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Shadowing-Based Data Assimilation Method for Partially Observed Models\ast 
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Abstract. In this article we develop further an algorithm for data assimilation based upon a shadowing refine-
ment technique [de Leeuw et al., SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 2446--2477] to take partial
observations into account. Our method is based on a regularized Gauss--Newton method. We prove
local convergence to the solution manifold and provide a lower bound on the algorithmic time step.
We use numerical experiments with the Lorenz 63 and Lorenz 96 models to illustrate convergence
of the algorithm and show that the results compare favorably with a variational technique---weak-
constraint four-dimensional variational method---and a shadowing technique--pseudo-orbit data as-
similation. Numerical experiments show that a preconditioner chosen based on a cost function allows
the algorithm to find an orbit of the dynamical system in the vicinity of the true solution.
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1. Introduction. Data assimilation (DA) combines measurement data (also called ob-
servations) over an interval with model simulations to construct an accurate initial con-
dition for a chaotic dynamical system [20]. The shadowing-type data assimilation meth-
ods [22, 3, 21, 42, 13] employ (a proxy of) observations as an initial guess and, using a
gradient descent algorithm, search for a trajectory of a dynamical model that is, hopefully,
in a neighborhood of the true trajectory. By the true trajectory we mean a model trajectory
from which the observations could have been generated.

When only partial observations are available, it is necessary to generate a proxy for com-
plete observations. A proxy of observations is generated by another (not shadowing-type) DA
method using partial observations and a background trajectory. The background trajectory
is a model simulation that does not employ observations and thus typically has a large error
with respect to the true trajectory. Such a preprocessing provides a more accurate, com-
plete initial guess for the shadowing-type DA methods. However, it requires the availability
of another DA method and consequently induces the computational costs. Needless to say,
the shadowing-type DA methods are the only DA methods that require a proxy for complete
observations.
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880 BART M. DE LEEUW AND SVETLANA DUBINKINA

In this paper, we propose a new shadowing-type DA method that employs partial observa-
tions and a background trajectory directly for initialization, thus without any preprocessing.
The proposed shadowing-type DA method is based on the shadowing-type DA method of [9].
The shadowing-type DA method of [9] we call here the noise-reduction DA method. The noise-
reduction method seeks zeros of a corresponding single-step residual function using a Gauss--
Newton method and employs (a proxy of) observations as an initial guess. In order to account
for partial observations without preprocessing we propose to use Levenberg--Marquardt regu-
larization [26, 31] when seeking zeros. Since the Levenberg--Marquardt algorithm can be seen
as a regularization of the Gauss--Newton method, we call the corresponding shadowing-type
DA method the regularized shadowing DA method. A regularization parameter controls the
algorithmic time step, making the Gauss--Newton method convergent to the solution manifold
independently of the initial guess. We prove local convergence of the proposed regularized
shadowing DA method following [3]. Note that the Levenberg--Marquardt regularization is
often used in nonlinear optimization and data assimilation in particular, e.g., variational data
assimilation [30], and ensemble Kalman filter [4].

Despite being convergent to the solution manifold, the regularized shadowing DA method
might poorly approximate the true solution due to observations being used only as an initial
guess. Therefore, in this paper we introduce a preconditioner for the corresponding gradient
flow that modifies the direction of the search such that the estimate remains in the vicinity
of observations. This is done in the spirit of trust region methods [33], which together with
Gauss--Newton-type methods have been an inspiration for new algorithms to solve nonlinear
least-squares problems (see, e.g., [10]).

First, let us review shadowing refinement that is the core of the shadowing-type DA
methods. We consider a discrete deterministic model

(1) xn+1 = Fn(xn), xn \in \BbbR m, n = 0, . . . , N  - 1,

where Fn : \BbbR m \rightarrow \BbbR m. We assume Fn to be \scrC 3 for all n. In many applications the model is
defined by the time-discretization of an ordinary differential equation \.x = f(t, x), x(t) \in \BbbR m,
which in turn may be defined as the space-discretization of a partial differential equation (or
system of PDEs). We define the following single-step residual function:

(2) G(\bfitu ) =

\left(     
G0(\bfitu )
G1(\bfitu )

...
GN - 1(\bfitu )

\right)     , Gn(\bfitu ) = un+1  - Fn(un), n = 0, . . . , N  - 1.

A sequence \bfitu = \{ u0, . . . , uN\} is called an \varepsilon -pseudo-orbit of F if \| Gn(\bfitu )\| < \varepsilon for all n =
0, . . . , N  - 1, where \| \cdot \| is a norm in \BbbR m. Note that \bfitu = \{ u0, . . . , uN\} is called an orbit of F
if \| Gn(\bfitu )\| = 0 for all n = 0, . . . , N  - 1.

Assume that F admits the hyperbolic splitting into stable (contracting) and unstable
(expanding) subspaces, and thus there exists a hyperbolic set for F . Suppose \bfitu is an \varepsilon -orbit
in a neighborhood of a hyperbolic set for F . Then the shadowing lemma (e.g., Theorem 18.1.2
of [23]) states that for every \delta > 0 there exists \varepsilon > 0 such that \bfitu is \delta -shadowed by an orbitD
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REGULARIZED SHADOWING-BASED DATA ASSIMILATION 881

of F , i.e., there exists an orbit \{ xn\} satisfying xn+1 = F (xn) such that \| un  - xn\| < \delta for all
n = 0, . . . , N .

The shadowing trajectories were originally proposed to prove the existence of an exact
trajectory in the vicinity of a pseudo-trajectory [35, 17, 43, 6, 5]. Shadowing refinement [17]
employs a pseudo-orbit as an initial guess and iteratively refines the pseudo-orbit to obtain
an improved approximation of an exact solution. The work of [43] proved convergence of the
shadowing refinement algorithm to an exact orbit that is not far from the initial guess. When
a dynamical system is nonuniformly hyperbolic, the hyperbolic splitting holds only at almost
every point on \BbbR m, and then a dynamical system is shadowed for finite nontrivial lengths of
time [6, 7, 8, 48]. Furthermore, for a (nonuniformly) hyperbolic system a pseudo-orbit shadows
a unique exact orbit under rather strict conditions on an exponential dichotomy [35, 5].

A (nonuniformly) hyperbolic dynamical system has a fixed number of (zero) negative and
positive Lyapunov exponents. The stable and nonstable subspaces correspond to Lyapunov
vectors associated with negative and nonnegative Lyapunov exponents, respectively. Exam-
ples of nonuniformly hyperbolic dynamical systems are the Lorenz 63 (L63) model [28], which
has one positive, one zero, and one negative Lyapunov exponent, and the Lorenz 96 (L96)
model [29], which has thirteen positive Lyapunov exponents, one zero Lyapunov exponent,
and all others being negative Lyapunov exponents. A nonhyperbolic dynamical system has
a fluctuating number of positive Lyapunov exponents. An example of a nonhyperbolic dy-
namical system is a truncated quasi-geostrophic atmosphere-ocean model [49] that has two
positive Lyapunov exponents, sixteen negative Lyapunov exponents, and eighteen near-zero
(fluctuating) Lyapunov exponents.

In contrast to the classical shadowing refinement, shadowing-based data assimilation [22,
3, 42, 13, 9] does not search for an exact orbit of \.x = f(x). It rather searches for an exact
orbit of a dynamical model---a discrete dynamical system (1) that originates from a time- and
space-discretization of a system of PDE describing the behavior of the underlying dynamical
system. However, it has the same spirit as shadowing refinement, since it employs a noisy orbit
(proxy of observations) and searches for a shadow of an exact orbit of a dynamical model that
is hopefully in a neighborhood of the true orbit. The observation noise is typically assumed
to be a random Gaussian-distributed variable. However, bounded observation noise can also
be reduced by a shadowing-type DA method [22].

Recent efforts to make a DA method computationally more efficient led to an approach of
assimilation in the unstable subspace. This approach was first proposed for variational data
assimilation [47, 46, 34, 24, 38] and later adapted for ensemble data assimilation [16, 2] and
shadowing-type data assimilation [9]. The dimension of the nonstable subspace is consider-
ably smaller than the dimension of the full space. Since the noise-reduction method showed
encouraging results when the tangent space was partitioned into nonstable and unstable sub-
spaces, we adapt the partitioning to the regularized shadowing DA method and investigate
numerically the accuracy.

The rest of the paper is organized as follows. In sections 2 and 4, we briefly recall the
noise-reduction DA method and the projected noise-reduction DA method of [9], respectively.
In section 3, we introduce the regularized shadowing DA method for partial observations and
prove its local convergence and closeness of the estimate to the observations. In section 5,
we introduce the projected regularized shadowing DA method for partial observations. InD
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882 BART M. DE LEEUW AND SVETLANA DUBINKINA

section 6, we present results for the L63 and the L96 models. Finally, we draw the conclusions
in section 7.

2. The noise-reduction DA method. Let the sequence \bfscrX := \{ \scrX 0, . . . ,\scrX N\} be a dis-
tinguished orbit of (1), referred to as the true solution of the model, and presumed to be
unknown. Suppose we are given a sequence of partial noisy observations \bfity := \{ y0, . . . yN\} 
related to \bfscrX via

yn = Hn\scrX n + \xi n, yn \in \BbbR d, n = 0, . . . , N,

where Hn : \BbbR m \rightarrow \BbbR d, d \leq m, is the linear observation operator, and the noise variables \xi n are
drawn from a normal distribution \scrN (0, En) with zero mean and known observational error
covariance matrix En.

Data assimilation is the problem of finding a pseudo-orbit \bfitu = \{ u0, u1, . . . , uN\} , un \in \BbbR d,
of the model (1), such that the differences \| yn  - Hnun\| and \| un  - Fn(un - 1)\| , n = 1, . . . , N
are small in an appropriately defined sense. This is done with the aim of minimizing the
unknown error \| un - \scrX n\| ; see, for example, [44, 25]. Well-known four-dimensional variational
data assimilation aims at finding the optimal initial condition u0 of (1) to minimize a cost
function

(3) C\mathrm{v}\mathrm{a}\mathrm{r}(u0; \{ yn\} ) =
N\sum 

n=1

(yn - Hnun)
TE - 1

n (yn - Hnun)+(un - Fn(un - 1))
TC - 1

n (un - Fn(un - 1)),

where \{ Cn\} Nn=0 is the model error covariance. Here the last term with model error covariance
\{ Cn\} Nn=0 is present for weak-constraint variational data assimilation (WC4DVar). WC4DVar
seeks a pseudo-orbit of (1); see, e.g., [39, 27, 45, 44] and references therein. Strong-constraint
variational data assimilation does not have this term in the corresponding cost function and
thus seeks an exact orbit of (1). However, it suffers from a drastic increase of the number of
local minima as N increases [1, 32, 37].

Instead of minimizing a cost function, the noise-reduction DA method [9] searches for a
zero of the single-step residual function (2) using a contractive iteration started from (a proxy
of) complete, noisy observations. Just as with strong-constraint four-dimensional variational
data assimilation, the noise-reduction method attempts to find an exact orbit of (1) consistent
with the observations. However, instead of solving directly for the initial condition, the noise-
reduction method solves for the whole orbit at once. It was shown that shadowing-type DA
methods do not have the issue of multiple local minima; see, e.g., [22] and [9] for the noise-
reduction method.

The noise-reduction method seeks an update \bfitD (k) by approximately solving

(4) G
\Bigl( 
\bfitu (k) +\bfitD (k)

\Bigr) 
= 0.

Here k denotes the index of the Gauss--Newton iteration and the solution to (4) is approxi-
mated using the right pseudoinverse of G\prime ,

\bfitu (k+1) = \bfitu (k) +\bfitD (k), \bfitD (k) =  - G\prime (\bfitu (k))\dagger G(\bfitu (k)) =  - G\prime T (G\prime G\prime T ) - 1GD
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REGULARIZED SHADOWING-BASED DATA ASSIMILATION 883

with \bfitu (0) = \bfscrX + \bfitxi . Without loss of generality, we can assume that observation operator H
is the identity matrix for a proxy of complete observations. The function G(\bfitu ) has a zero for
every orbit of the model. The Jacobian of G has an m(N  - 1)\times mN block structure:

(5) G\prime (\bfitu ) =

\left[     
 - F \prime 

0(u0) I
 - F \prime 

1(u1) I
. . .

. . .

 - F \prime 
N - 1(uN - 1) I

\right]     
with full row-rank. Since the Jacobian appears only when acting on a given vector (unit
vector), it could be efficiently approximated by finite differences F \prime (u)v \approx 1/\varepsilon (F (u + \varepsilon v)  - 
F (u)).

3. Regularized shadowing DA method. In this section, we introduce a new shadow-
ing DA method that is based on Levenberg--Marquardt regularization of the noise-reduction
method described in section 2. The noise-reduction method uses the Gauss--Newton method
to find zeros of (2), which requires a good initial guess. When such an initial guess is not
available, the noise-reduction method fails to converge. Therefore, we regularize the Gauss--
Newton method following [26, 31] to have the shadowing DA method convergent to the solution
manifold G(\bfitu ) = 0 for an initial guess that is not necessarily good.

Furthermore, the proposed regularized shadowing DA method takes into account the ob-
servation covariance error \{ En\} Nn=0 unlike existing shadowing-type DA methods. It has a
tuning matrix W that keeps descent steps in the direction of observed variables small com-
pared to descent steps in the direction of nonobserved variables. As the iteration proceeds,
observed variables get denoised as well and the algorithm finds a (pseudo-)orbit compatible
with observations.

Since we are interested in assimilating partial observations, we need to complete the partial
observations to have an initial guess for the regularized shadowing DA method. Instead of
using a proxy of observations as in the noise-reduction method, we use a combination of partial
observations \bfity and a background trajectory \bfitx \mathrm{b}. The background trajectory \bfitx \mathrm{b} is a solution
of (1). Typically the background trajectory is obtained by performing data assimilation over
a previous time window, thus by employing past observations. However, we assume that the
background trajectory is a solution of (1) with an arbitrary initial condition. We assume that
an initial guess for the shadowing DA method is

(6) \bfitu (0) = HT\bfity +H\bot \bfitx \mathrm{b},

where H is the observation operator, which has a dN \times mN block diagonal structure H =
blockdiag (H1, . . . ,HN ), and the operator H\bot is defined as

(7) H\bot = (I  - HTH).

We assume that for any n = 0, . . . , N , Hn has only one nonzero element in a row and that
element is equal to 1. This is a standard assumption about the observation operator, which
corresponds to observing separate variables rather than a combination of variables. Then we
have HH\bot = 0 and from (6) it follows that H\bfitu (0) = \bfity and H\bot \bfitu (0) = H\bot \bfitx \mathrm{b}. Thus H projectsD
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884 BART M. DE LEEUW AND SVETLANA DUBINKINA

the initial guess \bfitu (0) to the observation space \BbbR d, while H\bot sets the observed components of
the initial guess \bfitu (0) to zero.

We seek an update \Pi (k) by approximately solving

(8) G
\Bigl( 
\bfitu (k) +\Pi (k)

\Bigr) 
= 0

using the Levenberg--Marquardt regularization

(9) \bfitu (k+1) = \bfitu (k) +\Pi (k), \Pi (k) =  - \Sigma G\prime T
\Bigl( 
G\prime \Sigma G\prime T + \alpha (k)C

\Bigr)  - 1
G.

Here k is the iteration index, G = G(\bfitu (k)) is defined in (2), and G\prime = G\prime (\bfitu (k)) is defined in (5)
as in the noise-reduction method. The matrix C is a given positive definite matrix and it has
an m(N - 1)\times m(N - 1) block diagonal structure C = blockdiag (C1, . . . , CN ), where \{ Cn\} Nn=0

plays a role of the model error covariance. The parameter \alpha (k) > 0 is called the regularization
parameter and it needs to be computed at each iteration k using a specific criterion that we
will introduce later. The matrix \Sigma is a given positive definite matrix that has the following
form:

(10) \Sigma := HTEH +H\bot WH\bot ,

where the operator H\bot is defined in (7). The observation error covariance matrix E has a
dN\times dN block diagonal structure E = blockdiag (E1, . . . , EN ) and the positive definite matrix
W has an mN \times mN block diagonal structure W = blockdiag (W1, . . . ,WN ). The matrices
\{ Wn\} Nn=0 are defined in terms of a tuning parameter. Later we will show that they depend on
the background trajectory error.

In order to observe why the matrix C plays a role of the model error covariance in (g), we
rewrite the solution \bfitu (k+1) to (9) as a minimizer of a cost function, namely,

(11) \bfitu (k+1) = min
\bfitu 

\Biggl[ 
1

2
G (\bfitu )T C - 1G (\bfitu ) +

\alpha (k)

2

\Bigl( 
\bfitu  - \bfitu (k)

\Bigr) T
\Sigma  - 1

\Bigl( 
\bfitu  - \bfitu (k)

\Bigr) \Biggr] 
,

where we assumed matrices C and \Sigma are invertible. Here we observe that the L2-norm \| G(\bfitu )\| 
is minimized up to the model error covariance C and \| \bfitu  - \bfitu (k)\| is minimized up to the initial
error \Sigma . Comparing the cost function (11) to the WC4DVar cost function (3), we observe
that the term \| G(\bfitu )\| 2C is identical in both cost functions. However, WC4DVar minimizes the
L2-norm with respect to observations, while the regularized shadowing DA method minimizes
the L2-norm with respect to the previous iteration.

3.1. Local convergence. In this section we provide a necessary condition for an estimate
obtained by the regularized shadowing DA method to be close to observations and prove local
convergence of the algorithm to the solution manifold. Being close to observation means that
the estimate remains in a ball centered at observations with a radius that depends on the
observation error. Note that if the observation noise is small, then this result combined with
the shadowing property guaranties that the estimate is in the vicinity of the true trajectory.

Let us rewrite the regularized shadowing DA method in the limit of a continuous algo-
rithmic time step. This is done in the spirit of analysis of the ensemble Kalman filter basedD
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on the optimization viewpoint [40, 41]. Assume we can set \alpha (k) = \alpha (0) for all k. Then we
introduce notation h = 1/\alpha and rewrite (9) in terms of h

\bfitu (k+1) = \bfitu (k) + h\Psi (k), \Psi (k) =  - \Sigma G\prime T \bigl( 
hG\prime \Sigma G\prime T + C

\bigr)  - 1
G.

Then taking the limit of h\rightarrow 0, we get on \tau \in [0, 1]

(12)
d\bfitu 

d\tau 
= \psi (\bfitu ), with \psi (\bfitu ) =  - \Sigma G\prime T (\bfitu )C - 1G(\bfitu ), and \bfitu (0) = \bfitu 0.

Stationary points of (12) only occur if G(\bfitu ) = 0 or if G\prime T (\bfitu ) is not full rank. Defining
\Phi (\bfitu ) = \| C - 1/2G(\bfitu )\| 2/2, the ODE (12) becomes

(13)
d\bfitu 

d\tau 
=  - \Sigma \nabla \Phi (\bfitu ).

This is a preconditioned gradient descent for \Phi (\cdot ) with a preconditioner \Sigma . We recall that
\Sigma incorporates dependence upon the observation covariance matrix E and weighting matrix
W (10).

Assuming \Sigma is invertible, it holds that

d

d\tau 

1

2
\| C - 1/2G(\bfitu )\| 2 = d

d\tau 
\Phi (\bfitu (\tau )) =

\biggl( 
d\Phi 

d\bfitu 

\biggr) T d\bfitu 

d\tau 
=  - 

\bigm\| \bigm\| \bigm\| \bigm\| \Sigma  - 1/2d\bfitu 

d\tau 

\bigm\| \bigm\| \bigm\| \bigm\| 2 \leq 0,

which gives an a priori bound on \| C - 1/2G(\bfitu )\| but does not give global existence of a solution
\| \bfitu \| .

Lemma 3.1. Suppose \| \nabla \Phi (\bfitu )\| < 1. Furthermore, suppose \| H\bot \bfitu (1) - H\bot \bfitx \mathrm{b}\| 2W = \varepsilon 2 for
\varepsilon < 1. Then \| H\bfitu (1) - \bfity \| 2E < 1 - \varepsilon 2.

Before we proceed to the proof, let us note that the assumption \| H\bot \bfitu (1) - H\bot \bfitx \mathrm{b}\| 2W = \varepsilon 2

for \varepsilon < 1 can be fulfilled by an a posteriori choice of W .

Proof. By multiplying (13) with either H or H\bot , integrating from 0 to 1, and then taking
the L2-norm, we have

\| H\bfitu (1) - \bfity \| = \| E
\int 1

0
H\nabla \Phi (\bfitu )d\tau \| , and \| H\bot \bfitu (1) - H\bot \bfitx \mathrm{b}\| = \| W

\int 1

0
H\bot \nabla \Phi (\bfitu )d\tau \| .

Due to the assumption \| H\bot \bfitu (1) - H\bot \bfitx \mathrm{b}\| 2W = \varepsilon 2, we have \| 
\int 1
0 H

\bot \nabla \Phi (\bfitu )d\tau \| 2 = \varepsilon 2.
Since HH\bot = 0, by the Pythagorean theorem we have

\| 
\int 1

0
\nabla \Phi (\bfitu )d\tau \| 2 = \| 

\int 1

0
H\nabla \Phi (\bfitu )d\tau \| 2 + \| 

\int 1

0
H\bot \nabla \Phi (\bfitu )d\tau \| 2.

Since \| \nabla \Phi (\bfitu )\| < 1 by the assumption and \| 
\int 1
0 H

\bot \nabla \Phi (\bfitu )d\tau \| 2 = \varepsilon 2, from the above equality
it follows that

\| 
\int 1

0
H\nabla \Phi (\bfitu )d\tau \| 2 < 1 - \varepsilon 2.

This implies that \| H\bfitu (1)  - \bfity \| 2E < 1  - \varepsilon 2, and the estimate H\bfitu consequently remains in a
ball centered at \bfity with radius \| E(1 - \varepsilon 2)\| .D
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Now we prove the local convergence of the regularized shadowing DA method (9) when a
model is fully observed. Lemma 3.2 and Theorem 3.3 provide conditions for local convergence
and are proven in [3] as if for a class of general iterative schemes. Lemma 3.4 is a new result
that holds for fully observed dynamical systems. Let \scrM = \{ \bfitu : G(\bfitu ) = 0\} and assume that
G\prime is surjective on \scrM , and then \scrM is a manifold. We define \phi as

\phi (\bfitu ) = \bfitu  - \Sigma G\prime T \bigl( 
G\prime \Sigma G\prime T + \alpha C

\bigr)  - 1
G,

where we drop the iteration notation. We note that

(14) D\phi = I  - \Sigma G\prime T \bigl( 
G\prime \Sigma G\prime T + \alpha C

\bigr)  - 1
G\prime for \bfitu \in \scrM .

Since \scrM is a manifold, we define the tangent and normal spaces of \scrM at u as \scrT u\scrM and

\scrN u\scrM , respectively. We have \scrT u\scrM \bot \scrN u\scrM and \scrT u\scrM = ker
\Bigl( 
\Sigma G\prime T \bigl( 

G\prime \Sigma G\prime T + \alpha C
\bigr)  - 1

G\prime 
\Bigr) 
for

\bfitu \in \scrM .

Lemma 3.2. \scrM is a set of fixed points for \phi and there are no further fixed points near \scrM .

Theorem 3.3. Suppose \scrM is compact and contained in an open set \scrU . Furthermore,
suppose D\phi is continuous in \scrU and \| D\phi | \scrN u\scrM \| < 1 for all \bfitu \in \scrM . Then the sequence
\bfitu (k) = \phi k(\bfitu (0)) converges for k \rightarrow \infty to a point on \scrM if \bfitu (0) is sufficiently near to \scrM .

Now we prove that \| D\phi | \scrN u\scrM \| < 1 for the regularized shadowing DA method for all \bfitu \in \scrM 
in a specific case when \Sigma G\prime T \bigl( 

G\prime \Sigma G\prime T + \alpha C
\bigr)  - 1

G\prime is a positive semidefinite matrix. This is
the case when the system is fully observed and the observation covariance matrix is a scalar
times the identity. For a partially observed model unless the matrix W is set to \epsilon I, where
E = \epsilon I, the matrix \Sigma G\prime T \bigl( 

G\prime \Sigma G\prime T + \alpha C
\bigr)  - 1

G\prime is not positive semidefinite. Letting W = \epsilon I
contradicts the condition of Lemma 3.1 sinceW is chosen such that \| H\bot \bfitu (1) - H\bot \bfitx \mathrm{b}\| 2W = \varepsilon 2

for \varepsilon < 1.

Lemma 3.4. Suppose \Sigma \Omega [\alpha I+\Sigma \Omega ] - 1 is a positive semidefinite matrix, where \Omega = G\prime TC - 1G\prime .
Furthermore, suppose a positive \alpha satisfies \alpha > \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Sigma \Omega | \scrN u\scrM )/2  - \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Sigma \Omega | \scrN u\scrM ). Then
\| D\phi | \scrN u\scrM \| < 1 for all \bfitu \in \scrM .

Proof. Using the Sherman--Morrison--Woodbury matrix inversion formula [15] and assum-
ing that \alpha \not = 0, we can rewrite (14) as

(15) D\phi = I  - \Sigma \Omega [\alpha I +\Sigma \Omega ] - 1.

Since \Sigma \Omega [\alpha I +\Sigma \Omega ] - 1 is a positive semidefinite matrix, then D\phi is symmetric. For symmetric
matrices the L2-norm is equal to the spectral radius. Thus \| D\phi \| = \rho (D\phi ), where the spectral
radius \rho (D\phi ) is defined as the largest absolute value of eigenvalues of D\phi .

The largest absolute value of eigenvalues of D\phi is

\rho (D\phi ) = max\{ | 1 - \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Sigma \Omega [\alpha I +\Sigma \Omega ] - 1)| , | 1 - \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Sigma \Omega [\alpha I +\Sigma \Omega ] - 1)| \} ,

where \lambda \mathrm{m}\mathrm{a}\mathrm{x}(A) and \lambda \mathrm{m}\mathrm{i}\mathrm{n}(A) denote the largest and the smallest eigenvalues of a matrix A,
respectively. Moreover,

0 \leq \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Sigma \Omega [\alpha I+\Sigma \Omega ] - 1) \leq \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Sigma \Omega )\lambda \mathrm{m}\mathrm{a}\mathrm{x}([\alpha I+\Sigma \Omega ] - 1) =
\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Sigma \Omega )

\lambda \mathrm{m}\mathrm{i}\mathrm{n}(\alpha I +\Sigma \Omega )
=

\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Sigma \Omega )

\alpha + \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Sigma \Omega )
.
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REGULARIZED SHADOWING-BASED DATA ASSIMILATION 887

By choosing \alpha such that
\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Sigma \Omega )

\alpha + \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Sigma \Omega )
< 2,

we have | 1 - \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Sigma \Omega [\alpha I +\Sigma \Omega ] - 1)| < 1 for \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Sigma \Omega [\alpha I +\Sigma \Omega ] - 1) > 0.
Furthermore,

0 \leq \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Sigma \Omega [\alpha I +\Sigma \Omega ] - 1) \leq \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Sigma \Omega [\alpha I +\Sigma \Omega ] - 1) < 2.

Thus we have | 1 - \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Sigma \Omega [\alpha I +\Sigma \Omega ] - 1)| < 1 for \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Sigma \Omega [\alpha I +\Sigma \Omega ] - 1) > 0.
From (15) it follows that \scrT u\scrM = ker

\bigl( 
\Sigma \Omega [\alpha I +\Sigma \Omega ] - 1

\bigr) 
for \bfitu \in \scrM . Since \scrT u\scrM \bot \scrN u\scrM ,

we have
\lambda 
\bigl( 
\Sigma \Omega [\alpha I +\Sigma \Omega ] - 1| \scrN u\scrM 

\bigr) 
> 0.

Therefore, by choosing \alpha > \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Sigma \Omega | \scrN u\scrM )/2  - \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Sigma \Omega | \scrN u\scrM ), we have \| D\phi | \scrN u\scrM \| < 1
for all \bfitu \in \scrM .

Corollary 3.5. The sequence \bfitu (k) = \phi k(\bfitu (0)) defined in (9) converges for k \rightarrow \infty to a point
on \scrM if \bfitu (0) is sufficiently near to \scrM .

Proof. The proof directly follows from Theorem 3.3 and Lemma 3.4.

Corollary 3.6. Suppose G has only one zero. Then for the sequence defined in (9) and a
final iteration K, \bfitu (K) = \bfscrX .

This rather trivial corollary shows that the regularized shadowing DA method converges
to the true solution for linear models or convex GTG. The existence of several zeros of G is
equivalent to the problem of several minima of GTG.

As we have stated earlier the conditions of Lemma 3.4 are not satisfied for partially
observed models. Numerical experiments conducted with the L63 and L96 models show that
choosing \alpha as

(16) \alpha = \Delta t2\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Sigma \Omega )/2

provides convergence to the manifold \scrM . However, we do not have a rigorous answer why such
\alpha leads to \| D\phi | \scrN u\scrM \| < 1 for the regularized shadowing DA method for all \bfitu \in \scrM . When
computing \alpha , we split the eigenvalue problem over one window length N in N eigenvalue
problems over N windows length 1. Then in (16) we use the maximum eigenvalue over N
windows. Moreover, to save computational costs we compute \alpha for an initial guess \bfitu (0) only
and fix the same \alpha throughout the iteration.

3.2. Existing shadowing-type DA methods. In this section we point out differences be-
tween the regularized shadowing DA method and the existing shadowing-type DA methods
of [3, 13] and of [9]. We write down the methods in terms of function \phi :

\phi [3] : = u - G\prime T\Lambda  - 1G,

\phi [13] : = u - \gamma G\prime TG,

\phi [9] : = u - G\prime T (G\prime G\prime T ) - 1G,

\phi  \star : = u - \Sigma G\prime T (G\prime \Sigma G\prime T + \alpha C) - 1G,D
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888 BART M. DE LEEUW AND SVETLANA DUBINKINA

where \phi  \star stands for \phi of the Levenberg--Marquardt regularized shadowing DA method intro-
duced in this paper. In \phi [3], \Lambda is chosen to be the Laplace operator. It is stated that the choice
of \Lambda has great influence on the convergence, though without a rigorous statement whether
the Laplace operator is a good choice. Local convergence is proven for the method as if for
a class of general iterative schemes. In \phi [13], an algorithmic time step \gamma is chosen by tuning.
For sufficiently small \gamma convergence of the damped Gauss--Newton method is guaranteed but
the convergence rate may be only linear [15]. In \phi [9], the convergence rate is quadratic due
to the Gauss--Newton method but the method requires a good initial guess for convergence.
In \phi  \star , on the one hand the lower bound on \alpha guarantees local convergence, but on the other
hand the preconditioner \Sigma (10) may deteriorate the convergence rate. A good estimation of
the true solution depends on the preconditioner \Sigma .

4. Projected noise-reduction DA method. The projected noise-reduction method [9]
uses the Gauss--Newton iterate on the nonstable subspace and synchronization in the stable
subspace. In this section we briefly review the tangential subspace decomposition, synchro-
nization, and the projected noise-reduction method.

Let \{ xn;n = 0, . . . , N\} denote an orbit of (1). Then the fundamental matrix equation
associated with \{ xn\} 

(17) Xn+1 = F \prime 
n(xn)Xn, Xn \in \BbbR m\times m, n = 0, . . . , N  - 1,

can be solved with a time-discrete QR factorization using the modified Gram--Schmidt process
[11, 12]

(18) Qn+1Rn+1 = F \prime 
n(xn)Qn for n = 0, . . . , N  - 1,

where X0 = Q0R0, X1 = F \prime 
0(x0)Q0R0 = Q1R1R0, X2 = F \prime 

1(x1)X1 = F \prime 
1(x1)Q1R1R0 =

Q2R2R1R0, etc. This procedure is well defined for Qn \in \BbbR m\times p for p \leq m provided F \prime 
n(xn)Qn

is full rank for all n. The Gram--Schmidt process preserves the ordering of the columns of
the Qn and ensures that the upper triangular Rn \in \BbbR p\times p has positive diagonal elements. The
(local) p largest Lyapunov exponents of the orbit \{ xn\} are extracted from the time average
of the logarithm of the diagonal of Rn [14]:

\lambda i = lim
N\rightarrow \infty 

1

N

N\sum 
n=1

lnR(i,i)
n , i = 1, . . . , p.

The method of construction ensures \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda p. If \lambda p \geq 0 > \lambda p+1, then the

matrix Q\mathrm{u}
n = (Q

(1)
n , . . . Q

(p)
n ) provides an orthonormal basis for the nonstrongly stable tangent

space at Xn. The computed factors Q\mathrm{u}
n \in \BbbR m\times p determine projections Pn = Q\mathrm{u}

nQ
\mathrm{u}T
n onto

the nonstable subspace. The Gauss--Newton corrections of the projected noise-reduction DA
method are applied only in the nonstable subspace.

The contraction in the stable subspace, on the other hand, is exploited by means of
synchronization, e.g., [36, 19, 16, 50]. When partial observations are sufficient to constrainD

ow
nl

oa
de

d 
05

/3
0/

22
 to

 1
92

.1
6.

19
1.

13
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REGULARIZED SHADOWING-BASED DATA ASSIMILATION 889

the unstable subspace, an orbit of the dynamical system can be made to converge exponentially
in time to a different, driving orbit. The following coupled driver-response is solved:

xn+1 = Fn(xn),(19a)

zn+1 = Pnxn+1 + (I  - Pn)Fn(zn).(19b)

The manifold \scrS = \{ (x, z) \in \BbbR m \times \BbbR m : x = z\} is invariant under these dynamics. When \scrS 
attracts a neighborhood of itself, zn synchronizes with xn.

5. Tangent space splitting of regularized shadowing DA method. Following [9] we pro-
pose tangent space splitting of the regularized shadowing DA method. We start by decom-
posing the relation (8) into the equivalent system

\scrP G(\bfitu (k) + \widehat \scrP \Pi (k) + (I  - \widehat \scrP )\Pi (k)) = 0,

(I  - \scrP )G(\bfitu (k) + \widehat \scrP \Pi (k) + (I  - \widehat \scrP )\Pi (k)) = 0.

Here, \scrP and \widehat \scrP are block diagonal projection matrices \scrP = blockdiag (P1, \cdot \cdot \cdot , PN ) and \widehat \scrP =
blockdiag (P0, . . . , PN ), where P0, P1, ..., PN \in \BbbR m\times m are projection matrices onto the non-
strongly stable subspace at time levels n = 1, . . . , N , respectively.

Instead of computing the update \Pi (k) by simultaneously solving the above system, we
split the iterate into updates in the range and complement of \widehat \scrP . We also allow the projection
operators \scrP and \widehat \scrP to be updated in each iteration. In the kth iteration, we first approximate
the update in the range of \widehat \scrP (k), neglecting the term (I - \widehat \scrP (k))\Pi (k) in the first equation above
and solving

(20) \scrP (k)G(\bfitu (k) + \widehat \scrP (k)\Pi (k)) = 0

for \Pi | | 
(k) = \widehat \scrP (k)\Pi (k). Next we approximate the update in the complement of \widehat \scrP (k) by solving

(21) (I  - \scrP (k))G(\bfitu (k) + \widehat \scrP (k)\Pi (k) + (I  - \widehat \scrP (k))\Pi (k)) = 0

for \Pi \bot 
(k) = (I  - \widehat \scrP (k))\Pi (k). Then the update is computed as \bfitu (k+1) = \bfitu (k) +\Pi | | 

(k) +\Pi \bot 
(k).

Expressions (20) and (21) are solved approximately for the components \Pi | | 
(k) and \Pi \bot 

(k) as
described below.

5.1. Regularized Gauss--Newton step on the nonstable space. Linearization of (20)
yields a projected linear system for the update \Pi | | 

(k) = \widehat \scrP (k)\Pi (k):

\scrP (k)G\prime (\bfitu (k)) \widehat \scrP (k)\Pi (k) =  - \scrP (k)G(\bfitu (k)).

Supressing the iteration index k for the moment, we define block diagonal matrices \scrQ =
blockdiag (Q1, . . . , QN ), and \widehat \scrQ = blockdiag (Q0, . . . , QN ) and note the relations \scrQ \scrQ T = \scrP ,
\scrQ T\scrQ = I with analogous expressions for \widehat \scrQ . Let \bfitmu = \widehat \scrQ T\Pi = \widehat \scrQ T \widehat \scrP \Pi , \widetilde G\prime = \scrQ TG\prime (\bfitu ) \widehat \scrQ and
\bfitb = \scrQ TG(\bfitu ). Then the linear system for the update \bfitmu may be written as

(22) \widetilde G\prime \bfitmu =  - \bfitb ,D
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where the matrix \widetilde G\prime has the block structure

\widetilde G\prime =

\left[     
 - R0 I

 - R1 I
. . .

. . .

 - RN - 1 I

\right]     ,
and consequently, \widetilde G\prime \in \BbbR Np\times (N+1)p. We solve (22) using the Levenberg--Marquardt regular-
ization and define the intermediate update

(23) \=\bfitu (k) = \bfitu (k) + \widehat \scrQ (k)\bfitmu (k), \bfitmu (k) =  - \widetilde G\prime T
\Bigl( \widetilde G\prime \widetilde G\prime T + \widetilde \alpha (k)\scrQ T\Sigma T/2C\Sigma 1/2\scrQ 

\Bigr)  - 1
\scrQ TG.

Denoting by \widetilde \Sigma = \scrQ T\Sigma \scrQ and \widetilde \Omega = \widetilde G\prime T (\scrQ TC - 1\scrQ ) \widetilde G\prime , we have analogously to (16) \widetilde \alpha (k) =\widetilde \alpha (0) = \widetilde \alpha for all iterations k

(24) \widetilde \alpha = \Delta t2\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\widetilde \Sigma \widetilde \Omega )/2.
5.2. Synchronization step in the stable space. Given the update \=\bfitu (k), corrected in the

nonstrongly stable subspace (23), the correction \Pi \bot 
(k) to the stable subspace can be imple-

mented through a forward synchronization integration. This gives the following state update
componentwise over the time index n,

(25) u
(k+1)
n+1 = Pn+1\=u

(k)
n+1 + S(I  - Pn+1)Fn(u

(k+1)
n ), n = 0, . . . , N  - 1,

where S = I if n = 0 and S =W otherwise. The form of the iteration (25) is identical to that
of the receiver equation (19b) in the synchronization process except for the term S =W when
n > 0. We impose continuity in the stable directions during the full assimilation, also across

window boundaries, by setting u
(k+1)
0 = vT , where vT is the converged iterate u at the terminal

time on the previous assimilation time window. Therefore, we assume that u
(k+1)
0 is a denoised

estimate. In turn, the iteration (25) is a noise-free forward synchronization integration at
n = 0, meaning that S = I. However, when n > 0 the initial guess is contaminated with
error and thus we need to choose S different from I. We set S = W , where W is a matrix
consisting of tuning parameters.

As in the projected noise-reduction DA method, here better results are obtained by switch-
ing after each projected regularized Gauss--Newton iterate to the synchronization step as op-
posed to switching to the synchronization after the projected regularized Gauss--Newton has
converged to tolerance. We attribute this to the variation in the projections that are produced.

6. Numerical experiments. We perform numerical experiments with the L63 model [28]
and the L96 model [29]. We compare the (projected) regularized shadowing DA method
to WC4DVar and PDA. PDA is initialized at an initial guess \bfitu (0) and an algorithmic time
step is chosen as in [13], namely \gamma = 0.1. The maximum number of iterations for all the
DA methods considered here is 100. WC4DVar is initialized at a background trajectory \bfitx \mathrm{b}.
The minimization of a cost function is done by a MATLAB built-in Levenberg--Marquardt
algorithm and stopping when the relative change in the cost function compared to the initialD
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value is less than 10 - 6 unless the maximum number of iterations is reached. Model error
covariance for WC4DVar is assumed to be 10 - 2I, and the background covariance matrix is
the identity.

Both the (projected) regularized shadowing DA method and PDA provide an estimation
at observation times only. Therefore we use an estimation at observation times as an initial
condition for forward model propagation to have an estimation at every time step of numerical
discretization. For the (projected) regularized shadowing DA method, model error covariance
is assumed to be C = 10 - 3I. Other values such as 10 - 2 and 10 - 4 provide equivalent results
to 10 - 3. We define the weighting matrix W = w2I in the preconditioner \Sigma (10) and perform
sensitivity analysis in terms of w. In order to check robustness of the results, we perform 100
numerical experiments with different realizations of truth \bfscrX , observations \bfity , and background
trajectory \bfitx \mathrm{b}.

To analyze the (projected) regularized shadowing DA method and compare it to other
methods, we compute the model error, a cost function, and the error with respect to the
truth. We define mean over time of G-error as

(26) \BbbE G =
1

N

N - 1\sum 
n=0

GT
nGn.

Mean over time of estimation error with respect to the truth of observed variables and non-
observed variables is

\BbbE \mathrm{O} =
1

N

N - 1\sum 
n=0

\BbbE \mathrm{O}
n ,(27a)

\BbbE \mathrm{N} =
1

N

N - 1\sum 
n=0

\BbbE \mathrm{N}
n ,(27b)

respectively. Here the errors \BbbE \mathrm{O}
n (of observed variables) and \BbbE \mathrm{N}

n (of nonobserved variables)
are defined as

\BbbE \mathrm{O}
n =

1

rank(H)
(Hun  - H\scrX n)

T (Hun  - H\scrX n),(28a)

\BbbE \mathrm{N}
n =

1

rank(I  - HTH)
[(I  - HTH)(un  - \scrX n)]

T [(I  - HTH)(un  - \scrX n)],(28b)

respectively, and n is the numerical time step index. A cost function with respect to the
observations is

(29) L =
1

(k2  - k1 + 1)rank(H)

k2\sum 
k=k1

(Huk  - yk)
T (Huk  - yk),

where k is the index of the observation time step, k1 \geq 0, and k2 \leq N  - 1.D
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6.1. Application of the regularized shadowing DA method to the Lorenz 63 model.
The well-known Lorenz attractor [28] is a chaotic dynamical system commonly used as a test
problem for data assimilation algorithms. The L63 model is

(30) \.x1 = \sigma (x2  - x1), \.x2 = x1(\rho  - x3) - x2, \.x3 = x1x2  - \beta x3,

where \sigma = 10, \beta = 8
3 , and \rho = 28. The differential equations are discretized with a forward

Euler scheme with time step \Delta t = 0.005. (We have also considered Runge--Kutta fourth order,
but since it gives similar results, it is omitted in the paper.) We generate a set of observations
by computing a trajectory of L63 on t \in [0, 100], with a spin-up of [ - 25, 0]. Observations
are obtained by perturbing a reference (true) trajectory with random Gaussian independent
and identically distributed noise with zero mean and covariance E = 8I. The observations of
the x1 variable only are drawn every \Delta t\mathrm{o}\mathrm{b}\mathrm{s} = 0.05. Then the map Fn (1) corresponds to 10
forward Euler steps. This map is used to define G and the derivatives of this map are needed
for the shadowing iteration. The assimilation window is \Delta t\mathrm{a}\mathrm{s}\mathrm{s} = 5.

In Figure 1 we display G-error (26) on the left and error with respect to the truth of
non-observed variables (27b) on the right as a function of iteration. We remark that small
w = 100 gives quicker convergence to the manifold \scrM , while large w = 1000 requires more
iterations to reach the same error on average. However, error with respect to the truth of
nonobserved variables is decreasing during iteration for large w = 1000, while increasing for
small w = 100. In Figure 2 we plot error with respect to the truth of observed variables (27a)
on the left and cost function (29) on the right as a function of iteration number, where the
solid black line is the observation error. We observe again that large w = 1000 gives a better
estimation of observed variables than small w = 100.

Figure 1. Application to L63. Error of the regularized shadowing DA method as a function of iterations:
median (dashed line) +/ - one standard deviation (shadowed area) over 100 simulations. In grey error is shown
for weighting matrix w = 100, in blue for w = 1000. On the left: mean over time of G-error. On the right:
mean over time of error with respect to the truth of nonobserved variables.
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REGULARIZED SHADOWING-BASED DATA ASSIMILATION 893

Figure 2. Application to L63. Error of the regularized shadowing DA method as a function of iterations:
median (dashed line) +/ - one standard deviation (shadowed area) over 100 simulations. In grey error is shown
for weighting matrix w = 100, in blue for w = 1000. On the left: mean over time of error with respect to the
truth of observed variables. On the right: mean over time of cost function of observed variables.

When analyzing the cost function, we observe that for small w = 100 the cost function
quickly underestimates the observation error. In inverse problems this phenomenon is often
referred to as observation overfitting, though in that context a cost function is decreasing not
increasing and the observation error is overestimated not underestimated (see, e.g., [18]). For
the regularized shadowing DA method the cost function (29) is zero at the first iteration,
because the algorithm is initialized at \bfitu (0) (6). The cost function increases during iteration
due to a search for a noise-free orbit. When the cost function is larger than the observation
error \| E\| , an estimate is not in a ball of radius \| E\| centered at the observations, resulting in
a larger error with respect to the truth. Therefore, we need to prevent the cost function from
becoming larger than \| E\| . A classical approach in inverse problems is to stop the iteration
when this occurs. In the regularized shadowing DA method this approach is questionable
due to the cost function increasing over the course of iteration. Instead, we propose to tune
the preconditioner \Sigma (10), namely, the weighting matrix W , to obtain the correct behavior of
the cost function. We observe that the large value of w = 1000 results in the cost function
approaching the observation error from below. This is an indication of correctly tuned w.
Thus the role of preconditioner \Sigma is to keep descent steps in the direction of observed variables
small compared to descent steps in the direction of nonobserved variables. As the iteration
proceeds, observed variables get denoised as well and the algorithm finds a (pseudo-)orbit
compatible with observations. We would like to stress that the cost function (29) depends
only on observations, not the truth.

In Figure 3 we compare the regularized shadowing DA method with w = 1000 to WC4DVar
and PDA, where we plot error with respect to the truth over time of observed variables (28a)
and of nonobserved variables (28b) on the left and right, respectively. We observe that the
regularized shadowing DA method with tuned w outperforms both WC4DVar and PDA.D
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894 BART M. DE LEEUW AND SVETLANA DUBINKINA

Figure 3. Application to L63. Error as a function of time: median (dashed line) +/ - one standard
deviation (shadowed area) over 100 simulations. On the left: error with respect to the truth of observed variables.
On the right: error with respect to the truth of nonobserved variables. The regularized shadowing DA method
with w = 1000 in grey, WC4DVar in blue, and PDA in pink.

Figure 4. Regularized shadowing DA method applied to L63. Median error over 100 simulations as a
function of observation error. The median error is depicted as circles and the linear fit as a blue curve. On the
left: error with respect to the truth of observed variables with the linear fit coefficient 0.87. On the right: error
with respect to the truth of nonobserved variables with the linear fit coefficient 0.88.

Finally, we investigate the convergence of the algorithm in the small noise limit. We
perform the numerical experiments with E equal to 4I, I, 0.1I, and 0.01I. On the left in
Figure 4, we plot the median over 100 simulations of the error with respect to observed com-
ponents (28a) as a function of the observation error and compute the linear fit. The algorithm
converges and shows the order of convergence 0.87. We also investigate the performance of theD
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algorithm in terms of the median error of nonobserved components (28b) shown on the right
in Figure 4. Even though we do not expect to see a clear convergence here in terms of the
observation noise, since the observation noise enters implicitly in the estimation of the nonob-
served components, the median error of nonobserved components shows clear convergence of
the algorithm with the order of convergence 0.88.

6.2. Application of the regularized shadowing DA method to the Lorenz 96 model.
Lorenz [29] proposed the following model as an example of a simple one-dimensional model
with features of the atmosphere. The L96 model is

(31) \.xl =  - xl - 2xl - 1 + xl - 1xl+1  - xl + \scrF , (l = 1, ..., d),

where the dimension d and forcing \scrF are parameters. Cyclic boundary conditions are imposed.
We implement the L96 model with the parameter choices d = 36 and \scrF = 8. The differential
equations are discretized with a forward Euler scheme with time step \Delta t = 0.005. (We have
also considered Runge--Kutta fourth order but since it gives similar results, it is omitted in
the paper.) We generate a set of observations computing a trajectory of L96 on t \in [0, 100],
with a spin-up of [ - 25, 0] for a true trajectory to reside on the attractor. Observations are
obtained by perturbing a reference (true) trajectory with random Gaussian independent and
identically distributed noise with zero mean and covariance E = 8I. The observations of
every second variable are drawn every \Delta t\mathrm{o}\mathrm{b}\mathrm{s} = 0.05. Then the map Fn (1) corresponds to 10
forward Euler steps. This map is used to define G and the derivatives of this map are needed
for the shadowing iteration. The assimilation window is \Delta t\mathrm{a}\mathrm{s}\mathrm{s} = 5.

In Figure 5 we display G-error (26) on the left and error with respect to the truth of
nonobserved variables (27b) on the right as a function of iteration. As for L63 displayed
in Figure 1, large w = 1000 requires more iterations to reach the same G-error than small
w = 100. Error with respect to the truth of nonobserved variables decreases over iterations
for large w = 1000 while it increases for small w = 100.

In Figure 6, we plot error with respect to the truth of observed variables (27a) and cost
function (29) as a function of iteration number on the left and on the right, respectively.
A better estimation of observed variables is obtained with large w = 1000 than with small
w = 100, as was the case for L63 displayed in Figure 2. Moreover, small w = 100 gives a
considerable increase in the error. The cost function is underestimated with small w = 100
and well estimated with large w = 1000.

In Figure 7 we compare the regularized shadowing DA method with w = 1000 to WC4DVar
and PDA, where we plot error with respect to the truth over time of observed variables (28a)
and of nonobserved variables (28b) on the left and right, respectively. Here we observe that
the regularized shadowing DA method with correctly chosen preconditioner \Sigma outperforms
both WC4DVar and PDA.

Finally, we investigate the convergence of the algorithm in the small noise limit. We per-
form the numerical experiments with E equal to 4I, I, 0.1I, and 0.01I. On the left in Figure 8,
we plot median over 100 simulations of the error with respect to observed components (28a)
as a function of the observation error and compute the linear fit. The algorithm appears to
converge and shows the order of convergence 0.74. We also investigate performance of the
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896 BART M. DE LEEUW AND SVETLANA DUBINKINA

Figure 5. Application to L96. Error of the regularized shadowing DA method as a function of iterations:
median (dashed line) +/ - one standard deviation (shadowed area) over 100 simulations. In grey error is shown
for weighting matrix w = 100, in blue for w = 1000. On the left: mean over time of G-error. On the right:
mean over time of error with respect to the truth of nonobserved variables.

Figure 6. Application to L96. Error of the regularized shadowing DA method as a function of iterations:
median (dashed line) +/ - one standard deviation (shadowed area) over 100 simulations. In grey error is shown
for weighting matrix w = 100, in blue for w = 1000. On the left: mean over time of error with respect to the
truth of observed variables. On the right: mean over time of cost function of observed variables.

algorithm in terms of the median error of nonobserved components (28b) shown on the right
in Figure 8. Here we observe the error decrease as well, though the error stalls for observation
errors smaller than 10 - 1.D
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Figure 7. Application to L96. Error as a function of time: median (dashed line) +/ - one standard
deviation (shadowed area) over 100 simulations. On the left: error with respect to the truth of observed variables.
On the right: error with respect to the truth of nonobserved variables. The regularized shadowing DA method
with w = 1000 in grey, WC4DVar in blue, and PDA in pink.

Figure 8. Regularized shadowing DA method applied to L96. Median error over 100 simulations as a
function of observation error. The median error is depicted as circles and the linear fit as blue curve. On the
left: error with respect to the truth of observed variables with the linear fit coefficient 0.74. On the right: error
with respect to the truth of nonobserved variables.

6.3. Sensitivity of \bfitW with respect to the background trajectory. Let us investigate
the relation between the background trajectory \bfitx \mathrm{b} and W in \Sigma (10). One can consider W
as a confidence in the background trajectory \bfitx \mathrm{b}. Indeed, let us construct the background
trajectory \bfitx \mathrm{b} by perturbing the true trajectory with the observation noise. Thus we have a
fully observed system with observation error E = 8I. Since W = w2I, we set w =

\surd 
8 toD

ow
nl

oa
de

d 
05

/3
0/

22
 to

 1
92

.1
6.

19
1.

13
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

898 BART M. DE LEEUW AND SVETLANA DUBINKINA

have W = 8I. We perform numerical experiments with the regularized shadowing method
with both the L63 model and the L96 model. We observe that the cost function becomes
larger than the observation noise level at some iteration. If we set w = 100, then the cost
function is below the noise level and the estimate has a smaller error with respect to the truth
compared to the case when w =

\surd 
8 (not shown). We attribute this to an estimation being

more accurate when not all variables get denoised at once.
We note that when the background trajectory is a trajectory propagated forward in time

from an arbitrary initial condition, then on average the error (28b) for N = 1000 is equal
to 60 and 20 for L63 and L96, respectively. We recall that in that case w = 1000 led to
the most accurate estimate. If we decrease the assimilation window by 10, then on average
the error (28b) for N = 100 is equal to 1 and 3 for L63 and L96, respectively. Numerical
experiments indicated that in this case w =

\surd 
10 leads to the most accurate results. Therefore,

W can be chosen smaller for a more accurate background trajectory. However, w still remains
a tuning parameter. On the other hand, to tune it we only require the cost function (29) that
does not depend on the unknown truth.

We note that the background trajectory can also be chosen as a trajectory propagated
forward in time not from an arbitrary initial condition but from the past estimate. This will
decrease error in the background trajectory and lead to smaller values of w.

6.4. Application of the projected regularized shadowing DA method. Next we perform
numerical experiments with the projected regularized shadowing DA method. In [9], it was
argued that the dimension of the nonstable subspace on which the Gauss--Newton iteration
is performed needs to be larger than the dimension of the unstable and neutral subspaces
combined. The projection dimensions p = 2 and p = 25 for L63 and L96, respectively, gave
satisfactory results in numerical experiments in [9]. Therefore, we use the same projection
dimensions p for the projected regularized shadowing DA method. We compare the projected
regularized shadowing DA method to the noise-reduction method of [9]. We note that the
assimilation window needs to be decreased by 10 for both methods to converge. For the
L63 model, such an assimilation window corresponds to a solution being on one wing of the
attractor for the majority of the time. For the L96 model, such an assimilation window
is equivalent to 60 hours. Furthermore, the numerical experiments showed that w =

\surd 
0.1

leads to the cost function below the noise level. We attribute the smaller value of w =
\surd 
0.1

compared to w =
\surd 
10 for the nonprojected regularized shadowing DA method to smaller

errors due to tangential splitting.
In Figures 9 and 10, we plot error with respect to the truth over time for L63 and L96,

respectively. On the left is the error of observed variables (28a) and on the right is the error of
nonobserved variables (28b). First, we observe that the projected regularized shadowing DA
method depicted in grey and the noise-reduction method depicted in pink perform comparably
for both models. This also holds for PDA (not shown). Next, we note that the shadowing-
type methods outperform WC4DVar. For the observed components the improvement is more
significant than for the nonobserved ones, as well as for the L96 model than for the L63
model. We can conclude that the projection operators \scrP and \widehat \scrP in (20) and (21), respectively,
are sufficiently accurate when computed based on partial observations and a background
trajectory.
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Figure 9. Application to L63 with the assimilation window \Delta tass = 0.5. Error as a function of time:
median (dashed line) +/ - one standard deviation (shadowed area) over 100 simulations. On the left: error
with respect to the truth of observed variables. On the right: error with respect to the truth of nonobserved
variables. The projected regularized shadowing DA method with p = 2 in grey, WC4DVar in blue, and the
noise-reduction DA method in pink.

Figure 10. Application to L96 with the assimilation window \Delta tass = 0.5. Error as a function of time:
median (dashed line) +/ - one standard deviation (shadowed area) over 100 simulations. On the left: error
with respect to the truth of observed variables. On the right: error with respect to the truth of nonobserved
variables. The projected regularized shadowing DA method with p = 25 in grey, WC4DVar in blue, and the
noise-reduction DA method in pink.

7. Conclusions. We introduced a shadowing-type data assimilation method for partial
observations. This method does not require any preprocessing to obtain a proxy of observa-
tions, unlike the existing shadowing-type data assimilation methods. The method is derived
from the Levenberg--Marquardt regularization of a shadowing-type DA method of [9]. We
prove its local convergence and obtain a lower bound for the algorithmic time step requiredD
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for the method to converge to the manifold G(\bfitu ) = 0. The regularized shadowing DA method
incorporates a preconditioner. The preconditioner scales the descent steps such that they are
larger for nonobserved variables compared to the observed ones. This allows the algorithm to
find a solution \bfitu of G(\bfitu ) = 0 in the vicinity of the truth. Numerical experiments with the L63
and L96 models show encouraging results: the regularized shadowing DA method outperforms
both WC4Var and PDA. However, the regularized shadowing DA method is more expensive
than these methods, since it requires finding eigenvalues at the first iteration and forming
large matrices and inverting them.

To decrease the computational costs of the regularized shadowing DA method, we pro-
pose the projected regularized shadowing DA method following [9]. The method is based
on tangential splitting into nonstable and stable subspaces. It consists of the regularized
shadowing DA method on the nonstable subspace and the synchronization step on the sta-
ble subspace. Numerical experiments with the L63 and L96 models show that the projected
regularized shadowing DA method outperforms WC4Var as well. However, the assimilation
window needs to be smaller for the method to converge. Then on such an assimilation window
both PDA and the noise-reduction DA method of [9] provide results similar to the projected
regularized shadowing DA method, without any preprocessing.
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