢ \ {0}).
We consider a compact and convex set A € Z(R¢\ {0}) which is bounded away from
0 (0 ¢ A). It is clear that =(A) is also compact. We can then write A = {r- ¢ : 7 €
(L, Uyl; ¢ € E(A)} where Ly, == inf{r : 7- ¢ € A} and U, :=sup{r : r- ¢ € A}. Itis
clear that L, and U, are continuous functions of ¢ as the boundary of a bounded convex
set is connected and L, > 0 for every ¢ € Z(A) as A is bounded away from 0. Thus, we
can conclude that U, /L, is a continuous function of ¢. Define

r*:= sup U,/L, > 1. (2.2)
wEE(A)

Then there exists ¢* € Z(A) such that r* = U, /Ly~ as Z(A) is compact. This may be
non-unique, in which case we fix an arbitrary solution throughout the paper. Without
loss of generality, we can assume that ¢* points in the direction of the positive orthant
of R?. If it is not the case, then we can rotate the axes to ensure that it holds. We are
now ready to present the main result of this work.
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Theorem 2.1. Assume that the angular measure ¢ is absolutely continuous with respect
to the Lebesgue measure, positive on the unit sphere and the set A with non-empty
interior is compact, convex such that 0 ¢ A. Under the conditions (1.2), (1.3) and (1.5),
we have

Tim_ mlogP(kflsk €A forallk=1,2,... n) - —28‘07;*).
Remark 2.1. The persistence exponent ¢ and r* in particular can be computed by
developing an alternative representation for r*. It is not difficult to see that r* is equal
to the largest value of r such that dist(A,7 0 A) = 0 where r o A = {r -x: x € A}. Since
any convex set in R? is the intersection of a countable number of half-spaces, there exist
vectors a; and constants b; for ¢ > 1 such that

(2.3)

A={x:(a;,;x)+b; <0,i>1} (2.4)
where (a, x) denotes the inner product of vectors x and a. Defining the convex function
H(x) := max[(a;, X) + b;], (2.5)

the problem of maximizing r such that dist(A,r o A) = 0 can now be equivalently written
as the solution of the convex program

maxr (2.6)
™y
subject to
H(y)<0,H(r-y) <0. (2.7)

2.1 One-dimensional random walk and interval [a, b]

For d = 1 and the set A = [a,b] with 0 < a < b < oo, we consider a collection
(X; : i € IN) of independent copies of the R-valued, mean-zero regularly varying random
variable X such that

P(X > x) = 2L, (z) (2.8)
for > 0, such that a tail balance condition
P(X < —
lim sup (X < —2) € [0, 00) (2.9)

holds true, where L, is a slowly varying function. This is equivalent to assumption (1.1)
in the case d = 1. With (X, : ¢ € IN), we consider the associated random walk (S; : k > 1)
(without using boldface).

Theorem 2.2. Under the assumptions stated above,

, 1 _ (@—-1)
lim ——logP (k'S b] forall k 1,2,... =
00 (logm)? 8 ( k€lab] forallke{l,2, ,n}) 2(logb —loga)

forevery 0 < a < b < o0.

Note that the above theorem is not a straightforward corollary of Theorem 2.1 since
the associated angular measure is necessarily atomic in d = 1. However, we will briefly
show later in the Appendix that its proof follows from the same steps as the proof of
Theorem 2.1.

Theorem 2.2 can be used to derive an upper bound for the probability in Theorem 2.1
by projecting a d-dimensional random walk in a certain direction. This leads to a natural
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upper bound for P, in terms of a persistence probability for a one-dimensional random
walk. In particular, for any d-dimensional vector c,

P, < inf P(k_1<c,Sk)€c0A forallke{l,l...,n}), (2.10)

cillef|=1
where
y€ce Aif y = (c,x) for some x € A.

The assumptions on A and c imply that ce A is an interval of the form [a(c), b(c)]. A natural
question is now whether the bound
(@—-1)
sup
cille|=1 2(logb(c) — loga(c))

¢ > (2.11)
for ¢ defined in (1.6) is sharp. This kind of bounding techniques are often applied in
light-tailed large deviations. It can be shown that this bound is sharp if A is a Euclidean
ball bounded away from the origin. However, if A is a rectangle in the positive orthant,
then the bound is only sharp if and only if the diagonal connecting the southwest corner
and northeast corner of A also passes through the origin. We leave these details as an
exercise.

2.2 Nonstandard regular variation

Suppose that X = (X7, X, ..., X,) is a random vector such that X;’s are independent
and have regularly varying tails with index of regular variation «; and slowly varying
function L;(-). This is known by the name of nonstandard regular variation in the
theory of regular variation (see [28, Subsect. 6.5.6]). Then exploiting the independence
of components of Sy = (Sk,1,Sk,2,--.,5%q) we can get the following easy corollary of
Theorem 2.3.

Corollary 2.3. Suppose that the vector X = (X;, X5,...,Xy) is such that X;’s are
independent and have regularly varying distribution with index of regular variation «;
and each X; satisfies the assumptions in Theorem 2.2. Then

. 1 _
nlin;owlogP (k7'Sk € xy[as b, k=1,...,n)

d
%Z(ai — 1)(logb; — loga;) ™. (2.12)
i=1

Note that this cannot be obtained as a corollary of Theorem 2.1 as X ¢ RV(a, i)
if the «;’s are not equal. Even if a; = a for all « = 1,2,...,d, then it is known in the
literature (see Section 6.5.1 in [28]) that the angular measure corresponding to the limit
measure p is purely atomic and concentrated on the axes which does not fall under the
assumptions of Theorem 2.1. Moreover, when all o’s are identical, the expression for ¢
given in Theorem 2.1 does not coincide with the persistence exponent (2.12).

3 Proof of Theorem 2.1

The proof of Theorem 2.1 will be divided into proving the respective asymptotic lower
and upper bounds.

3.1 Upper bound
We will show that

1 -1
limsupi)Qloan < @ (3.1)
n

n—oo (log

~2logr*
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Step 1. We divide the set of time points {1,2,...,n} into smaller segments. Fix n > 0.
Then we choose a positive integer C such that

1
Ci>2+————. (3.2)
' (L +mn)r—1
Define ug := 0, uy := C; and recursively u;41 := (1 +n)r*u;| for all i > 1. We also define
An i=sup{k > Cy : up < n} (3.3)

for all n > C;. As a consequence, we obtain uy, < n and uy,+1 > n. Note that
w1 > (1 4+ n)r*u; — 1 for all ¢ > 1. Using these inequalities recursively combined with
the fact n > u,,, yields

logn log [Cy — (r* +nr* — 1)1
log[(1 + n)r*] log[(1 + n)r*]
The choice of C in (3.2) makes the numerator in the second term in the right hand side
of (3.4) well defined.

Define B; = {u;—1+1,u;—1+2,...,u;} forall i > 1. Then we have the following bound
for P,:

An <1+ (3.4)

n An—1 7
P( (W{Sz €io A}) < H P(Sui+1 € Ujt1 © A‘ ﬂ{Su]. €ujo A}), (3.5)
i=1 i=1 j=1

using the product formula of conditional probability.

Step 2. Fix ¢; € (0,nr*). Then it will be shown in Step 4 that there exists a positive
integer N(ep) such that

dist(u; 0 A, ui1 0 A) > u;Cy  foralli > N(ey), (3.6)

where C; is some positive real number. If i > N(e;), then we can use this property to
obtain
P(S € uiy10A4; Sy, Eu;0A; ...;SuleuloA)

Ui41
Uit1
SP(H Z Xl > u;Ca; Sy, €usj0A;...;Su, €wn OA)
j=u;+1
Ui41
- P(H 3 X, > uiCQ)P(Sui €uioA; Sy, €ui_10A;...;Sy, Curo A) (3.7)
Jj=u;+1
using the independent increment property of the random walk. Combining (3.5) and (3.7),
we infer that

(3.8)

1
< P( i — i_l Su —u; >7C>,
— . (U’ +1 U ) || i+1 i (1 + 77)7,,* _ 1 2
as u;/(uiy1 — w;) > [(1+n)r* — 1]~ for all i > 2 using u;41 < u;(1 + n)r*. Note that
{(ui+1 - ui)71||sui+1fui > CQ[(]- + 77)7"* - 1]71} = {(ui+1 - ui)ilsui-ufui € {X : ”X” >
Cs[(1 4+ n)r* — 1]71}}. This fact leads to the following form of the upper bound for P,:

An—1
[T P((ui—u) Suimu € 2 x> ol +mpr* = 17). (3.9)
i:N(61)+1
EJP 27 (2022), paper 50. https://www.imstat.org/ejp
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To bound this expression further, we shall use the following estimate, taken from [22,
Lem. 2.1]:

P (nilsn S )

nP(HXH > n) 210

on Z(R4\ {0}). Fix e; > 0. Note that (u;4+1 —u;) T o0 as i — co. So there exists a positive
integer N(ey) such that

P (i1 = 1) Supsu, € I x| = Col(1+ ) = 1]7)

< (ui+1 — ui)lfo‘LH.H(uiH - ul) [u({x : ||X|| > 02[(1 + 77)’/‘* - 1]71}) + 62]
< Csu} = “Ly (u;) (3.11)

for all i > N(e), where L. is the slowly varying function appearing in the tail distribu-
tion function of ||X||, and C3 is some appropriately chosen positive finite real number. In
addition, we have used the fact that L. (ui+1 — u;)/ L. (u;) is bounded above as L. is
a slowly varying function and u; * (w11 — u;) — (1+n)r* —1 > 0asi — occ.

Step 3. Fix e3 € (0, — 1). We now use Potter’s bound (see e.g. [27, Prop. 0.8(ii)]) which
says that there exists an integer N(e3) such that L. (u;) < u;® for all i > N(e3). Define
N; = N(e1) V N(e2) V N(e3). Combining the expressions obtained for the upper bound in
Step 1 and Step 2, we have

Ap—1
Py <y I wimote (3.12)
i=1
Using the upper bound for ),, obtained in (3.4), straightforward algebra yields
a—1—e€3

< = -
P < exp { 21og[(1 + )]

(logn)? + O(logn) }
The upper bound (3.1) follows by taking logarithms, dividing by (logn)?, letting n — oo,
and finally n,es — 0.

Step 4. Here we shall prove the claim stated in (3.6). We first observe that w;1/u; —
(1 4+ n)r* as i — oo. This implies the existence of a positive integer N(e;) such that
wip1/u; > (1 +n)r* — e forall i > N(e;). We consider ¢ > N(e;) from now on. It is clear
that
dist(u; 0 A, ujp1 0 A) = uy xeill,l)f/‘EA (i M uigr) x =yl = wi ;IelfA dist(y, (uip1u; ) o A).

Note that dist(y, (ui+1u;1) o A) is uniformly continuous in y. Using that A is compact and
every continuous function attains its extrema on a compact set, we conclude that there
exists an element yo € A such that inf, ¢ 4 dist(y, (u;luiﬂ) o A) = dist(yo, (uiﬂu;l) o A).
Using continuity of the distance function with the compactness of A once again, we get

;gg(ﬁﬂiy,ﬁw+1ufl)ox4)::H@M+1U51)X0‘*YOH

for some pair of elements xg,yo € A. To prove our claim, it is enough to show that
there does not exist any pair of elements x, and y, such that ||(u;1u; ').xo — yo| = 0.
We prove this by contradiction, so we first assume that there exists a pair xy and yj
of elements in A such that ||(u;;1u; ').xo — yo| = 0 holds. It follows from the property
of the Euclidean norm that y, = ui+1u;1.x0 and so xq and y( are the vectors in A in
the same direction with |yo||/||%ol| = wit1/u; > r* + r*n — e; > r*. This contradicts the

definition of 7* (see (2.2)) as xg, yo € A. Hence, the proof is complete.
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3.2 Lower bound

The proof of the lower bound

a—1

1
liminf ——— log P, > (3.13)

n—oo (logn) " 2logr*

is much more demanding. Using (2.4), and the discussion following that equation, we
define rs as the solution of

maxr (3.14)
™y
subject to
H(y)<4,H(r-y) <é. (3.15)

We can equivalently write this as as the solution of the problem

v(d) = —rs = min —r (3.16)
T’y
subject to the constraints
H(y)<¢ and H(r-y) <é. (3.17)

Since A is compact, H has compact level sets for levels 6 < 0. Since H is continuous
on A and A has a non-empty interior, there exists a § < 0 such that the subset 4° :=
{x : H(x) < ¢} of A is non-empty, and so we see that v(§) < —1 < co on ¢ in a
neighborhood of 0. Since H(r -y) is a composition of convex functions, it is jointly convex
on [0,00) x [0, 00)¢. Thus, we can apply Theorem 4.2(c) of [7] with u = —§(1,1), f(z) = —r,
X =[1,00) x R% and G(r,y) = (H(y), H(r.y)) : [1,00] x R¢ — (—o0,0]? to conclude that
v(0) is continuous in a neighborhood of 0.

Consider the set A with § < 0. It is clear that A(®) is a proper subset of A. Note that
A®) is a convex and compact set. So there exist an optimal direction <p(5) and a straight
line (in the direction (%) and the ratio of endpoints (%)) such that the straight line is
contained in A, It is immediate that <p(5) € =Z°. As a consequence of the Theorem 4.2(c)
of [7], it follows that 7(®) 1 r as § 1 0. As r > 1, there exists a §, < 0 such that »(®) > 1
for all § € (dg,0). Let us fix 6 € (dp,0). Note that a segment of straight line (with ratio
of the endpoints as r(9) in the direction <p(5) lies in the interior of A. Therefore, we can
construct a hypercuboid inside the set A (aligned in the direction ¢(®) and the ratio of
the endpoints is 7(®) in the direction ¢(?). As (%) > 1, all the constructions needed to
obtain the lower bound in (3.61) are possible. Using the same steps, we obtain a lower
bound as in (3.61) with r replaced by r(%). As § can be chosen to be arbitrarily close to 0,
we can let § 1 0 and obtain the desired lower bound.

Without loss of generality, we can now assume that ¢* € =°(A) for an interior
Z°(A) of Z(A), that is {y € $¢7! : ||y — ¢*|| < ¢} C A for some ¢ > 0. Indeed, if
@* € 0=(A) = E(A) \ Z°(A), then one can consider the set A’ instead and then take § | 0
at the last step of the proof.

Strategy of the proof: In the first step, we shall construct a hypercuboid I'(¢) (the
direction of any point in the hypercuboid lies in the e-neighbourhood of ¢* in =°) which is
aligned in the direction ¢* and contained in A. We further show that I'(¢) converges (in
the sense of convergence of sets) to the section of the straight line in A in the direction
p* as ¢ | 0. As we are concerned about the lower bound of P, we replace A by I'(¢). In
the second step, we partition the index set {1,2,...,n} into (D; : 1 < i < k,) subsets as
we did in the upper bound. The main difference here is that the partitions depend on the
length r(© of I'(¢) in the direction ¢*, and an auxiliary parameter p (choice of p depends
on r(€)). We also construct Y; C m; o I'(¢) such that {S,,, € Y;} for large enough i where
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Figure 2: Approximation by constructing a narrow hypercuboid: The blue line denotes the
optimal direction. We have constructed the largest possible hypercuboid I'(¢) contained
in the intersection of A and the cone.

m; is the left end point of D;. We then discuss the strategy for the lower bound in Step 3
and realize the strategy in the rest of the proof.

Steps 1. (Construction of a hypercuboid inside A approximating the chord of A in
the direction ¢*.) Define C.(¢*) := {y € $%7! : |y — ¢*|| < €} for some ¢ > 0. From
the above assumption ¢* € Z°(A), we can fix ¢ > 0 satisfying C.(¢*) C E(A). This
implies that the solid cone C, := {r-y : y € C.(¢*), r > 0} has non-empty intersection
with A. We shall say a hypercuboid is aligned in the direction ¢* if the hypercuboid is
specified by the orthogonal set of unit vectors (e; : 1 < j < d) with e; = ¢*. We define
I'(e) to be the largest hypercuboid contained in C. N A. It is clear that as ¢ — 0, C.
converges to the straight line {r - ¢* : » > 0}. Hence it is clear that C. N A converges to
{r-¢* :r € [Ly+,Ugy+|}. These observations can be used to obtain that I'(¢) converges
to {r-¢* : r € [L,-,U,-]} using the notion of convergence of sets (as defined in [31,
Def. 4.1]). Also, note that (1.5) implies that there exists an ¢ > 0 such that P(X € {x €
A @ dist(x,0A4) > €}) > 0 for some € > 0. To see this, suppose that P(X € A7¢) =0
where A7 = {x € A : dist(x,0A4) > €} for all € > 0. Since A° = U.soA ¢ and the
sets are nested, we can apply the monotone convergence theorem to conclude that
P(X € A°) =lim. o P(X € A~¢) = 0 which is a contradiction to (1.5). So we can choose
I'(e) for small enough e such that P(X € I'(e)) > 0.
To specify the d-dimensional hypercuboid I'(¢), define

T(e) i= {x  (x,e;) € 89 (e), Y)(e)] forall j = 1,2, .. .,d}. (3.18)
Note that I'(e) C A. Moreover, we have chosen (I'(¢) : € > 0) in such a way that
()10 and BY(e) [0 as e—0 forallj=2,...,d, (3.19)
and
W(e) | Ly- and BW(e) 1 Uy as e — 0. (3.20)
We have

P(kflsk € Aforall k — 1,2,3,...,n)
zP(k_lsk e T(e) forallk:1,2,...,n). (3.21)

Steps 2. (Partitioning the index set and construction of T; C m; o I'(¢).) As in Step 1 of
the upper bound, we divide {1,2,...,n} into smaller pieces. Define

9= 80 (e)/8" (e) (3.22)
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and note that () 1 7* as € — 0 by (3.20). Fix a constant ¢ > 0 small enough so that the
following inequality holds:

(109 > 1. (3.23)
Note that such a ¢ always exists as (<) > 1 allows us to choose o < 1 — (r(9)~1/2, Define
my = Cy; m; = |Cy [(1 — g) ] J for all 7 > 2. (3.24)

For large enough i, we define

Tii= {x: (xea) € [V = 0)rOmi +10m) ™", (1= 0/2)80 (e)mi]
and (x,e;) € [(2/3)5" () Lgmi 11, (2/3)89)() Lomi 1
for all j :2,3,...,d}, (3.25)
where

— (1-0/2)(1 = 0)r@ & (1,(1 - )r®). (3.26)

It is easy to check that T; C m; o I'(¢) for large enough i. We fix a large integer N. Then
we have following lower bound for the right hand side of the expression (3.21):

Kn—1

P(k;‘lsk €T(e) forallk=1,2,...mx — 1; Sy € TN) I1 P(k‘lsk e I(e)
=N

forallk=m; +1,m; +2,...,mip1 — 1; SmiJrl ETi+1

), (3.27)
where
K = inf{k : my > n}, (3.28)

and

G; = {klsk GF(E) forall k=1,2,...,mn — 1} N {SmN € TN}
ﬂ { 'S € I'(e) for all k = m; + 1,m; + 2,

Sy M1 — 1; Smj+1 € Tj+1}. (3.29)

Step 3. We choose the number g € (1, (1 — )r(9)) in (3.26) such that T;; C [gm;] o T'(e).
We divide the segment (S, : k& € [m; +1,m;11 — 1]) into two parts (S : k € [m; +1, [gm;]])
and (S : k € [lgm;]+1,m;11]). The first part of the segment will be allowed to contribute
only to the fluctuation of the random walk where the contribution will be at most of
order ml/ @0+ = o(m;). We will use the independent increment property of the random
walk and the generalized Kolmogorov’s inequality (see (4.8)) to show that the probability
of this event is close to one for large enough i. Observe that the distance between
the sets T; and T, is of order m;, which makes a jump of order m; necessary. This
necessary jump will occur in the second part of the segment and this part will also
contribute to the fluctuation. To analyze this segment we will introduce sets I', and f*
such that m; o [, C I',. Due to the choice of g, the jump can occur at any time point
in the interval [|gm;| + 1, m;4+1]. This strategy, combined with the regular variation of
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|IX|| and absolute continuity of the law of X/||X|| with respect to the uniform angular
measure, produces the lower bound for the probability in (3.27) which is roughly of order
(miy1 — Lgmi)P(||X]|| > m;) ~ m; *. Then we let ¢ — 0 and ¢ — 0 to get the desired
constants matching the constants in the upper bound.

To realize the strategy, we need the additional sets

T; = {X: (x,e1) € l(l)(e)(l _ Q)T(e)mi + ngg/ao-‘ré7

(1= 0/2)8) ()ms +m; "] and (x,e;) € [(2/3)8" () [gmi—1] —m} ™™,
(2/3)89) (e) [gmi_1 ) +mY/ ) forall j = 2,3,. .., d}, (3.30)

o= {x: fen) € [B7((1 = 0)rOm, + smy /o F,
(1 — 9/2)59)(6)7’1“1 _ m;/a0+5] and <X, ej> c [(2/3) l(j)(e) Lgmiflj . 2m§/a°+57
(2/3)80)(€) Lgm:| —m;/**] forall j = 2,3,...,d}. (3.31)

In the following lemma we introduce their basic properties. Its proof will be given later
in the Appendix.

Lemma 3.1. For large enough i, we have

Lgm]

Tic () {iol(e)} (3.32)
j=m;+1
and
mip1—1
T.c () {jol(eh (3.33)
Jj=lgmi]+1

Using this lemma, we get the following lower bound for the i-th conditional probability
in (3.27):

P(S;.C €Y, forallk e {m;+1,m; +2,...,|gm;]}; Sk € Y, forall k € {lgm:| +1,
lgmi] +2,...,mip1 —1}and S,,,,, € Tz’+1|Gi)

_ P(Sk €T, forall k € DV

Gi)P(Sk €T, forall k € D)

S, € Tm‘{sk e, forall k e Dﬁ”} N Gi)

Mi41
=T % T (3.34)
for all large enough i, where

DZ(.l) ={mi+1,m; +2,m; +3,..., [gm]}

and
DEQ) ={lgm;] + 1, |lgmi| +2,...,miy1 — 1}
We shall deal with each of these terms separately.

Term Tgl). Note that

T = [P(Gi)]_lP({Sk €7, forallk e DV and S, € Ti} N G;), (3.35)
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where

G, = {kz_lsk el(e) forallk =1,2,...,my—1and S, € TN}

i—2

ﬂ {klsk €l(e)forall k =m; +1,m; +2,...,Mmy, 1 and S,,; € Tj}
j=N
ﬂ {k’lsk c F(E) forall k =m;_1 + 1,mi1+2,....,m; — 1} (3.36)

Moreover, we have

d
1 . 1
ﬂ { maX Sk o Sm“ej> = mi/ao—i_é and min <Sk - Smmej> > 7mi/a0+6}
_ kJGD(l) kED(»l)

N {sm,., e T} c {Sk €Y, forallk e D!V and S,, € T} (3.37)
Using this inclusion, we obtain

T > [P(Gz‘)]_lP({ km§<}f><sk — S e;) <m/*% and
€b;

min (g — Sy, e5) > —m; *F forall j=1,2,.. .,d} N G) (3.38)
keD!!

From the independent increment property of the random walk we can conclude that

(Sg —Sm, k€ DO)) is independent of (S; : 1 < j < m;) and has
the same dlstrlbutlon as that of (S : 1 < k < |gm;] —my). (3.39)

Thus, the lower bound obtained in (3.38) equals

P({ max (S — S, €;) < m./*™ and
keD{V

min (Sy — Sy, €5) > —mi/aow forallj=1,2,.. .,d})
keD(

d
(ﬂ { max (Sp_pm,,e;j) < m/ 0+ and

K2
j=1 - keD{V

min (Sp_m,.€;) > —m}/o‘“”}). (3.40)
keD®

We shall now use the positivity of the angular measure to show that the projections of the
random walk in each of the directions (e; : 1 < i < d) are one-dimensional random walks
with the same asymptotic tail behaviour. Then, the generalized Kolmogorov inequality
(stated in (4.8)) is used to obtain the required lower bound. We shall mention the lower
bound in the next proposition which will be proved in the Appendix.

Proposition 3.1. Fix ¢ € (0,1). Under the assumptions in Theorem 2.1, there exists a
large integer N such that for all : > N, we have

d

1

(ﬂ { max (Sg_m,,€;) < mi/o“"HS
_1 “kedV

and min (S, ej) > fm}/“”‘s}) > (1-4). (3.41)
kED
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Thus, from Proposition 3.1 it follows that
T > (1-6) (3.42)
for all large enough ¢’s.

Term Tl@). Note that

P({Sk €T, forall k € D?; S,

i+1

o €T} N{S, e T, forallk e DV} Gi)
T® = _
({SkeT forallkeD }OG)

(3.43)
We now define several sets which will be necessary for the rest of the analysis
i {X D (x,e1) € [* m (1= 0/2)B0 () (i1 —mai) — le/%ﬂ and
(xe5) € [ = m/ ", (2/3)89 () (Lgmi ] — Lgmi-1]) — 2m}/*""]
forall j = 2,3,..., d}, (3.44)
r,:= {x D (x,e1) € { D)1 = 0)r (migs —mi) + 1Om;ﬁ”+5 — &m0
(1 0/2)B(€)(miss —mi) — 3m!/**] and
(x.e) € [(2/3)8 () (Lgmi] — Lgmi-1]) — 2m}/ >,
(2/3)89 (Lgma] — lgmi_1]) — 3m3/a°+5} forall j = 2,3,... ,d}, (3.45)
Zii= {x: (xen) € [B(1 = 0)r(migs = my) +10m)/ " — gm}/ o,
(1= 0/2)BV() i1 — my) —ml/**] and
(x,e5) € [(2/3)87 (€) (Lgmi] = Lgmi-1]) +mi/**,
(2/3)89)(e) (Lgms)| — Lgmi_1]) — m}/%*“] forall j=2,3,..., d}. (3.46)
Note that the numerator of TZ(Q) given in (3.43) has the following lower bound
P({Sk eTiforall k€ D; S,,,, € Tipa f N {Sy € Ty forall ke D} N G;)
> P({Sk ~Sgm, € miforall k€ DI; Sy, —Sigm,y € F}N{Sp e T,
for all k € DV } )
=P (Sk — Sgm € i forall k € D5 Sy, = Sipm, € &)
P({sieTforankeD"}ng)
= P(Sk,tgmiJ € w, forall k € DEZ); Siii—lgms] € fv'i)
P({sieTforanken’}nG). (3.47)
Finally, we can combine (3.43) and (3.47) to have

Tz(‘2) EP(Sk—LgmiJ cw; forallk=1,2,... mj;1 —1— LgmiJ;

S s Lgmi) € T ) (3.48)
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We now decompose the event {Sj_|gm,) € ; forall k =1,2,...,m;11 — [gm;] — 1} N

{S lgm:| € @i} into disjoint events (E; : 1 <t < m;y — [gm;]), where

M1 —

Et:{XteF*}ﬂ{é{maX[ max (S, e;),

1<k<t—1
S, — X N < 1/ao+6 and
t+1§k§rgzli}ingmiJ< k tej)] <my
. . . . _-X } - 1/a0+6 } 4
min [13%1§1?—1<Sk’e]>’t+1Sk§$il+angmiJ<sk ie;)] > —m; } (3.49)

It follows from the definition of the events (E; : 1 <t < m;; — |gm;|) are exchangeable
and hence have the same probabilities. So we have
T® > P(Si_ g, € w; forall k € DI and S, ,, € ;)

mit1—[gmi] mit1—[gmi]

zP( U Et): Y P(E) = (mis1 — Lgmi])P(Er). (3.50)

t=1 t=1
We now estimate P(E;). Note that

d
P(E)=P({Xenpn{{ _ _max  (Si—Xie;)<m/*" and
j=1

2<k<mip1—|gmi] !

min (Sk — X1,€5) > fml/a”é}})

2<k<mip1—gm] ‘

d
:P(X F*>P({ —Xi,e;) < 1/ao+6
€ ]Ol { 2§k§m1?i}i LgmiJ<Sk 1,e) <m; and

i Sp — Xy, e;) > —ml/e0td })
QSkﬁmrilflftgmif F 1, €5) m; }

d
=P(X el,)P Sy, e;) <m % and
min <Sk,ej> > _mil/oz0+5}})7 (3.51)
1<k<miy1—|gm;|—1

using the independent increment property of the random walk. It can easily be derived
from Proposition 3.1 that

P({

J

(Sk,e;) <m!/*" and

d
{ max
L 1ZkS<mip1—gma]—1

1

i Siej) > —ml/@0+d }) >(1-0 3.52

rcpem D (Skeg) > —m T ) > (1) (3.52)

for large enough i. We are now left with the estimate of the probability P(X € I',). To

do that we shall use the fact that the random variable X has a regularly varying tail. It

follows easily from mi/aow = o(m;) that {X € I',} D {m; 'X € I,} for large enough i
where

Foi= {x: fen) € [B(0(1 = 50/6)r (1 = 0 ~ 1),
B~ 20/3)((1 = o)r') —1)] and (x,e5) €

(/287 (@a[1 = (= or(©) '] @/3BP (g1~ (1= ) ]
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for all j = 2,3,...,d}. (3.53)

It is easy to see that I, is bounded away from 0. Using regular variation of the tail of X,
we get that

P(m;'Xel.,) -

lim = u(T) > 0. (3.54)
izoo P ([|X]| > my)
This means that for large enough i, we have
P(m;lx e f*) > P(|X] > m;) (u(f*) - e), (3.55)

where ¢ € (0, u(T',)) is a fixed small number. Combining these facts, we get
P(X € T.) = P(IX] = mi) (u(T.) ), (3.56)

for large enough i.
Combining (3.50), (3.51) and (3.56), for large enough i, we have

T > (mi1 — Lgma ) )P(IX]| > mi)(1 - 6)
~ (1=68)((1 = 0)r'® — g)m;P(||X]| > m;). (3.57)

Steps 4. It follows from (3.34), (3.42), and (3.57) that the i-th conditional probability
in (3.27) can be bounded from below by

miP(||X]| > m;) [(1 —0)2((1 = o)r® — g)]. (3.58)

This estimate, combined with the product formula (3.27), yields the following lower
bound for the probability (3.21):

P(kflsk eT(e) forallk =1,2,...,my — 1 and Sy, € TN)

(@=62(1 =@ —g)| " T [mPIX]>m))]
i=1+N
= constant((l —6H)[(1 = o)r'® — g])ﬁn(ngf‘)‘LH.H(mi)). (3.59)
i=1
It follows from the definition of x,, in (3.28) that
-1
Kp = (log[r(e)(l - Q)]) logn + O(1). (3.60)

We now use Potter’s bound to have L. (m;) > m; " for large enough i where 7 can be
chosen to be arbitrarily small but positive. Now, some straightforward algebra combined
with the estimate in (3.60) leads us to the following

lim inf ;2 log P, > lim ;)2 {/{n [(1—6)%((1- 0)r') — 1) —g] - Zlog ml}
i=1

n—00 (IOgn) e (logn
l—a-—n 9] i i
= —5— [log(1 - or®9] lim 7=ess
- _ —1

We can now let n — 0, p — 0 and € — 0 to get the desired constant in the right hand side
of (3.61), using the continuity of (& in e = 0.
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4 Rest of the proofs

This section is divided into two subsections. In subsection 4.1, we shall first prove
the auxiliary results mentioned in subsection 3.2 to derive the lower bound (3.61). In
Subsection 4.2, we provide a sketch of the proof of Theorem 2.2.

4.1 Proofs of auxiliary results

Proof of Lemma 3.1. We first prove (3.32). It is clear from the definition of m; and T'(¢)
that {(m; + 1) oT'(e)} N {[gm;] o T(e)} = ﬂj{%iﬁy oI'(e)} and it is enough to show that
Y; € {(m; +1) oT(e)} N {|gmi] o (¢)}. To establish this, we first consider the direction
e;. Note that

{(x,e1) :x € {(mi +1) o T()} N {[gmi) o T(e)}} D [gmiB (), miBP ().  (4.1)

Comparing the interval with the projection of the set Ti along the direction eq, 1t follows

from (1 — /2) < 1 that gm,; 8" (¢) < B (e)(1 — g)r©@m; for all i and (1 — 0/2)B8" (€)m;

mg/ 20Fe mlﬂq(})(e) for large enough . We now consider the directions e;, where

7 =2,3,...,d. Fix j and note that
{(x,e;) : x € {(mi + 1) o T()} N {[gmi] o T(e)}} D [miB (e),miBY ()] (4.2)

as B(j)( ) < 0and 6(j)( ) >0forallj =1,2,...,d. Comparing this interval with the projec-
tion of T; along the direction e;, it follows from |gm;_1] < m; that (2/3) (J)( Ygmi—1] —

m)/ % > m,; 89 () for large enough i and (2/3)85 (e)mi 1 < miBLY () for all i. Hence
the inclusion in (3.32) follows.

We proceed with a proof of (3.33). As ﬂ;zJ[;;ilJH{j ol(e)} = {(lgmi] +1) o T(e)} N

{(m;41—1)ole)}, it will be enough to show that Y; C {(|gm;|+1)ol(e) }N{(mit1—1)ol(e)}.
Consider first the direction e; and note that
{(x,e1) - x € {(lgmi] + 1) o T()} N {(mis1 — 1) o T(e)}}
S [mir1 B (), Lgma | BV (e)]. (4.3)

Moreover, we have that mi+1ﬂl( )( ) < ﬂ(l)( )1 = 0)rm; + 8m1/a°+6

9/2)551)(e)mi+1 — m}/a"% < Lgmijﬂu (¢) for large enough i. This completes the proof
of the inclusion in the e; direction. Fix now j € {2,3,...,d}. Then

{(x,e;) :x € {(lgmi] + 1) o ()} N {(mss1 — 1) o T(e)}}
> [Lgmil 87 (€), Lgmi] B9 (e)] (4.4)

for all i and (1 —

as 67 (e) < 0 and 87 (€) > 0. Note that (2/3)8"(e) [gmi_1] — 2m,/*°™* > |gm;| 87 (e)
for large enough i and (2/3)3% (¢) | gm;] — m}/**** < 8% (e) for all i. This completes the
proof of the inclusion stated in (3.33). O

Proof of Proposition 3.1. Note that

! 1
F ( { max (Sk_m,,€;) < mi/au+5 and min (Sp_,,,€e;) > 7mi/ao+6})
keD{V keDM
d c
P 1 b L s
_ (U { max (Sp_m,,e;) <m/*" and min (Sk_m,,e;) > —m) /" } )
; keD{" keD{"
j=1
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d
21~ ZP( max (S, €;) > mi/a"*‘; or min (Sig_m,,e;) < —mi/a°+6)
=1 “keD(V keD™
d
> 1= [P( g (Simes) > 0!/ ) 4 P min (Sumvey) < -l )] @)

keD( keD{V
Fix 0;+ for j =1,2,...d and t = 1,2 such that ¢;; € (0,/2d). We claim

P ( ) > ml/a0td ) : 4,
1§k§1§?n}fjfmi<sk7 e;) >m, <051 (4.6)
for sufficiently large ¢. To prove it we will use the following lemma.

Lemma 4.1. Let X € RV(a, 1) and p = v, ® < on (0,00) x $9~1 with ¢ being absolutely
continuous with respect to the Lebesgue measure. Then for any direction vectoru € $¢71,
we have (u,X) € RV(a,¥,) where 9, is a Radon measure on R \ {0} with

o (dz) = ap({y : (u,y) > 1)z~ * tdazl(z > 0)
+ap({y : (0y) < —1})(—2)"* M (z < 0). 4.7)

K Ysj ) is a mean 0 random walk with

Using Lemma 4.1, note that (Si,e;) = >/, Y;
steps Y,igj) = (Xi,e;) € RV(a,d,) forall j =1,2,...,d. For o € (1,2], we will apply the

generalized Kolmogorov inequality given in [32]:

k
P (12&)( Yy > x) < Cyma?E [(Ym)%l (|YU>| < x)} : (4.8)
SRR
where C, is some constant and Y = (X,e;). In this case, as [32] noted,

E [(Y")21 (]YY)] < 2)] is regularly varying with index 2 — & (or slowly varying if o = 2).
For a > 2 we can apply the classical Kolmogorov inequality. In both cases we can bound

P( max (Sk.ej) > mi/a”&) < Cymy *00,
1<k<[gm;]|—m;
where 7 appears due to Potter’s bound applied to the slowly varying part of
E[(Y¥)?1 (JYY| < z)] and Cs is some constant. For n > 0 sufficiently small, this
upper bound gives (4.6) as m; — oo with ¢+ — oo.

Similarly, we can prove that

P ( min (Sk, €j) < —mil/o“ﬁ(s) <2
1<k<|[gm;]—m;

for large enough ¢. Hence the proof of the proposition follows from the lower bound

obtained in (4.5). O

Proof of Lemma 4.1. To prove this lemma, we need to find (b, : n > 1) such that

lim nP (b;1<x,u> € B) = 9a(B) € (0,0) (4.9)
n— o0

for any B € (R \ {0}) such that 9,(9B) = 0. It is enough to show convergence in (4.9)
for the collection of sets {(—oo0, —t1) U (t2,00) : t1 > 0,2 > 0} as these collection of
intervals is a w-system (see [28, Lem. 6.1]). We consider the case B = (¢, c0) for ¢ > 0.
The set (—oco, t) with ¢ < 0 can be handled similarly. If we consider b,, = a,,, we get

lim nP (a;l(X, u) > t)

n— oo

EJP 27 (2022), paper 50. https://www.imstat.org/ejp
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= lim nP(aleX e {x:(ux) > t})

n—roo

:t_“u<{x:<u7x>>]}> (4.10)

as {x : (x,u) > 1} is bounded away from 0 and it can be proved that x does not put
any mass at the boundary of this set. Thus, the limit exists and satisfies the scaling

homogeneity property. To complete the proof it suffices to show that u({x D {u,x) >

1}) > 0. We show this by using polar decomposition, invoking our assumption on the
angular measure. Note that

u({x: (u,x) > 1})

=1, ®g({(r,y) € (0,00) x gd—1 cr(u,y) > 1})

- s(ay) [ Va(dr)
/{yesdl:(uvy>>0} r>((u,y))~1

@ dg
- dDep Yheb(dy). 411
/{)’GSdl:(u,y)>0} <<u7y>> dLeb (y) ¢ (dy) ( )

It is now enough to prove that Leb({y :(u,y) > 0}) > 0. Note that if x € {y € $¢!:

{(u,y) > 0}, then —x € {y € $¢71 : (u,y) < 0}. This implies that Leb({y € $¢71 : (u,y) >
0}) = Leb({y € 87! : (u,y) # 0})/2. Finally, we note that Leb({y : (u,y) # 0}) =
Leb(891) — Leb({y : (u,y) = 0}) is strictly positive, since {y : (u,y) = 0} contains only
2(d — 1) elements. Hence Leb({y : (u,y) = 0}) = 0.

O

4.2 Proof of Theorem 2.2

The proof is similar to the proof given in Section 3. Therefore, we will provide a brief
sketch of the proof below to indicate the similarity and obvious differences between
these two cases.

Upper bound. We follow the steps given in Subsection 3.1. We follow Step 1 with
r* = b/a in the definition of w;. Then the one-dimensional analogues of (3.7) and (3.5)
lead to the following inequality

P(Sul.Jr1 € lauiy1, buiy1]|Su, € [aui,bui]) < P(S’uiﬂ,ui > bnui). (4.12)

We can again use [22, Lemma 2.1] with d = 1 to obtain the upper bound in (3.11). Then
Step 3 produces the desired upper bound.

Lower bound. As P(X; € [a,b]) > 0, it follows that

P(ii{k15@€[mbH)EzP<£i{Xke[mbH>{PQXle[me]N:>O

for any integer N > 1. Define r = b/a and consider p € (0,1 — 1/4/r) which satisfies
(1—p)%r > 1. (4.13)

We then define m; = |m1[(1 — p)r]~1| for every i > 2, with m; a fixed large integer
and my = 1. We then decompose the index set {1,2,...,n} = Ui" D; where D; =
{m;+1,m; +2,...,m;+1}. We also construct a set T; such that Y; C [am;, bm;] for large
enough ¢. We then enforce 5,,, € T; for all large enough 7 which yields the lower bound
to P, of the required order. By construction, we make sure that T; N YT;,; = () and

EJP 27 (2022), paper 50. https://www.imstat.org/ejp
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the distance between the sets T; and Y, ; is of the order of magnitude m;. This event
enforces the segment (Sy : k € D;) to travel a distance of order m,. We then write down
P, in the following product form

mpy—1 Kp—1 mip1—m;—1
P( () (k715 € [a,b]} N {Shy eTN}) I1 P( N
k=1 i=N j=1
{SmiJrj S [a(mZ +]),b(mz -l-])]} n {sz‘+1 S T¢+1} Gz) (4.14)
mny—1 i—1
where G; = (1) {k"S € [a,8]} N {Smy € Tw} ) {
k=1 j=N
mjp1—mj;—1
M {Sm,ssr € lalmy +7),b(m; + )]} 0 {Sm, 0 € Tisa} ) (4.15)
=1

By construction, the set T;;; is not accessible to the segment (S : k € D;) initially.
Hence, we find a positive constant g such that T;; is accessible to S|,,,,| and further

decompose the segment into two parts given by (Si : k € Dz(l)) and (Si : k € DZ(Q)) where
Dgl) ={m;+1,m; +2,...,|gm;|} and DZ(Q) = {lgmi] + 1, |gm;| +2,...,m;11}. In the
first part of the segment, the random walk only contributes to the fluctuation (it can
only travel a distance of order O(mg / O‘°+5) where 1/ag + § < 1). The second part of the
segment contains one necessary jump of order m; and the rest of the steps contribute to
the fluctuation in an accumulated way.

To realize this strategy, we use the stationarity and the independence of the incre-
ments to write down the i-th term in the product formula (4.14) in terms of (S : k € D;).
The generalization of Kolmogorov’s inequality (stated in (4.8)) is used to show that the
first part (Si : k € Dgl)) can contribute to the fluctuation with high probability. The
probability of the second part (Sj : k € Dz@)) containing a jump of magnitude O(m;) is
roughly of order mg_a leading to the right constant in Theorem 2.2. Thus the proof
follows if we choose the constant g and construct Y; in an appropriate way for large
enough «.

We define

T; = [a(1 — p)rm; + m;/awé’ (1—=p/2)bm;] fori >1
and g = (1—p/2)(1 —p)r € (1,7(1 — p)). (4.16)

To realize the strategy fully, we shall design two auxiliary sets T, - ﬂj c Dm[aj, bj)

and T; C M@\ my, 3104 b] such that S € Y; for all k € DY and S, € T, for all

ke Dl@) \ {miy1}. We define

%

[a(1 — p)rm; + gm0t (1—p/2)bm;y1 — m}/aﬁé]. (4.17)

i

T = [a(1 = p)rmi +9m;/ ", (1 = p/2)bm; +m; > "]
an =

[a
anv,
It is easy to check that Ti and Ti satisfy the requirements for large enough ¢ (see proof

of Lemma 3.1). Therefore, we have the following lower bound on the i-th conditional
probability in (4.14):

LgmiJ _ mi+1_1
P( ﬂ {57 S Tz} ‘ Gz) P( ﬂ {S] S Tz}
j=m;+1 j=lgmi]+1
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Lgm.]
A {Sms € Tisa} ’ Gn ) (S eTi}) =1 x 1, (4.18)
j=m;+1
We shall now derive lower bounds for the terms Tgl) and TEZ) separately.
Note that the term TED can be written as
Lgmi] _
P( M (S €T} n{Sm, €T} GQ)/P(GZ»), (4.19)
j=m;+1

where G, = G, U {S,,, ¢ Y;}. Observe that on the event {S,,, € 1.}, {—mi/a"% <
minmi_f_lgjgl.gmij (Sj — S/rnl) < maXmi+1§jSLgmiJ (Sj — S',ni) < m}/ao"t‘ls} 1mplles {Sj S

T, forall j € Dl(l)}. Therefore, we have the following lower bound for the numerator
in (4.19):

P(Gi N { - mil/a“J”S < min (S; — Sm,) <

mi+1<j<|gmi]

1/Oto+6
L _ 5 . 4.2
mi+1r§rlg??Lgmij(SJ Sy ) < my }) (4.20)

We can now use the independence of the segments (S; : 1 < k <m;) and (S — S, 1 k €
Dgl)), and the distributional identity (Sx — S, : k € Dgl)) < (S;:1<j < |gmi] —my) to

obtain the following lower bound for Tgl):

1 § . 1 B
P( — mi/OK0+ < min S; < max S; < mi/o‘OJr )
1<i<gm; | —m; 1<<gmi | —m;

>1-P(_ max s> m/ "), (4.21)
1<5<lgm;]—m;

We can now use the generalized Kolmogorov’s inequality when to conclude that the

lower bound in (4.21) is close to one if we choose i large enough.

We shall derive the exact asymptotics for the term Tl(?) for large enough i. We
want to create an envelope for the segment (S; : |[gm;] +1 < j < m;41) so that the
segment contains exactly one large jump (of absolute magnitude O(m;)) to ensure
N {s; € T} N {Smis, € Tiy1}. To write down the envelope explicitly, we need

J=lgmi]+1
the following intervals

@i = [~m/ (1= p/2)b(migr —mi) — 2my/ Ot

@; = [a(l = p)r(mit1 —my) + IOm}ﬁ‘)” — gm}/a0+?
(1= p/2)b(Mmip1 —my) — 3m1}/ao+6]7

and I'; = [a(1 — p)r(mit1 —m;) + 10m3ﬁ°+5 _ gml/ats

b(1 — p/2)(mig1 — ms) — 3my >t (4.22)

)

For large enough ¢, we have the following inclusion

mig1—1
{S[gmiJ € Ti}ﬂ |: ﬂ {Sk_SLgmij Ewi}ﬂ{SmM _SLgmiJ E‘l%i}}
k=|gm;]+1
~ mi+171 ~
C{Sgmy €TiIn () {Sk €Y} N{Sm.;, € Tita}. (4.23)
k=lgm:|+1
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We now observe that the left-hand side of the inclusion (4.23) can be decomposed into
two independent events using the independent increment property of the random walk.
Combining these facts, we obtain the following lower bound for the term T§2):

Pt (S5 € @i} N {Sme € Bi})- (4.24)

We now decompose the event inside the probability in the right hand side of (4.24) into

disjoint events by taking into account the location of the large jump in the interval DZ@).

The following event helps to write down the decomposition

E, = {X, eI m{ S, S — X;)} < ml/eots
e={(Xeenqf max S omax o (Se—X)f <m0
. . . . o 1/a0+§ }

M min 2 S g g (B 7 XL 2T

for every t € D§2). It is easy to check that Uj<¢<.n,,, —|gm,|E+ implies the event inside

the probability in (4.24). We can now use exchangeability of the random variables

(Xt :1 <t <mip1 —|gmi]) to see that P(E;) = P(E;) for every ¢ > 1 and obtain the
; (2,

following lower bound for T,":

(mit1 — [gmi])P(E1)
= (mip1 — [gmi] )P (X, € Ff)P({ max Sy < m}/ao+6}

1<k<mit1—[gm:]—1 -

N { min > —m1/°‘°+5}). (4.25)

1<k<m;t1—|gm:]—1 ¢

For large enough 4, the last probability in (4.25) is very close to 1 as we have seen earlier
in the analysis of term TZ(-l) and so, we can ignore that for the further analysis. We can
use now regular variation to conclude that

(mig1 — Lgmi] )P (X1 € T7)
~ (1= p)r = glmiP (X, € [a(1 = p)*r2,b(1 = p/2)(1 = p)r])

b(1—p/2)(1—p)
~[(1=p)r—g| [a/ z~ tda]m;
a(1-p)?r?
~ const. exp { —i[(a —1)log ((1 — p)r)]}, (4.26)

as ¢ — oo. The lower bound now follows from simple algebra (see (3.12) in Step 3 in the
proof of (3.1)), and by letting p — 0.
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