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1Centrum Wiskunde & Informatica, Netherlands.
2Department of Mathematics, London School of Economics, UK.

dadush@cwi.nl,{z.koh3,b.natura,l.vegh}@lse.ac.uk

Abstract

We present an accelerated, or ‘look-ahead’ version of the Newton–Dinkelbach method, a
well-known technique for solving fractional and parametric optimization problems. This accel-
eration halves the Bregman divergence between the current iterate and the optimal solution
within every two iterations. Using the Bregman divergence as a potential in conjunction with
combinatorial arguments, we obtain strongly polynomial algorithms in three applications do-
mains: (i) For linear fractional combinatorial optimization, we show a convergence bound of
O(m logm) iterations; the previous best bound was O(m2 logm) by Wang et al. (2006). (ii)
We obtain a strongly polynomial label-correcting algorithm for solving linear feasibility systems
with two variables per inequality (2VPI). For a 2VPI system with n variables and m constraints,
our algorithm runs in O(mn) iterations. Every iteration takes O(mn) time for general 2VPI sys-
tems, and O(m + n logn) time for the special case of deterministic Markov Decision Processes
(DMDPs). This extends and strengthens a previous result by Madani (2002) that showed a
weakly polynomial bound for a variant of the Newton–Dinkelbach method for solving DMDPs.
(iii) We give a simplified variant of the parametric submodular function minimization result by
Goemans et al. (2017).

1 Introduction

Linear fractional optimization problems are well-studied in combinatorial optimization. Given a
closed domain D ⊆ Rm and c, d ∈ Rm such that d⊤x > 0 for all x ∈ D, the problem is

inf c⊤x/d⊤x s.t. x ∈ D . (1)

The domain D could be either a convex set or a discrete set D ⊆ {0, 1}m. Classical examples
include finding minimum cost-to-time ratio cycles and minimum ratio spanning trees. One can
equivalently formulate (1) as a parametric search problem. Let

f(δ) = inf{(c− δd)⊤x : x ∈ D} , (2)

be a concave and decreasing function. Assuming (1) has a finite optimum δ, it corresponds to the
unique root f(δ) = 0.

∗This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement nos. 757481–ScaleOpt and 805241–QIP).
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A natural question is to investigate how the computational complexity of solving the minimum
ratio problem (1) may depend on the complexity of the corresponding linear optimization problem
min c⊤x s.t. x ∈ D. Using the reformulation (2), one can reduce the fractional problem to the linear
problem via binary search; however, the number of iterations needed to find an exact solution may
depend on the bit complexity of the input. A particularly interesting question is: assuming there
exists a strongly polynomial algorithm for linear optimization over a domain D, can we find a
strongly polynomial algorithm for linear fractional optimization over the same domain?

A seminal paper by Megiddo [20] introduced the parametric search technique to solve linear
fractional combinatorial optimization problems. He showed that if the linear optimization algo-
rithm only uses p(m) additions and q(m) comparisons, then there exists an O(p(m)(p(m) + q(m))
algorithm for the linear fractional optimization problem. This in particular yielded the first strongly
polynomial algorithm for the minimum cost-to-time ratio cycle problem. On a very high level, para-
metric search works by simulating the linear optimization algorithm for the parametric problem
(2), with the parameter δ ∈ R being indeterminate.

A natural alternative approach is to solve (2) using a standard root finding algorithm. Radzik
[25] showed that for a discrete domain D ⊆ {0, 1}m, the discrete Newton method—in this context,
also known as Dinkelbach’s method [6]—terminates in a strongly polynomial number of iterations.
In contrast to parametric search, there are no restrictions on the possible operations in the linear
optimization algorithm. In certain settings, such as the maximum ratio cut problem, the discrete
Newton method outperforms parametric search; we refer to the comprehensive survey by Radzik
[26] for details and comparison of the two methods.

1.1 Our contributions

We introduce a new, accelerated variant of Newton’s method for univariate functions. Let f : R→
R ∪ {−∞} be a concave function. Under some mild assumptions on f , our goal is to either find
the largest root, or show that no root exists. Let δ∗ denote the largest root, or in case f < 0, let
δ∗ denote the largest maximizer of f . For simplicity, we now describe the method for differentiable
functions. This will not hold in general: functions of the form (2) will be piecewise linear if D is
finite or polyhedral. The algorithm description in Section 3 uses a form with supergradients (that
can be choosen arbitrarily between the left and right derivatives).

The standard Newton method, also used by Radzik, proceeds through iterates δ(1) > δ(2) >
. . . > δ(t) such that f(δ(i)) ≤ 0, and updates δ(i+1) = δ(i) − f(δ(i))/f ′(δ(i)).

Our new variant uses a more aggressive ‘look-ahead’ technique. At each iteration, we compute
δ = δ(i) − f(δ(i))/f ′(δ(i)), and jump ahead to δ′ = 2δ − δ(i). In case f(δ′) ≤ 0 and f ′(δ′) < 0, we
update δ(i+1) = δ′; otherwise, we continue with the standard iterate δ.

This modification leads to an improved and at the same time simplified analysis based on the
Bregman divergence Df (δ

∗, δ(i)) = f(δ(i))− f(δ∗) + f ′(δ(i))(δ∗ − δ(i)). We show that this decreases
by a factor of two between any two iterations.

A salient feature of the algorithm is that it handles both feasible and infeasible outcomes in a
unified framework. In the context of linear fractional optimization, this means that the assumption
d⊤x > 0 for all x ∈ D in (1) can be waived. Instead, d⊤x > 0 is now added as a feasibility
constraint to (1). This generalization is important when we use the algorithm to solve two variables
per inequality systems.

This general result leads to improvements and simplifications of a number of algorithms using
the discrete Newton method.

• For linear fractional combinatorial optimization, namely the setting (1) with D ⊆ {0, 1}m, we
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obtain an O(m logm) bound on the number of iterations, a factor m improvement over the
previous best bound O(m2 logm) by Wang et al. [33] from 2006. We remark that Radzik’s
first analysis [25] yielded a bound of O(m4 log2m) iterations, improved to O(m2 log2m) in
[26].

• Goemans et al. [10] used the discrete Newton method to obtain a strongly polynomial algo-
rithm for parametric submodular function minimization. We give a simple new variant of
this result with the same asymptotic running time, using the accelerated algorithm.

• For two variable per inequality (2VPI) systems, we obtain a strongly polynomial label-correcting
algorithm. This will be discussed in more detail next.

1.2 Two variables per inequality systems

A major open question in the theory of linear programming (LP) is whether there exists a strongly
polynomial algorithm for LP. This problem is one of Smale’s eighteen mathematical challenges for
the twenty-first century [29]. An LP algorithm is strongly polynomial if it only uses elementary
arithmetic operations (+,−,×, /) and comparisons, and the number of such operations is polyno-
mially bounded in the number of variables and constraints. Furthermore, the algorithm needs to
be in PSPACE, i.e. the numbers occurring in the computations must remain polynomially bounded
in the input size.

The notion of a strongly polynomial algorithm was formally introduced by Megiddo [21] in 1983
(using the term ‘genuinely polynomial’ ), where he gave the first such algorithm for two variables
per inequality (2VPI) systems. These are feasibility LPs where every inequality contains at most
two variables. More formally, letM2(n,m) be the set of n×m matrices with at most two nonzero
entries per column. A 2VPI system is of the form A⊤y ≤ c for A ∈M2(n,m) and c ∈ Rm.

If we further require that every inequality has at most one positive and at most one negative
coefficient, it is called a monotone two variables per inequality (M2VPI) system. A simple and
efficient reduction is known from 2VPI systems with n variables and m inequalities to M2VPI
systems with 2n variables and ≤ 2m inequalities [7, 13] (sketch in Appendix B.1).

Connection between 2VPI and parametric optimization An M2VPI system has a natural
graphical interpretation: after normalization, we can assume every constraint is of the form yu −
γeyv ≤ ce. Such a constraint naturally maps to an arc e = (u, v) with gain factor γe and cost
ce. Based on Shostak’s work [28] that characterized feasibility in terms of this graph, Aspvall and
Shiloach [2] gave the first weakly polynomial algorithm for M2VPI systems.

We say that a directed cycle C is flow absorbing if
∏

e∈C γe < 1 and flow generating if
∏

e∈C γe >
1. Every flow absorbing cycle C implies an upper bound for every variable yu incident to C; similarly,
flow generating cycles imply lower bounds. The crux of Aspvall and Shiloach’s algorithm is to find
the tightest upper and lower bounds for each variable yu.

Finding these bounds corresponds to solving fractional optimization problems of the form (1),
where D ⊆ Rm describes ‘generalized flows’ around cycles. The paper [2] introduced the Grapevine
algorithm—a natural modification the Bellman-Ford algorithm—to decide whether the optimum
ratio is smaller or larger than a fixed value δ. The optimum value can found using binary search
on the parameter.

Megiddo’s strongly polynomial algorithm [21] replaced the binary search framework in Aspvall
and Shiloach’s algorithm by extending the parametric search technique in [20]. Subsequently, Cohen
and Megiddo [3] devised faster strongly polynomial algorithms for the problem. The current fastest
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strongly polynomial algorithm is given by Hochbaum and Naor [14], an efficient Fourier–Motzkin
elimination with running time of O(mn2 logm).

2VPI via Newton’s method Since Newton’s method proved to be an efficient and viable
alternative to parametric search, a natural question is to see whether it can solve the parametric
problems occuring in 2VPI systems. Radzik’s fractional combinatorial optimization results [25, 26]
are not directly applicable, since the domain D in this setting is a polyhedron and not a discrete set.1

Madani [19] used a variant of the Newton–Dinkelbach method as a tool to analyze the convergence
of policy iteration on deterministic Markov Decision Processes (DMDPs), a special class of M2VPI
systems (discussed later in more detail). He obtained a weakly polynomial convergence bound; it
remained open whether such an algorithm could be strongly polynomial.

Our 2VPI algorithm We introduce a new type of strongly polynomial 2VPI algorithm by
combining the accelerated Newton–Dinkelbach method with a ‘variable fixing’ analysis. Variable
fixing was first introduced in the seminal work of Tardos [30] on minimum-cost flows, and has
been a central idea of strongly polynomial algorithms, see in particular [11, 27] for cycle cancelling
minimum-cost flow algorithms, and [23, 32] for maximum generalized flows, a dual to the 2VPI
problem.

We show that for every iterate δ(i), there is a constraint that has been ‘actively used’ at δ(i)

but will not be used ever again after a strongly polynomial number of iterations. The analysis
combines the decay in Bregman-divergence shown in the general accelerated Newton–Dinkelbach
analysis with a combinatorial ‘subpath monotonicity’ property.

Our overall algorithm can be seen as an extension of Madani’s DMDP algorithm. In particular,
we adapt his ‘unfreezing’ idea: the variables yu are admitted to the system one-by-one, and the
accelerated Newton–Dinkelbach method is used to find the best ‘cycle bound’ attainable at the
newly admitted yu in the graph induced by the current variable set. This returns a feasible solution
or reports infeasibility within O(m) iterations. As every iteration takes O(mn) time, our overall
algorithm terminates in O(m2n2) time. For the special setting of deterministic MDPs, the runtime
per iteration improves to O(m+ n log n), giving a total runtime of O(mn(m+ n log n)).

Even though our running time bound is worse than the state-of-the-art 2VPI algorithm [14],
it is of a very different nature from all previous 2VPI algorithms. In fact, our algorithm is a
label correcting algorithm, naturally fitting to the family of algorithms used in other combinatorial
optimization problems with constraint matrices from M2(n,m) such as maximum flow, shortest
paths, minimum-cost flow, and generalized flow problems. We next elaborate on this connection.

Label-correcting algorithms An important special case of M2VPI systems corresponds to the
shortest paths problem: given a directed graph G = (V,E) with target node t ∈ V and arc costs
c ∈ RE, we associate constraints yu − yv ≤ ce for every arc e = (u, v) ∈ E and yt = 0. If the
system is feasible and bounded, the pointwise maximal solution corresponds to the shortest path
labels to t; an infeasible system contains a negative cost cycle. A generic label-correcting algorithm
maintains distance labels y that are upper bounds on the shortest path distances to t. The labels
are decreased according to violated constraints. Namely, if yu − yv > ce, then decreasing yu to
ce+yv gives a smaller valid distance label at u. We terminate with the shortest path labels once all
constraints are satisfied. The Bellman–Ford algorithm for the shortest paths problem is a particular

1The problem could be alternatively formulated with D ⊆ {0, 1}m but with nonlinear functions instead of c⊤x
and d⊤x.
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implementation of the generic label-correcting algorithm; we refer the reader to [1, Chapter 5] for
more details.

It is a natural question if label-correcting algorithms can be extended to general M2VPI systems,
where constraints are of the form yu−γeyv ≤ ce for ‘gain/loss factors’ γe ∈ R>0 associated with each
arc. A fundamental property of M2VPI systems is that, whenever bounded, a unique pointwise
maximal solution exists, i.e. a feasible solution y∗ such that y ≤ y∗ for every feasible solution
y. A label-correcting algorithm for such a setting can be naturally defined as follows. Let us
assume that the problem is bounded. The algorithm should proceed via a decreasing sequence
y(0) ≥ y(1) ≥ . . . ≥ y(k) of labels that are all valid upper bounds on any feasible solution y to the
system. The algorithm either terminates with the unique pointwise maximal solution y(k) = y∗, or
finds an infeasibility certificate.

The basic label-correcting operation is the ‘arc update’, decreasing yu to min{yu, ce + γeyv} for
some arc e = (u, v) ∈ E. Such updates suffice in the shortest path setting. However, in the general
setting arc operations only may not lead to finite termination. Consider a system with only two
variables, yu and yv, and two constraints, yu−yv ≤ 0, and yv− 1

2yu ≤ −1. The alternating sequence
of arc updates converges to (y∗u, y

∗
v) = (−2,−2), but does not finitely terminate. In this example,

we can ‘detect’ the cycle formed by the two arcs, that implies the bound yu − 1
2yu ≤ −1.

Shostak’s [28] result demonstrates that arc updates, together with such ‘cycle updates’ should
be sufficient for finite termination. Our M2VPI algorithm amounts to the first strongly polynomial
label-correcting algorithm for general M2VPI systems, using arc updates and cycle updates.

Deterministic Markov decision processes A well-studied special case of M2VPI systems in
which γ ≤ 1 is known as deterministic Markov decision process (DMDP). A policy corresponds to
selecting an outgoing arc from every node, and the objective is to find a policy that minimizes the
total discounted cost over an infinite time horizon. The pointwise maximal solution of this system
corresponds to the optimal values of a policy.

The standard policy iteration, value iteration, and simplex algorithms can be all interpreted as
variants of the label-correcting framework.2 Value iteration can be seen as a generalization of the
Bellman–Ford algorithm to the DMDP setting. As our previous example shows, value iteration
may not be finite. One could still consider as the termination criterion the point where value
iteration ‘reveals’ the optimal policy, i.e. updates are only performed using constraints that are
tight in the optimal solution. If each discount factor γuv is at most γ′ for some γ′ > 0, then it is
well-known that value iteration converges at the rate 1/(1− γ′). This is in fact true more generally,
for nondeterministic MDPs. However, if the discount factors can be arbitrarily close to 1, then
Feinberg and Huang [8] showed that value iteration cannot reveal the optimal policy in strongly
polynomial time even for DMDPs. Post and Ye [24] proved that simplex with the highest gain
pivoting rule is strongly polynomial for DMDPs; this was later improved by Hansen et al. [12].
These papers heavily relies on the assumption γ ≤ 1, and does not seem to extend to general
M2VPI systems.

Madani’s previously mentioned work [19] used a variant of the Newton–Dinkelbach method as
a tool to analyze the convergence of policy iteration on deterministic MDPs, and derived a weakly
polynomial runtime bound.

Paper organization We start by giving preliminaries and introducing notation in Section 2.
In Section 3, we present an accelerated Newton’s method for univariate concave functions, and
apply it to linear fractional combinatorial optimization and linear fractional programming. Section

2The value sequence may violate monotonicity in certain cases of value iteration.
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4 contains our main application of the method to the 2VPI problem. Our results on parametric
submodular function minimization are in Section 5. Missing proofs can be found in the appendix.

2 Preliminaries

Let R+ and R++ be the nonnegative and positive reals respectively, and denote R̄ := R ∪ {±∞}.
Given a proper concave function f : R → R̄, let dom(f) := {x : −∞ < f(x) <∞} be the ef-
fective domain of f . For a point x0 ∈ dom(f), denote the set of supergradients of f at x0
as ∂f(x0) := {g : f(x) ≤ f(x0) + g(x− x0) ∀x ∈ R}. If x0 is in the interior of dom(f), then
∂f(x0) = [f ′−(x0), f

′
+(x0)], where f

′
−(x0) and f

′
+(x0) are the left and right derivatives. Throughout,

we use log(x) = log2(x) to indicate base 2 logarithm. For x, y ∈ Rm, we let x ◦ y ∈ Rm denote the
element-wise product of the two vectors.

3 An Accelerated Newton–Dinkelbach Method

Let f : R → R̄ be a proper concave function such that f(δ) ≤ 0 and ∂f(δ) ∩ R<0 6= ∅ for some
δ ∈ dom(f). Given a suitable starting point, as well as value and supergradient oracles of f , the
Newton–Dinkelbach method either computes the largest root of f or declares that it does not have
a root. In this paper, we make the mild assumption that f has a root or attains its maximum.
Consequently, the point

δ∗ := max({δ : f(δ) = 0} ∪ argmax f(δ))

is well-defined. It is the largest root of f if f has a root. Otherwise, it is the largest maximizer of f .
Therefore, the Newton–Dinkelbach method returns δ∗ if f has a root, and certifies that f(δ∗) < 0
otherwise.

The algorithm takes as input an initial point δ(1) ∈ dom(f) and a supergradient g(1) ∈ ∂f(δ(1))
such that f(δ(1)) ≤ 0 and g(1) < 0. At the start of every iteration i ≥ 1, it maintains a point
δ(i) ∈ dom(f) and a supergradient g(i) ∈ ∂f(δ(i)) where f(δ(i)) ≤ 0. If f(δ(i)) = 0, then it returns
δ(i) as the largest root of f . Otherwise, a new point δ := δ(i)− f(δ(i))/g(i) is generated. Now, there
are two scenarios in which the algorithm terminates and reports that f does not have a root: (1)
f(δ) = −∞; (2) f(δ) < 0 and g ≥ 0 where g ∈ ∂f(δ) is the supergradient given by the oracle. If
both scenarios do not apply, the next point and supergradient is set to δ(i+1) := δ and g(i+1) := g
respectively. Then, a new iteration begins.

According to this update rule, observe that g(i) < 0 except possibly in the final iteration when
f(δ(i)) = 0. This proves the correctness of the algorithm. Indeed, δ(i) = δ∗ if f(δ(i)) = 0. On the
other hand, if either of the aforementioned scenarios apply, then combining it with f(δ(i)) < 0 and
g(i) < 0 certifies that f(δ∗) < 0.

The following lemma shows that δ(i) is monotonically decreasing while f(δ(i)) is monotonically
increasing. Furthermore, g(i) is monotonically increasing except in the final iteration where it may
remain unchanged. The lemma also illustrates the useful property that |f(δ(i))| or |g(i)| decreases
geometrically. These are well-known facts and similar statements can be found in e.g. Radzik [26,
Lemmas 3.1 & 3.2].

Lemma 3.1. For every iteration i ≥ 2, we have δ∗ ≤ δ(i) < δ(i−1), f(δ∗) ≥ f(δ(i)) > f(δ(i−1))
and g(i) ≥ g(i−1), where the last inequality holds at equality if and only if g(i) = infg∈∂f(δ(i)) g,

g(i−1) = supg∈∂f(δ(i−1)) g and f(δ(i)) = 0. Moreover,

f(δ(i))

f(δ(i−1))
+

g(i)

g(i−1)
≤ 1 .
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Our analysis of the Newton–Dinkelbach method utilizes the Bregman divergence associated with
f as a potential. Even though the original definition requires f to be differentiable and strictly
concave, it can be naturally extended to our setting in the following way.

Definition 3.2. Given a proper concave function f : R → R̄, the Bregman divergence associated
with f is defined as

Df (δ
′, δ) :=







f(δ) + sup
g∈∂f(δ)

g(δ′ − δ)− f(δ′) if δ 6= δ′,

0 otherwise.

for all δ, δ′ ∈ dom(f) such that ∂f(δ) 6= ∅.
Since f is concave, the Bregman divergence is nonnegative. The next lemma shows that

Df (δ
∗, δ(i)) is monotonically decreasing except in the final iteration where it may remain unchanged.

Lemma 3.3. For every iteration i ≥ 2, we have Df (δ
∗, δ(i)) ≤ Df (δ

∗, δ(i−1)) which holds at equality
if and only if g(i−1) = infg∈∂f(δ(i−1)) g and f(δ(i)) = 0.

To accelerate this classical method, we perform an aggressive guess δ′ = 2δ − δ(i) < δ on the
next point at the end of every iteration i. We call this procedure look-ahead, which is implemented
on Lines 7–10 of Algorithm 1. Let g′ ∈ ∂f(δ′) be the supergradient returned by the oracle. If
−∞ < f(δ′) < 0 and g′ < 0, then the next point and supergradient are set to δ(i+1) := δ′ and
g(i+1) := g′ respectively as δ′ ≥ δ∗. In this case, we say that look-ahead is successful in iteration
i. Otherwise, we proceed as usual by taking δ(i+1) := δ and g(i+1) := g. It is easy to verify that
Lemmas 3.1 and 3.3 also hold for Algorithm 1.

Algorithm 1: Look-aheadNewton

input :Value and supergradient oracles for a proper concave function f , an initial point
δ(1) ∈ dom(f) and supergradient g(1) ∈ ∂f(δ(1)) where f(δ(1)) ≤ 0 and g(1) < 0.

output :The largest root of f if it exists; report NO ROOT otherwise.

1 i← 1

2 while f(δ(i)) < 0 do

3 δ ← δ(i) − f(δ(i))/g(i)
4 g ∈ ∂f(δ) /* Empty if f(δ) = −∞ */

5 if f(δ) = −∞ or (f(δ) < 0 and g ≥ 0) then
6 return NO ROOT

7 δ′ ← 2δ − δ(i) /* Look-ahead guess */

8 g′ ∈ ∂f(δ′) /* Empty if f(δ′) = −∞ */

9 if −∞ < f(δ′) < 0 and g′ < 0 then /* Is the guess successful? */

10 δ ← δ′, g ← g′

11 δ(i+1) ← δ, g(i+1) ← g
12 i← i+ 1

13 return δ(i)

If look-ahead is successful, then we have made significant progress. Otherwise, by our choice of
δ′, we learn that we are not too far away from δ∗. The next lemma demonstrates the advantage
of using the look-ahead Newton–Dinkelbach method. It exploits the proximity to δ∗ to produce a
geometric decay in the Bregman divergence of δ(i) and δ∗.
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Lemma 3.4. For every iteration i > 2 in Algorithm 1, we have Df (δ
∗, δ(i)) < 1

2Df (δ
∗, δ(i−2)).

Proof. Fix an iteration i > 2 of Algorithm 1. Let g
(i)
+ = ming∈∂f(δ(i)) g denote the right derivative

of f at δ(i). From Lemma 3.1, we know that δ∗ ≤ δ(i) < δ(i−1) < δ(i−2), 0 ≥ f(δ∗) ≥ f(δ(i)) >

f(δ(i−1)) > f(δ(i−2)) and 0 > g
(i)
+ ≥ g(i−1) > g(i−2). Since δ∗ ≤ δ(i), we see that Df (δ

∗, δ(i)) =

f(δ(i)) + g
(i)
+ (δ∗ − δ(i))− f(δ∗).

Assume first that the look-ahead step in iteration i − 1 was successful. We now claim that

0 < −2g(i)+ ≤ −g(i−1). To see this, we have that

f(δ(i−1)) ≤ f(δ(i)) + g
(i)
+ (δ(i−1) − δ(i)) ( by concavity of f )

≤ g(i)+ (δ(i−1) − δ(i))
(

since f(δ(i)) ≤ 0
)

= 2g
(i)
+

f(δ(i−1))

g(i−1)
( by definition of the accelerated step ) .

The desired inequality follows by multiplying through by − g(i−1)

f(δ(i−1))
< 0.

Using the above inequality, we compare Bregman divergences as follows:

Df (δ
∗, δ(i−1)) ≥ f(δ(i−1)) + g(i−1)(δ∗ − δ(i−1))− f(δ∗) ( since Df is a maximum over supergradients )

> g(i−1)(δ∗ − δ(i))− f(δ∗)
(

f(δ(i−1)) + g(i−1)(δ(i) − δ(i−1)) = −f(δ(i−1)) > 0
)

≥ g(i−1)(δ∗ − δ(i)) ( − f(δ∗) ≥ 0 )

≥ 2g
(i)
+ (δ∗ − δ(i))

(

− g(i−1) ≥ −2g(i)+ and δ(i) > δ∗
)

≥ 2(f(δ(i)) + g
(i)
+ (δ∗ − δ(i))− f(δ∗))

(

since f(δ∗) ≥ f(δ(i))
)

= 2Df (δ
∗, δ(i))

(

by our choice of g
(i)
+

)

.

The desired inequality nows follows from Df (δ
∗, δ(i−2)) > Df (δ

∗, δ(i−1)) by Lemma 3.3.
Now assume that the look-ahead step at iteration i − 1 was unsuccessful. This implies that

2δ(i) − δ(i−1) ≤ δ∗ ⇔ 2(δ(i) − δ∗) ≤ δ(i−1) − δ∗, i.e. that the look-ahead step “went past or exactly
to” δ∗. We compare Bregman-divergences as follows:

Df (δ
∗, δ(i−2)) ≥ f(δ(i−2)) + g(i−2)(δ∗ − δ(i−2))− f(δ∗) ( since Df is a maximum over supergradients )

≥ g(i−2)(δ∗ − δ(i−1))− f(δ∗)
(

f(δ(i−2)) + g(i−2)(δ(i−1) − δ(i−2)) ≥ 0
)

≥ g(i−2)(δ∗ − δ(i−1)) ( − f(δ∗) ≥ 0 )

> g
(i)
+ (δ∗ − δ(i−1))

(

0 > g
(i)
+ > g(i−2) and δ(i−1) > δ∗

)

≥ 2g
(i)
+ (δ∗ − δ(i))

(

0 > g
(i)
+ and δ(i−1) − δ∗ ≥ 2(δ(i) − δ∗)

)

≥ 2(f(δ(i)) + g
(i)
+ (δ∗ − δ(i))− f(δ∗))

(

since f(δ∗) ≥ f(δ(i))
)

= 2Df (δ
∗, δ(i))

(

by our choice of g
(i)
+

)

.

This concludes the proof.

In the remaining of this section, we apply the accelerated Newton–Dinkelbach method to lin-
ear fractional combinatorial optimization and linear fractional programming. The application to
parametric submodular function minimization is in Section 5.
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3.1 Linear Fractional Combinatorial Optimization

The problem (1) with D ⊆ {0, 1}m is known as linear fractional combinatorial optimization. Radzik
[25] showed that the Newton–Dinkelbach method applied to the function f(δ) as in (2) terminates
in a strongly polynomial number of iterations. Recall that f(δ) = minx∈D(c − δd)⊤x. By the
assumption d⊤x > 0 for all x ∈ D, this function is concave, strictly decreasing, finite and piecewise-
linear. Hence, it has a unique root. Moreover, f(δ) < 0 and ∂f(δ) ∩ R<0 6= ∅ for sufficiently large
δ. To implement the value and supergradient oracles, we assume that a linear optimization oracle
over D is available, i.e. it returns an element in argminx∈D(c− δd)⊤x for any δ ∈ R.

Our result for the accelerated variant improves the state-of-the-art bound O(m2 logm) by Wang
et al. [33] on the standard Newton–Dinkelbach method. We will need the following lemma, given
by Radzik and credited to Goemans in [26]. It gives a strongly polynomial bound on the length of
a geometrically decreasing sequence of sums.

Lemma 3.5 ([26]). Let c ∈ Rm
+ and x(1), x(2), . . . , x(k) ∈ {−1, 0, 1}m. If 0 < c⊤x(i+1) ≤ 1

2c
⊤x(i) for

all i < k, then k = O(m logm).

Theorem 3.6. Algorithm 1 converges in O(m logm) iterations for linear fractional combinatorial
optimization problems.

Proof. Observe that Algorithm 1 terminates in a finite number of iterations because f is piecewise
linear. Let δ(1) > δ(2) > · · · > δ(k) = δ∗ denote the sequence of iterates at the start of Algorithm
1. Since f is concave, we have Df (δ

∗, δ(i)) ≥ 0 for all i ∈ [k]. For each i ∈ [k], pick x(i) ∈
argminx∈D(c − δ(i)d)⊤x which maximizes d⊤x. This is well-defined because f is finite. Note that
−d⊤x(i) = min ∂f(δ(i)). As f(δ∗) = 0, the Bregman divergence of δ(i) and δ∗ can be written as

Df (δ
∗, δ(i)) = f(δ(i)) + max

g∈∂f(δ(i))
g(δ∗ − δ(i)) = (c− δ(i)d)⊤x(i) − d⊤x(i)(δ∗ − δ(i)) = (c− δ∗d)⊤x(i) .

According to Lemma 3.4, (c− δ∗d)⊤x(i) = Df (δ
∗, δ(i)) < 1

2Df (δ
∗, δ(i−2)) = 1

2(c− δ∗d)⊤x(i−2) for all

3 ≤ i ≤ k. By Lemma 3.3, we also know that Df (δ
∗, δ(i)) > 0 for all 1 ≤ i ≤ k − 2. Thus, applying

Lemma 3.5 yields k = O(m logm).

3.2 Linear Fractional Programming

We next consider linear fractional programming, an extension of (1) with the assumption that the
domain D ⊆ Rm is a polyhedron, but removing the condition d⊤x > 0 for x ∈ D. For c, d ∈ Rm,
the problem is

inf c⊤x/d⊤x s.t. d⊤x > 0, x ∈ D . (F)

For the problem to be meaningful, we assume that D ∩
{

x : d⊤x > 0
}

6= ∅. The common form in
the literature assumes d⊤x > 0 for all x ∈ D as in (1); we consider the more general setup for
the purpose of solving M2VPI systems in Section 4. It is easy to see that any linear fractional
combinatorial optimization problem on a domain X ⊆ {0, 1}m can be cast as a linear fractional
program with the polytope D = conv(X ) because c⊤x̄/d⊤x̄ ≥ minx∈X c

⊤x/d⊤x for all x̄ ∈ D. The
next theorem characterizes when (F) is unbounded.

Theorem 3.7. If D ∩
{

x : d⊤x > 0
}

6= ∅, then the optimal value of (F) is −∞ if and only if at
least one of the following two conditions hold:

1. There exists x ∈ D such that c⊤x < 0 and d⊤x = 0;
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2. There exists r ∈ Rm such that c⊤r < 0, d⊤r = 0 and x+ λr ∈ D for all x ∈ D, λ ≥ 0.

Proof. By the Minkowski-Weyl Theorem, the polyhedron D̄ := D ∩ {x : d⊤x ≥ 0} can be written
as

D̄ =







k
∑

i=1

λigi +

ℓ
∑

j=1

νjhj : λ ≥ 0, ν ≥ 0, ‖λ‖1 = 1







for some vectors g1, . . . , gk and h1, . . . , hℓ. Note that d⊤gi ≥ 0 for all i ∈ [k] and d⊤hj ≥ 0 for all
j ∈ [ℓ]. Let x◦ ∈ D ∩ {x : d⊤x > 0}. If there exists i ∈ [k] such that c⊤gi < 0 and d⊤gi = 0 or
j ∈ [ℓ] such that c⊤hj < 0 and d⊤hj = 0, then,

lim
λր1

c⊤(λgi + (1− λ)x◦)
d⊤(λgi + (1− λ)x◦) = −∞ or lim

λ→∞

c⊤(x◦ + λhj)

d⊤(x◦ + λhj)
= −∞

as in Condition 1 or Condition 2.
Otherwise, the fractional value of any element in D ∩ {x : d⊤x > 0} can be lower bounded by

c⊤(
∑k

i=1 λigi +
∑ℓ

j=1 νjhj)

d⊤(
∑k

i=1 λigi +
∑ℓ

j=1 νjhj)
≥
∑

i∈[k],d⊤gi>0 λic
⊤gi +

∑

j∈[ℓ],d⊤hj>0 νjc
⊤hj

∑

i∈[k],d⊤gi>0 λid
⊤gi +

∑

j∈[ℓ],d⊤hj>0 νjd
⊤hj

≥ min

{

min
i∈[k],d⊤gi>0

c⊤gi
d⊤gi

, min
j∈[ℓ],d⊤hj>0

c⊤hj
d⊤hj

}

,

where the last expression is finite by the assumption that D ∩ {x : d⊤x > 0} is non-empty.

Example 3.8. Unlike in linear programming, the optimal value may not be attained even if it
is finite. Consider the instance given by inf(−x1 + x2)/(x1 + x2) subject to x1 + x2 > 0 and
−x1 + x2 = 1. The numerator is equal to 1 for any feasible solution, while the denominator can be
made arbitrarily large. Hence, the optimal value of this program is 0, which is not attained in the
feasible region.

We use the Newton–Dinkelbach method for f as in (2), that is, f(δ) = infx∈D(c− δd)⊤x. Since
D 6= ∅, f(δ) <∞ for all δ ∈ R. By the Minkowski–Weyl theorem, there exist finitely many points
P ⊆ D such that f(δ) = minx∈P (c − δd)⊤x for all δ ∈ dom(f). Hence, f is concave and piecewise
linear. Observe that f(δ) > −∞ if and only if every ray r in the recession cone of D satisfies
(c − δd)⊤r ≥ 0. For f to be proper, we need to assume that Condition 2 in Theorem 3.7 does not
hold. Moreover, we require the existence of a point δ′ ∈ dom(f) such that f(δ′) = (c− δ′d)⊤x′ ≤ 0
for some x′ ∈ D with d⊤x′ > 0. It follows that f has a root or attains its maximum because dom(f)
is closed. We are ready to characterize the optimal value of (F) using f .

Lemma 3.9. Assume that there exists δ′ ∈ dom(f) such that f(δ′) = (c − δ′d)⊤x′ ≤ 0 for some
x′ ∈ D with d⊤x′ > 0. If f has a root, then the optimal value of (F) is equal to the largest root and
is attained. Otherwise, the optimal value is −∞.

Proof. Recall the definition of δ∗ = max({δ : f(δ) = 0} ∪ argmax f(δ)). By our assumption on f ,
there exists x∗ ∈ D such that f(δ∗) = (c− δ∗d)⊤x∗ and d⊤x∗ > 0. If f has a root, then f(δ∗) = 0.
This implies that c⊤x/d⊤x ≥ δ∗ = c⊤x∗/d⊤x∗ for all x ∈ D with d⊤x > 0 as desired. Next, assume
that f does not have a root. Then f(δ∗) < 0 and 0 ∈ ∂f(δ∗). By convexity, there exists x̄ ∈ D
such that (c − δ∗d)⊤x̄ = f(δ∗) < 0 and d⊤x̄ = 0. Then c⊤x̄ < 0, so x̄ is a point as in Condition 1
of Theorem 3.7.
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4 Monotone Two Variable per Inequality Systems

Recall that an M2VPI system can be represented as a directed multigraph G = (V,E) with arc
costs c ∈ Rm and gain factors γ ∈ Rm

++. For a u-v walk P in G with E(P ) = (e1, e2, . . . , ek), its

cost and gain factor are defined as c(P ) :=
∑k

i=1

(

∏i−1
j=1 γej

)

cei and γ(P ) :=
∏k

i=1 γei respectively.

If P is a single vertex, then c(P ) := 0 and γ(P ) := 1. The walk P induces the valid inequality yu ≤
c(P ) + γ(P )yv, implied by the sequence of arcs/inequalities in E(P ). It is also worth considering
the dual interpretation. Dual variables on arcs correspond to generalized flows: if 1 unit of flow
enter the arc e = (u, v) at u, then γe units reach v, at a shipping cost of ce. Thus, if 1 unit of flow
enter a path P , then γ(P ) units reach the end of the path, incurring a cost of c(P ).

Given node labels y ∈ R̄n, the y-cost of a u-v walk P is defined as c(P )+γ(P )yv . Note that the
y-cost of a walk only depends on the label at the sink. A u-v path is called a shortest u-v path with
respect to y if it has the smallest y-cost among all u-v walks. A shortest path from u with respect
to y is a shortest u-v path with respect to y for some node v. Such a path does not always exist,
as demonstrated in Appendix B.2.

If P is a u-u walk such that its intermediate nodes are distinct, then it is called a cycle at u.
Given a u-v walk P and a v-w walk Q, we denote PQ as the u-w walk obtained by concatenating
P and Q.

Definition 4.1. A cycle C is called flow-generating if γ(C) > 1, unit-gain if γ(C) = 1, and
flow-absorbing if γ(C) < 1. We say that a unit-gain cycle C is negative if c(C) < 0.

Note that c(C) depends on the starting point u of a cycle C. This ambiguity is resolved by using
the term cycle at u. For a unit-gain cycle C, it is not hard to see that the starting point does not
affect the sign of c(C). Hence, the definition of a negative unit-gain cycle is sound. Observe that
a flow-absorbing cycle C induces an upper bound yu ≤ c(C)/(1 − γ(C)), while a flow-generating
cycle C induces a lower bound yu ≥ −c(C)(γ(C) − 1). Let Cabsu (G) and Cgenu (G) denote the set of
flow-absorbing cycles and flow-generating cycles at u in G respectively.

Definition 4.2. Given a flow-generating cycle C at u, a flow-absorbing cycle D at v, and a u-v
path P , the walk CPD is called a bicycle. We say that the bicycle is negative if

c(P ) + γ(P )
c(D)

1 − γ(D)
<
−c(C)

γ(C)− 1
.

Using these two structures, Shostak characterized the feasibility of M2VPI systems.

Theorem 4.3 ([28]). An M2VPI system (G, c, γ) is infeasible if and only if G contains a negative
unit-gain cycle or a negative bicycle.

4.1 A linear fractional programming formulation

Our goal is to compute the pointwise maximal solution ymax ∈ R̄n to an M2VPI system if it is
feasible, where ymax

u :=∞ if and only if the variable yu is unbounded from above. It is well known
how to convert ymax into a finite feasible solution — we refer to Appendix B.3 for details. In order
to apply Algorithm 1, we first need to reformulate the problem as a linear fractional program. Now,
every coordinate ymax

u can be expressed as the following primal-dual pair of linear programs, where
∇xv :=

∑

e∈δ+(u) xe −
∑

e∈δ−(u) γexe denotes the net flow at a node v.
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min c⊤x (Pu)

s. t. ∇xu = 1

∇xv = 0 ∀v ∈ V \ u
x ≥ 0

max yu (Du)

s. t. yv − γeyw ≤ ce ∀e = (v,w) ∈ E

The primal LP (Pu) is a minimum-cost generalized flow problem with a supply of 1 at node u.
It asks for the cheapest way to destroy one unit of flow at u. Observe that it is feasible if and only
if u can reach a flow-absorbing cycle in G. If it is feasible, then it is unbounded if and only if there
exists a negative unit-gain cycle or a negative bicycle in G. It can be reformulated as the following
linear fractional program

inf
c⊤x

1−∑e∈δ−(u) γexe
s.t. 1−

∑

e∈δ−(u)

γexe > 0, x ∈ D . (Fu)

with the polyhedron

D :=
{

x ∈ Rm
+ : x(δ+(u)) = 1,∇xv = 0 ∀v ∈ V \ u

}

.

Indeed, if x is a feasible solution to (Pu), then x/x(δ
+(u)) is a feasible solution to (Fu) with the

same objective value. This is because 1−∑e∈δ−(u) γexe/x(δ
+(u)) = 1/x(δ+(u)). Conversely, if x is

a feasible solution to (Fu), then x/(1−
∑

e∈δ−(u) γexe) is a feasible solution to (Pu) with the same
objective value. Even though the denominator is an affine function of x, it can be made linear to
conform with (F) by working with the polyhedron {(x, 1) : x ∈ D}.

Our goal is to solve (Fu) using Algorithm 1. Due to the specific structure of this linear fractional
program, a suitable initial point for the Newton–Dinkelbach method can be obtained from any
feasible solution to (Fu). This is a consequence of the unboundedness test given by the following
lemma.

Lemma 4.4. Let x be a feasible solution to (Fu) and δ̄ := c⊤x/(1 −∑e∈δ−(u) γexe). If either

f(δ̄) = −∞ or f(δ̄) = c⊤x̄− δ̄(1−∑e∈δ−(u) γex̄e) < 0 for some x̄ ∈ D with 1−∑e∈δ−(u) γex̄e ≤ 0,
then the optimal value of (Fu) is −∞.

Proof. First, assume that f(δ̄) > −∞. Let λ := (1 −∑e∈δ−(u) γexe)/
∑

e∈δ−(u) γe(x̄e − xe). Note

that λ ∈ (0, 1]. Consider the convex combination x̂ := λx̄ + (1 − λ)x ∈ D. Then, c⊤x̂ < 0 and
1−∑e∈δ−(u) γex̂e = 0. Hence, the optimal value of (Fu) is unbounded by Condition 1 of Theorem

3.7. Next, assume that f(δ̄) = −∞. There exists a ray r in the recession cone of D such that
c⊤r − δ̄

∑

e∈δ−(u) γere < 0. Note that r ≥ 0. If r(δ−(u)) = 0, then r satisfies Condition 2 of
Theorem 3.7. So, the optimal value is unbounded. Otherwise, for a sufficiently large α > 0, we
have c⊤(x + αr) + δ̄(1 −∑e∈δ−(u) γe(xe + αre)) < 0 and 1 −∑e∈δ−(u) γe(xe + αre) < 0. Then,
taking an appropriate convex combination of x+αr and x like before produces a point in D which
satisfies Condition 1 of Theorem 3.7.

For a fixed δ ∈ R, the value of the parametric function f(δ) can be written as the following pair
of primal and dual LPs respectively

min c⊤x+ δ
∑

e∈δ−(u)

γexe − δ

s. t. x ∈ D

max yu − δ
s. t. yv − γeδ ≤ ce ∀e = (v, u) ∈ δ−(u)

yv − γeyw ≤ ce ∀e = (v,w) /∈ δ−(u).
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We refer to them as the primal (resp. dual) LP for f(δ), and their corresponding feasible solution
as a feasible primal (resp. dual) solution to f(δ). In order to characterize the finiteness of f(δ), we
introduce the following notion of a negative flow-generating cycle.

Definition 4.5. For a fixed δ ∈ R and u ∈ V , a flow-generating cycle C is said to be (δ, u)-negative
if there exists a path P from a node v ∈ V (C) to node u such that

c(C) + (γ(C)− 1)(c(P ) + γ(P )δ) < 0

where C is treated as a v-v walk in c(C).

Lemma 4.6. For any δ ∈ R, f(δ) = −∞ if and only if D 6= ∅ and there exists a negative unit-gain
cycle, a negative bicycle, or a (δ, u)-negative flow-generating cycle in G \ δ+(u).
Proof. The primal LP for f(δ) is unbounded if and only if D 6= ∅ and there exists an extreme
ray r in the recession cone of D such that c⊤r + yu

∑

e∈δ−(u) γere < 0. Note that the recession

cone of D is
{

x ∈ Rm
+ : x(δ+(u)) = 0,∇xv = 0) ∀v 6= u

}

. By the generalized flow decomposition
theorem, r belongs to one of the following three fundamental flows in G \ δ+(u): (1) a unit-gain
cycle, (2) a bicycle, (3) a flow-generating cycle C and a path P from C to u. In the first two cases,
re = 0 for all e ∈ δ−(u). Thus, the unit-gain cycle or bicycle is negative. In the last case, we have
c(C) + (γ(C)− 1)(c(P ) + γ(P )δ) = c⊤r + δ

∑

e∈δ−(u) γere.

It turns out that if we have an optimal dual solution y to f(δ) for some δ ∈ R, then we can
compute an optimal dual solution to f(δ′) for any δ′ < δ. A suitable subroutine for this task is the
so called Grapevine algorithm (Algorithm 2), developed by Aspvall and Shiloach [2].

Algorithm 2: Grapevine

input :A directed multigraph G = (V,E) with arc costs c ∈ Rm and gain factors
γ ∈ Rm

++, node labels y ∈ R̄n, and a node u ∈ V .
output :Node labels y ∈ R̄n and a walk P of length at most n starting from u.

1 for i = 1 to n do

2 foreach v ∈ V do

3 y′v ← min(yv,minvw∈δ+(v) cvw + γvwyw)

4 if y′v < yv then

5 pred(v, i)← argminvw∈δ+(v) cvw + γvwyw /* Break ties */

6 else

7 pred(v, i)← ∅

8 y ← y′

9 Let P be the walk obtained by tracing from pred(u, n)
10 return (y, P )

Given initial node labels y ∈ R̄n and a specified node u, Grapevine runs for n iterations.
We say that an arc e = (v,w) is violated with respect to y if yv > ce + γeyw. In an iteration
i ∈ [n], the algorithm records the most violated arc with respect to y in δ+(v) as pred(v, i), for
each node v ∈ V (ties are broken arbitrarily). Note that pred(v, i) = ∅ if there are no violated arcs
in δ+(v). Then, each yv is decreased by the amount of violation in the corresponding recorded arc.
After n iterations, the algorithm traces a walk P from u by following the recorded arcs in reverse
chronological order. During the trace, if pred(v, i) = ∅ for some v ∈ V and i > 1, then pred(v, i−1)
is read. Finally, the updated node labels y and the walk P are returned. Clearly, the running time
of Grapevine is O(mn).
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Given an optimal dual solution y ∈ Rn to f(δ) and δ′ < δ, the dual LP for f(δ′) can be
solved using Grapevine as follows. Define the directed graph Gu := (V ∪ {u′} , Eu) where Eu :=
(E \ δ−(u)) ∪ {vu′ : vu ∈ δ−(u)}. The graph Gu is obtained from G by splitting u into two nodes
u, u′ and reassigning the incoming arcs of u to u′. These arcs inherit the same costs and gain factors
from their counterparts in G. Let ȳ ∈ Rn+1 be node labels in Gu defined by ȳu′ := δ′ and ȳv := yv
for all v 6= u′. Then, we run Grapevine on Gu with input node labels ȳ and node u. Note that
ȳu′ remains unchanged throughout the algorithm. The next lemma verifies the correctness of this
method.

Lemma 4.7. Given an optimal dual solution y ∈ Rn to f(δ) and δ′ < δ, define ȳ ∈ Rn+1 as ȳu′ := δ′

and ȳv := yv for all v ∈ V . Let (z̄, P ) be the node labels and walk returned by Grapevine(Gu, ȳ, u).
If z̄V is not feasible to the dual LP for f(δ′), then f(δ′) = −∞. Otherwise, z̄V is a dual optimal
solution to f(δ′) and P is a shortest path from u with respect to ȳ in Gu.

Proof. Since f(δ) = yu−δ is finite, we have D 6= ∅. First, assume that z̄V is not feasible to the dual
LP for f(δ′). Then, there exists a violated arc in Gu with respect to z̄. Let w be the head of this arc
and let R be the walk obtained by tracing pred(w,n) in reverse chronological order. Then, R ends
at u′ because y is dual feasible to f(δ). Since R has n edges, decompose it into R = QCP ′ where
Q is a w-v walk, C is a nontrivial cycle at v, and P is a v-u′ path for some node v. Then, we have
c(CP ′) + γ(CP ′)δ′ < c(P ′) + γ(P ′)δ′ ≤ ȳv. Due to Lemma 4.6, it suffices to show that γ(C) > 1,
as this would imply that C is a (δ′, u)-negative flow-generating cycle in G. Suppose otherwise for
a contradiction. Since y is dual feasible to f(δ) and u′ /∈ V (C), we have ȳv ≤ c(C) + γ(C)ȳv. If
γ(C) = 1, then we obtain 0 ≤ c(C) < 0 from the previous two inequalities. Otherwise, we get the
following contradiction

ȳv ≤
c(C)

1− γ(C)
< c(P ′) + γ(P ′)δ′ ≤ ȳv.

Next, assume that z̄V is a dual feasible solution to f(δ′). Then, P is a u-t path for some node t.
This is because if P is not simple, repeating the argument from the previous paragraph proves that
the dual LP for f(δ′) is infeasible. Note that ȳt = z̄t. Moreover, z̄v ≤ cvw + γvw z̄w for all vw ∈ Eu,
with equality on E(P ). Let cz̄ ∈ Rm

+ be the reduced cost defined by cz̄vw := cvw + γvw z̄w − z̄v for all
vw ∈ Eu. Since for every u-t walk P ′ we have

c(P ) + γ(P )z̄t − z̄u = cz̄(P ) = 0 ≤ cz̄(P ′) = c(P ′) + γ(P ′)z̄t − z̄u,

it follows that P is a shortest u-t path with respect to ȳ.
It is left to show that z̄V is a dual optimal solution to f(δ′). Let z∗ be an optimal dual solution

to f(δ′). Note that z∗u ≤ yu because δ′ < δ. For the purpose of contradiction, suppose that z̄u < z∗u.
Since z̄u < ȳu, the path P ends at u′ because y is dual feasible to f(δ). Thus, z̄u = c(P ) + γ(P )δ′.
However, P also implies the valid inequality z∗u ≤ c(P ) + γ(P )δ′, which is a contradiction.

If z̄V is an optimal dual solution to f(δ′), a supergradient in ∂f(δ′) can be inferred from the
returned path P . We say that an arc e = (v,w) is tight with respect to z̄ if z̄v = ce + γez̄w. By
complementary slackness, every optimal primal solution to f(δ′) is supported on the subgraph of
Gu induced by tight arcs with respect to z̄. In particular, any u-u′ path or any path from u to a
flow-absorbing cycle in this subgraph constitutes a basic optimal primal solution to f(δ′). As P is
also a path in this subgraph, we have γ(P )− 1 ∈ ∂f(δ′) if P ends at u′. Otherwise, u can reach a
flow-absorbing cycle in this subgraph because δ′ < δ. In this case, −1 ∈ ∂f(δ′).
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4.2 A Strongly Polynomial Label-Correcting Algorithm

Using Algorithm 1, we develop a strongly polynomial label-correcting algorithm for solving an
M2VPI system (G, c, γ). The main idea is to start with a subsystem for which (Du) is trivial, and
progressively solve (Du) for larger and larger subsystems. Throughout the algorithm, we maintain
node labels y ∈ R̄n which form valid upper bounds on each variable. They are initialized to ∞ at
every node. We also maintain a subgraph of G, which initially is G(0) := (V, ∅).

Algorithm 3: Label-correcting algorithm for M2VPI systems

input :An M2VPI system (G, c, γ).
output :The pointwise maximal solution ymax or the string INFEASIBLE.

1 Initialize graph G(0) ← (V, ∅) and counter k ← 0
2 Initialize node labels y ∈ R̄n as yv ←∞ ∀v ∈ V
3 foreach u ∈ V do

4 k ← k + 1

5 G(k) ← G(k−1) ∪ δ+(u)
6 yu ← minuv∈δ+(u) cuv + γuvyv
7 if yu =∞ and Cabsu (G(k)) 6= ∅ then
8 yu ← c(C)/(1− γ(C)) for any C ∈ Cabsu (G(k))

9 if yu <∞ then

10 Define node labels ȳ ∈ R̄n+1 as ȳu′ ← yu and ȳv ← yv ∀v ∈ V
11 (ȳ, P )← Grapevine(G

(k)
u ,ȳ,u)

12 if ∃ a violated arc w.r.t. ȳ in G
(k)
u or (|E(P )| > 0 and γ(P ) ≥ 1) then

13 return INFEASIBLE

14 ȳu′ ←Look-aheadNewton(Grapevine(G
(k)
u , ·, u), ȳu′ , γ(P )− 1)

15 if ȳu′ = NO ROOT then

16 return INFEASIBLE

17 y ← ȳV

18 return y

The algorithm (Algorithm 3) is divided into n phases. At the start of phase k ∈ [n], a new
node u ∈ V is selected and all of its outgoing arcs in G are added to G(k−1), resulting in a larger
subgraph G(k). Since yu =∞ at this point, we update it to the smallest upper bound implied by its
outgoing arcs and the labels of its outneighbours. If yu is still infinity, then we know that δ+(u) = ∅
or yv = ∞ for all v ∈ N+(u). In this case, we find a flow-absorbing cycle at u in G(k) using the
multiplicative Bellman–Ford algorithm, by treating the gain factors as arc costs. If there is none,
then we proceed to the next phase immediately as yu is unbounded from above in the subsystem
(G(k), c, γ). This is because u cannot reach a flow-absorbing cycle in G(k) by induction. We would
like to point out that this does not necessarily imply that the full system (G, c, γ) is feasible (see
Appendix B.3 for details). On the other hand, if Bellman–Ford returns a flow-absorbing cycle, then
yu is set to the upper bound implied by the cycle. Then, we apply Algorithm 1 to solve (Du) for
the subsystem (G(k), c, γ).

The value and supergradient oracle for the parametric function f(δ) is Grapevine. Let G
(k)
u

be the modified graph and ȳ ∈ R̄n+1 be the node labels as defined in the previous subsection. In
order to provide Algorithm 1 with a suitable initial point and supergradient, we run Grapevine
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on G
(k)
u with input node labels ȳ. It updates ȳ and returns a walk P from u. If ȳV is not feasible

to the dual LP for f(ȳu′) or P is a non-trivial walk with γ(P ) ≥ 1, then we declare infeasibility.
Otherwise, we run Algorithm 1 with the initial point ȳu′ and supergradient γ(P ) − 1. We remark
that Grapevine continues to update ȳ throughout the execution of Algorithm 1.

Theorem 4.8. If Algorithm 3 returns y ∈ R̄n, then y = ymax if the M2VPI system is feasible.
Otherwise, the system is infeasible.

Proof. It suffices to prove the theorem for the subsystem (G(k), c, γ) encountered in each phase
k. We proceed by induction on k. For the base case k = 0, the system (G(0), c, γ) is trivially
feasible as it does not have any constraints. Hence, ymax = (∞,∞, . . . ,∞) = y, where the second
equality is due to our initialization. For the inductive step, assume that the theorem is true for
some 0 ≤ k < n and consider the system (G(k+1), c, γ). If Algorithm 3 terminated in phase k, then
(G(k+1), c, γ) is infeasible by the inductive hypothesis. So, let y ∈ R̄n be the node labels maintained
by the algorithm during Line 9 of phase k + 1. We have yu = ∞ if and only if Cabsu (G(k+1)) = ∅
and yv =∞ for all v ∈ N+(u). For each v 6= u, we also have yv =∞ if and only if v cannot reach
a flow-absorbing cycle in G(k). So, if yu =∞, then u cannot reach a flow-absorbing cycle in G(k+1).
By the inductive hypothesis, y = ymax if the system (G(k+1), c, γ) is feasible.

Next, assume that yu < ∞. Without loss of generality, we may assume that every node v
with yv = ∞ can reach u in G(k+1). Let W := {v ∈ V : yv =∞}. Note that the cut W does not
have any outgoing edges in G(k+1). If there exists a negative unit-gain cycle in G(k+1)[W ], then
it contains a violated arc with respect to any finite labels. In this case, the algorithm correctly
detects infeasibility. Otherwise, by Lemma 4.6, f(δ′) > −∞ for a sufficiently high δ′ ∈ R because
there are no flow-absorbing cycles in G(k+1)[W ]. Pick δ′ > yu big enough such that an optimal dual
solution y′ ∈ Rn to f(δ′) satisfies y′v = yv for all v ∈ V \W . Among all such optimal dual solutions,
choose y′ as the pointwise maximal one. Then, every vertex v ∈W has a tight path to u in G(k+1).
Now, let ȳ′ ∈ Rn+1 be node labels defined by ȳ′u′ := yu and ȳ′v := y′v for all v ∈ V . It is easy to see

that running Grapevine on G
(k+1)
u with input node labels ȳ and ȳ′ yield the same behaviour. Let

(z̄, P ) be the node labels and walk returned by Grapevine.

Let x ∈ R
E(G(k+1))
+ be a feasible solution to (Fu) such that yu = c⊤x/(1−∑e∈δ−(u) γexe). Clearly,

such an x exists if yu = c(C)/1− γ(C) for some flow-absorbing cycle C ∈ Cabsu (G(k+1)). Otherwise,
if yu = cuv + γuvyv for some uv ∈ δ+(u), then yv = c(Q) + γ(Q)(c(C)/1− γ(C)) where Q is a path
leading to a flow-absorbing cycle C in G(k)[V \W ]. This is because yV \W is the pointwise maximal

solution to the feasible subsystem (G(k)[V \W ], c, γ) by the inductive hypothesis. Hence, x can be
chosen as the fundamental flow from u to the cycle C via the path Q+ uv.

Now, according to Lemma 4.7, if z̄V is not feasible to the dual LP for f(yu), then f(yu) = −∞.
By Lemma 4.4, the optimal value of (Fu) is −∞. On the other hand, if z̄V is a feasible solution to
the dual LP for f(yu), then it is also optimal. Moreover, P is a shortest path from u with respect

to ȳ′ in G
(k+1)
u . If E(P ) > 0 and γ(P ) ≥ 1, then the path ends at u′ because ȳ′ is dual feasible

to f(δ′). Let x̄ be the fundamental u-u′ flow on P . By complementary slackness, x̄ is an optimal
primal solution to f(yu) < 0 and 1 −∑e∈δ−(u) γex̄e = 1 − γ(P ) ≤ 0. Applying Lemma 4.4 again

yields unboundedness of (Fu). In both cases, as (Pu) is feasible, (G
(k+1), c, γ) is infeasible.

If the above cases do not apply, then z̄u and γ(P ) − 1 constitute a suitable initial point and
supergradient for Algorithm 1 respectively. Note that the node labels ȳ are updated to z̄ ∈ Rn+1.
Throughout the execution of Algorithm 1, it is easy to see that ȳV remain an upper bound on every
feasible solution to the system (G(k+1), c, γ). If phase k + 1 terminates with node labels y := ȳV ,
then yu is the largest root of f . By Lemma 3.9, yu is the optimal value of (Fu). Since y is an optimal
solution to (Du), we obtain y = ymax as desired. On the other hand, if phase k+1 terminates with
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INFEASIBLE, then f does not have a root. By Lemma 3.9, the optimal value of (Fu) is −∞. As
(Pu) is feasible, this implies that (G(k+1), c, γ) is infeasible.

To bound the running time of Algorithm 3, it suffices to bound the running time of Algorithm 1
in every phase. Our strategy is to analyze the sequence of paths whose gain factors determine the
right derivative of f at each iterate of Algorithm 1. The next property is crucial our arc elimination
argument.

Definition 4.9. Let P = (P (1), P (2), . . . , P (ℓ)) be a sequence of paths from u. We say that P
satisfies subpath monotonicity at u if for every pair P (i), P (j) where i < j and for every shared node

v 6= u, we have γ(P
(i)
uv ) ≤ γ(P (j)

uv ).

Lemma 4.10. Let δ(1) > δ(2) > · · · > δ(ℓ) be a decreasing sequence of iterates. For each δ(i) ∈ R,
let P (i) be a u-u′ path in Gu on which a unit flow is an optimal primal solution to f(δ(i)). Then,
the sequence (P (1), P (2), . . . , P (ℓ)) satisfies subpath monotonicity at u.

Proof. For each i ∈ [ℓ], let y(i) ∈ Rn be an optimal dual solution to f(δ(i)). Let ȳ(i) ∈ Rn+1 be the

node labels in Gu defined by ȳ
(i)
u′ := δ(i) and ȳv := yv for all v 6= u′. By complementary slackness,

every edge in P (i) is tight with respect to ȳ(i). Hence, P (i) is a shortest u-u′ path in Gu with
respect to ȳ(i). Now, pick a pair of paths P (i) and P (j) such that i < j and they share a node

v 6= u. Then, the subpaths P
(i)
uv and P

(j)
uv are also shortest u-v paths in Gu with respect to ȳ(i) and

ȳ(j) respectively. Observe that ȳ
(i)
v > ȳ

(j)
v because ȳ

(i)
u′ = δ(i) > δ(j) = ȳ

(j)
u′ . Define the function

ψ : [ȳ
(j)
v , ȳ

(i)
v ]→ R̄ as

ψ(α) := inf {c(P ) + γ(P )α : P is a u-v walk in Gu} .

Clearly, it is increasing and concave. It is also finite because ψ(ȳ
(i)
v ) = c(P

(i)
uv ) + γ(P

(i)
uv )ȳ

(i)
v and

ψ(ȳ
(j)
v ) = c(P

(j)
uv ) + γ(P

(j)
uv )ȳ

(j)
v . Subpath monotonicity then follows from concavity of ψ.

Theorem 4.11. In each phase k of Algorithm 3, Algorithm 1 terminates in O(|E(G(k))|) iterations.

Proof. Fix a phase k ∈ [n] and denotemk := |E(G(k))|. Let Ȳ = (ȳ(1), ȳ(2), . . . , ȳ(ℓ)) be the sequence
of node labels at the start of every iteration of Algorithm 1 in phase k. Note that ȳ(i) ≥ ȳ(i+1) and

ȳ
(i)
u′ > ȳ

(i+1)
u′ for all i < ℓ. Let f : R → R̄ be the parametric function associated with the linear

fractional program (Fu) for the subsystem (G(k), c, γ). We may assume that ℓ ≥ 1, which in turn

implies that f(y
(1)
u′ ) is finite by Lemma 4.4. By Lemma 4.6, there are no negative unit-gain cycles

or bicycles in G(k) \ δ+(u). It follows that all negative unit-gain cycles and negative bicycles in
G(k) contain u. Hence, there exists a smallest ε ≥ 0 such that the subsystem (G(k), ĉ, γ) is feasible,
where ĉ ∈ Rmk are modified arc costs defined by ĉe := ce + ε if e ∈ δ+(u) and ĉe := ce otherwise.

For each i > 1, every basic optimal primal solution to f(ȳ
(i)
u′ ) is a path flow from u to u′ in G

(k)
u .

This is because u cannot reach a flow-absorbing cycle in the subgraph of G
(k)
u induced by tight arcs

with respect to ȳ
(i)
u . Indeed, such a cycle would impose an upper bound of ȳ

(i)
u on the variable yu.

As ȳ
(i−1)
u > ȳ

(i)
u , this contradicts the feasibility of ȳ

(i−1)
V to the dual LP for f(ȳ

(i−1)
u′ ). For each

i > 1, let P (i) be a u-u′ path with the smallest gain factor in the subgraph of G
(k)
u induced by

tight arcs with respect to ȳ(i). Note that P (i) is well-defined due to the same reason above. Then,

γ(P (i))− 1 = min ∂f(ȳ
(i)
u′ ). Denote this sequence of u-u′ paths as P := (P (2), P (3), . . . , P (ℓ)).

Without loss of generality, we may assume that ȳ(i) is finite for all i ≥ 1. Since every vertex
can reach a flow-absorbing cycle in G(k), there exists a pointwise maximal solution y∗ ∈ Rn to the
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modified system (G(k), ĉ, γ). Define the reduced cost c∗ ∈ R
mk
+ as c∗vw := ĉvw + γvwy

∗
w − y∗v for all

vw ∈ E(G(k)). Since f(y∗u) = −ε, we obtain

c∗(P (i)) = c(P (i))− (1− γ(P (i)))y∗u + ε

= f(ȳ
(i)
u′ )− (1− γ(P (i)))(y∗u − ȳ(i)u )− f(y∗u)

= Df (y
∗
u, ȳ

(i)
u′ ) ≤

1

2
Df (y

∗
u, ȳ

(i−2)
u′ ) =

1

2
c∗(P (i−2))

for all i > 3, where the inequality is due to Lemma 3.4.
Consider the vector x ∈ R

mk
+ defined by

xvw :=

{

maxi∈[ℓ]

{

γ(P
(i)
uv ) : vw ∈ E(P (i))

}

if vw ∈ ∪ℓi=1E(P (i)),

0 otherwise.

By Lemma 4.10, the sequence P satisfies subpath monotonicity at u. Hence, xvw is equal to the
gain factor of the u-v subpath of the last path in P that contains vw. Let 0 ≤ c∗1x1 ≤ c∗2x2 ≤ · · · ≤
c∗mk

xmk
be the elements of c∗ ◦x in nondecreasing order. Let e1, e2, . . . , emk

denote the arcs in G(k)

according to this order, and define di :=
∑i

j=1 c
∗
jxj for every i ∈ [mk]. Then, c∗(P (i)) ∈ [d1, dmk

]

for all i ∈ [ℓ] because c∗(P (ℓ)) ≥ d1 and c∗(P (1)) ≤ dmk
. To prove that ℓ = O(mk), it suffices to

show that every interval (di, di+1] contains the cost of at most two paths from P.
Pick j < mk. Among all the paths in P whose costs lie in (dj , dj+1], let P

(i) be the most
expensive one. If dj ≥ dj+1/2, then

c∗(P (i+2)) ≤ 1

2
c∗(P (i)) ≤ 1

2
dj+1 ≤ dj .

On the other hand, if dj < dj+1/2, then

c∗(P (i+2)) ≤ 1

2
c∗(P (i)) ≤ 1

2
dj+1 = dj+1 −

1

2
dj+1 = c∗j+1xj+1 + dj −

1

2
dj+1 < c∗j+1xj+1.

By subpath monotonicity, the paths from P (i+2) onwards do not contain an arc from the set
{ej+1, ej+2, . . . , emk

}. Therefore, their costs are at most dj each.

The runtime of every iteration of Algorithm 1 is dominated by Grapevine. Thus, following
the discussion in Appendix B.3, we obtain the following result.

Corollary 4.12. Algorithm 3 solves the feasibility of M2VPI linear systems in O(m2n2) time.

One might wonder if Algorithm 3 is still strongly polynomial if we replace the look-ahead
Newton–Dinkelbach method on Line 14 with the standard version. In Appendix C, we show that
this is indeed the case, though with a slower convergence.

4.3 Deterministic Markov Decision Processes

In this subsection, we replace Grapevine with a variant of Dijkstra’s algorithm (Algorithm 4)
in order to speed up Algorithm 3 for solving a special class of 2VPI linear programs, known as
deterministic Markov decision processes (DMDPs). This idea was briefly mentioned by Madani
in [19]; we will supply the details. Recall that an instance of DMDP is described by a directed
multigraph G = (V,E) with arc costs c ∈ Rm and discount factors γ ∈ (0, 1]m. The goal is to select
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an outgoing arc from every node so as to minimize the total discounted cost over an infinite time
horizon. It can be formulated as the following pair of primal and dual LPs.

min c⊤x (P)

s. t. ∇xv = 1 ∀v ∈ V
x ≥ 0

max 1

⊤y (D)

s. t. yv − γeyw ≤ ce ∀e = (v,w) ∈ E

Since the discount factor of every cycle is at most 1, there are no bicycles in G. Consequently,
by Theorem 4.3, the linear program (D) is infeasible if and only if there is a negative unit-gain
cycle in G. This condition can be easily checked by running a negative cycle detection algorithm
on the subgraph induced by arcs with discount factor 1.

Algorithm 4 is slightly modified from the standard Dijkstra’s algorithm [5] to handle our notion
of shortest paths that depends on node labels. As part of the input, it requires a target node t
with out-degree zero, node labels y ∈ Rn which induce nonnegative reduced costs, and a parameter
α < yt. As output, it returns a shortest path tree T to t when yt is decreased to α. It also returns
node labels z ∈ Rn which certify the optimality of T , i.e. z induces nonnegative reduced costs with
zero reduced costs on T , and zt = α.

Algorithm 4: Recompute shortest paths to t

input :A directed multigraph G = (V,E) with arc costs c ∈ RE and discount factors
γ ∈ (0, 1]E , a target node t ∈ V where δ+(t) = ∅, node labels y ∈ RV such that
cvw + γvwyw − yv ≥ 0 for every vw ∈ E, and a parameter α < yt

output :An in-tree T rooted at t and node labels z ∈ RV such that z ≤ y, zu = α and
cvw + γvwzw − zv ≥ 0 for every vw ∈ E, with equality on every arc of T .

1 yu ← α
2 Define reduced cost c̄ ∈ RE by c̄vw ← cvw + γvwyw − yv for all vw ∈ E
3 Initialize node labels z ∈ RV by zv ← 0 for all v ∈ V
4 Initialize sets R← {t} and S ← ∅
5 while R 6= ∅ do
6 w ← argminv∈R {zv}
7 R← R \ {w}
8 S ← S ∪ {w}
9 foreach vw ∈ E where v /∈ S do

10 if zv > c̄vw + γvwzw then

11 zv ← c̄vw + γvwzw
12 pred(v)← vw
13 R← R ∪ {v}

14 Let T be the in-tree defined by pred()
15 z ← y + z
16 return (z, T )

An iteration of Algorithm 4 refers to a repetition of the while loop. In the pseudocode, observe
that c̄e ≥ 0 for all e ∈ E \ δ−(u).

Lemma 4.13. Algorithm 4 is correct.
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Proof. We proceed by induction on the number of elapsed iterations k. Let z be the node labels at
the end of iteration k. For each i ≤ k, let vi be the node added to S in iteration i. Note that zS
remains unchanged in future iterations. We first show that zv2 ≤ zv3 ≤ · · · ≤ zvk < zv1 = 0. The
base case k = 1 is true due to our initialization, while the base case k = 2 is true because v2 ∈ R.
For the inductive step, suppose that the claim is true for some k ≥ 2. Let vk+1 = argminv∈R {zv}
and vj = pred(vk+1) for some j ≤ k. We know that zvk+1

< 0 because vk+1 ∈ R. If j < k, then
zvk+1

≥ zvk , as otherwise vk would not have been chosen to enter S in iteration k. If j = k, using
the fact that γvk+1vk ≤ 1 and c̄vk+1vk ≥ 0, we obtain

zvk+1
= c̄vk+1vk + γvk+1vkzvk ≥ zvk .

It is left to show that c̄vw + γvwzw − zv ≥ 0 for all vw ∈ E(G[S]). The base case k = 1 is
trivially true. For the inductive step, suppose that the statement is true for some k ≥ 1. We know
that zvk+1

≤ c̄vk+1v + γvk+1vzv for every outgoing arc vk+1v ∈ E(G[S]). For every incoming arc
vvk+1 ∈ E(G[S]), using the fact that γvvk+1

≤ 1 and c̄vvk+1
≥ 0, we get

zv ≤ c̄vvk+1
+ γvvk+1

zv ≤ c̄vvk+1
+ γvvk+1

zvk+1
,

where the second inequality follows from zv ≤ zvk+1
.

In every phase k of Algorithm 3, Algorithm 4 now replaces Grapevine as the new value and
supergradient oracle of f . Given an optimal dual solution y to f(α) for some α ∈ R, Algorithm 4 is
used to compute an optimal dual solution to f(α′) for any α′ < α. In particular, we run it on the

modified graph G
(k)
u with input node labels ȳ defined by ȳu′ := α and ȳv := yv for all v 6= u′, target

node t = u′, and parameter α′ < α. Note that u′ has out-degree zero in G
(k)
u by construction. Let

(z̄, T ) be the node labels and tree returned by Algorithm 4, where z̄V is an optimal dual solution
to f(α′). A supergradient at f(α′) can be inferred from the output via complementary slackness.
Specifically, if u ∈ V (T ), then γ(P )− 1 ∈ ∂f(α′) where P is the unique u-u′ path in T . Otherwise,
u can reach a flow-absorbing cycle in the tight subgraph with respect to z̄, so −1 ∈ ∂f(α′).

An efficient implementation of Dijkstra’s algorithm using Fibonacci heaps was given by Fredman
and Tarjan [9]. It can also be applied to our setting, with the same running time of O(m+n logn).
Consequently, we obtain a faster running time of Algorithm 3 for DMDPs.

Corollary 4.14. Algorithm 3 solves deterministic MDPs in O(mn(m+ n log n)) time.

5 Parametric Submodular Function Minimization

Let V be a set with n-elements and define 2V := {S : S ⊆ V } to be the set of all subsets of V . A
function h : 2V → R is submodular if

h(S) + h(T ) ≥ h(S ∩ T ) + h(S ∪ T ) ∀S, T ⊆ V .

Given non-negative submodular function h : 2V → R+ and a vector a ∈ RV satisfying maxi∈V ai >
0, we examine the problem of computing

δ∗ := max{δ : min
S⊆V

h(S)− δa(S) ≥ 0}, (3)

where a(S) :=
∑

i∈S ai. As the input model, we assume access to an evaluation oracle for h, which
allows us to query h(S) for any set S ⊆ V . The above problem models the line-search problem
inside a submodular polyhedron and has been studied in [10, 22, 31].
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To connect to the root finding problem studied in previous sections, for δ ∈ R, we define

f(δ) := min
S⊆V

hδ(S) := min
S⊆V

h(S) − δa(S).

Since f is the minimum of 2n affine functions, f is a piecewise linear concave function. Noting
that f is continuous, problem (3) can be equivalently restated as that of computing the largest
root of f , i.e., the largest δ∗ ∈ R such that f(δ∗) = 0. The assumption that h is non-negative
ensures that f(0) ≥ 0, and the assumption that maxi∈V ai > 0 ensures that δ∗ exists and δ∗ ≥ 0
(see the initialization section below). Given the root finding representation, we may apply the
Newton–Dinkelbach method on f to compute δ∗. This approach was taken by Goemans, Gupta
and Jaillet [10], who were motivated to give a more efficient alternative to the parametric search
based algorithm of Nagano [22]. Their main result is as follows:

Theorem 5.1. The Newton-Dinkelbach method requires at most n2 + O(n log2 n) iterations to
solve (3).

The goal of this section is to give a simplified potential function based proof of the above
theorem using the accelerated Newton–Dinkelbach method (Algorithm 1), where we will give a
slightly weaker 2n2+2n+4 bound on the iteration count. Our analysis uses the same combinatorial
ring family analysis as in [10], but the Bregman divergence enables considerable simplifications.

5.1 Implementing the Accelerated Newton–Dinkelbach

We explain how to implement and initialize the accelerated Newton–Dinkelbach method in the
present context. To begin, Algorithm 1 requires access to the supergradients of f . For δ ∈ R, it is
easy to verify that

S ∈ argmin{hδ(T ) : T ⊆ V } ⇒ −a(S) ∈ ∂f(δ).
Therefore, computing supergradients of f can be reduced to computing minimizers of the submod-
ular functions hδ(S) := h(S)− δa(S), δ ∈ R. Submodular function minimization (SFM) is a classic
problem in combinatorial optimization and has been extensively studied from the viewpoint of
strongly polynomial algorithms [4, 15, 16, 18, 17]. The fastest strongly polynomial running time is
due to Jiang [17] who gave an algorithm for SFM using O(n3) calls to the evaluation oracle.

In what follows, we assume access to an SFM oracle, that we will call on the submodular
functions hδ, for δ ∈ R. Each iteration of Algorithm 1 requires two calls to a supergradient oracle,
one for the standard step and one for the look-ahead step, and hence can be implemented using two
calls to the SFM oracle. Gupta, Goemans and Jaillet [10] were directly concerned with the number
of calls to an SFM oracle, which is exactly equal to the number of iterations of standard Newton–
Dinkelbach (it requires only one SFM call per iteration instead of two). As mentioned above, we will
prove a 2n2 + 2n+ 4 bound on the iteration count for accelerated Newton–Dinkelbach, which will
recover the bound on the number of SFM calls of [10] up to a factor 4. Since accelerated Newton–
Dinkelbach is always as fast as the standard method (it goes at least as far in each iteration), the
iteration bound in Theorem 5.1 in fact applies to the accelerated method as well.

We now explain how to initialize the method. For this purpose, Algorithm 1 requires δ(1) ∈ R

and g(1) ∈ ∂f(δ(1)) such that f(δ(1)) ≤ 0 and g(1) < 0. We proceed as in [10] and let δ(1) :=
argmin{h({i})/ai : i ∈ V, ai > 0} ≥ 0, which is well-defined by assumption on a. We compute
f(δ(1)) by the SFM oracle. Note that

f(δ(1)) = min
S⊆V

hδ(S) ≤ min
i∈V,ai>0

h({i}) − δ(1)ai = 0.
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If f(δ(1)) = 0, we return δ(1), as we are already done. Otherwise if f(δ(1)) < 0, set g(1) = −a(S(1)),
where S(1) ∈ argminS⊆V hδ(1)(S) as returned by the oracle. From here, note that

0 > f(δ(1)) = hδ(1)(S
(1)) = h(S(1))− δ(1)a(S(1)) = h(S(1)) + g(1)δ(1) ≥ g(1)δ(1),

where the last inequality follows by non-negativity of h. Since δ(1) ≥ 0, the above implies that
δ(1) > 0 and g(1) < 0. We may therefore initialize Algorithm 1 with δ(1) and g(1).

Assuming f(δ(1)) < 0, the largest root δ∗ of f is guaranteed to exists in the interval [0, δ(1)).
This follows since f is continuous, f(0) = minS⊆V h(S) ≥ 0 (by non-negativity of h) and f(δ(1)) < 0.
In particular, Algorithm 1 on input f, δ(1), g(1) is guaranteed to output the desired largest root δ∗

in a finite number of iterations (recalling that f is piecewise affine with 2n pieces). In the next
subsection, we prove a 2n2 + 2n+ 4 bound on the number of iterations.

5.2 Proof of the 2n2 + 2n+ 4 Iteration Bound

Let δ(1) > · · · > δ(ℓ) = δ∗ denote iterates of Algorithm 1 on input f and δ(1), g(1) < 0 as above. For
each i ∈ [ℓ], let S(i) be an any set satisfying

S(i) ∈ argmax{a(S) : S ∈ argminT⊆V hδ(i)(T )}.

It is not hard to verify that S(i), i ∈ [ℓ], is a minimizer of hδ(i) inducing the right derivative of f at
δ(i). Precisely, −a(S(i)) = infg∈∂f(δ(i)) g, ∀i ∈ [ℓ]. We note that the sets S(i), i ∈ [ℓ], need not be
the sets outputted by the SFM oracle, and are only required for the analysis of the algorithm.

Our goal is to prove that ℓ ≤ 2n2 + 2n + 4. For this purpose, we rely on the key idea of [10],
which is to extract an increasing sequence of ring-families from the sets S(i), i ∈ [ℓ].

A ring family R ⊆ 2V is a subsystem of sets that is closed under unions and intersections,
precisely A,B ∈ R ⇒ A ∩ B,A ∪ B ∈ R. Given T ⊆ 2V , we let R(T ) denote the smallest
ring-family containing T . We will use the following lemma of [10] which bounds the length of an
increasing sequence of ring-families:

Lemma 5.2 ([10, Theorem 2]). Let ∅ 6= R1 ( R2 ( · · · ( Rk ⊆ 2V , where |V | = n. Then
k ≤

(

n+1
2

)

+ 1.

The proof of the above lemma is based on the Birkhoff representation of a ring family. Precisely,
for any ring-family R ⊆ 2V , with ∅, V ∈ R, there exists a directed graph G on V , such that the
sets S ∈ R are exactly the subsets of vertices of G having no out-neighbors. The main idea for the
bound is that the digraph representation of Ri, i ∈ [k], must lose edges as i increases. The next
statement is a slightly adapted version of [10, Theorem 5] that it sufficient for our purposes. It
shows that a sequence of sets with geometrically increasing h values forms an increasing sequence
of ring families. We include a proof for completeness.

Lemma 5.3. Let h : 2V → R+ be a non-negative submodular function. Consider a sequence
of distinct sets T1, T2, . . . , Tq ⊆ V such that h(Ti+1) > 4h(Ti) for i ∈ [q − 1]. Then Ti+1 /∈
R({T1, . . . , Ti}) for all i ∈ [q − 1].

Proof. Let Ri := R({T1, . . . , Ti}), ∀i ∈ [q]. We claim that maxS∈Ri
h(S) ≤ 2h(Ti), ∀i ∈ [q]. This

proves h(Ti+1) /∈ Ri, for i ∈ [q − 1], since h(Ti+1) > 4h(Ti) ≥ 2h(Ti) ≥ maxS∈Ri
h(S), noting that

the second inequality uses that h is non-negative.
We now prove the claim by induction on i ∈ [q]. The base case i = 1 is trivial since R1 = {T1}.

We now assume that maxS∈Ri
h(S) ≤ 2h(Ti), for 1 ≤ i ≤ q−1, and prove the corresponding bound
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for Ri+1. Recalling that Ri+1 is the ring-family generated by Ri and Ti+1, it is easy to verify that
the set system

Ri ∪ {Ti+1} ∪ {S ∪ Ti+1 : S ∈ Ri} ∪ {S ∩ Ti+1 : S ∈ Ri} ∪ {S1 ∪ (S2 ∩ Ti+1) : S1, S2 ∈ Ri}

is a ring-family and hence is equal to Ri+1. It therefore suffices to upper bound h(X) for a set X
of the above type. For X ∈ Ri or X = Ti+1, the bound is by assumption. For X = S1∪ (S2∩Ti+1),
S1, S2 ∈ Ri+1, we prove the bound as follows:

h(S1 ∪ (S2 ∩ Ti+1)) ≤ h(S1) + h(S2 ∩ Ti+1)− h(S1 ∩ S2 ∩ Ti+1) ( by submodularity of h )

≤ h(S1) + h(S2) + h(Ti+1)− h(S1 ∪ Ti+1)− h(S1 ∩ S2 ∩ Ti+1)

≤ h(S1) + h(S2) + h(Ti+1) ( by non-negativity of hδ∗ )

≤ 4h(Ti) + h(Ti+1) ( by the induction hypothesis )

≤ 2h(Ti+1). ( since 4h(Ti) < h(Ti+1) )

For X = S ∪ Ti+1 or X = S ∩ Ti+1, S ∈ Ri, similarly to the above, one has

h(X) ≤ h(S) + h(Ti+1) ≤ 2h(Ti) + h(Ti+1) ≤
3

2
h(Ti+1), as needed.

We now use the Bregman-divergence analysis to show that for the function hδ∗ , the sequence of
sets Ti = S(ℓ−4(j−1)), 1 ≤ i ≤ ⌊ ℓ+3

4 ⌋ satisifes the conditions of this lemma. Combined with Lemma 5.2,
we get that the number of iterations satisfies

⌊(ℓ+ 3)/4⌋ ≤
(

n+ 1

2

)

+ 1⇒ ℓ ≤ 2n2 + 2n+ 4, as needed.

Lemma 5.4. Let us define

Ti := S(ℓ−4(i−1)) , i ∈ [q] for q :=

⌊

ℓ+ 3

4

⌋

.

Then, the function hδ∗ and the sequence of sets T1, T2, . . . , Tq satisfy the conditions in Lemma 5.3.

Proof. The function hδ∗ is clearly submodular, and its minimum is 0 since 0 = f(δ∗) = minS⊆V hδ∗(S) =
hδ∗(S

(ℓ)) = hδ∗(T1). In particular, hδ∗ is non-negative. It is left to show hδ∗(Ti+1) > 4hδ∗(Ti) for
i ∈ [q − 1]. For each δ(i), i ∈ [ℓ], we see that

Df (δ
∗, δ(i)) = f(δ(i)) + sup

g∈∂f(δ(i))

g(δ∗ − δ(i))− f(δ∗)

= hδ(i)(S
(i))− a(S(i))(δ∗ − δ(i))

(

by our choice of S(i) and f(δ∗) = 0
)

= h(S(i))− δ(i)a(S(i))− a(S(i))(δ∗ − δ(i)) = hδ∗(S
(i)).

By Lemma 3.4 and the above, we get for 3 ≤ i ≤ l that

Df (δ
∗, δ(i)) <

1

2
Df (δ

∗, δ(i−2))⇔ hδ∗(S
(i)) <

1

2
hδ∗(S

(i−2)). (4)

Then, hδ∗(Ti+1) > 4hδ∗(Ti) for i ∈ [q − 1] follows by the definition of the Ti sets.
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[30] É. Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica,
5(3):247–256, 1985. 4

[31] D. M. Topkis. Minimizing a submodular function on a lattice. Operations research, 26(2):305–
321, 1978. 20

[32] L. A. Végh. A strongly polynomial algorithm for generalized flow maximization. Math. Oper.
Res., 42(1):179–211, 2017. 4

25



[33] Q. Wang, X. Yang, and J. Zhang. A class of inverse dominant problems under weighted ℓ∞
norm and an improved complexity bound for Radzik’s algorithm. J. Global Optimization,
34(4):551–567, 2006. 3, 9

26



A Proofs for Section 3 (An Accelerated Newton–Dinkelbach Method)

Lemma 3.1. For every iteration i ≥ 2, we have δ∗ ≤ δ(i) < δ(i−1), f(δ∗) ≥ f(δ(i)) > f(δ(i−1))
and g(i) ≥ g(i−1), where the last inequality holds at equality if and only if g(i) = infg∈∂f(δ(i)) g,

g(i−1) = supg∈∂f(δ(i−1)) g and f(δ(i)) = 0. Moreover,

f(δ(i))

f(δ(i−1))
+

g(i)

g(i−1)
≤ 1 .

Proof. Since f(δ(i)) ≤ 0 and g(i) < 0, by concavity of f we have that f(δ) ≤ f(δ(i))+g(i)(δ−δ(i)) <
f(δ(i)) ≤ 0, for all δ > δ(i). Given this, we must have δ∗ ≤ δ(i) since either f(δ∗) = 0 ≥ f(δ(i)) or

0 > f(δ∗) = maxz∈R f(z) ≥ f(δ(i)). As δ(i) = δ(i−1) − f(δ(i−1))

g(i−1) < δ(i−1), since f(δ(i−1)), g(i−1) < 0,

we have f(δ(i−1)) < f(δ(i)). Furthermore, g(i) ≥ g(i−1) is immediate from the concavity of f .
To understand when g(i) = g(i−1), we see by concavity that

g(i) ≥ inf
g∈∂f(δ(i))

g ≥ f(δ(i−1))− f(δ(i))
δ(i−1) − δ(i) ≥ sup

g∈∂f(δ(i−1))

g ≥ g(i−1).

To have equality throughout, we must therefore have that g(i) and g(i−1) are equal to the respective
infimum and supremum. We must also have f(δ(i)) = 0 since

f(δ(i−1))− f(δ(i))
δ(i−1) − δ(i) =

f(δ(i−1))− f(δ(i))
f(δ(i−1))

g(i−1)

= g(i−1)

(

1− f(δ(i))

f(δ(i−1))

)

To have equality throughout, we must therefore have that g(i) and g(i−1) are equal to the respective
infimum and supremum and that f(δ(i)) = 0.

Lastly, since f is concave

f(δ(i−1)) ≤ f(δ(i)) + g(i)(δ(i−1) − δ(i)) = f(δ(i)) + g(i)
f(δ(i−1))

g(i−1)
.

The moreover now follows by dividing both sides by f(δ(i−1)) < 0.

Lemma 3.3. For every iteration i ≥ 2, we have Df (δ
∗, δ(i)) ≤ Df (δ

∗, δ(i−1)) which holds at equality
if and only if g(i−1) = infg∈∂f(δ(i−1)) g and f(δ(i)) = 0.

Proof. By Lemma 3.1, we know that δ∗ ≤ δ(i) < δ(i−1) and 0 ≥ f(δ(i)) > f(δ(i−1)). Hence,

Df (δ
∗, δ(i−1)) = f(δ(i−1)) + sup

g∈∂f(δ(i−1))

g(δ∗ − δ(i−1))− f(δ∗)

≥ f(δ(i−1)) + g(i−1)(δ(i) − δ(i−1)) + g(i−1)(δ∗ − δ(i))− f(δ∗)
= 0 + g(i−1)(δ∗ − δ(i))− f(δ∗)
≥ f(δ(i)) + g(i−1)(δ∗ − δ(i))− f(δ∗) ( by concavity of f )

≥ f(δ(i)) + sup
g∈∂f(δ(i))

g(δ∗ − δ(i))− f(δ∗)

= Df (δ
∗, δ(i)).

For the equality condition, note that the first two inequalities hold at equality precisely when
g(i−1) = infg∈∂f(δ(i−1)) g and f(δ(i)) = 0. If f(δ(i)) = 0, then δ(i) = δ∗, and hence the third
inequality holds at equality as well.
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B Further Explanations

B.1 Reducing 2VPI to M2VPI

Following [7, 13], the idea is to replace each variable yu with (y+u − y−u )/2, where y+u and y−u are
newly introduced variables. Then, an inequality ayu + byv ≤ c becomes

a

(

y+u − y−u
2

)

+ b

(

y+v − y−v
2

)

≤ c,

which contains four variable, but will be adjusted based on the signs of a and b: If a or b is zero, then
the resulting inequality is already monotone and contains two variables. Next, if sgn(a) = sgn(b),
then we replace the inequality with ay+u − by−v ≤ c and −ay−u + by+v ≤ c. Otherwise, we replace
it with ay+u + by+v ≤ c and −ay−u − by−v ≤ c. Observe that every inequality in the new system is
monotone and supported on exactly two variables. If ŷ is a feasible solution to the original system,
then setting y+ = ŷ and y− = −ŷ yields a feasible solution to the new system. Conversely, if
(ŷ+, ŷ−) is a feasible solution to the new system, then setting y = (ŷ+ − ŷ−)/2 yields a feasible
solution to the original system. It follows that the two systems are equivalent.

B.2 Non-existence of shortest paths

u v w
(γuv, cuv) = (1, 0)

γvw, cvw

γwv, cwv

Figure 1: A shortest path from u with respect to node labels y may not exist.

Consider Figure 1. We will sketch three different scenarios in which a shortest path from u with
respect to node labels y ∈ R3 does not exist. Throughout, let C be the unique directed cycle and
Ck be the v-v walk that traverses C exactly k ∈ N times.

Negative unit gain cycle Let γwv = γvw = 1 and cwv = cvw = −1. Then the cycle C fulfils
γ(C) = 1 and c(C) = −2 < 0. The concatenation of (u, v) and Ck leads to arbitrarily short walks
from u. In particular, there exists no shortest path from u. This observation is independent of
the node labels y. Recall as well, that the existence of such a cycle renders the M2VPI instance
infeasible (Theorem 4.3).

Flow-absorbing cycle for large node labels Let γvw = 1 and γwv = 1/2. Then γ(C) =
γvwγwv = 1/2, so C is flow-absorbing. Let further cwv = cvw = 0 and yw = yv = 1. Label-
correcting for the cycle C then updates yv and yw in two strictly decreasing sequences, which both
converge towards 0. Again, the concatenation of (u, v) and Ck leads to a sequence of u-v walks
that have no smallest element.

Flow-generating cycle for small node labels Let γvw = 1 and γwv = 2. Then γ(C) =
γvwγwv = 2, so C is flow-generating. Let further cwv = −1, cvw = 0 and yw = yv = 0. Label-
correcting for the cycle C then updates yv and yw in two strictly decreasing and unbounded se-
quences. Again, the concatenation of (u, v) and Ck leads to a sequence of u-v walks that have no
smallest element.
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B.3 From y
max to a finite feasible solution

In this section, we show how to convert the node labels y ∈ R̄n obtained from Algorithm 3 into a
finite feasible solution or an infeasibility certificate of the M2VPI system (G, c, γ) in question. We
summarize the classical arguments already used by Aspvall and Shiloach [2]. If y is finite, then
we are done because there are no violated arcs in G with respect to y. In fact, y is the pointwise
maximal solution by Theorem 4.8. So, we may assume that yu =∞ for some u ∈ V .

Define ymin ∈ R̄n as the pointwise minimal solution to (G, c, γ) if the system is feasible, where
ymin
v := −∞ if and only if the variable yv is unbounded from below. Consider the reversed graph
←

G = (V,
←

E), where
←

E := {vu : uv ∈ E} denotes the set of reversed arcs. The cost and gain factor of

each arc e ∈
←

E are given by
←

ce := −c←e/γ←e and
←

γe := 1/γ←e respectively. The M2VPI system defined

by (
←

G,
←

c,
←

γ) is equivalent to the original system (G, c, γ), which can be verified by performing the

change of variables z = −y. Let us run Algorithm 3 on (
←

G,
←

c,
←

γ). By Theorem 4.8, if it returns
node labels z ∈ R̄n, then z = −ymin if the system is feasible. Otherwise, the system is infeasible.
If z is finite, then we are again done because there are no violated arcs in

←

G with respect to z. So,
we may assume that zv =∞ for some v ∈ V .

If yw = zw = ∞ for some w ∈ V , then we know that w cannot reach a flow-absorbing cycle in
G and

←

G. The inability to reach a flow-absorbing cycle in
←

G is equivalent to the inability to be
reached by a flow-generating cycle in G. DenoteW := {w ∈ V : yw = zw =∞}. Observe that every
node w ∈ W is not strongly connected to any v /∈ W in G. Thus, checking the feasibility of the
system amounts to checking whether there exists a negative unit-gain cycle in G[W ]. This can be
done by running Grapevine on G[W ]. Let C1, C2, . . . , Ck be the sink components in the strongly
connected component decomposition of G[W ], and pick any vi ∈ V (Ci) for all i ∈ [k]. Then, the
input node labels y′ ∈ R̄W to Grapevine are set as y′vi ∈ R for all i ∈ [k] and y′v := ∞ for all
other nodes. Let z′ ∈ RW be the returned node labels. It is easy to see that there exists a negative
unit-gain cycle in G[W ] if and only if there exists a violated arc in G[W ] with respect to z′.

If the check above reveals that the system is feasible, then we have y = ymax and −z = ymin by
Theorem 4.8. Then, we can apply a result of Aspvall and Shiloach which states that the interval
[ymin

u , ymax
u ] is the projection of the feasible region onto the coordinate yu for every u ∈ V . To

obtain a feasible solution, we simply fix a coordinate yu ∈ [ymin
u , ymax

u ], update ymin and ymax using
a generic label-correcting algorithm like Grapevine, and repeat.

C 2VPI Analysis without Acceleration

In this section, we analyze the convergence of Algorithm 3 when the look-ahead Newton–Dinkelbach
method is replaced with the standard version. Interestingly, we also obtain a strongly polynomial
runtime in this case, albeit slower than the accelerated version by a factor of O(log n). To achieve
the desired runtime, we slightly strengthen Lemma 3.5, whose proof remains largely the same.

Lemma C.1. Let c ∈ Rm
+ and x(1), x(2), . . . , x(k) ∈ Zm such that

∥

∥x(i)
∥

∥

1
≤ n for all i ∈ [k]. If

0 < c⊤x(i+1) ≤ 1

2
c⊤x(i)

for all i < k, then k = O(m log n).
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Proof of Lemma C.1. Consider the polyhedron P ⊆ Rm defined by the following constraints:

(x(i) − 2x(i+1))⊤z ≥ 0 ∀i < k

(x(k))⊤z = 1

z ≥ 0.

Let A ∈ R(k+m)×m and b ∈ Rk+m denote the coefficient matrix and right-hand side vector of this
system. The polyhedron P is nonempty because it contains the vector c/(x(k))⊤c. Moreover, since
P does not contain a line, it has an extreme point. So there exists a vector c′ ∈ P such that
A′c′ = b′ for some nonsingular submatrix A′ ∈ Rm×m of the matrix A and a subvector b′ ∈ Rm of
the vector b. Cramer’s rule says that for each i ∈ [m],

c′i =
detA′

i

detA′

where the matrix A′
i is obtained from matrix A′ by replacing the i-th column with vector b′. The

1-norm of the rows of A′
i is bounded by 3n and so by Hadamard’s inequality |det(A′

i)| ≤ (3n)m.
As the matrix A′ is nonsingular, we also have |detA′| ≥ 1, which implies that c′i ≤ (3n)m for

all i ∈ [m]. Finally, using the constraints which define the polyhedron P , we obtain

1 = (x(k))⊤c′ ≤ (x(1))⊤c′

2k−1
≤ n(3n)m

2k−1
.

So, k ≤ log(3mnm+1) + 1 = O(m log n) as desired.

Fix a phase k ∈ [n] and denote mk = |E(G(k))|. It is helpful to classify the iterations of the
Newton–Dinkelbach method based on the magnitude by which the supergradient changes. Recall
that the supergradient at the start of iteration i > 1 is given by γ(P (i))− 1, where P (i) is the u-u′

path returned by Grapevine in the previous iteration.

Definition C.2. For every i > 1, we say that iteration i is good if 1− γ(P (i)) ≤ 1
2(1 − γ(P (i−1))).

Otherwise, we say that it is bad.

The next lemma gives a strongly polynomial bound on the number of good iterations.

Lemma C.3. In each phase k ∈ [n], the number of good iterations is O(mk log k).

Proof. Let P be a sequence of u-u′ paths in G
(k)
u at the start of every iteration of the Newton–

Dinkelbach method. Let P∗ = (P (1), P (2), . . . , P (t)) be the subsequence of P restricted to good
iterations. We claim that γ(P (i+1)) ≥

√

γ(P (i)) for all i < t. We use the simple inequality that
(1− x)/2 ≤ 1−√x for all x ∈ R+; one can derive this by rearranging (

√
x− 1)2/2 ≥ 0. This gives

1− γ(P (i+1)) ≤ 1

2

(

1− γ(P (i))
)

≤ 1−
√

γ(P (i)),

which proves the claim. Next, enumerate the arcs of each path by P (i) = (e
(i)
1 , e

(i)
2 , . . . , e

(i)
ℓi
). By

taking logarithms, the claim can be equivalently stated as

ℓi+1
∑

j=1

log γ
e
(i+1)
j

≥ 1

2

ℓi
∑

j=1

log γ
e
(i)
j

.
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Note that both sides of the expression above are negative because γ(P (i)) < 1 for all i ∈ [t]. Let
c ∈ R

mk
+ be the vector defined by ce = |log γe| for all e ∈ E(G(k)). In addition, for every i ∈ [t],

define the vector x(i) ∈ Zm as

x(i)e = − sgn(log γe)
∣

∣

∣

{

j ∈ [ℓi] : e
(i)
j = e

}
∣

∣

∣
.

Then, we obtain

0 < c⊤x(i+1) =

ℓi+1
∑

j=1

− log γ
e
(i+1)
j

≤ 1

2

ℓi
∑

j=1

− log γ
e
(i)
j

=
1

2
c⊤x(i).

for all i < t. Since ‖x(i)‖1 ≤ k for all i ∈ [t], we conclude that t = O(mk log k) by Lemma C.1.

It is left to bound the number of bad iterations. We approach this by arguing that in a strongly
polynomial number of bad iterations, an arc will no longer appear in future paths produced by the
Newton–Dinkelbach method.

Lemma C.4. In each phase k ∈ [n], the number of bad iterations is O(mk log k).

Proof. Let Ȳ = (ȳ(1), ȳ(2), . . . , ȳ(ℓ)) and P = (P (1), P (2), . . . , P (ℓ)) be a sequence of node labels and

u-u′ paths in G
(k)
u respectively at the start of every iteration of the Newton–Dinkelbach method.

Without loss of generality, we may assume that ȳ(i) is finite for all i ∈ [ℓ]. For each i ∈ [ℓ], define

y(i) ∈ Rn as y
(i)
u := ȳ

(i)
u′ and y

(i)
v := ȳ

(i)
v for all v /∈ {u, u′}. Now, pick an iteration j ∈ [ℓ] such

that more than log(2n) bad iterations have elapsed. Consider the reduced cost c′ ∈ Rmk given by

c′vw := cvw + γvwy
(j)
w − y(j)v for all vw ∈ E(G(k)). Note that c′vw ≥ 0 for all v 6= u.

According to Lemma 4.7, each P (i) is a shortest u-u′ path with respect to ȳ(i). By complemen-

tary slackness, the unit flow on P (i) is an optimal primal solution to f(ȳ
(i)
u′ ). Since ȳ

(i)
u′ > ȳ

(i+1)
u′ for

all i < ℓ, the sequence P satisfies subpath monotonicity at u by Lemma 4.10. Define the vector
x ∈ Rm

+ as

xvw :=

{

maxi∈[ℓ]

{

γ(P
(i)
uv ) : vw ∈ E(P (i))

}

if vw ∈ ∪ℓi=1E(P (i)),

0 otherwise.

Observe that xvw is the gain factor of the u-v subpath of the last path in P which contains vw,
due to subpath monotonicity.

Claim C.5. We have −f(ȳ(j)u′ ) < ‖c′ ◦ x‖∞.

Proof. For every i ∈ [ℓ], we have

f(ȳ
(i)
u′ ) = c(P (i))− ȳ(i)u′ (1− γ(P (i))) = c′(P (i))− (ȳ

(i)
u′ − ȳ

(j)
u′ )(1 − γ(P (i))).

By applying the definition of ȳ
(i)
u′ , we can upper bound its negation by

−f(ȳ(i)u′ ) = −c′(P (i)) +
1− γ(P (i))

1− γ(P (i−1))
c′(P (i−1)) ≤

∣

∣

∣
c′(P (i))

∣

∣

∣
+
∣

∣

∣
c′(P (i−1))

∣

∣

∣
≤ 2k

∥

∥c′ ◦ x
∥

∥

∞
.

Lemma 3.1 tells us that −f(ȳ(i)u′ ) is nonnegative and monotonically decreasing. Moreover, it de-
creases geometrically by a factor of 1/2 during bad iterations. Hence, by our choice of j, we obtain

−f(ȳ(j)u′ ) <

(

1

2

)log(2n)

· 2k
∥

∥c′ ◦ x
∥

∥

∞
=
∥

∥c′ ◦ x
∥

∥

∞
.
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Let d ∈ Rmk be the arc costs defined by

dvw =

{

c′vw if v 6= u,

c′vw − f(ȳ(j)u′ ) if v = u.

Since f(ȳ
(j)
u′ ) = ȳ

(j)
u − ȳ(j)u′ , observe that d ≥ 0 because ȳ

(j)
V is feasible to the dual LP for f(ȳ

(j)
u′ ).

Claim C.6. We have ‖d ◦ x‖∞ ≥ ‖c′ ◦ x‖∞.

Proof. Let e∗ = argmaxe∈E(G(k)) |c′exe|. The claim is trivial unless e∗ ∈ ∪ℓi=1E(P (i)) and the tail of

e∗ is u. Since f(ȳ
(j)
u′ ) ≤ 0 and de∗ = c′e∗ − f(ȳ

(j)
u′ ), it suffices to show that c′e∗ ≥ 0. For the purpose

of contradiction, suppose that c′e∗ < 0. Since de∗ ≥ 0, this implies that |c′e∗ | ≤ −f(ȳ
(j)
u′ ) < ‖c′ ◦ x‖∞

using Claim C.5. By the definition of x, xe∗ = 1 because e∗ is the first arc of any path in P which
uses it. However, this implies that

∣

∣c′e∗
∣

∣ =
∣

∣c′e∗xe∗
∣

∣ =
∥

∥c′ ◦ x
∥

∥

∞
,

which is a contradiction.

Consider the arc e∗ := argmaxe∈E |dexe|. We claim that e∗ does not appear in subsequent paths
in P after iteration j. For the purpose of contradiction, suppose that there exists an iteration i > j
such that e∗ ∈ E(P (i)). Pick the iteration i such that P (i) is the last path in P which contains e∗.

Since the iterates ȳ
(·)
u′ are monotonically decreasing, we have

0 > ȳ
(i+1)
u′ − ȳ(j)u′ =

c(P (i))

1− γ(P (i))
− ȳ(j)u′ =

c′(P (i))

1− γ(P (i))
=
d(P (i))− f(ȳ(j)u′ )

1− γ(P (i))

This implies that d(P (i)) < f(ȳ
(j)
u′ ) < ‖c′ ◦ x‖∞. However, it contradicts

d(P (i)) ≥ de∗xe∗ = ‖d ◦ x‖∞ ≥
∥

∥c′ ◦ x
∥

∥

∞
,

where the first inequality is due to our choice of i and the nonnegativity of d, while the second
inequality is due to Claim C.6. Repeating the argument above for m times yields the desired bound
on the number of bad iterations.

The runtime of every iteration of the Newton–Dinkelbach method is dominated by Grapevine.
Thus, following the discussion in Appendix B.3, we obtain the following result.

Corollary C.7. If we replace Algorithm 1 with the Newton–Dinkelbach method in Algorithm 3,
then it solves the feasibility of M2VPI linear systems in O(m2n2 log n) time.
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