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Abstract Fuelled by the increase in popularity of virtual and
augmented reality applications, point clouds have emerged as
a popular 3D format for acquisition and rendering of digital
humans, thanks to their versatility and real-time capabilities.
Due to technological constraints and real-time rendering lim-
itations, however, the visual quality of dynamic point cloud
contents is seldom evaluated using virtual and augmented re-
ality devices, instead relying on prerecorded videos displayed
on conventional 2D screens. In this study, we evaluate how
the visual quality of point clouds representing digital humans
is affected by compression distortions. In particular, we com-
pare three different viewing conditions based on the degrees
of freedom that are granted to the viewer: passive viewing
(2DTV), head rotation (3DoF), and rotation and translation
(6DoF), to understand how interacting in the virtual space
affects the perception of quality. We provide both quantita-
tive and qualitative results of our evaluation involving 78
participants, and we make the data publicly available. To the
best of our knowledge, this is the first study evaluating the
quality of dynamic point clouds in virtual reality, and com-
paring it to traditional viewing settings. Results highlight the
dependency of visual quality on the content under test, and
limitations in the way current data sets are used to evaluate
compression solutions. Moreover, influencing factors in qual-
ity evaluation in VR, and shortcomings in how point cloud
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encoding solutions handle visually-lossless compression, are
discussed.
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1 Introduction

Recent technological advances in devices for capturing and
rendering immersive media contents, together with the fast
processing capabilities of commodity hardware, have fos-
tered the development of new applications for Virtual Reality
(VR), Augmented Reality (AR) and Mixed Reality (XR).
Such applications usher a new way to engage and interact
with media contents: whereas in traditional 2D consumption,
users are passive receivers and have limited possibilities of
manipulating the contents they are visualizing, immersive
media allow for more interactivity in deciding which content
should be displayed by each user. Commonly, immersive
media applications can be classified based on the Degrees
of Freedom (DoF) that are available to the end user to ex-
plore the virtual world: 3DoF refers to the availability of
only head rotation as a tool for interaction, as for example in
omnidirectional imagining, whereas 6DoF refers to the abil-
ity to operate translational movements as well as rotational
movements in the 3D space.

In order to populate immersive VR, AR and XR applica-
tions, volumetric contents are needed. In this context, point
clouds have emerged as a popular format to capture and rep-
resent volumetric reconstructions of real-world objects and
people, due to their simplicity and versatility. Geometrical
representation in point clouds is obtained through a collection
of points with x,y and z coordinates in Euclidean space; in
addition, attributes such as colour may be included included
at each point location. This enables a simple representation
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that requires no additional pre-processing, is resilient to noise
introduced during capture, and enforces no restrictions on the
attributes that can be encoded at each point location. However,
one main drawback for the deployment of this type of content
is the large amount of data that is required in order to produce
a photorealistic representation: uncompressed, a single point
cloud frame containing one million points requires roughly
20MB to be transmitted. Compression becomes therefore
essential for efficient storage and feasible transmission over
bandwidth-limited networks. Thus, significant research [34]
and industrial [43] effort has been focused on optimizing
encoding and transmission, as demonstrated by the ongoing
standardization endeavors by bodies such as JPEG [14,44]
and MPEG [27].

Given the significant storage and bandwidth requirements
for dense dynamic point clouds, decisions need to be taken
regarding the delivery (type of encoder, bit-rate) to ensure
an acceptable quality of experience, depending on the view-
ing conditions. In a previous paper [45], we analysed the
impact of different viewing conditions in VR environments,
namely, with 3DoF or 6DoF locomotion. With this work, we
aim to extend our previous analysis by including results and
discussions obtained in a baseline viewing condition using
traditional 2D screens (2DTV), which is by large the most
commonly used environment for user studies for point cloud
quality assessment.

In this paper, we report findings obtained in a user study
involving 78 participants assessing 72 stimuli based on eight
dynamic point clouds sequences depicting humans. Each
point cloud sequence was compressed using two encoding
solutions at 4 bit-rates, and evaluated in three viewing con-
ditions (6DoF, 3DoF and 2DTV). The gathered data include
rating scores, presence questionnaires, simulator sickness
reports, along with average watching time. Contributions of
the paper are three-fold:

1. An extensive evaluation of the quality of highly realistic
digital humans represented as dynamic point clouds in
immersive and traditional TV viewing conditions is pro-
vided. Existing protocols [4, 6, 7, 52, 56] did not consider
the dynamic nature of the point clouds, focused on one
type of data set, did not take into account VR viewing
conditions, and did not compare VR findings with 2DTV
conditions using dynamic contents;

2. Quantitative subjective results about the perceived quality
of the contents, along with qualitative insights on what
is important for users in interacting with digital humans
in VR, are presented. Such results will help in better
configuring the network conditions for the delivery of
points clouds for real-time transmission, and have impli-
cations over ongoing research and standardisation work
regarding the underlying compression technology;

3. The collected raw data, which is comprised of rating
scores, presence questionnaires, and simulator sickness

reports, is made available to the research community,
along with scripts to faithfully recreate the stimuli under
exam1. This will aid reproducibility, while contributing
to ongoing research in the area.

The remainder of the paper is organised as follows. Sec-
tion 2 summarises the related work in the field of point cloud
compression and subjective visual quality assessment. Sec-
tion 3 details the methodology that was followed to conduct
the experiments and analyse the data. In Section 4, we re-
port the quantitative and qualitative results of the subjective
visual quality assessment, along with commenting the find-
ings in terms of simulator sickness, presence, and interaction
time. Key factors and issues for visual quality assessment
of dynamic point clouds are discussed in Section 5. Finally,
Section 6 concludes the paper. Additional data regarding the
statistical analysis of the results is offered in Appendix 6.

2 Related work

2.1 Quality assessment for point clouds

There is a growing interest on subjective quality assessment
of point clouds rendered on 2D displays. Zhang et al. [56]
evaluated the quality degradation effect of resolution, shape
and color on static point clouds. The results indicate that reso-
lution is almost linearly correlated with the perceived quality,
and color has less impact than shape on the perceived quality.
Zerman et al. [52] compressed two dynamic human point
clouds using a state-of-the-art algorithm [32], and assessed
the effects of this algorithm and input point counts on the per-
ceived quality. Their results showed that no direct correlation
was found between human viewers’ quality ratings and input
point counts. In a recent study [44], a protocol to conduct sub-
jective quality evaluations and benchmark objective quality
metrics were proposed. The viewers passively assessed the
quality of a set of static point clouds, as animations with pre-
defined movement path. In a comprehensive work by Alexiou
et al. [7], the entire set of emerging point cloud compression
encoders developed in the MPEG committee were evaluated
through a series of subjective quality assessment experiments.
Nine static models, including both humans and objects, were
used in the experiments. The experiments provided insights
regarding the performance of the encoders and the types of
degradation they introduce. Zerman et al. [54] compared
the visual quality of point cloud and mesh contents com-
pressed using state-of-the-art algorithms, concluding that,
while meshes are more suitable for high bitrate streaming,
point cloud compression appears to be more advantageous at
lower bitrates. Perry et al. [37] conducted an experiment in 4
laboratories, comparing the latest standardized compression
solutions on static point cloud contents.

1 https://github.com/cwi-dis/2DTV_VR_QoE

https://github.com/cwi-dis/2DTV_VR_QoE
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(a) V-PCC (b) MPEG Anchor

Fig. 1: Point Cloud Digital Humans compressed using two point cloud codecs, V-PCC (left) and MPEG anchor (right), at the
4 selected bit-rates.

Only a limited number of point cloud quality assessment
studies have been conducted in immersive environments.
Mekuria et al. [34] evaluated the subjective quality of their
codec performance in a realistic 3D tele-immersive system,
in which users were represented as 3D avatars and/or 3D
dynamic point clouds, and could navigate in the virtual space
using mouse cursor in a desktop setting. Several aspects of
quality, such as level of immersiveness, togetherness, realism,
quality of motion, were considered. Alexiou and Ebrahimi [6]
proposed the use of AR to subjectively evaluate the quality of
colorless point cloud geometry. Zerman et al. [53] presented
a behaviour analysis of users interacting with colored volu-
metric media in a AR application. Tran et al. [48] suggested
that, in case of evaluating video quality in an immersive
setup, aspects such as cybersickness and presence should not
be overlooked. Recently, an evaluation of static point cloud
contents was conducted in a VR environment [9].

Our work aims at comparing different viewing paradigms
for dynamic point clouds, namely 6DoF, 3DoF, and 2DTV
conditions. Such a comparison is largely absent in the liter-
ature, as previous work has mainly focused on static point
cloud contents and single viewing conditions.

2.2 Point cloud compression

A single point cloud frame is represented by an unordered
collection of points sampled from the surface of an object. In
a dynamic sequence of point clouds, there are no correspon-
dences of points maintained across frames. Thus, detecting
spatial and temporal redundancies is often difficult, making
point cloud compression challenging. Octrees have been used
extensively as a space partitioning structure to represent point
cloud geometry [26, 33]. They are a 3D extension of the 2D
quadtree used to encode video and images.

Research into point cloud compression can be broadly di-
vided into two categories: model-based and projection-based.
The first uses signal processing or deep learning techniques
to compress either the geometrical composition of the point
cloud, or its attributes, such as color. Zhang et al. [55] pro-

posed a method to compress point cloud attributes using a
Graph Fourier Transform. They assume that an octree has
been created and separately coded for geometry prior to cod-
ing attributes. De Queiroz and Chou [40] used a Region
Adaptive Hierarchical Transform (RAHT) to use the colors
of nodes in lower levels of the octree to predict the colors of
nodes in the next level. In [11], authors adopt techniques from
traditional image and video processing, using 3D block pre-
diction in combination with shape-adaptive DCT and graph
transforms.

The second category of point cloud codecs aim at pro-
jecting the point cloud information onto a 2D canvas, sub-
sequently using legacy image and video compression solu-
tions to encode them. Intra Frame coding in octrees can be
achieved by entropy coding the occupancy codes, and then
compress the color attributes by mapping them to a 2D grid
and using legacy JPEG image compression, as shown in [34].
In 2017, MPEG started a standardization activity to deter-
mine a new standard codec for point clouds. They used the
codec created by Mekuria et al. [34] as an anchor to evaluate
proposals. To encode dynamic point cloud sequences, MPEG
has currently standardized one method for dynamic dense
point clouds, namely V-PCC [22], and is in the process of
standardizing one method for dynamically acquired, sparse
point clouds, namely G-PCC [21].

Recently, deep learning solutions for point cloud com-
pressions have been proposed, to encode either geometry or
color information, or a combination thereof. Quach et al. [38]
propose the use of an auto-encoder to efficiently compress
geometry information, and they subsequently analyse the
impact of several parameters on the performance [39]. Sim-
ilarly, Guarda et al. [18] propose a Convolutional Neural
Network (CNN) architecture to encode and decode point
cloud contents. They further analyse its performance in [17],
and extend the work in [19] by employing explicit and im-
plicit quantization. A deeper architecture is proposed in [50],
which uses 3D convolutional layers along with variational
auto-encoders to achieve favorable compression efficiency.
In [5], Alexiou et al. propose a deep learning architecture to
encode both geometry and color attributes, and analyse the
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performance of various parameters on the coding efficiency
and visual quality.

A complete survey of point cloud compression solutions
can be found here [10]. In our work, we elected to adopt
the MPEG Anchor that was used to evaluate the Call for
Proposals for the MPEG standardization efforts in point cloud
compression [43], and the MPEG standard for dynamic point
clouds V-PCC [22], as they have both been widely used in
quality evaluation campaigns in the literature.

3 Methodology

3.1 Dataset Preparation

A dataset of dynamic point cloud sequences was used from
the MPEG repository. All sequences were clipped to five
seconds and sampled at 30 frames per second. This included
point cloud sequences [12] captured using photogrammetry
(Longdress, Loot, Red and black, Soldier, shown in figure
2) and one sequence of a synthetic character sampled from
an animated mesh (Queen). Four additional point cloud se-
quences; Manfred, Despoina, Sarge (shown in Figure 2) were
added for the evaluation. These sequences were created using
motion-captured animated mesh sequences.

Keyframes were selected at 30 frames per second and
extracted along with the associated mesh materials. Partic-
ular care was put in ensuring the selected sequences have
the characters facing the user and speaking in their general
direction. Then, 1 million points were randomly sampled, in-
dependently per key frame to create a consistent groundtruth
dataset. The points were sampled from the mesh surface with
a probability proportional to the area of the underlying mesh
face. This was done to ensure no direct point correspondences
across point cloud frames, to mimic realistic acquisition and
maintain consistency with the rest of the dataset. The X, Y, Z
coordinates of each point was represented using an unsigned
integer, as is required for the current version of the V-PCC
software. Texture information was encoded as 8-bit RGB.

The contents were compressed using two widely avail-
able codecs: the MPEG V-PCC codec in the Release 7.0 [43]
(C1), as the state-of-the-art solution in point cloud compres-
sion, and the MPEG anchor codec [34] (C2), as a baseline
release with real-time capabilities. Bitrate points were se-
lected based on the provided presets for C1, to ensure fair
use. For the additional point cloud sequences for which no
configuration file was available, the one provided by MPEG
for the Queen sequence was used for all the contents. We
selected the rate points 1, 3 and 5 from the provided preset
V-PCC configurations and extended it with an additional final
rate point using a texture Quantization Parameter (QP) of 8,
a geometry QP of 12, and an occupancy precision of 2. We
re-label the rate points as R1, R2, R3 and R4, respectively.
All sequences are encoded using the C2AI (Category 2 All

Intra) config. For the photogrammetry sequences, we use the
predefined dedicated configuration files for each sequence,
at the same rate points.

C2 is used in an all-intra configuration to match the bit-
rates per sequence and rate point (R1-R4) with a tolerance
of 10%, as defined in the MPEG call for proposals. We use
an octree depth from 7 to 10 for the rate points R1 to R4,
respectively. The highest possible JPEG quantization param-
eter values were then chosen per sequence, while meeting
the target bit rate set using C1.An example of content Loot
encoded with the two compression solutions at the selected
rate points is shown in Figure 1.

3.2 Experiment setup

All point cloud sequences were rendered using the Unity
game engine, by storing all the points of each frame in a
vertex buffer, and then drawing procedural geometry on the
GPU. The point clouds were rendered using a quadrilateral
at each point location with a fixed offset of 0.08 units (this
corresponds to a side length of approximately 2mm) around
each point (placed at the centre) for all the sequences, to
be consistent. In the case of bitrate R1 generated using the
MPEG anchor, we increased the offset value to 0.16 by eye,
as the resulting point clouds were too sparse (shown in Figure
1b). We maintain a fixed frame rate of 30fps throughout the
experiment.

Three viewing conditions were selected for comparison:
6DoF, 3DoF, and 2DTV condition. For the 6DoF and 3DoF
viewing conditions, participants were asked to wear an Ocu-
lus Rift CV1 HMD to view each of the point cloud sequences.
For the 3DoF condition, participants were asked to sit on a
swivel chair placed at a fixed location in the room and nav-
igate using head movements alone, whereas for the 6DoF
condition, participants were allowed to navigate freely within
the room. Each sequence was 5 seconds long, after which the
playback looped around. We set the background of the virtual
room to mid-grey, to avoid distractions. The Oculus Guardian
System was used to display in-application wall and floor
markers if the participants got too close to the boundary. We
used a workstation with 2 GeForce GTX 1080 Ti in SLI for
the GPU and an Intel Core i9 Skylake-X 2.9GHz CPU. For
the 2DTV condition, the videos were created offline, using
the same rendering as the other two viewing condition, and
played back to the users using MPV2. A 25” Dell UltraSharp
U2515H QHD (2560x1440 px) monitor was used to display
the videos. The monitor was calibrated using an i1Display
Pro color calibration device according to the following pro-
file: sRGB Gamut, D65 white point, 120cd/m2 brightness,
and minimum black level of 0.2 cd/m2. The test was per-
formed in a room with controlled lighting and mid-grey

2 https://mpv.io/

https://mpv.io/
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Fig. 2: Sequences used for the test, from left to right: Manfred, Sarge, Despoina, Queen, Longdress, Loot, Red and black,
Soldier

walls, in accordance with ITU-T Recommendation BT.500-
13 [23].The illumination level measured on the screens was
15 lux.

3.3 Subjective methodology

To perform the experiments, the subjective methodology
Absolute Category Rating with Hidden References (ACR-
HR) was selected, according to ITU-T Recommendations
P.910 [24]. Participants were asked to observe the video se-
quences depicting digital humans, and rate the corresponding
visual quality on a scale from 1 to 5 (1-Bad, 2-Poor, 3-Fair,
4-Good, and 5-Excellent).

A series of pilot studies were conducted to determine
the positioning of digital humans in the virtual space and
the length of each sequence, to ensure the sequences were
running smoothly within the limited computer RAM. Due
to the huge size of the test material, it was not possible to
evaluate all 8 point cloud contents in one single session, as
long loading times would have brought fatigue to the partic-
ipants and corrupted the results. Thus, we decided to split
the evaluation into two separate tests: one focused on the
evaluation of contents obtained from random sampling of
meshes (T1: contents Queen, Manfred, Despoina and Sarge),
and one focused on contents acquired through photogram-
metry (T2: contents Long dress, Soldier, Red and black, and
Loot). From each sequence, a subset of frames comprising 5
seconds was selected.

Before the test took place, 3 training sequences depicting
examples of 1-Bad, 5-Excellent and 3-Fair were shown to
the users to help them familiarize with the viewing condition
and test setup, and to guide their rating. Following ITU-T
Recommendation BT.500-13 [23], the training sequences
were created using one additional content not shown during
the test, to prevent biased results. Each content sequence was
encoded using the point cloud compression algorithms under
test.

For each test and viewing condition, 36 stimuli were eval-
uated. For each stimulus, the 5 second sequence was played
at least once in full, and kept in loop until the participants

gave their score. The order of the displayed stimuli was ran-
domized per participant and per viewing condition, and the
same content was never displayed twice in a row to avoid bias.
Moreover, the presentation order of viewing conditions was
randomized between participants, to prevent any confound-
ing effect. Two dummy samples were added at the beginning
of each viewing session to ease participants into the task, and
the corresponding scores were subsequently discarded.

After each VR viewing conditions (6DoF and 3DoF),
participants were requested to fill in the Igroup Presence
Questionnaire (IPQ) [42] on a 1-7 discrete scale (1=fully
disagree to 7=totally agree) and Simulator Sickness Ques-
tionnaire (SSQ) on a 1-4 discrete scale (1=none to 4=se-
vere) [29]. IPQ has three subscales, namely Spatial Presence
(SP), Involvement (INV) and Experienced Realism (REAL),
and one additional general item (G) not belonging to a sub-
scale, which assesses the general ”sense of being there”, and
has high loadings on all three factors, with an especially
strong loading on SP [42]. SSQ was developed to measure
cybersickness in computer simulation and was derived from
a measure of motion sickness [29]. For both T1 and T2, after
the two viewing conditions, participants were interviewed to
1) compare their experiences of assessing quality in 3DoF
and 6DoF, and 2) reflect on the factors they considered when
assessing the quality.

For the 6DoF and 3DoF viewing conditions, a total of
27 participants were recruited for T1 (12 males, 15 female,
average age: 22,48 years old), whereas 25 participants were
recruited for T2 (17 males, 8 females, average age: 28,39
years old). The 2DTV viewing condition was conducted sep-
arately, with 26 participants for both T1 and T2 (17 males,
9 females, average age: 34,76 years old). All participants
were screened for color vision and visual acuity, using Isi-
hara and Snellen charts, respectively, according to ITU-T
Recommendations P.910 [24].

3.4 Data analysis

Outlier detection was performed separately for each of the
test datasets T1 and T2, following ITU-T Recommendations
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P.913 [25]. The recommended threshold values of r1 = 0.75
and r2 = 0.8 were used. One outlier was found in test dataset
T1, and the corresponding scores were discarded. No outliers
were found in the scores collected for T2. Since the 2DTV
viewing condition was tested with a different subject popula-
tion, outlier detection was conducted separately. No outlier
was detected for this viewing condition.

After outlier detection, the Mean Opinion Score (MOS)
was computed for each stimulus, independently per viewing
condition. The associated 95% Confidence Intervals (CIs)
were obtained assuming a Student’s t-distribution. Addition-
ally, the Differential MOS (DMOS) was obtained by apply-
ing HR removal, following the procedure described in ITU-
T Recommendations P.913 [25]. Non-parametric statistical
analysis was then used to analyze if there are statistical dif-
ferences among variables, using the MATLAB Statistics and
Machine Learning Toolbox, along with the ARTool package
in R [15, 28].

4 Results

4.1 Subjective quality assessment

Figures 3 and 4 shows the results of the subjective quality
assessment of the contents comprising test T1 and test T2, for
the 6DoF, 3DoF and 2DTV viewing conditions. In particular,
the DMOS scores associated with the compressed contents
are shown with solid lines, along with relative CIs, whereas
the dashed lines represent the respective HR scores with the
corresponding confidence intervals.

To assess whether significant differences could be found
between the three viewing conditions under test, we ran a non-
parametric Kruskal-Wallis test, separately for test T1 and T2.
The test was chosen as the gathered data was not found to be
normally distributed, according to the Shapiro-Wilk normal-
ity test (T1: W = 0.906, p < .001; T2: W = 0.909, p < .001).
We found a significant effect of the viewing condition on the
scores for test T1 (χ2 = 37.56, p < .001). Post-hoc analy-
sis using Mann-Whitney U test with Bonferroni correction
(α = .05/3) revealed significant differences between 6DoF
and 2DTV viewing conditions (p < .001, r = 0.09), and
between 3DoF and 2DTV viewing conditions (p < .001,
r = 0.14), but not between 6DoF and 3DoF (p = 0.101,
r = 0.04). Values seem to indicate an effect of VR view-
ing condition with respect to traditional TV viewing on the
final scores; however, the effect sizes suggest that, if the ef-
fect indeed exists, it is small. For test T2, no significant effect
was found for viewing condition on the scores (χ2 = 5.19,
p = 0.075).

It can be observed that codec C1 has generally a more
favorable performance with respect to C2. This is especially
evident for the contents acquired through photogrammetry
(see Fig. 4), for which the gap among the two codecs is

Table 1: Pairwise post-hoc test on the contents for test T1
and T2, using Wilcoxon signed-rank test with Bonferroni
correction.

Z p r

T
1

Manfred - Sarge -1.10 0.270 0.03
Manfred - Despoina -1.59 0.111 0.04
Manfred - Queen 5.57 <.001 0.15
Sarge - Despoina -0.54 0.588 0.01
Sarge - Queen 6.75 <.001 0.18
Despoina - Queen 7.04 <.001 0.19

T
2

Long dress - Loot -5.19 <.001 0.14
Long dress - Red and black -0.05 0.960 0.00
Long dress - Soldier -2.73 0.006 0.07
Loot - Red and black 4.99 <.001 0.14
Loot - Soldier 2.08 0.037 0.06
Red and black - Soldier -2.61 0.009 0.07

more pronounced. Mann-Whitney U test confirmed statisti-
cal significance for the two codecs (T1: Z = 6.60, p < .001,
T2: Z = 22.06, p < .001), albeit with notably different ef-
fect sizes between test T1 and T2 (r = 0.13 and r = 0.45,
respectively).

A Kruskal-Wallis test performed on the scores revealed a
significant effect of the content on the final scores, for both
sets of contents (T1: χ2 = 64.91, p < .001, T2: χ2 = 35.23,
p < .001). Table 1 shows the results of the post-hoc test
conducted using Mann-Whitney U test with Bonferroni cor-
rection (α = .05/6). Contents Manfred, Sarge and Despoina
all show statistical significance with respect to content Queen
(p < .001, r ≥ 0.15 for all pairs). For contents acquired
through photogrammetry, statistical significance was found
between contents Longdress and Loot, and Loot and Red and
black (p < .001, r = 0.14 in both cases), as well as between
contents Long dress and Soldier (p = 0.006, r = 0.07). Re-
sults suggests that contents Long dress and Red and black
appear to be given different scores with respect to contents
Loot and Soldier. However, the effect sizes suggest that the
effect, if existent, is quite small.

We also ran a Kruskal-Wallis test on the scores to assess
whether the selected bit-rates were showing statistical signifi-
cance. Results confirmed that the bit-rates have a significant
effect for both tests (T1: χ2 = 1164.14, p < .001, T2: χ2 =

1008.42, p < .001). Post-hoc analysis using Mann-Whitney
U test with Bonferroni correction (α = .05/6), shown in Ta-
ble 2 further confirmed that all pairwise comparisons were
statistically significant, for both test T1 and T2 (p< .001,r >
0.20 for all pairs).

4.2 Data analysis

4.2.1 T1

In order to further analyze the effect of DoF conditions, con-
tents, codecs and bit-rates, and relative interactions, on the
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(a) Manfred (b) Sarge (c) Despoina (d) Queen

(e) Manfred (f) Sarge (g) Despoina (h) Queen

(i) Manfred (j) Sarge (k) Despoina (l) Queen

Fig. 3: DMOS against achieved bit-rate. HR scores are shown using a dashed plot. Each column represents a content in test
T1, whereas the rows depict results obtained using the viewing conditions 6DoF, 3DoF and 2DTV, respectively.

Table 2: Pairwise post-hoc test on the bitrates for test T1
and T2, using Wilcoxon signed-rank test with Bonferroni
correction.

Z p r

T
1

R1 - R2 -14.30 <.001 0.41
R1 - R3 -25.54 <.001 0.73
R1 - R4 -27.36 <.001 0.78
R2 - R3 -17.03 <.001 0.49
R2 - R4 -21.05 <.001 0.60
R3 - R4 -7.30 <.001 0.21

T
2

R1 - R2 -14.61 <.001 0.42
R1 - R3 -23.84 <.001 0.68
R1 - R4 -27.39 <.001 0.79
R2 - R3 -11.20 <.001 0.32
R2 - R4 -17.95 <.001 0.51
R3 - R4 -8.53 <.001 0.24

gathered scores, we fitted a full linear mixed-effects model
on the data, accounting for randomness introduced by the par-
ticipants. Due to the non-normality of our data, the aligned
rank transform was applied prior to the fitting [51]. Since the
transform is designed for a fully randomized test, it is not
suitable for the scores collected during the test, as the HR

addition makes the design matrix rank deficient. However,
the transform can be applied to the differential scores used
to obtain DMOS, as it follows a fully randomized design.
Thus, it was decided to perform the analysis on the differen-
tial scores. Post-hoc contrast tests were performed using the
ART-C tool [15].

For test T1, analysis of deviance on the full mixed-effects
model showed significance for main effects Content (F =

53.98, d f = 3, p < .001), Codec (F = 65.19, d f = 1, p <

.001) and bit-rate (F = 595.38, d f = 3, p< .001), but not for
DoF (F = 0.07, d f = 2, p = 0.936). Moreover, significant
interaction effects were found for DoF - Content (F = 11.39,
d f = 6, p < .001), Content - Codec (F = 9.97, d f = 3, p <

.001), Content - bit-rate (F = 6.04, d f = 9, p < .001) and
Codec - bit-rate (F = 8.96, d f = 3, p < .001). No interaction
effect beyond the first level was found to be significant. The
full results of the analysis of deviance can be found in Table 3.

Post-hoc interaction analysis using ART-C revealed sig-
nificant differences at 5% level in 3DoF for content pairs
Manfred - Queen (p < .001), Sarge - Queen (p < .001) and
Despoina - Queen (p< .001); in 6DoF, for content pairs Man-
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(a) Long dress (b) Loot (c) Red and black (d) Soldier

(e) Long dress (f) Loot (g) Red and black (h) Soldier

(i) Long dress (j) Loot (k) Red and black (l) Soldier

Fig. 4: DMOS against achieved bit-rate. HR scores are shown using a dashed plot. Each column represents a content in test
T2, whereas the rows depict results obtained using the viewing conditions 6DoF, 3DoF and 2DTV, respectively.

Table 3: Analysis of deviance on the full mixed-effects model,
for test T1.

F d f p

DoF 0.07 2 0.936
Content 53.98 3 < .001
Codec 65.19 1 < .001
Bitrate 595.38 3 < .001
DoF: Content 11.39 6 < .001
DoF: Codec 0.58 2 0.660
Content: Codec 9.97 3 < .001
DoF: Bitrate 1.70 6 0.116
Content: Bitrate 6.04 9 < .001
Codec: Bitrate 8.96 3 < .001
DoF: Content: Codec 0.71 6 0.643
DoF: Content: Bitrate 0.98 18 0.480
DoF: Codec: Bitrate 0.73 6 0.627
Content: Codec: Bitrate 1.23 9 0.273
DoF: Content: Codec: Bitrate 0.48 18 0.969

fred - Sarge (p < .001) and Despoina - Queen (p < .001);
in the 2DTV condition, for content pairs Manfred - Sarge
(p = 0.019) Manfred - Queen (p < .001), Sarge - Despoina
(p < .001), Sarge - Queen (p < .001), and Despoina - Queen

(p = 0.024). Additionally, several content pairs exhibited sig-
nificant contrasts when different DoF were employed; for a
full report of the contrasts, we invite readers to consult the
appendix. Most notably, no significant effect was found when
the same content was displayed in different DoF mediums;
that is, for every content under exam, the pairs 3DoF - 6DoF,
3DoF - 2DTV, and 6DoF - 2DTV were consistently above
the 5% threshold of significance.

Regarding the interaction between factors Content and
Codec, post-hoc analysis using ART-C showed significant
differences at 5% level between the two codecs for all con-
tents (p < .001) except Queen, for which the two codecs
were deemed equivalent (p = 0.995). Furthermore, statis-
tically significant differences were found, for C1, in con-
tent pairs Manfred - Despoina (p = 0.006), and Despoina
- Queen (p < .001), and for C2, in content pairs Manfred -
Despoina (p = 0.010), Manfred - Queen (p < .001), Sarge -
Queen (p < .001), and Despoina - Queen (p < .001). Several
content pairs were found to have significant contrasts when
different codecs were employed; for a complete overview,
we refer readers to the appendix.
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Table 4: Analysis of deviance on the full mixed-effects model,
for test T2.

F d f p

DoF 2.59 2 0.082
Content 165.56 3 < .001
Codec 1059.81 1 < .001
Bitrate 702.54 3 < .001
DoF: Content 1.99 6 0.064
DoF: Codec 1.08 2 0.340
Content: Codec 5.81 3 < .001
DoF: Bitrate 0.39 6 0.881
Content: Bitrate 6.30 9 < .001
Codec: Bitrate 44.89 3 < .001
DoF: Content: Codec 0.80 6 0.569
DoF: Content: Bitrate 1.10 18 0.341
DoF: Codec: Bitrate 1.12 6 0.346
Content: Codec: Bitrate 2.08 9 0.028
DoF: Content: Codec: Bitrate 0.69 18 0.820

Significant differences at 5% level were also found when
considering post-hoc interactions between factors Content
and Bitrate. In particular, the pair Manfred - Queen was found
to have significant differences for rate R2 (p < .001) and R3
(p = 0.018); pair Sarge - Queen for rate R1 (p = 0.033),
R2 (p < .001), and R3 (p = 0.005); pair Despoina - Queen,
for rate R1 (p < .001), R2 (p < .001), and R3 (p < .001).
No significant difference was found among contents at rate
R4, indicating that, at the highest quality level, the contents
were rated similarly. As expected, most of the comparisons
between different bitrates, be it with the same or among
different contents, yield statistically significant differences;
the complete results are available in the appendix. Finally,
results of the post-hoc analysis of interactions between fac-
tors Codec and Bitrate showed statistically significant differ-
ences at 5% level among the codecs for rate R1 (p < .001)
and R3 (p = 0.007), but not for rate R2 (p = 0.052 and R4)
(p = 0.986). In the first case, the p-value is quite close to
significance, whereas in the second, the test confirms our
previous observations: at the highest quality level, the dif-
ference among codecs seems to be imperceptible. The rest
of the combinations between codecs and bitrates lead to
significant differences, with the exception of C1-R3 versus
C2-R4 (p = 0.054), indicating that the null hypothesis can-
not be rejected for C2 at rate R4 when compared to C1 at
rate R3; in other words, to achieve similar ratings to codec
C1 (MPEG V-PCC), codec C2 (the MPEG anchor) requires
higher bandwidth, which is in line with what observed in the
previous section. More exhaustive results can be found in the
appendix.

4.2.2 T2

Results of analysis of deviance on the full mixed-effects
model for test T2 showed significance for main effects Con-
tent (F = 165.56, d f = 3, p < .001), Codec (F = 1059.81,

d f = 1, p< .001) and Bitrate (F = 702.54, d f = 3, p< .001)
but not for DoF (F = 2.59, d f = 2, p = 0.0825), similarly
to what was seen for test T1. Two-way interactions were
found significant at 5% level between Content and Codec
(F = 5.81, d f = 3, p < .001), Content and Bitrate (F = 6.30,
d f = 9, p< .001), and Codec and Bitrate (F = 44.89, d f = 3,
p < .001), as well as the three-way interaction between Con-
tent, Codec, and Bitrate (F = 2.08, d f = 9, p = 0.028).

Post-hoc interaction analysis using ART-C for the three-
way interaction between factors Content, Codec, and Bitrate
revealed significant differences at 5% level between the two
codecs under exam, when fixing content and bitrate level, for
touples involving content Longdress at bitrate R1 (p < .001),
R2 (p < .001), and R3 (p < .001), but not for the highest
bitrate R4 (p = 0.964). Similarly, for content Soldier, touples
had significant interactions at rate R1 (p = 0.010), R2 (p <

.001), and R3 (p < .001), but not R4 (p = 0.085). For the
other two contents, all touples at same bitrate were significant
(Loot, C1, R1 - Loot, C2, R1: p < .001; Loot, C1, R2 - Loot,
C2, R2: p < .001; Loot, C1, R3 - Loot, C2, R3: p < .001;
Loot, C1, R4 - Loot, C2, R4: p = 0.016; Red and black, C1,
R1 - Red and black, C2, R1: p < .001; Red and black, C1,
R2 - Red and black, C2, R2: p < .001; Red and black, C1, R3
- Red and black, C2, R3: p < .001; Red and black, C1, R4 -
Red and black, C2, R4: p = 0.047). This indicates that, with
the exception of Longdress and Soldier at bitrate R4, for all
rate points and all contents the two codecs were significantly
different at 5% level.

Post-hoc interaction also revealed statistical difference
among different contents: considering codec C1 at bitrate
R1, significant differences were found in content touples
Longdress - Loot (p < .001), Longdress - Soldier (p < .001),
Loot - Soldier (p = 0.004), and Red and black - Soldier (p <

.001), but not for touples Longdress - Red and black (p =

0.626) and Loot - Red and black (p = 0.091); analogously,
at bitrate R2, differences were found for touples Longdress
- Loot (p = 0.004), Longdress - Soldier (p < .001), Loot -
Soldier (p < .001), and Red and black - Soldier (p < .001),
but not for touples Longdress - Red and black (p = 0.198)
and Loot - Red and black (p = 1). At bitrate R3, significant
differences were found only between touples Longdress -
Soldier (p < .001); at bitrate R4, all content touples failed to
reject the null hypothesis. This indicates that differences in
DMOS scores among different contents are more prominent
at lowest bitrates for codec C1, whereas for higher bitrates,
contents received similar scores. When considering codec
C2, at bitrate R1, significant differences were observed for
content touples Longdress - Loot (p < .001), Longdress -
Soldier (p < .001), Loot - Red and black (p = 0.047), and
Red and black - Soldier (p = 0.004), but not for touples
Longdress - Red and black (p = 0.999) and Loot - Soldier
(p = 1); similarly, at bitrate R2, differences were deemed
significant for content touples Longdress - Loot (p < .001),
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Longdress - Soldier (p < .001), Loot - Red and black, (p <

.001), and Red and black - Soldier (p < .001), but not for
Longdress - Red and black (p = 0.994) and Loot - Soldier
(p = 1). This seems to indicate that, a lower bitrates, contents
presenting the same gender were rated similarly. At bitrate
R3, statistical difference could be observed among touples
Longdress - Loot (p < .001), Longdress - Red and black (p =

0.018), Longdress - Soldier (p < .001), Loot - Red and black
(p = 0.009), and Red and black - Soldier (p < .001), but
not for touple Loot - Soldier (p = 1), whereas for bitrate R4,
statistical differences at a significant level were only observed
between Longdress - Soldier (p = 0.015). Results indicate
that for the highest bitrate, similar trends can be generally
observed between different contents for both codecs under
consideration, whereas as bitrate decreases, more differences
can be spotted in DMOS trends.

Finally, post-hoc interaction analysis revealed significant
differences at 5% level, for content Longdress encoded with
codec C1, between bitrate R1 with respect with all the other
bitrates (R1 - R2: p < .001; R1 - R3: p < .001; R1 - R4:
p < .001); however, no significant difference in rating was
found when comparing R2, R3, and R4. Remarkably, dif-
ferent trends can be observed for codec C2, for which only
bitrates R3 - R4 are to be considered statistically equiva-
lent (p = 0.055), whereas all other touples for content Long-
dress present significant differences (R1 - R2: p = 0.005;
R1 - R3: p < .001; R1 - R4: p < .001; R2 - R3: p < .001;
R2 - R4: p < .001). For content Loot, statistical differences
are observed, for codec C1, among all bitrates, bar R2 - R3
(p = 0.142) and R3 - R4 (p = 1); the rest falls below the
significance level (R1 - R2: p < .001; R1 - R3: p < .001; R1
- R4: p < .001; R2 - R4: p = 0.004). For codec C2, however,
a different trend is observed: bitrates R1 - R2 are the only
touple, for Loot, for which no statistical difference is found
(p = 0.377), whereas all other cases present statistically sig-
nificant differences (p < .001 for all touples). Content Red
and black exhibits similar behaviour as Longdress: for codec
C1, only differences among bitrate R1 with all the other bi-
trates are significant (R1 - R2: p < .001; R1 - R3: p < .001;
R1 - R4: p < .001), whereas for codec C2, all bitrate touples
are statistically different at 5% significance level (R1 - R2:
p = 0.018; R1 - R3: p < .001; R1 - R4: p < .001; R2 - R3:
p < .001; R2 - R4: p < .001; R3 - R4: p < .001). For con-
tent Soldier, significant differences were found, for codec
C1, for all bitrate touples, bar R3 - R4 (p = 0.648; for all
other touples, p < .001); conversely, for codec C2, the only
bitrates who did not exhibit significant differences were R1 -
R2 (p = 0.373; for all other touples, p < .001). This seems to
indicate that generally, for codec C1 statistical differences in
score distributions are usually found between lower bitrates,
whereas the highest bitrates have a more uniform behaviour;
however, for codec C2, more differences can be found across
score distribution for all the bitrates, bar certain cases (such
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Fig. 5: Average time spent looking at the sequence (in sec-
onds) and relative CIs, against score given to the sequence,
for 3DoF (blue) and 6DoF (red), in test T1 (left) and T2
(right).

as Loot and Soldier) for which the lowest bitrates are deemed
equivalent. Several other combinations of the three factors
under exam were deemed statistically significant, more than
what we could cover in this pages: we refer interested readers
to the appendix for a full coverage of the post-hoc interaction
results.

4.3 Additional questionnaires and interaction data

4.3.1 IPQ & SSQ Questionnaires

For T1 and T2, the collected IPQ data under each subscale
are all normally distributed as examined by the Shapiro-Wilk
test (p > 0.05). A paired sample t-test was applied to check
the differences between 3DoF and 6DoF in terms of SP, INV,
REAL and G. For T1, there was a significant difference in
SP between 3DoF (M=4.13, SD=0.92) and 6DoF (M=5.04,
SD=0.67), t(26)=-4.44, p < .001, Cohen’s d = 0.52 and also a
significant difference in G between 3DoF (M=4.11, SD=1.28)
and 6DoF (M=4.96, SD=1.13), t(26)=-2.60, p< .01, Cohen’s
d = 0.64. For T2, SP was also significantly different in 3DoF
(M=4.16, SD=1.17) and 6DoF (M=4.83, SD=1.12), t(24)=-
3.48, p < .01, Cohen’s d = 0.45 and so was G between 3DoF
(M=4.20, SD=1.61) and 6DoF (M=5.08, SD=1.19), t(24)=-
3.56, p < .01, Cohen’s d = 0.71. Other factors showed no
significant differences between 3DoF and 6DoF in both T1
and T2.

With respect to SSQ, no significant differences (p> 0.05)
were found between 3DoF and 6DoF in terms of cybersick-
ness. We further tested whether there were order effects in
experiencing cybersickness, where half of the participants
started with 6DoF as the first condition and 3DoF as the sec-
ond, and the remainder the inverse. No significant differences
(p > 0.05) were found for any order effects in experiencing
cybersickness.
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4.3.2 Interaction time

Interaction time was found to be strongly correlated with
MOS values in a study conducted on light field image quality
assessment [49], as well as in studies conducted with point
cloud contents in interactive environments [9]. In particular,
it was found that users tended to spend more time interact-
ing with contents at high quality, whereas for low quality
scores, less time was spent looking at the contents. In order
to see whether similar trends could be observed in our data,
we compared the average time spent watching the sequence
in 3DoF and 6DoF, separately for each quality score given
by the participants. Since no interactivity was present in the
2DTV condition, the data was discarded for the analysis. Re-
sults are shown in Fig. 5. A positive trend can be observed
between the given score and the average time spent looking
at the sequence, with the exception of score 5, which for test
T2 shows a negative trend with respect to the time. However,
it should be considered that on average, a small percentage
of scores equal to 5 were given in test T2 (10% of the to-
tal scores), thus, variations may be due to the difference in
sample size. It is also worth noting that, on average, partic-
ipants spent more time looking at the sequences in 6DoF,
with respect to the 3DoF case. Indeed, several participants
pointed out that the lowest scores were the fastest to be given,
whereas for higher quality, it was harder to decide on the
rating.

4.3.3 Interviews

The interviews were only conducted for the VR conditions,
due to time limitations. We asked the same interview ques-
tions for T1 and T2; so, we combined the interview transcripts
of 52 participants (T1=27, T2=25). Participants were labelled
as T1P1-T1P27 or T2P1-T2P25. The categorized answers
are presented as follows:

Factors considered when assessing quality. 57% of the
participants mentioned that they assessed the quality based
on three criteria: 1) overall outline and pattern distortion on
body and on clothes, 2) natural gestures and movements of
the digital humans, and 3) visual artifacts such as blockiness,
blurriness, and extraneous floating artifacts. As T2P3 com-
mented, “I paid attention to the blurriness of the clothing
patterns, the fingers, and whether the gestures or movements
were smooth. ” 48% of the participants mentioned the quality
assessment criteria are content related, who agreed that it is
easier to spot artifacts for the content with complex patterns
(e.g., Long dress) and dominant colors (e.g., Red and black)
than the content with uniformed colors (e.g., Soldier and
Sarge). T2P5 said, “The two ladies were easier [to assess
the visual quality], because their clothes have strong colors.
The man playing keyboard or something is quite difficult.
His clothes were mainly monotone.” 46% of the participants

considered facial expressions as an unignorable factor for
quality assessment, which they believe is an important cue
for social connectedness. For example, T1P15 mentioned,

“The robotic lady was static and had no [facial] expression
at all. It was difficult to tell the difference [between different
quality levels]. ” Similarly, T2P8 said, “If I could see her
[the lady with red dress] smile and her teeth, I gave the score
of fair to good. ” For the extraneous floating artifacts (e.g.,
bubbles flickering outside the digital humans), 23% found it
very annoying and lowered the overall quality for the content,
but a few participants (8%) thought these artifacts do not
influence their quality judgement. T1P4 commented, “The
flickering blocks were annoying and distracting at the begin-
ning, but later I got used to them. It felt like watching an old
movie.”

Difficulties in assessment. 42% of the participants pointed
out the difficulties in assessing the quality, especially for the
high quality contents, which are not perfect and still have
missing details like blurry faces or wrong fingers. 15% of
the participants specifically pointed out that it is difficult
to distinguish between quality level 3 to 5. As T2P21 men-
tioned, “It was difficult to give [score] 5, the best ones were
still missing many details like fingers or feet. I was hesitating
all the time between [score] 4 and 5.” 17% of the partici-
pants commented that it gradually became easier in rating
the quality when they adapted to the contents. So, the second
viewing condition was easier for them. For example, T1P12
said, “I noticed that the rating got easier as I got familiar
to the quality levels, and had seen the best and the worst
qualities.”

Comparison between 3DoF and 6DoF. 52% of the par-
ticipants preferred 6DoF, because it allowed them to move
closer to examine the details (e.g., shoes and fingers). They
felt more realistic when walking in the virtual space. How-
ever, they also commented that 3DoF offered a fixed distance
between them and digital humans, enabling a more stable
and focused assessment. For example, T2P13 commented,

“Walking around [6DoF] allowed me to get really close [to
the digital humans] and see more details, like pixel sizes,
shoes, fingers. It felt more realistic. Sitting down [3DoF] has
a distance [between me and the digital humans]. Sometimes,
I found it difficult to assess the quality.” 21% of the partici-
pants preferred relaxation and passiveness in 3DoF, because
they did not find much differences between 3DoF and 6DoF
in terms of quality assessment, but they found 3DoF is less
nauseous than 6DoF. As T1P13 mentioned, “I felt more fo-
cused, secured and relaxed when sitting down. I got worried
to be trapped by the cables. I also felt more dizzy when I
walked around [in VR].”
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5 Discussion

5.1 Testing in VR

Results of our experiment indicate a very small, if not neg-
ligible, effect of viewing condition on the distribution of
the scores. In particular, the viewing condition was deemed
to have a significant effect on the distribution of the scores
for the first set of contents we tested, revealing significant
differences between VR testing and the 2DTV counterpart,
with small effect sizes; for the second set of contents, no
significant difference was spotted. The implications of it are
twofold. On one hand, results show that the score distribu-
tions follow similar trends in VR with respect to passive
video consumption, thus confirming the validity of testing
volumetric contents on traditional 2D screens, as it has been
done for the majority of tests performed in the literature.
More specifically, no significant interaction was found, for
both tests, between viewing condition and codec under exam,
indicating that differences among compression solutions are
not affected by the choice of displaying device and interac-
tion paradigm. However, the interaction between viewing
condition and contents was found to be significant for test T1:
in particular, results indicate that differences among contents
vary depending on the visualization medium. This might be
due to a variety of factors: the possibility of interacting with
the content, moving closer to inspect details; the presence of
a fixed viewing point, which allows for easier comparison;
the absence of confounding factors such as simulator-induced
sickness or novelty effect. Particular care should be adopted
in choosing contents depending on the type of test that needs
to be carried, making sure that artifacts are visible at the
distance that is selected for passive viewing, for example.

The second implication involves the constituents of qual-
ity of experience. The MOS of visual quality is only one
of the factors that influences the quality of experience of a
given user; other factors, such as presence and immersion, are
equally important in determining the enjoyment of a given
user using the system. Even though small or no effect of
viewing condition on the MOS distribution was found, re-
sults of the IPQ revealed a strong effect of viewing condition
on spatial presence and general sense of being there. Such
factors should be taken into consideration when designing
new experiments: if visual quality is the main constituent that
needs to be assessed, traditional screens might be substituted
(with caution) for VR assessment; however, if other factors
need to be evaluated, such choice might have a larger impact.

5.2 Datasets

Despite the rich literature in point cloud acquisition and com-
pression, few point cloud datasets are publicly available. This

is especially true when considering point cloud datasets de-
picting photo-realistic humans. One of the most popular and
widely used full-body dataset, created by 8i Labs [12], con-
sists of only 4 individual contents, whereas the HHI Fraun-
hofer dataset has 1 individual content [13]. In the context
of point cloud compression, such scarcity of available data
may lead to compression solutions being designed, optimized
and tested while considering a considerably narrow range
of input data, thus leading to algorithms that are overfitted
to the specifics of the acquisition method used to obtain the
contents. The consequences of such a scenario are reflected
in our results. Whereas for the contents assessed in test T2
a large difference was observed between codec V-PCC and
the MPEG anchor, for the contents in test T1 the gap was
markedly lower, and indeed the significance of the effect of
the codec selection had a smaller effect size for test T1 with
respect to test T2, as seen in section 4.1. Test T2 consisted of
contents that had been used in multiple quality assessment ex-
periments [7,8,37,44,47], notably including the performance
evaluation of the upcoming MPEG standard [43]. On the
other hand, test T1 included contents that have not been used
so far in assessment of point cloud compression solutions.
The discrepancies in the results of the subjective quality as-
sessment campaign indicate that performance gains may vary
considerably when new contents are evaluated. A larger body
of contents depicting digital humans, involving several ac-
quisition technologies, is needed in order to properly design,
train and evaluate new compression solutions in a robust way.

5.3 Personal preferences and bias

Subjective evaluation experiments are complicated by many
aspects of human psychology and viewing conditions, such as
participants’ vision ability, translation of quality perception
into ranking scores, adaptations and personal preferences
for contents. Through carefully following the ITU-T Rec-
ommendations P.913 [25], we are able to control some of
the aspects. For example, eliminate the scores given by the
participants with vision problems; train participants to help
them understand the quality levels; randomize the stimuli and
viewing conditions to minimize the order effects. However,
we noticed that personal preferences towards certain con-
tents are difficult to control. Satgunam et al. [41]) found that
their participants were divided into two preference groups:
prefer sharper content versus smoother content. Similarly,
Kortum and Sullivan [30] found that the ”desirability” of
participants had an impact on video quality responses, with a
more desirable video clip being given a higher rating. In our
experiments, content Queen is generally given lower ratings
with respect to the other contents. In the interviews, 40%
of the participants showed their preference towards Soldier,
due to his high-resolution facial features, unitoned clothes
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and natural movements, whereas 27% expressed dislike to-
wards Queen, because of her lifeless look and static gestures.
Body motion has been shown to be important in increasing
the naturalness of virtual characters, especially when involv-
ing complex motions [35]. Moreover, several studies have
highlighted the importance of matching the appearance of
the avatar to the naturalness of the motion, indicating that
“appropriateness” between visual presentation and gesture
plays an important role in realism [16, 31]. Our findings sug-
gests that realism and naturalness of interaction might have
an impact on the perceived visual quality of the contents as
well. Quality assessment may need to be adjusted based on
content and viewer preferences, and offering training with
different contents, as well as account for factors such as
realism, naturalness of motion, and uncanny valley effect.

5.4 Technological constraints and limitations

The two codecs used in this experiment introduce different
distortions during compression. As the MPEG anchor codec
uses the octree data structure to represent geometry, the num-
ber of points in the decoded cloud varies exponentially based
on the tree depth. Thus, at lower bitrates, the decoded point
clouds are quite sparse, and when the point size is increased
to make them appear watertight, they have a block-y appear-
ance. However, the low delay encoding and decoding of this
codec makes it suitable for real time applications such as
social VR. On the other hand, the V-PCC codec leverages
existing 2D video codecs to compress both geometry and
color, which introduces noise in terms of extraneous objects,
and general geometric artifacts such as misaligned seams
(see Figure 1). However, the approach yields better results
at low bitrates, as demonstrated in our results. The codec is
optimized for human perception of 2D video, which might
lead to undesired results when applied to 3D objects in VR.
The mapping from 3D to 2D is critical to codec performance,
which explains why the encoding phase has high complexity.
Decoding has a lower delay, as it benefits from hardware ac-
celeration of video decoders on GPUs, making this approach
suitable for on-demand streaming.

One of the main shortcoming of both compression solu-
tions lays in their inability to reach visually-lossless quality,
as demonstrated by our results. Achieving a visually pleasant
result is of paramount importance for the market adoption of
the technology; indeed, poor visual quality might lead con-
sumers to tune off from the experience altogether [1]. Visual
perception should be taken into account when designing com-
pression solutions, especially at high bitrates, to ensure that
in absence of strict bandwidth constraints, excellent quality
can be achieved.

5.5 Rendering environment considerations

Previous research on subjective assessment of dynamic point
cloud contents has been primarily conducted in desktop se-
tups [2, 52], whereas VR/AR technologies have been em-
ployed with static content [6, 8], or limited amount of dy-
namic contents [53]. However, placing dynamic contents to
be rendered in a VR/AR environment in real time, in order
for users to interact, adds several technological constraints.
In previous research on subjective assessment of point cloud
content such as the MPEG standardisation activity [2], partic-
ipants were asked to view a video of the point cloud sequence
rendered from a predefined camera path. The same approach
was used by van der Hooft et al. to subjectively and objec-
tively assess the quality of adaptive streaming for point cloud
contents [20]; however, the influence of camera paths on ob-
jective quality assessment was shown to be significant in [46].
In order to allow users to interact with the content in a VR/AR
environment, the dynamic point clouds need to be rendered in
real time. This is, however, extremely resource intensive, and
poses many technical constraints. For our test in particular,
the point clouds needed to be stored as uncompressed files,
to avoid confounding factors with the compression solutions
under evaluation. The point cloud files were stored as binary
PLY files to allow faster read from disk. Yet, real-time pro-
gressive loading of the sequences was not possible, as the
loading operation was interfering with the rendering, thus
leading to drops in the frame rate. Waiting for each sequence
to be loaded, on the other hand, was unattainable, as the read
time from disk would mean long waiting times between one
sequence and another, thus adding to subjects’ fatigue. To
fix the issue, we decided to load all sequences in physical
memory before the test. However, this impacted the amount
of sequences that could be tested in one session, as well as
the length of each. New systems for rendering point clouds
in real time, while respecting the constraints introduced by
quality assessment scenarios, should be developed in order
to foster research in the field.

5.6 Protocols for subjective assessment in VR

Choosing the right methodology to follow in order to collect
users’ opinions is a delicate matter, as it can influence the
statistical power of the collected score, and in some cases lead
to difference in results. Single stimulus methodologies, in
particular, lead to larger CIs with respect to double stimulus
methodologies, and are more subject to be influenced by
individual content preference [25]. An early study comparing
single and double stimulus methodologies for the evaluation
of colorless point cloud contents indicated that the latter was
more consistent in recognizing the level of impairment, as
relative differences facilitate the rating task [3]. However, the
study pointed out that the single stimulus methodology shows
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more discrimination power for compression-like artifacts,
albeit at the cost of wider CIs.

Double stimulus methodologies, while commonly used
in video quality assessment and widely adopted in 2D-based
quality assessment of point cloud contents [7, 43, 44], are
tricky to adopt in VR technology, due to the difficulties in
displaying both contents simultaneously in a perceptually sat-
isfying way [36], while ensuring a fair comparison between
the contents under evaluation. When dealing with interac-
tive methodologies, in particular, synchronous display of
any modification in viewport is usually enforced, to ensure
that the two contents are always visible at the same condi-
tion [7, 49]. This is clearly challenging to implement in a
6DoF scenario, in which users are free to change their po-
sition in the VR space at any given time. Positioning the
two contents side by side in the same virtual space would
mean that, at any given time, they are seen from two differ-
ent angles; the same problem would arise when temporal
sequencing is employed. A toggle-based method like the one
proposed in [36] is not applicable to moving sequences, as
different frames would be seen between stimuli.

In our study, we saw that content preference had an im-
pact on the ratings, as several contents were deemed of lower
quality, as the scores given to the HR exemplify. Such bias
resulted in a reduced rating range for the contents. Results
of the interviews also pointed out that naturalness of ges-
tures were an important criteria in assessing the visual qual-
ity. Such components would not be normally evaluated in a
double stimulus scenario; however, they are important in un-
derstanding how human perception reacts to digital humans.

6 Conclusion

In this paper, we extend our previous work by comparing the
performance of the point cloud compression standard V-PCC
against an octree-based anchor codec (MPEG anchor). Par-
ticipants were invited to assess the quality of digital humans
represented as dynamic point clouds, in 2DTV screen, as
well as VR with 3DoF and 6DoF conditions. Results indicate
a small effect of viewing condition on the final scores for one
of the two sets of contents under test. Moreover, results show
that codec V-PCC has a more favorable performance than
the MPEG anchor, especially at low bit-rates. For the highest
bit-rate, the two codecs are often statistically equivalent. The
contents under test appear to have a significant influence on
how the scores are distributed; thus, new data sets are needed
in order to comprehensively evaluate compression distortions.
Moreover, current encoding solutions, while efficient at low
bitrates, are unable to provide visually lossless results, even
when large volumes of data are available, revealing signifi-
cant shortcomings in point cloud compression. We also point
out that commonly-used double stimulus methodologies for
quality evaluation often reduce the rating task to a difference

recognition, while insights on the quality of the original con-
tents are missed. The raw data is made available at the follow-
ing link: https://github.com/cwi-dis/2DTV_VR_QoE.
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Appendix A

Table 5: Contrast test between factors DoF and Content

contrast estimate SE df t.ratio p.value
3DoF, Manfred - 3DoF, Sarge -9.0337 60.7066 2294.00 -0.149 1.0000
3DoF, Manfred - 3DoF, Despoina 178.6466 60.7066 2294.00 2.943 0.1268
3DoF, Manfred - 3DoF, Queen -388.5697 60.7066 2294.00 -6.401 <.0001
3DoF, Manfred - 6DoF, Manfred -88.2236 108.4749 126.03 -0.813 0.9996
3DoF, Manfred - 6DoF, Sarge -72.3942 108.4749 126.03 -0.667 0.9999
3DoF, Manfred - 6DoF, Despoina 279.4808 108.4749 126.03 2.576 0.3044
3DoF, Manfred - 6DoF, Queen -188.9303 108.4749 126.03 -1.742 0.8452
3DoF, Manfred - 2DTV, Manfred -30.8302 109.5543 126.03 -0.281 1.0000
3DoF, Manfred - 2DTV, Sarge 189.7498 109.5543 126.03 1.732 0.8499
3DoF, Manfred - 2DTV, Despoina -84.0802 109.5543 126.03 -0.767 0.9998
3DoF, Manfred - 2DTV, Queen -300.8752 109.5543 126.03 -2.746 0.2166
3DoF, Sarge - 3DoF, Despoina 187.6803 60.7066 2294.00 3.092 0.0848
3DoF, Sarge - 3DoF, Queen -379.5361 60.7066 2294.00 -6.252 <.0001
3DoF, Sarge - 6DoF, Manfred -79.1899 108.4749 126.03 -0.730 0.9999
3DoF, Sarge - 6DoF, Sarge -63.3606 108.4749 126.03 -0.584 1.0000
3DoF, Sarge - 6DoF, Despoina 288.5144 108.4749 126.03 2.660 0.2590
3DoF, Sarge - 6DoF, Queen -179.8966 108.4749 126.03 -1.658 0.8831
3DoF, Sarge - 2DTV, Manfred -21.7965 109.5543 126.03 -0.199 1.0000
3DoF, Sarge - 2DTV, Sarge 198.7835 109.5543 126.03 1.814 0.8071
3DoF, Sarge - 2DTV, Despoina -75.0465 109.5543 126.03 -0.685 0.9999
3DoF, Sarge - 2DTV, Queen -291.8415 109.5543 126.03 -2.664 0.2568
3DoF, Despoina - 3DoF, Queen -567.2163 60.7066 2294.00 -9.344 <.0001
3DoF, Despoina - 6DoF, Manfred -266.8702 108.4749 126.03 -2.460 0.3747
3DoF, Despoina - 6DoF, Sarge -251.0409 108.4749 126.03 -2.314 0.4722
3DoF, Despoina - 6DoF, Despoina 100.8341 108.4749 126.03 0.930 0.9987
3DoF, Despoina - 6DoF, Queen -367.5769 108.4749 126.03 -3.389 0.0422
3DoF, Despoina - 2DTV, Manfred -209.4768 109.5543 126.03 -1.912 0.7495
3DoF, Despoina - 2DTV, Sarge 11.1032 109.5543 126.03 0.101 1.0000
3DoF, Despoina - 2DTV, Despoina -262.7268 109.5543 126.03 -2.398 0.4151
3DoF, Despoina - 2DTV, Queen -479.5218 109.5543 126.03 -4.377 0.0015
3DoF, Queen - 6DoF, Manfred 300.3462 108.4749 126.03 2.769 0.2064
3DoF, Queen - 6DoF, Sarge 316.1755 108.4749 126.03 2.915 0.1485
3DoF, Queen - 6DoF, Despoina 668.0505 108.4749 126.03 6.159 <.0001
3DoF, Queen - 6DoF, Queen 199.6394 108.4749 126.03 1.840 0.7924
3DoF, Queen - 2DTV, Manfred 357.7395 109.5543 126.03 3.265 0.0601
3DoF, Queen - 2DTV, Sarge 578.3195 109.5543 126.03 5.279 <.0001
3DoF, Queen - 2DTV, Despoina 304.4895 109.5543 126.03 2.779 0.2018
3DoF, Queen - 2DTV, Queen 87.6945 109.5543 126.03 0.800 0.9997
6DoF, Manfred - 6DoF, Sarge 15.8293 60.7066 2294.00 0.261 1.0000
6DoF, Manfred - 6DoF, Despoina 367.7043 60.7066 2294.00 6.057 <.0001
6DoF, Manfred - 6DoF, Queen -100.7067 60.7066 2294.00 -1.659 0.8865
6DoF, Manfred - 2DTV, Manfred 57.3934 109.5543 126.03 0.524 1.0000
6DoF, Manfred - 2DTV, Sarge 277.9734 109.5543 126.03 2.537 0.3272
6DoF, Manfred - 2DTV, Despoina 4.1434 109.5543 126.03 0.038 1.0000
6DoF, Manfred - 2DTV, Queen -212.6516 109.5543 126.03 -1.941 0.7312
6DoF, Sarge - 6DoF, Despoina 351.8750 60.7066 2294.00 5.796 <.0001
6DoF, Sarge - 6DoF, Queen -116.5361 60.7066 2294.00 -1.920 0.7470
6DoF, Sarge - 2DTV, Manfred 41.5640 109.5543 126.03 0.379 1.0000
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Table 5 – Continued from previous page
contrast estimate SE df t.ratio p.value
6DoF, Sarge - 2DTV, Sarge 262.1440 109.5543 126.03 2.393 0.4187
6DoF, Sarge - 2DTV, Despoina -11.6860 109.5543 126.03 -0.107 1.0000
6DoF, Sarge - 2DTV, Queen -228.4810 109.5543 126.03 -2.086 0.6338
6DoF, Despoina - 6DoF, Queen -468.4111 60.7066 2294.00 -7.716 <.0001
6DoF, Despoina - 2DTV, Manfred -310.3110 109.5543 126.03 -2.832 0.1794
6DoF, Despoina - 2DTV, Sarge -89.7310 109.5543 126.03 -0.819 0.9996
6DoF, Despoina - 2DTV, Despoina -363.5610 109.5543 126.03 -3.319 0.0517
6DoF, Despoina - 2DTV, Queen -580.3560 109.5543 126.03 -5.297 <.0001
6DoF, Queen - 2DTV, Manfred 158.1001 109.5543 126.03 1.443 0.9524
6DoF, Queen - 2DTV, Sarge 378.6801 109.5543 126.03 3.457 0.0345
6DoF, Queen - 2DTV, Despoina 104.8501 109.5543 126.03 0.957 0.9983
6DoF, Queen - 2DTV, Queen -111.9449 109.5543 126.03 -1.022 0.9969
2DTV, Manfred - 2DTV, Sarge 220.5800 61.9088 2294.00 3.563 0.0193
2DTV, Manfred - 2DTV, Despoina -53.2500 61.9088 2294.00 -0.860 0.9994
2DTV, Manfred - 2DTV, Queen -270.0450 61.9088 2294.00 -4.362 0.0008
2DTV, Sarge - 2DTV, Despoina -273.8300 61.9088 2294.00 -4.423 0.0006
2DTV, Sarge - 2DTV, Queen -490.6250 61.9088 2294.00 -7.925 <.0001
2DTV, Despoina - 2DTV, Queen -216.7950 61.9088 2294.00 -3.502 0.0238
Results are averaged over the levels of: Codecs, Bitrates

Degrees-of-freedom method: kenward-roger

P value adjustment: tukey method for comparing a family of 12 estimates

Table 6: Contrast test between factors DoF and Content

contrast estimate SE df t.ratio p.value
Manfred, C1 - Manfred, C2 259.8001 49.6388 2294 5.234 <.0001
Manfred, C1 - Sarge, C1 37.6988 49.6388 2294 0.759 0.9950
Manfred, C1 - Sarge, C2 358.0433 49.6388 2294 7.213 <.0001
Manfred, C1 - Despoina, C1 181.0136 49.6388 2294 3.647 0.0066
Manfred, C1 - Despoina, C2 435.7672 49.6388 2294 8.779 <.0001
Manfred, C1 - Queen, C1 -103.4447 49.6388 2294 -2.084 0.4256
Manfred, C1 - Queen, C2 -141.3435 49.6388 2294 -2.847 0.0842
Manfred, C2 - Sarge, C1 -222.1013 49.6388 2294 -4.474 0.0002
Manfred, C2 - Sarge, C2 98.2432 49.6388 2294 1.979 0.4963
Manfred, C2 - Despoina, C1 -78.7865 49.6388 2294 -1.587 0.7582
Manfred, C2 - Despoina, C2 175.9671 49.6388 2294 3.545 0.0095
Manfred, C2 - Queen, C1 -363.2449 49.6388 2294 -7.318 <.0001
Manfred, C2 - Queen, C2 -401.1436 49.6388 2294 -8.081 <.0001
Sarge, C1 - Sarge, C2 320.3445 49.6388 2294 6.454 <.0001
Sarge, C1 - Despoina, C1 143.3147 49.6388 2294 2.887 0.0756
Sarge, C1 - Despoina, C2 398.0683 49.6388 2294 8.019 <.0001
Sarge, C1 - Queen, C1 -141.1436 49.6388 2294 -2.843 0.0851
Sarge, C1 - Queen, C2 -179.0423 49.6388 2294 -3.607 0.0076
Sarge, C2 - Despoina, C1 -177.0297 49.6388 2294 -3.566 0.0088
Sarge, C2 - Despoina, C2 77.7238 49.6388 2294 1.566 0.7708
Sarge, C2 - Queen, C1 -461.4881 49.6388 2294 -9.297 <.0001
Sarge, C2 - Queen, C2 -499.3868 49.6388 2294 -10.060 <.0001
Despoina, C1 - Despoina, C2 254.7536 49.6388 2294 5.132 <.0001
Despoina, C1 - Queen, C1 -284.4583 49.6388 2294 -5.731 <.0001
Despoina, C1 - Queen, C2 -322.3571 49.6388 2294 -6.494 <.0001
Despoina, C2 - Queen, C1 -539.2119 49.6388 2294 -10.863 <.0001
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Table 6 – Continued from previous page
contrast estimate SE df t.ratio p.value
Despoina, C2 - Queen, C2 -577.1106 49.6388 2294 -11.626 <.0001
Queen, C1 - Queen, C2 -37.8987 49.6388 2294 -0.763 0.9949
Results are averaged over the levels of: DoF, Bitrates

Degrees-of-freedom method: kenward-roger

P value adjustment: tukey method for comparing a family of 8 estimates

Table 7: Contrast test between factors Content and Bitrate

contrast estimate SE df t.ratio p.value
Manfred, R1 - Manfred, R2 -261.0203 56.8360 2294 -4.593 0.0005
Manfred, R1 - Manfred, R3 -813.6400 56.8360 2294 -14.316 <.0001
Manfred, R1 - Manfred, R4 -1080.8721 56.8360 2294 -19.017 <.0001
Manfred, R1 - Sarge, R1 90.9803 56.8360 2294 1.601 0.9684
Manfred, R1 - Sarge, R2 -221.5797 56.8360 2294 -3.899 0.0097
Manfred, R1 - Sarge, R3 -794.1628 56.8360 2294 -13.973 <.0001
Manfred, R1 - Sarge, R4 -996.3062 56.8360 2294 -17.529 <.0001
Manfred, R1 - Despoina, R1 156.6036 56.8360 2294 2.755 0.2961
Manfred, R1 - Despoina, R2 -85.3759 56.8360 2294 -1.502 0.9824
Manfred, R1 - Despoina, R3 -649.9931 56.8360 2294 -11.436 <.0001
Manfred, R1 - Despoina, R4 -1005.8467 56.8360 2294 -17.697 <.0001
Manfred, R1 - Queen, R1 -111.2328 56.8360 2294 -1.957 0.8485
Manfred, R1 - Queen, R2 -697.9362 56.8360 2294 -12.280 <.0001
Manfred, R1 - Queen, R3 -1025.7954 56.8360 2294 -18.048 <.0001
Manfred, R1 - Queen, R4 -1068.4754 56.8360 2294 -18.799 <.0001
Manfred, R2 - Manfred, R3 -552.6197 56.8360 2294 -9.723 <.0001
Manfred, R2 - Manfred, R4 -819.8518 56.8360 2294 -14.425 <.0001
Manfred, R2 - Sarge, R1 352.0005 56.8360 2294 6.193 <.0001
Manfred, R2 - Sarge, R2 39.4405 56.8360 2294 0.694 1.0000
Manfred, R2 - Sarge, R3 -533.1426 56.8360 2294 -9.380 <.0001
Manfred, R2 - Sarge, R4 -735.2859 56.8360 2294 -12.937 <.0001
Manfred, R2 - Despoina, R1 417.6238 56.8360 2294 7.348 <.0001
Manfred, R2 - Despoina, R2 175.6444 56.8360 2294 3.090 0.1344
Manfred, R2 - Despoina, R3 -388.9728 56.8360 2294 -6.844 <.0001
Manfred, R2 - Despoina, R4 -744.8264 56.8360 2294 -13.105 <.0001
Manfred, R2 - Queen, R1 149.7874 56.8360 2294 2.635 0.3741
Manfred, R2 - Queen, R2 -436.9159 56.8360 2294 -7.687 <.0001
Manfred, R2 - Queen, R3 -764.7751 56.8360 2294 -13.456 <.0001
Manfred, R2 - Queen, R4 -807.4551 56.8360 2294 -14.207 <.0001
Manfred, R3 - Manfred, R4 -267.2321 56.8360 2294 -4.702 0.0003
Manfred, R3 - Sarge, R1 904.6203 56.8360 2294 15.916 <.0001
Manfred, R3 - Sarge, R2 592.0603 56.8360 2294 10.417 <.0001
Manfred, R3 - Sarge, R3 19.4772 56.8360 2294 0.343 1.0000
Manfred, R3 - Sarge, R4 -182.6662 56.8360 2294 -3.214 0.0958
Manfred, R3 - Despoina, R1 970.2436 56.8360 2294 17.071 <.0001
Manfred, R3 - Despoina, R2 728.2641 56.8360 2294 12.813 <.0001
Manfred, R3 - Despoina, R3 163.6469 56.8360 2294 2.879 0.2262
Manfred, R3 - Despoina, R4 -192.2067 56.8360 2294 -3.382 0.0581
Manfred, R3 - Queen, R1 702.4072 56.8360 2294 12.358 <.0001
Manfred, R3 - Queen, R2 115.7038 56.8360 2294 2.036 0.8050
Manfred, R3 - Queen, R3 -212.1554 56.8360 2294 -3.733 0.0179
Manfred, R3 - Queen, R4 -254.8354 56.8360 2294 -4.484 0.0008
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Table 7 – Continued from previous page
contrast estimate SE df t.ratio p.value
Manfred, R4 - Sarge, R1 1171.8523 56.8360 2294 20.618 <.0001
Manfred, R4 - Sarge, R2 859.2923 56.8360 2294 15.119 <.0001
Manfred, R4 - Sarge, R3 286.7092 56.8360 2294 5.044 0.0001
Manfred, R4 - Sarge, R4 84.5659 56.8360 2294 1.488 0.9839
Manfred, R4 - Despoina, R1 1237.4756 56.8360 2294 21.773 <.0001
Manfred, R4 - Despoina, R2 995.4962 56.8360 2294 17.515 <.0001
Manfred, R4 - Despoina, R3 430.8790 56.8360 2294 7.581 <.0001
Manfred, R4 - Despoina, R4 75.0254 56.8360 2294 1.320 0.9952
Manfred, R4 - Queen, R1 969.6392 56.8360 2294 17.060 <.0001
Manfred, R4 - Queen, R2 382.9359 56.8360 2294 6.738 <.0001
Manfred, R4 - Queen, R3 55.0767 56.8360 2294 0.969 0.9999
Manfred, R4 - Queen, R4 12.3967 56.8360 2294 0.218 1.0000
Sarge, R1 - Sarge, R2 -312.5600 56.8360 2294 -5.499 <.0001
Sarge, R1 - Sarge, R3 -885.1431 56.8360 2294 -15.574 <.0001
Sarge, R1 - Sarge, R4 -1087.2864 56.8360 2294 -19.130 <.0001
Sarge, R1 - Despoina, R1 65.6233 56.8360 2294 1.155 0.9989
Sarge, R1 - Despoina, R2 -176.3562 56.8360 2294 -3.103 0.1300
Sarge, R1 - Despoina, R3 -740.9733 56.8360 2294 -13.037 <.0001
Sarge, R1 - Despoina, R4 -1096.8269 56.8360 2294 -19.298 <.0001
Sarge, R1 - Queen, R1 -202.2131 56.8360 2294 -3.558 0.0329
Sarge, R1 - Queen, R2 -788.9164 56.8360 2294 -13.881 <.0001
Sarge, R1 - Queen, R3 -1116.7756 56.8360 2294 -19.649 <.0001
Sarge, R1 - Queen, R4 -1159.4556 56.8360 2294 -20.400 <.0001
Sarge, R2 - Sarge, R3 -572.5831 56.8360 2294 -10.074 <.0001
Sarge, R2 - Sarge, R4 -774.7264 56.8360 2294 -13.631 <.0001
Sarge, R2 - Despoina, R1 378.1833 56.8360 2294 6.654 <.0001
Sarge, R2 - Despoina, R2 136.2038 56.8360 2294 2.396 0.5505
Sarge, R2 - Despoina, R3 -428.4133 56.8360 2294 -7.538 <.0001
Sarge, R2 - Despoina, R4 -784.2669 56.8360 2294 -13.799 <.0001
Sarge, R2 - Queen, R1 110.3469 56.8360 2294 1.941 0.8564
Sarge, R2 - Queen, R2 -476.3564 56.8360 2294 -8.381 <.0001
Sarge, R2 - Queen, R3 -804.2156 56.8360 2294 -14.150 <.0001
Sarge, R2 - Queen, R4 -846.8956 56.8360 2294 -14.901 <.0001
Sarge, R3 - Sarge, R4 -202.1433 56.8360 2294 -3.557 0.0331
Sarge, R3 - Despoina, R1 950.7664 56.8360 2294 16.728 <.0001
Sarge, R3 - Despoina, R2 708.7869 56.8360 2294 12.471 <.0001
Sarge, R3 - Despoina, R3 144.1697 56.8360 2294 2.537 0.4447
Sarge, R3 - Despoina, R4 -211.6838 56.8360 2294 -3.724 0.0185
Sarge, R3 - Queen, R1 682.9300 56.8360 2294 12.016 <.0001
Sarge, R3 - Queen, R2 96.2267 56.8360 2294 1.693 0.9489
Sarge, R3 - Queen, R3 -231.6326 56.8360 2294 -4.075 0.0048
Sarge, R3 - Queen, R4 -274.3126 56.8360 2294 -4.826 0.0002
Sarge, R4 - Despoina, R1 1152.9097 56.8360 2294 20.285 <.0001
Sarge, R4 - Despoina, R2 910.9303 56.8360 2294 16.027 <.0001
Sarge, R4 - Despoina, R3 346.3131 56.8360 2294 6.093 <.0001
Sarge, R4 - Despoina, R4 -9.5405 56.8360 2294 -0.168 1.0000
Sarge, R4 - Queen, R1 885.0733 56.8360 2294 15.572 <.0001
Sarge, R4 - Queen, R2 298.3700 56.8360 2294 5.250 <.0001
Sarge, R4 - Queen, R3 -29.4892 56.8360 2294 -0.519 1.0000
Sarge, R4 - Queen, R4 -72.1692 56.8360 2294 -1.270 0.9968
Despoina, R1 - Despoina, R2 -241.9795 56.8360 2294 -4.258 0.0023
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contrast estimate SE df t.ratio p.value
Despoina, R1 - Despoina, R3 -806.5967 56.8360 2294 -14.192 <.0001
Despoina, R1 - Despoina, R4 -1162.4503 56.8360 2294 -20.453 <.0001
Despoina, R1 - Queen, R1 -267.8364 56.8360 2294 -4.712 0.0003
Despoina, R1 - Queen, R2 -854.5397 56.8360 2294 -15.035 <.0001
Despoina, R1 - Queen, R3 -1182.3990 56.8360 2294 -20.804 <.0001
Despoina, R1 - Queen, R4 -1225.0790 56.8360 2294 -21.555 <.0001
Despoina, R2 - Despoina, R3 -564.6172 56.8360 2294 -9.934 <.0001
Despoina, R2 - Despoina, R4 -920.4708 56.8360 2294 -16.195 <.0001
Despoina, R2 - Queen, R1 -25.8569 56.8360 2294 -0.455 1.0000
Despoina, R2 - Queen, R2 -612.5603 56.8360 2294 -10.778 <.0001
Despoina, R2 - Queen, R3 -940.4195 56.8360 2294 -16.546 <.0001
Despoina, R2 - Queen, R4 -983.0995 56.8360 2294 -17.297 <.0001
Despoina, R3 - Despoina, R4 -355.8536 56.8360 2294 -6.261 <.0001
Despoina, R3 - Queen, R1 538.7603 56.8360 2294 9.479 <.0001
Despoina, R3 - Queen, R2 -47.9431 56.8360 2294 -0.844 1.0000
Despoina, R3 - Queen, R3 -375.8023 56.8360 2294 -6.612 <.0001
Despoina, R3 - Queen, R4 -418.4823 56.8360 2294 -7.363 <.0001
Despoina, R4 - Queen, R1 894.6138 56.8360 2294 15.740 <.0001
Despoina, R4 - Queen, R2 307.9105 56.8360 2294 5.418 <.0001
Despoina, R4 - Queen, R3 -19.9487 56.8360 2294 -0.351 1.0000
Despoina, R4 - Queen, R4 -62.6287 56.8360 2294 -1.102 0.9994
Queen, R1 - Queen, R2 -586.7033 56.8360 2294 -10.323 <.0001
Queen, R1 - Queen, R3 -914.5626 56.8360 2294 -16.091 <.0001
Queen, R1 - Queen, R4 -957.2426 56.8360 2294 -16.842 <.0001
Queen, R2 - Queen, R3 -327.8592 56.8360 2294 -5.769 <.0001
Queen, R2 - Queen, R4 -370.5392 56.8360 2294 -6.519 <.0001
Queen, R3 - Queen, R4 -42.6800 56.8360 2294 -0.751 1.0000
Results are averaged over the levels of: DoF, Codecs

Degrees-of-freedom method: kenward-roger

P value adjustment: tukey method for comparing a family of 16 estimates

Table 8: Contrast test between factors Content, Codec and Bitrate

contrast estimate SE df t.ratio p.value
Longdress, C1, R1 - Longdress, C1, R2 -535.4682 70.4123 2263 -7.605 <.0001
Longdress, C1, R1 - Longdress, C1, R3 -619.6446 70.4123 2263 -8.800 <.0001
Longdress, C1, R1 - Longdress, C1, R4 -657.2754 70.4123 2263 -9.335 <.0001
Longdress, C1, R1 - Longdress, C2, R1 636.6415 70.4123 2263 9.042 <.0001
Longdress, C1, R1 - Longdress, C2, R2 328.2036 70.4123 2263 4.661 0.0015
Longdress, C1, R1 - Longdress, C2, R3 -242.6631 70.4123 2263 -3.446 0.1438
Longdress, C1, R1 - Longdress, C2, R4 -507.2836 70.4123 2263 -7.204 <.0001
Longdress, C1, R1 - Loot, C1, R1 446.7518 70.4123 2263 6.345 <.0001
Longdress, C1, R1 - Loot, C1, R2 -224.4031 70.4123 2263 -3.187 0.2794
Longdress, C1, R1 - Loot, C1, R3 -467.3159 70.4123 2263 -6.637 <.0001
Longdress, C1, R1 - Loot, C1, R4 -535.5154 70.4123 2263 -7.605 <.0001
Longdress, C1, R1 - Loot, C2, R1 1014.3595 70.4123 2263 14.406 <.0001
Longdress, C1, R1 - Loot, C2, R2 799.7723 70.4123 2263 11.358 <.0001
Longdress, C1, R1 - Loot, C2, R3 343.0297 70.4123 2263 4.872 0.0005
Longdress, C1, R1 - Loot, C2, R4 -247.0190 70.4123 2263 -3.508 0.1204
Longdress, C1, R1 - Red and black, C1, R1 193.1303 70.4123 2263 2.743 0.6257
Longdress, C1, R1 - Red and black, C1, R2 -301.1995 70.4123 2263 -4.278 0.0078
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Table 8 – Continued from previous page
contrast estimate SE df t.ratio p.value
Longdress, C1, R1 - Red and black, C1, R3 -537.7385 70.4123 2263 -7.637 <.0001
Longdress, C1, R1 - Red and black, C1, R4 -565.3785 70.4123 2263 -8.030 <.0001
Longdress, C1, R1 - Red and black, C2, R1 746.5923 70.4123 2263 10.603 <.0001
Longdress, C1, R1 - Red and black, C2, R2 459.9036 70.4123 2263 6.532 <.0001
Longdress, C1, R1 - Red and black, C2, R3 43.6846 70.4123 2263 0.620 1.0000
Longdress, C1, R1 - Red and black, C2, R4 -297.4928 70.4123 2263 -4.225 0.0097
Longdress, C1, R1 - Soldier, C1, R1 760.3185 70.4123 2263 10.798 <.0001
Longdress, C1, R1 - Soldier, C1, R2 150.9123 70.4123 2263 2.143 0.9611
Longdress, C1, R1 - Soldier, C1, R3 -281.4026 70.4123 2263 -3.996 0.0235
Longdress, C1, R1 - Soldier, C1, R4 -472.6487 70.4123 2263 -6.713 <.0001
Longdress, C1, R1 - Soldier, C2, R1 1057.4472 70.4123 2263 15.018 <.0001
Longdress, C1, R1 - Soldier, C2, R2 842.4862 70.4123 2263 11.965 <.0001
Longdress, C1, R1 - Soldier, C2, R3 403.9667 70.4123 2263 5.737 <.0001
Longdress, C1, R1 - Soldier, C2, R4 -217.4087 70.4123 2263 -3.088 0.3475
Longdress, C1, R2 - Longdress, C1, R3 -84.1764 70.4123 2263 -1.195 1.0000
Longdress, C1, R2 - Longdress, C1, R4 -121.8072 70.4123 2263 -1.730 0.9984
Longdress, C1, R2 - Longdress, C2, R1 1172.1097 70.4123 2263 16.646 <.0001
Longdress, C1, R2 - Longdress, C2, R2 863.6718 70.4123 2263 12.266 <.0001
Longdress, C1, R2 - Longdress, C2, R3 292.8051 70.4123 2263 4.158 0.0126
Longdress, C1, R2 - Longdress, C2, R4 28.1846 70.4123 2263 0.400 1.0000
Longdress, C1, R2 - Loot, C1, R1 982.2200 70.4123 2263 13.950 <.0001
Longdress, C1, R2 - Loot, C1, R2 311.0651 70.4123 2263 4.418 0.0043
Longdress, C1, R2 - Loot, C1, R3 68.1523 70.4123 2263 0.968 1.0000
Longdress, C1, R2 - Loot, C1, R4 -0.0472 70.4123 2263 -0.001 1.0000
Longdress, C1, R2 - Loot, C2, R1 1549.8277 70.4123 2263 22.011 <.0001
Longdress, C1, R2 - Loot, C2, R2 1335.2405 70.4123 2263 18.963 <.0001
Longdress, C1, R2 - Loot, C2, R3 878.4979 70.4123 2263 12.476 <.0001
Longdress, C1, R2 - Loot, C2, R4 288.4492 70.4123 2263 4.097 0.0161
Longdress, C1, R2 - Red and black, C1, R1 728.5985 70.4123 2263 10.348 <.0001
Longdress, C1, R2 - Red and black, C1, R2 234.2687 70.4123 2263 3.327 0.1984
Longdress, C1, R2 - Red and black, C1, R3 -2.2703 70.4123 2263 -0.032 1.0000
Longdress, C1, R2 - Red and black, C1, R4 -29.9103 70.4123 2263 -0.425 1.0000
Longdress, C1, R2 - Red and black, C2, R1 1282.0605 70.4123 2263 18.208 <.0001
Longdress, C1, R2 - Red and black, C2, R2 995.3718 70.4123 2263 14.136 <.0001
Longdress, C1, R2 - Red and black, C2, R3 579.1528 70.4123 2263 8.225 <.0001
Longdress, C1, R2 - Red and black, C2, R4 237.9754 70.4123 2263 3.380 0.1727
Longdress, C1, R2 - Soldier, C1, R1 1295.7867 70.4123 2263 18.403 <.0001
Longdress, C1, R2 - Soldier, C1, R2 686.3805 70.4123 2263 9.748 <.0001
Longdress, C1, R2 - Soldier, C1, R3 254.0656 70.4123 2263 3.608 0.0890
Longdress, C1, R2 - Soldier, C1, R4 62.8195 70.4123 2263 0.892 1.0000
Longdress, C1, R2 - Soldier, C2, R1 1592.9154 70.4123 2263 22.623 <.0001
Longdress, C1, R2 - Soldier, C2, R2 1377.9544 70.4123 2263 19.570 <.0001
Longdress, C1, R2 - Soldier, C2, R3 939.4349 70.4123 2263 13.342 <.0001
Longdress, C1, R2 - Soldier, C2, R4 318.0595 70.4123 2263 4.517 0.0028
Longdress, C1, R3 - Longdress, C1, R4 -37.6308 70.4123 2263 -0.534 1.0000
Longdress, C1, R3 - Longdress, C2, R1 1256.2862 70.4123 2263 17.842 <.0001
Longdress, C1, R3 - Longdress, C2, R2 947.8482 70.4123 2263 13.461 <.0001
Longdress, C1, R3 - Longdress, C2, R3 376.9815 70.4123 2263 5.354 <.0001
Longdress, C1, R3 - Longdress, C2, R4 112.3610 70.4123 2263 1.596 0.9996
Longdress, C1, R3 - Loot, C1, R1 1066.3964 70.4123 2263 15.145 <.0001
Longdress, C1, R3 - Loot, C1, R2 395.2415 70.4123 2263 5.613 <.0001
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contrast estimate SE df t.ratio p.value
Longdress, C1, R3 - Loot, C1, R3 152.3287 70.4123 2263 2.163 0.9564
Longdress, C1, R3 - Loot, C1, R4 84.1292 70.4123 2263 1.195 1.0000
Longdress, C1, R3 - Loot, C2, R1 1634.0041 70.4123 2263 23.206 <.0001
Longdress, C1, R3 - Loot, C2, R2 1419.4169 70.4123 2263 20.159 <.0001
Longdress, C1, R3 - Loot, C2, R3 962.6744 70.4123 2263 13.672 <.0001
Longdress, C1, R3 - Loot, C2, R4 372.6256 70.4123 2263 5.292 0.0001
Longdress, C1, R3 - Red and black, C1, R1 812.7749 70.4123 2263 11.543 <.0001
Longdress, C1, R3 - Red and black, C1, R2 318.4451 70.4123 2263 4.523 0.0027
Longdress, C1, R3 - Red and black, C1, R3 81.9062 70.4123 2263 1.163 1.0000
Longdress, C1, R3 - Red and black, C1, R4 54.2662 70.4123 2263 0.771 1.0000
Longdress, C1, R3 - Red and black, C2, R1 1366.2369 70.4123 2263 19.403 <.0001
Longdress, C1, R3 - Red and black, C2, R2 1079.5482 70.4123 2263 15.332 <.0001
Longdress, C1, R3 - Red and black, C2, R3 663.3292 70.4123 2263 9.421 <.0001
Longdress, C1, R3 - Red and black, C2, R4 322.1518 70.4123 2263 4.575 0.0021
Longdress, C1, R3 - Soldier, C1, R1 1379.9631 70.4123 2263 19.598 <.0001
Longdress, C1, R3 - Soldier, C1, R2 770.5569 70.4123 2263 10.944 <.0001
Longdress, C1, R3 - Soldier, C1, R3 338.2421 70.4123 2263 4.804 0.0007
Longdress, C1, R3 - Soldier, C1, R4 146.9959 70.4123 2263 2.088 0.9721
Longdress, C1, R3 - Soldier, C2, R1 1677.0918 70.4123 2263 23.818 <.0001
Longdress, C1, R3 - Soldier, C2, R2 1462.1308 70.4123 2263 20.765 <.0001
Longdress, C1, R3 - Soldier, C2, R3 1023.6113 70.4123 2263 14.537 <.0001
Longdress, C1, R3 - Soldier, C2, R4 402.2359 70.4123 2263 5.713 <.0001
Longdress, C1, R4 - Longdress, C2, R1 1293.9169 70.4123 2263 18.376 <.0001
Longdress, C1, R4 - Longdress, C2, R2 985.4790 70.4123 2263 13.996 <.0001
Longdress, C1, R4 - Longdress, C2, R3 414.6123 70.4123 2263 5.888 <.0001
Longdress, C1, R4 - Longdress, C2, R4 149.9918 70.4123 2263 2.130 0.9639
Longdress, C1, R4 - Loot, C1, R1 1104.0272 70.4123 2263 15.679 <.0001
Longdress, C1, R4 - Loot, C1, R2 432.8723 70.4123 2263 6.148 <.0001
Longdress, C1, R4 - Loot, C1, R3 189.9595 70.4123 2263 2.698 0.6625
Longdress, C1, R4 - Loot, C1, R4 121.7600 70.4123 2263 1.729 0.9984
Longdress, C1, R4 - Loot, C2, R1 1671.6349 70.4123 2263 23.741 <.0001
Longdress, C1, R4 - Loot, C2, R2 1457.0477 70.4123 2263 20.693 <.0001
Longdress, C1, R4 - Loot, C2, R3 1000.3051 70.4123 2263 14.206 <.0001
Longdress, C1, R4 - Loot, C2, R4 410.2564 70.4123 2263 5.826 <.0001
Longdress, C1, R4 - Red and black, C1, R1 850.4056 70.4123 2263 12.078 <.0001
Longdress, C1, R4 - Red and black, C1, R2 356.0759 70.4123 2263 5.057 0.0002
Longdress, C1, R4 - Red and black, C1, R3 119.5369 70.4123 2263 1.698 0.9989
Longdress, C1, R4 - Red and black, C1, R4 91.8969 70.4123 2263 1.305 1.0000
Longdress, C1, R4 - Red and black, C2, R1 1403.8677 70.4123 2263 19.938 <.0001
Longdress, C1, R4 - Red and black, C2, R2 1117.1790 70.4123 2263 15.866 <.0001
Longdress, C1, R4 - Red and black, C2, R3 700.9600 70.4123 2263 9.955 <.0001
Longdress, C1, R4 - Red and black, C2, R4 359.7826 70.4123 2263 5.110 0.0002
Longdress, C1, R4 - Soldier, C1, R1 1417.5938 70.4123 2263 20.133 <.0001
Longdress, C1, R4 - Soldier, C1, R2 808.1877 70.4123 2263 11.478 <.0001
Longdress, C1, R4 - Soldier, C1, R3 375.8728 70.4123 2263 5.338 <.0001
Longdress, C1, R4 - Soldier, C1, R4 184.6267 70.4123 2263 2.622 0.7219
Longdress, C1, R4 - Soldier, C2, R1 1714.7226 70.4123 2263 24.353 <.0001
Longdress, C1, R4 - Soldier, C2, R2 1499.7615 70.4123 2263 21.300 <.0001
Longdress, C1, R4 - Soldier, C2, R3 1061.2421 70.4123 2263 15.072 <.0001
Longdress, C1, R4 - Soldier, C2, R4 439.8667 70.4123 2263 6.247 <.0001
Longdress, C2, R1 - Longdress, C2, R2 -308.4379 70.4123 2263 -4.380 0.0051
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Longdress, C2, R1 - Longdress, C2, R3 -879.3046 70.4123 2263 -12.488 <.0001
Longdress, C2, R1 - Longdress, C2, R4 -1143.9251 70.4123 2263 -16.246 <.0001
Longdress, C2, R1 - Loot, C1, R1 -189.8897 70.4123 2263 -2.697 0.6633
Longdress, C2, R1 - Loot, C1, R2 -861.0446 70.4123 2263 -12.229 <.0001
Longdress, C2, R1 - Loot, C1, R3 -1103.9574 70.4123 2263 -15.678 <.0001
Longdress, C2, R1 - Loot, C1, R4 -1172.1569 70.4123 2263 -16.647 <.0001
Longdress, C2, R1 - Loot, C2, R1 377.7179 70.4123 2263 5.364 <.0001
Longdress, C2, R1 - Loot, C2, R2 163.1308 70.4123 2263 2.317 0.9058
Longdress, C2, R1 - Loot, C2, R3 -293.6118 70.4123 2263 -4.170 0.0120
Longdress, C2, R1 - Loot, C2, R4 -883.6605 70.4123 2263 -12.550 <.0001
Longdress, C2, R1 - Red and black, C1, R1 -443.5113 70.4123 2263 -6.299 <.0001
Longdress, C2, R1 - Red and black, C1, R2 -937.8410 70.4123 2263 -13.319 <.0001
Longdress, C2, R1 - Red and black, C1, R3 -1174.3800 70.4123 2263 -16.679 <.0001
Longdress, C2, R1 - Red and black, C1, R4 -1202.0200 70.4123 2263 -17.071 <.0001
Longdress, C2, R1 - Red and black, C2, R1 109.9508 70.4123 2263 1.562 0.9998
Longdress, C2, R1 - Red and black, C2, R2 -176.7379 70.4123 2263 -2.510 0.8014
Longdress, C2, R1 - Red and black, C2, R3 -592.9569 70.4123 2263 -8.421 <.0001
Longdress, C2, R1 - Red and black, C2, R4 -934.1344 70.4123 2263 -13.267 <.0001
Longdress, C2, R1 - Soldier, C1, R1 123.6769 70.4123 2263 1.756 0.9979
Longdress, C2, R1 - Soldier, C1, R2 -485.7292 70.4123 2263 -6.898 <.0001
Longdress, C2, R1 - Soldier, C1, R3 -918.0441 70.4123 2263 -13.038 <.0001
Longdress, C2, R1 - Soldier, C1, R4 -1109.2903 70.4123 2263 -15.754 <.0001
Longdress, C2, R1 - Soldier, C2, R1 420.8056 70.4123 2263 5.976 <.0001
Longdress, C2, R1 - Soldier, C2, R2 205.8446 70.4123 2263 2.923 0.4754
Longdress, C2, R1 - Soldier, C2, R3 -232.6749 70.4123 2263 -3.304 0.2103
Longdress, C2, R1 - Soldier, C2, R4 -854.0503 70.4123 2263 -12.129 <.0001
Longdress, C2, R2 - Longdress, C2, R3 -570.8667 70.4123 2263 -8.107 <.0001
Longdress, C2, R2 - Longdress, C2, R4 -835.4872 70.4123 2263 -11.866 <.0001
Longdress, C2, R2 - Loot, C1, R1 118.5482 70.4123 2263 1.684 0.9990
Longdress, C2, R2 - Loot, C1, R2 -552.6067 70.4123 2263 -7.848 <.0001
Longdress, C2, R2 - Loot, C1, R3 -795.5195 70.4123 2263 -11.298 <.0001
Longdress, C2, R2 - Loot, C1, R4 -863.7190 70.4123 2263 -12.267 <.0001
Longdress, C2, R2 - Loot, C2, R1 686.1559 70.4123 2263 9.745 <.0001
Longdress, C2, R2 - Loot, C2, R2 471.5687 70.4123 2263 6.697 <.0001
Longdress, C2, R2 - Loot, C2, R3 14.8262 70.4123 2263 0.211 1.0000
Longdress, C2, R2 - Loot, C2, R4 -575.2226 70.4123 2263 -8.169 <.0001
Longdress, C2, R2 - Red and black, C1, R1 -135.0733 70.4123 2263 -1.918 0.9915
Longdress, C2, R2 - Red and black, C1, R2 -629.4031 70.4123 2263 -8.939 <.0001
Longdress, C2, R2 - Red and black, C1, R3 -865.9421 70.4123 2263 -12.298 <.0001
Longdress, C2, R2 - Red and black, C1, R4 -893.5821 70.4123 2263 -12.691 <.0001
Longdress, C2, R2 - Red and black, C2, R1 418.3887 70.4123 2263 5.942 <.0001
Longdress, C2, R2 - Red and black, C2, R2 131.7000 70.4123 2263 1.870 0.9942
Longdress, C2, R2 - Red and black, C2, R3 -284.5190 70.4123 2263 -4.041 0.0199
Longdress, C2, R2 - Red and black, C2, R4 -625.6964 70.4123 2263 -8.886 <.0001
Longdress, C2, R2 - Soldier, C1, R1 432.1149 70.4123 2263 6.137 <.0001
Longdress, C2, R2 - Soldier, C1, R2 -177.2913 70.4123 2263 -2.518 0.7962
Longdress, C2, R2 - Soldier, C1, R3 -609.6062 70.4123 2263 -8.658 <.0001
Longdress, C2, R2 - Soldier, C1, R4 -800.8523 70.4123 2263 -11.374 <.0001
Longdress, C2, R2 - Soldier, C2, R1 729.2436 70.4123 2263 10.357 <.0001
Longdress, C2, R2 - Soldier, C2, R2 514.2826 70.4123 2263 7.304 <.0001
Longdress, C2, R2 - Soldier, C2, R3 75.7631 70.4123 2263 1.076 1.0000
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Longdress, C2, R2 - Soldier, C2, R4 -545.6123 70.4123 2263 -7.749 <.0001
Longdress, C2, R3 - Longdress, C2, R4 -264.6205 70.4123 2263 -3.758 0.0548
Longdress, C2, R3 - Loot, C1, R1 689.4149 70.4123 2263 9.791 <.0001
Longdress, C2, R3 - Loot, C1, R2 18.2600 70.4123 2263 0.259 1.0000
Longdress, C2, R3 - Loot, C1, R3 -224.6528 70.4123 2263 -3.191 0.2771
Longdress, C2, R3 - Loot, C1, R4 -292.8523 70.4123 2263 -4.159 0.0126
Longdress, C2, R3 - Loot, C2, R1 1257.0226 70.4123 2263 17.852 <.0001
Longdress, C2, R3 - Loot, C2, R2 1042.4354 70.4123 2263 14.805 <.0001
Longdress, C2, R3 - Loot, C2, R3 585.6928 70.4123 2263 8.318 <.0001
Longdress, C2, R3 - Loot, C2, R4 -4.3559 70.4123 2263 -0.062 1.0000
Longdress, C2, R3 - Red and black, C1, R1 435.7933 70.4123 2263 6.189 <.0001
Longdress, C2, R3 - Red and black, C1, R2 -58.5364 70.4123 2263 -0.831 1.0000
Longdress, C2, R3 - Red and black, C1, R3 -295.0754 70.4123 2263 -4.191 0.0111
Longdress, C2, R3 - Red and black, C1, R4 -322.7154 70.4123 2263 -4.583 0.0021
Longdress, C2, R3 - Red and black, C2, R1 989.2554 70.4123 2263 14.049 <.0001
Longdress, C2, R3 - Red and black, C2, R2 702.5667 70.4123 2263 9.978 <.0001
Longdress, C2, R3 - Red and black, C2, R3 286.3477 70.4123 2263 4.067 0.0180
Longdress, C2, R3 - Red and black, C2, R4 -54.8297 70.4123 2263 -0.779 1.0000
Longdress, C2, R3 - Soldier, C1, R1 1002.9815 70.4123 2263 14.244 <.0001
Longdress, C2, R3 - Soldier, C1, R2 393.5754 70.4123 2263 5.590 <.0001
Longdress, C2, R3 - Soldier, C1, R3 -38.7395 70.4123 2263 -0.550 1.0000
Longdress, C2, R3 - Soldier, C1, R4 -229.9856 70.4123 2263 -3.266 0.2313
Longdress, C2, R3 - Soldier, C2, R1 1300.1103 70.4123 2263 18.464 <.0001
Longdress, C2, R3 - Soldier, C2, R2 1085.1492 70.4123 2263 15.411 <.0001
Longdress, C2, R3 - Soldier, C2, R3 646.6297 70.4123 2263 9.183 <.0001
Longdress, C2, R3 - Soldier, C2, R4 25.2544 70.4123 2263 0.359 1.0000
Longdress, C2, R4 - Loot, C1, R1 954.0354 70.4123 2263 13.549 <.0001
Longdress, C2, R4 - Loot, C1, R2 282.8805 70.4123 2263 4.017 0.0217
Longdress, C2, R4 - Loot, C1, R3 39.9677 70.4123 2263 0.568 1.0000
Longdress, C2, R4 - Loot, C1, R4 -28.2318 70.4123 2263 -0.401 1.0000
Longdress, C2, R4 - Loot, C2, R1 1521.6431 70.4123 2263 21.610 <.0001
Longdress, C2, R4 - Loot, C2, R2 1307.0559 70.4123 2263 18.563 <.0001
Longdress, C2, R4 - Loot, C2, R3 850.3133 70.4123 2263 12.076 <.0001
Longdress, C2, R4 - Loot, C2, R4 260.2646 70.4123 2263 3.696 0.0673
Longdress, C2, R4 - Red and black, C1, R1 700.4138 70.4123 2263 9.947 <.0001
Longdress, C2, R4 - Red and black, C1, R2 206.0841 70.4123 2263 2.927 0.4726
Longdress, C2, R4 - Red and black, C1, R3 -30.4549 70.4123 2263 -0.433 1.0000
Longdress, C2, R4 - Red and black, C1, R4 -58.0949 70.4123 2263 -0.825 1.0000
Longdress, C2, R4 - Red and black, C2, R1 1253.8759 70.4123 2263 17.808 <.0001
Longdress, C2, R4 - Red and black, C2, R2 967.1872 70.4123 2263 13.736 <.0001
Longdress, C2, R4 - Red and black, C2, R3 550.9682 70.4123 2263 7.825 <.0001
Longdress, C2, R4 - Red and black, C2, R4 209.7908 70.4123 2263 2.979 0.4300
Longdress, C2, R4 - Soldier, C1, R1 1267.6021 70.4123 2263 18.003 <.0001
Longdress, C2, R4 - Soldier, C1, R2 658.1959 70.4123 2263 9.348 <.0001
Longdress, C2, R4 - Soldier, C1, R3 225.8810 70.4123 2263 3.208 0.2661
Longdress, C2, R4 - Soldier, C1, R4 34.6349 70.4123 2263 0.492 1.0000
Longdress, C2, R4 - Soldier, C2, R1 1564.7308 70.4123 2263 22.222 <.0001
Longdress, C2, R4 - Soldier, C2, R2 1349.7697 70.4123 2263 19.170 <.0001
Longdress, C2, R4 - Soldier, C2, R3 911.2503 70.4123 2263 12.942 <.0001
Longdress, C2, R4 - Soldier, C2, R4 289.8749 70.4123 2263 4.117 0.0149
Loot, C1, R1 - Loot, C1, R2 -671.1549 70.4123 2263 -9.532 <.0001
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Loot, C1, R1 - Loot, C1, R3 -914.0677 70.4123 2263 -12.982 <.0001
Loot, C1, R1 - Loot, C1, R4 -982.2672 70.4123 2263 -13.950 <.0001
Loot, C1, R1 - Loot, C2, R1 567.6077 70.4123 2263 8.061 <.0001
Loot, C1, R1 - Loot, C2, R2 353.0205 70.4123 2263 5.014 0.0003
Loot, C1, R1 - Loot, C2, R3 -103.7221 70.4123 2263 -1.473 0.9999
Loot, C1, R1 - Loot, C2, R4 -693.7708 70.4123 2263 -9.853 <.0001
Loot, C1, R1 - Red and black, C1, R1 -253.6215 70.4123 2263 -3.602 0.0908
Loot, C1, R1 - Red and black, C1, R2 -747.9513 70.4123 2263 -10.622 <.0001
Loot, C1, R1 - Red and black, C1, R3 -984.4903 70.4123 2263 -13.982 <.0001
Loot, C1, R1 - Red and black, C1, R4 -1012.1303 70.4123 2263 -14.374 <.0001
Loot, C1, R1 - Red and black, C2, R1 299.8405 70.4123 2263 4.258 0.0084
Loot, C1, R1 - Red and black, C2, R2 13.1518 70.4123 2263 0.187 1.0000
Loot, C1, R1 - Red and black, C2, R3 -403.0672 70.4123 2263 -5.724 <.0001
Loot, C1, R1 - Red and black, C2, R4 -744.2446 70.4123 2263 -10.570 <.0001
Loot, C1, R1 - Soldier, C1, R1 313.5667 70.4123 2263 4.453 0.0037
Loot, C1, R1 - Soldier, C1, R2 -295.8395 70.4123 2263 -4.202 0.0106
Loot, C1, R1 - Soldier, C1, R3 -728.1544 70.4123 2263 -10.341 <.0001
Loot, C1, R1 - Soldier, C1, R4 -919.4005 70.4123 2263 -13.057 <.0001
Loot, C1, R1 - Soldier, C2, R1 610.6954 70.4123 2263 8.673 <.0001
Loot, C1, R1 - Soldier, C2, R2 395.7344 70.4123 2263 5.620 <.0001
Loot, C1, R1 - Soldier, C2, R3 -42.7851 70.4123 2263 -0.608 1.0000
Loot, C1, R1 - Soldier, C2, R4 -664.1605 70.4123 2263 -9.432 <.0001
Loot, C1, R2 - Loot, C1, R3 -242.9128 70.4123 2263 -3.450 0.1424
Loot, C1, R2 - Loot, C1, R4 -311.1123 70.4123 2263 -4.418 0.0043
Loot, C1, R2 - Loot, C2, R1 1238.7626 70.4123 2263 17.593 <.0001
Loot, C1, R2 - Loot, C2, R2 1024.1754 70.4123 2263 14.545 <.0001
Loot, C1, R2 - Loot, C2, R3 567.4328 70.4123 2263 8.059 <.0001
Loot, C1, R2 - Loot, C2, R4 -22.6159 70.4123 2263 -0.321 1.0000
Loot, C1, R2 - Red and black, C1, R1 417.5333 70.4123 2263 5.930 <.0001
Loot, C1, R2 - Red and black, C1, R2 -76.7964 70.4123 2263 -1.091 1.0000
Loot, C1, R2 - Red and black, C1, R3 -313.3354 70.4123 2263 -4.450 0.0037
Loot, C1, R2 - Red and black, C1, R4 -340.9754 70.4123 2263 -4.843 0.0006
Loot, C1, R2 - Red and black, C2, R1 970.9954 70.4123 2263 13.790 <.0001
Loot, C1, R2 - Red and black, C2, R2 684.3067 70.4123 2263 9.719 <.0001
Loot, C1, R2 - Red and black, C2, R3 268.0877 70.4123 2263 3.807 0.0464
Loot, C1, R2 - Red and black, C2, R4 -73.0897 70.4123 2263 -1.038 1.0000
Loot, C1, R2 - Soldier, C1, R1 984.7215 70.4123 2263 13.985 <.0001
Loot, C1, R2 - Soldier, C1, R2 375.3154 70.4123 2263 5.330 0.0001
Loot, C1, R2 - Soldier, C1, R3 -56.9995 70.4123 2263 -0.810 1.0000
Loot, C1, R2 - Soldier, C1, R4 -248.2456 70.4123 2263 -3.526 0.1144
Loot, C1, R2 - Soldier, C2, R1 1281.8503 70.4123 2263 18.205 <.0001
Loot, C1, R2 - Soldier, C2, R2 1066.8892 70.4123 2263 15.152 <.0001
Loot, C1, R2 - Soldier, C2, R3 628.3697 70.4123 2263 8.924 <.0001
Loot, C1, R2 - Soldier, C2, R4 6.9944 70.4123 2263 0.099 1.0000
Loot, C1, R3 - Loot, C1, R4 -68.1995 70.4123 2263 -0.969 1.0000
Loot, C1, R3 - Loot, C2, R1 1481.6754 70.4123 2263 21.043 <.0001
Loot, C1, R3 - Loot, C2, R2 1267.0882 70.4123 2263 17.995 <.0001
Loot, C1, R3 - Loot, C2, R3 810.3456 70.4123 2263 11.509 <.0001
Loot, C1, R3 - Loot, C2, R4 220.2969 70.4123 2263 3.129 0.3184
Loot, C1, R3 - Red and black, C1, R1 660.4462 70.4123 2263 9.380 <.0001
Loot, C1, R3 - Red and black, C1, R2 166.1164 70.4123 2263 2.359 0.8868
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Loot, C1, R3 - Red and black, C1, R3 -70.4226 70.4123 2263 -1.000 1.0000
Loot, C1, R3 - Red and black, C1, R4 -98.0626 70.4123 2263 -1.393 1.0000
Loot, C1, R3 - Red and black, C2, R1 1213.9082 70.4123 2263 17.240 <.0001
Loot, C1, R3 - Red and black, C2, R2 927.2195 70.4123 2263 13.168 <.0001
Loot, C1, R3 - Red and black, C2, R3 511.0005 70.4123 2263 7.257 <.0001
Loot, C1, R3 - Red and black, C2, R4 169.8231 70.4123 2263 2.412 0.8601
Loot, C1, R3 - Soldier, C1, R1 1227.6344 70.4123 2263 17.435 <.0001
Loot, C1, R3 - Soldier, C1, R2 618.2282 70.4123 2263 8.780 <.0001
Loot, C1, R3 - Soldier, C1, R3 185.9133 70.4123 2263 2.640 0.7079
Loot, C1, R3 - Soldier, C1, R4 -5.3328 70.4123 2263 -0.076 1.0000
Loot, C1, R3 - Soldier, C2, R1 1524.7631 70.4123 2263 21.655 <.0001
Loot, C1, R3 - Soldier, C2, R2 1309.8021 70.4123 2263 18.602 <.0001
Loot, C1, R3 - Soldier, C2, R3 871.2826 70.4123 2263 12.374 <.0001
Loot, C1, R3 - Soldier, C2, R4 249.9072 70.4123 2263 3.549 0.1066
Loot, C1, R4 - Loot, C2, R1 1549.8749 70.4123 2263 22.011 <.0001
Loot, C1, R4 - Loot, C2, R2 1335.2877 70.4123 2263 18.964 <.0001
Loot, C1, R4 - Loot, C2, R3 878.5451 70.4123 2263 12.477 <.0001
Loot, C1, R4 - Loot, C2, R4 288.4964 70.4123 2263 4.097 0.0160
Loot, C1, R4 - Red and black, C1, R1 728.6456 70.4123 2263 10.348 <.0001
Loot, C1, R4 - Red and black, C1, R2 234.3159 70.4123 2263 3.328 0.1981
Loot, C1, R4 - Red and black, C1, R3 -2.2231 70.4123 2263 -0.032 1.0000
Loot, C1, R4 - Red and black, C1, R4 -29.8631 70.4123 2263 -0.424 1.0000
Loot, C1, R4 - Red and black, C2, R1 1282.1077 70.4123 2263 18.209 <.0001
Loot, C1, R4 - Red and black, C2, R2 995.4190 70.4123 2263 14.137 <.0001
Loot, C1, R4 - Red and black, C2, R3 579.2000 70.4123 2263 8.226 <.0001
Loot, C1, R4 - Red and black, C2, R4 238.0226 70.4123 2263 3.380 0.1724
Loot, C1, R4 - Soldier, C1, R1 1295.8338 70.4123 2263 18.404 <.0001
Loot, C1, R4 - Soldier, C1, R2 686.4277 70.4123 2263 9.749 <.0001
Loot, C1, R4 - Soldier, C1, R3 254.1128 70.4123 2263 3.609 0.0888
Loot, C1, R4 - Soldier, C1, R4 62.8667 70.4123 2263 0.893 1.0000
Loot, C1, R4 - Soldier, C2, R1 1592.9626 70.4123 2263 22.623 <.0001
Loot, C1, R4 - Soldier, C2, R2 1378.0015 70.4123 2263 19.570 <.0001
Loot, C1, R4 - Soldier, C2, R3 939.4821 70.4123 2263 13.343 <.0001
Loot, C1, R4 - Soldier, C2, R4 318.1067 70.4123 2263 4.518 0.0028
Loot, C2, R1 - Loot, C2, R2 -214.5872 70.4123 2263 -3.048 0.3771
Loot, C2, R1 - Loot, C2, R3 -671.3297 70.4123 2263 -9.534 <.0001
Loot, C2, R1 - Loot, C2, R4 -1261.3785 70.4123 2263 -17.914 <.0001
Loot, C2, R1 - Red and black, C1, R1 -821.2292 70.4123 2263 -11.663 <.0001
Loot, C2, R1 - Red and black, C1, R2 -1315.5590 70.4123 2263 -18.684 <.0001
Loot, C2, R1 - Red and black, C1, R3 -1552.0979 70.4123 2263 -22.043 <.0001
Loot, C2, R1 - Red and black, C1, R4 -1579.7379 70.4123 2263 -22.436 <.0001
Loot, C2, R1 - Red and black, C2, R1 -267.7672 70.4123 2263 -3.803 0.0471
Loot, C2, R1 - Red and black, C2, R2 -554.4559 70.4123 2263 -7.874 <.0001
Loot, C2, R1 - Red and black, C2, R3 -970.6749 70.4123 2263 -13.786 <.0001
Loot, C2, R1 - Red and black, C2, R4 -1311.8523 70.4123 2263 -18.631 <.0001
Loot, C2, R1 - Soldier, C1, R1 -254.0410 70.4123 2263 -3.608 0.0891
Loot, C2, R1 - Soldier, C1, R2 -863.4472 70.4123 2263 -12.263 <.0001
Loot, C2, R1 - Soldier, C1, R3 -1295.7621 70.4123 2263 -18.402 <.0001
Loot, C2, R1 - Soldier, C1, R4 -1487.0082 70.4123 2263 -21.119 <.0001
Loot, C2, R1 - Soldier, C2, R1 43.0877 70.4123 2263 0.612 1.0000
Loot, C2, R1 - Soldier, C2, R2 -171.8733 70.4123 2263 -2.441 0.8439
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Table 8 – Continued from previous page
contrast estimate SE df t.ratio p.value
Loot, C2, R1 - Soldier, C2, R3 -610.3928 70.4123 2263 -8.669 <.0001
Loot, C2, R1 - Soldier, C2, R4 -1231.7682 70.4123 2263 -17.494 <.0001
Loot, C2, R2 - Loot, C2, R3 -456.7426 70.4123 2263 -6.487 <.0001
Loot, C2, R2 - Loot, C2, R4 -1046.7913 70.4123 2263 -14.867 <.0001
Loot, C2, R2 - Red and black, C1, R1 -606.6421 70.4123 2263 -8.616 <.0001
Loot, C2, R2 - Red and black, C1, R2 -1100.9718 70.4123 2263 -15.636 <.0001
Loot, C2, R2 - Red and black, C1, R3 -1337.5108 70.4123 2263 -18.995 <.0001
Loot, C2, R2 - Red and black, C1, R4 -1365.1508 70.4123 2263 -19.388 <.0001
Loot, C2, R2 - Red and black, C2, R1 -53.1800 70.4123 2263 -0.755 1.0000
Loot, C2, R2 - Red and black, C2, R2 -339.8687 70.4123 2263 -4.827 0.0007
Loot, C2, R2 - Red and black, C2, R3 -756.0877 70.4123 2263 -10.738 <.0001
Loot, C2, R2 - Red and black, C2, R4 -1097.2651 70.4123 2263 -15.583 <.0001
Loot, C2, R2 - Soldier, C1, R1 -39.4538 70.4123 2263 -0.560 1.0000
Loot, C2, R2 - Soldier, C1, R2 -648.8600 70.4123 2263 -9.215 <.0001
Loot, C2, R2 - Soldier, C1, R3 -1081.1749 70.4123 2263 -15.355 <.0001
Loot, C2, R2 - Soldier, C1, R4 -1272.4210 70.4123 2263 -18.071 <.0001
Loot, C2, R2 - Soldier, C2, R1 257.6749 70.4123 2263 3.660 0.0757
Loot, C2, R2 - Soldier, C2, R2 42.7138 70.4123 2263 0.607 1.0000
Loot, C2, R2 - Soldier, C2, R3 -395.8056 70.4123 2263 -5.621 <.0001
Loot, C2, R2 - Soldier, C2, R4 -1017.1810 70.4123 2263 -14.446 <.0001
Loot, C2, R3 - Loot, C2, R4 -590.0487 70.4123 2263 -8.380 <.0001
Loot, C2, R3 - Red and black, C1, R1 -149.8995 70.4123 2263 -2.129 0.9642
Loot, C2, R3 - Red and black, C1, R2 -644.2292 70.4123 2263 -9.149 <.0001
Loot, C2, R3 - Red and black, C1, R3 -880.7682 70.4123 2263 -12.509 <.0001
Loot, C2, R3 - Red and black, C1, R4 -908.4082 70.4123 2263 -12.901 <.0001
Loot, C2, R3 - Red and black, C2, R1 403.5626 70.4123 2263 5.731 <.0001
Loot, C2, R3 - Red and black, C2, R2 116.8738 70.4123 2263 1.660 0.9992
Loot, C2, R3 - Red and black, C2, R3 -299.3451 70.4123 2263 -4.251 0.0087
Loot, C2, R3 - Red and black, C2, R4 -640.5226 70.4123 2263 -9.097 <.0001
Loot, C2, R3 - Soldier, C1, R1 417.2887 70.4123 2263 5.926 <.0001
Loot, C2, R3 - Soldier, C1, R2 -192.1174 70.4123 2263 -2.728 0.6376
Loot, C2, R3 - Soldier, C1, R3 -624.4323 70.4123 2263 -8.868 <.0001
Loot, C2, R3 - Soldier, C1, R4 -815.6785 70.4123 2263 -11.584 <.0001
Loot, C2, R3 - Soldier, C2, R1 714.4174 70.4123 2263 10.146 <.0001
Loot, C2, R3 - Soldier, C2, R2 499.4564 70.4123 2263 7.093 <.0001
Loot, C2, R3 - Soldier, C2, R3 60.9369 70.4123 2263 0.865 1.0000
Loot, C2, R3 - Soldier, C2, R4 -560.4385 70.4123 2263 -7.959 <.0001
Loot, C2, R4 - Red and black, C1, R1 440.1492 70.4123 2263 6.251 <.0001
Loot, C2, R4 - Red and black, C1, R2 -54.1805 70.4123 2263 -0.769 1.0000
Loot, C2, R4 - Red and black, C1, R3 -290.7195 70.4123 2263 -4.129 0.0142
Loot, C2, R4 - Red and black, C1, R4 -318.3595 70.4123 2263 -4.521 0.0027
Loot, C2, R4 - Red and black, C2, R1 993.6113 70.4123 2263 14.111 <.0001
Loot, C2, R4 - Red and black, C2, R2 706.9226 70.4123 2263 10.040 <.0001
Loot, C2, R4 - Red and black, C2, R3 290.7036 70.4123 2263 4.129 0.0142
Loot, C2, R4 - Red and black, C2, R4 -50.4738 70.4123 2263 -0.717 1.0000
Loot, C2, R4 - Soldier, C1, R1 1007.3374 70.4123 2263 14.306 <.0001
Loot, C2, R4 - Soldier, C1, R2 397.9313 70.4123 2263 5.651 <.0001
Loot, C2, R4 - Soldier, C1, R3 -34.3836 70.4123 2263 -0.488 1.0000
Loot, C2, R4 - Soldier, C1, R4 -225.6297 70.4123 2263 -3.204 0.2684
Loot, C2, R4 - Soldier, C2, R1 1304.4662 70.4123 2263 18.526 <.0001
Loot, C2, R4 - Soldier, C2, R2 1089.5051 70.4123 2263 15.473 <.0001
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Table 8 – Continued from previous page
contrast estimate SE df t.ratio p.value
Loot, C2, R4 - Soldier, C2, R3 650.9856 70.4123 2263 9.245 <.0001
Loot, C2, R4 - Soldier, C2, R4 29.6103 70.4123 2263 0.421 1.0000
Red and black, C1, R1 - Red and black, C1, R2 -494.3297 70.4123 2263 -7.021 <.0001
Red and black, C1, R1 - Red and black, C1, R3 -730.8687 70.4123 2263 -10.380 <.0001
Red and black, C1, R1 - Red and black, C1, R4 -758.5087 70.4123 2263 -10.772 <.0001
Red and black, C1, R1 - Red and black, C2, R1 553.4621 70.4123 2263 7.860 <.0001
Red and black, C1, R1 - Red and black, C2, R2 266.7733 70.4123 2263 3.789 0.0494
Red and black, C1, R1 - Red and black, C2, R3 -149.4456 70.4123 2263 -2.122 0.9655
Red and black, C1, R1 - Red and black, C2, R4 -490.6231 70.4123 2263 -6.968 <.0001
Red and black, C1, R1 - Soldier, C1, R1 567.1882 70.4123 2263 8.055 <.0001
Red and black, C1, R1 - Soldier, C1, R2 -42.2179 70.4123 2263 -0.600 1.0000
Red and black, C1, R1 - Soldier, C1, R3 -474.5328 70.4123 2263 -6.739 <.0001
Red and black, C1, R1 - Soldier, C1, R4 -665.7790 70.4123 2263 -9.455 <.0001
Red and black, C1, R1 - Soldier, C2, R1 864.3169 70.4123 2263 12.275 <.0001
Red and black, C1, R1 - Soldier, C2, R2 649.3559 70.4123 2263 9.222 <.0001
Red and black, C1, R1 - Soldier, C2, R3 210.8364 70.4123 2263 2.994 0.4183
Red and black, C1, R1 - Soldier, C2, R4 -410.5390 70.4123 2263 -5.831 <.0001
Red and black, C1, R2 - Red and black, C1, R3 -236.5390 70.4123 2263 -3.359 0.1824
Red and black, C1, R2 - Red and black, C1, R4 -264.1790 70.4123 2263 -3.752 0.0560
Red and black, C1, R2 - Red and black, C2, R1 1047.7918 70.4123 2263 14.881 <.0001
Red and black, C1, R2 - Red and black, C2, R2 761.1031 70.4123 2263 10.809 <.0001
Red and black, C1, R2 - Red and black, C2, R3 344.8841 70.4123 2263 4.898 0.0005
Red and black, C1, R2 - Red and black, C2, R4 3.7067 70.4123 2263 0.053 1.0000
Red and black, C1, R2 - Soldier, C1, R1 1061.5179 70.4123 2263 15.076 <.0001
Red and black, C1, R2 - Soldier, C1, R2 452.1118 70.4123 2263 6.421 <.0001
Red and black, C1, R2 - Soldier, C1, R3 19.7969 70.4123 2263 0.281 1.0000
Red and black, C1, R2 - Soldier, C1, R4 -171.4492 70.4123 2263 -2.435 0.8474
Red and black, C1, R2 - Soldier, C2, R1 1358.6467 70.4123 2263 19.296 <.0001
Red and black, C1, R2 - Soldier, C2, R2 1143.6856 70.4123 2263 16.243 <.0001
Red and black, C1, R2 - Soldier, C2, R3 705.1662 70.4123 2263 10.015 <.0001
Red and black, C1, R2 - Soldier, C2, R4 83.7908 70.4123 2263 1.190 1.0000
Red and black, C1, R3 - Red and black, C1, R4 -27.6400 70.4123 2263 -0.393 1.0000
Red and black, C1, R3 - Red and black, C2, R1 1284.3308 70.4123 2263 18.240 <.0001
Red and black, C1, R3 - Red and black, C2, R2 997.6421 70.4123 2263 14.169 <.0001
Red and black, C1, R3 - Red and black, C2, R3 581.4231 70.4123 2263 8.257 <.0001
Red and black, C1, R3 - Red and black, C2, R4 240.2456 70.4123 2263 3.412 0.1582
Red and black, C1, R3 - Soldier, C1, R1 1298.0569 70.4123 2263 18.435 <.0001
Red and black, C1, R3 - Soldier, C1, R2 688.6508 70.4123 2263 9.780 <.0001
Red and black, C1, R3 - Soldier, C1, R3 256.3359 70.4123 2263 3.640 0.0804
Red and black, C1, R3 - Soldier, C1, R4 65.0897 70.4123 2263 0.924 1.0000
Red and black, C1, R3 - Soldier, C2, R1 1595.1856 70.4123 2263 22.655 <.0001
Red and black, C1, R3 - Soldier, C2, R2 1380.2246 70.4123 2263 19.602 <.0001
Red and black, C1, R3 - Soldier, C2, R3 941.7051 70.4123 2263 13.374 <.0001
Red and black, C1, R3 - Soldier, C2, R4 320.3297 70.4123 2263 4.549 0.0024
Red and black, C1, R4 - Red and black, C2, R1 1311.9708 70.4123 2263 18.633 <.0001
Red and black, C1, R4 - Red and black, C2, R2 1025.2821 70.4123 2263 14.561 <.0001
Red and black, C1, R4 - Red and black, C2, R3 609.0631 70.4123 2263 8.650 <.0001
Red and black, C1, R4 - Red and black, C2, R4 267.8856 70.4123 2263 3.805 0.0468
Red and black, C1, R4 - Soldier, C1, R1 1325.6969 70.4123 2263 18.828 <.0001
Red and black, C1, R4 - Soldier, C1, R2 716.2908 70.4123 2263 10.173 <.0001
Red and black, C1, R4 - Soldier, C1, R3 283.9759 70.4123 2263 4.033 0.0205
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contrast estimate SE df t.ratio p.value
Red and black, C1, R4 - Soldier, C1, R4 92.7297 70.4123 2263 1.317 1.0000
Red and black, C1, R4 - Soldier, C2, R1 1622.8256 70.4123 2263 23.047 <.0001
Red and black, C1, R4 - Soldier, C2, R2 1407.8646 70.4123 2263 19.995 <.0001
Red and black, C1, R4 - Soldier, C2, R3 969.3451 70.4123 2263 13.767 <.0001
Red and black, C1, R4 - Soldier, C2, R4 347.9697 70.4123 2263 4.942 0.0004
Red and black, C2, R1 - Red and black, C2, R2 -286.6887 70.4123 2263 -4.072 0.0177
Red and black, C2, R1 - Red and black, C2, R3 -702.9077 70.4123 2263 -9.983 <.0001
Red and black, C2, R1 - Red and black, C2, R4 -1044.0851 70.4123 2263 -14.828 <.0001
Red and black, C2, R1 - Soldier, C1, R1 13.7262 70.4123 2263 0.195 1.0000
Red and black, C2, R1 - Soldier, C1, R2 -595.6800 70.4123 2263 -8.460 <.0001
Red and black, C2, R1 - Soldier, C1, R3 -1027.9949 70.4123 2263 -14.600 <.0001
Red and black, C2, R1 - Soldier, C1, R4 -1219.2410 70.4123 2263 -17.316 <.0001
Red and black, C2, R1 - Soldier, C2, R1 310.8549 70.4123 2263 4.415 0.0044
Red and black, C2, R1 - Soldier, C2, R2 95.8938 70.4123 2263 1.362 1.0000
Red and black, C2, R1 - Soldier, C2, R3 -342.6256 70.4123 2263 -4.866 0.0006
Red and black, C2, R1 - Soldier, C2, R4 -964.0010 70.4123 2263 -13.691 <.0001
Red and black, C2, R2 - Red and black, C2, R3 -416.2190 70.4123 2263 -5.911 <.0001
Red and black, C2, R2 - Red and black, C2, R4 -757.3964 70.4123 2263 -10.757 <.0001
Red and black, C2, R2 - Soldier, C1, R1 300.4149 70.4123 2263 4.267 0.0081
Red and black, C2, R2 - Soldier, C1, R2 -308.9913 70.4123 2263 -4.388 0.0049
Red and black, C2, R2 - Soldier, C1, R3 -741.3062 70.4123 2263 -10.528 <.0001
Red and black, C2, R2 - Soldier, C1, R4 -932.5523 70.4123 2263 -13.244 <.0001
Red and black, C2, R2 - Soldier, C2, R1 597.5436 70.4123 2263 8.486 <.0001
Red and black, C2, R2 - Soldier, C2, R2 382.5826 70.4123 2263 5.433 <.0001
Red and black, C2, R2 - Soldier, C2, R3 -55.9369 70.4123 2263 -0.794 1.0000
Red and black, C2, R2 - Soldier, C2, R4 -677.3123 70.4123 2263 -9.619 <.0001
Red and black, C2, R3 - Red and black, C2, R4 -341.1774 70.4123 2263 -4.845 0.0006
Red and black, C2, R3 - Soldier, C1, R1 716.6338 70.4123 2263 10.178 <.0001
Red and black, C2, R3 - Soldier, C1, R2 107.2277 70.4123 2263 1.523 0.9999
Red and black, C2, R3 - Soldier, C1, R3 -325.0872 70.4123 2263 -4.617 0.0018
Red and black, C2, R3 - Soldier, C1, R4 -516.3333 70.4123 2263 -7.333 <.0001
Red and black, C2, R3 - Soldier, C2, R1 1013.7626 70.4123 2263 14.398 <.0001
Red and black, C2, R3 - Soldier, C2, R2 798.8015 70.4123 2263 11.345 <.0001
Red and black, C2, R3 - Soldier, C2, R3 360.2821 70.4123 2263 5.117 0.0002
Red and black, C2, R3 - Soldier, C2, R4 -261.0933 70.4123 2263 -3.708 0.0647
Red and black, C2, R4 - Soldier, C1, R1 1057.8113 70.4123 2263 15.023 <.0001
Red and black, C2, R4 - Soldier, C1, R2 448.4051 70.4123 2263 6.368 <.0001
Red and black, C2, R4 - Soldier, C1, R3 16.0903 70.4123 2263 0.229 1.0000
Red and black, C2, R4 - Soldier, C1, R4 -175.1559 70.4123 2263 -2.488 0.8158
Red and black, C2, R4 - Soldier, C2, R1 1354.9400 70.4123 2263 19.243 <.0001
Red and black, C2, R4 - Soldier, C2, R2 1139.9790 70.4123 2263 16.190 <.0001
Red and black, C2, R4 - Soldier, C2, R3 701.4595 70.4123 2263 9.962 <.0001
Red and black, C2, R4 - Soldier, C2, R4 80.0841 70.4123 2263 1.137 1.0000
Soldier, C1, R1 - Soldier, C1, R2 -609.4062 70.4123 2263 -8.655 <.0001
Soldier, C1, R1 - Soldier, C1, R3 -1041.7210 70.4123 2263 -14.795 <.0001
Soldier, C1, R1 - Soldier, C1, R4 -1232.9672 70.4123 2263 -17.511 <.0001
Soldier, C1, R1 - Soldier, C2, R1 297.1287 70.4123 2263 4.220 0.0099
Soldier, C1, R1 - Soldier, C2, R2 82.1677 70.4123 2263 1.167 1.0000
Soldier, C1, R1 - Soldier, C2, R3 -356.3518 70.4123 2263 -5.061 0.0002
Soldier, C1, R1 - Soldier, C2, R4 -977.7272 70.4123 2263 -13.886 <.0001
Soldier, C1, R2 - Soldier, C1, R3 -432.3149 70.4123 2263 -6.140 <.0001
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Table 8 – Continued from previous page
contrast estimate SE df t.ratio p.value
Soldier, C1, R2 - Soldier, C1, R4 -623.5610 70.4123 2263 -8.856 <.0001
Soldier, C1, R2 - Soldier, C2, R1 906.5349 70.4123 2263 12.875 <.0001
Soldier, C1, R2 - Soldier, C2, R2 691.5738 70.4123 2263 9.822 <.0001
Soldier, C1, R2 - Soldier, C2, R3 253.0544 70.4123 2263 3.594 0.0931
Soldier, C1, R2 - Soldier, C2, R4 -368.3210 70.4123 2263 -5.231 0.0001
Soldier, C1, R3 - Soldier, C1, R4 -191.2462 70.4123 2263 -2.716 0.6477
Soldier, C1, R3 - Soldier, C2, R1 1338.8497 70.4123 2263 19.014 <.0001
Soldier, C1, R3 - Soldier, C2, R2 1123.8887 70.4123 2263 15.962 <.0001
Soldier, C1, R3 - Soldier, C2, R3 685.3692 70.4123 2263 9.734 <.0001
Soldier, C1, R3 - Soldier, C2, R4 63.9938 70.4123 2263 0.909 1.0000
Soldier, C1, R4 - Soldier, C2, R1 1530.0959 70.4123 2263 21.731 <.0001
Soldier, C1, R4 - Soldier, C2, R2 1315.1349 70.4123 2263 18.678 <.0001
Soldier, C1, R4 - Soldier, C2, R3 876.6154 70.4123 2263 12.450 <.0001
Soldier, C1, R4 - Soldier, C2, R4 255.2400 70.4123 2263 3.625 0.0845
Soldier, C2, R1 - Soldier, C2, R2 -214.9610 70.4123 2263 -3.053 0.3731
Soldier, C2, R1 - Soldier, C2, R3 -653.4805 70.4123 2263 -9.281 <.0001
Soldier, C2, R1 - Soldier, C2, R4 -1274.8559 70.4123 2263 -18.106 <.0001
Soldier, C2, R2 - Soldier, C2, R3 -438.5195 70.4123 2263 -6.228 <.0001
Soldier, C2, R2 - Soldier, C2, R4 -1059.8949 70.4123 2263 -15.053 <.0001
Soldier, C2, R3 - Soldier, C2, R4 -621.3754 70.4123 2263 -8.825 <.0001
Results are averaged over the levels of: DoF

Degrees-of-freedom method: kenward-roger

P value adjustment: tukey method for comparing a family of 32 estimates

Table 9: Contrast test between factors DoF and Content

contrast estimate SE df t.ratio p.value
C1, R1 - C1, R2 -263.7783 40.7258 2294 -6.477 <.0001
C1, R1 - C1, R3 -803.3192 40.7258 2294 -19.725 <.0001
C1, R1 - C1, R4 -962.2388 40.7258 2294 -23.627 <.0001
C1, R1 - C2, R1 281.7562 40.7258 2294 6.918 <.0001
C1, R1 - C2, R2 -140.8103 40.7258 2294 -3.458 0.0129
C1, R1 - C2, R3 -654.9223 40.7258 2294 -16.081 <.0001
C1, R1 - C2, R4 -925.6729 40.7258 2294 -22.729 <.0001
C1, R2 - C1, R3 -539.5409 40.7258 2294 -13.248 <.0001
C1, R2 - C1, R4 -698.4605 40.7258 2294 -17.150 <.0001
C1, R2 - C2, R1 545.5345 40.7258 2294 13.395 <.0001
C1, R2 - C2, R2 122.9681 40.7258 2294 3.019 0.0521
C1, R2 - C2, R3 -391.1440 40.7258 2294 -9.604 <.0001
C1, R2 - C2, R4 -661.8946 40.7258 2294 -16.252 <.0001
C1, R3 - C1, R4 -158.9196 40.7258 2294 -3.902 0.0025
C1, R3 - C2, R1 1085.0754 40.7258 2294 26.643 <.0001
C1, R3 - C2, R2 662.5090 40.7258 2294 16.268 <.0001
C1, R3 - C2, R3 148.3969 40.7258 2294 3.644 0.0067
C1, R3 - C2, R4 -122.3537 40.7258 2294 -3.004 0.0544
C1, R4 - C2, R1 1243.9950 40.7258 2294 30.546 <.0001
C1, R4 - C2, R2 821.4286 40.7258 2294 20.170 <.0001
C1, R4 - C2, R3 307.3165 40.7258 2294 7.546 <.0001
C1, R4 - C2, R4 36.5659 40.7258 2294 0.898 0.9863
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Table 9 – Continued from previous page
contrast estimate SE df t.ratio p.value
C2, R1 - C2, R2 -422.5664 40.7258 2294 -10.376 <.0001
C2, R1 - C2, R3 -936.6785 40.7258 2294 -23.000 <.0001
C2, R1 - C2, R4 -1207.4291 40.7258 2294 -29.648 <.0001
C2, R2 - C2, R3 -514.1121 40.7258 2294 -12.624 <.0001
C2, R2 - C2, R4 -784.8627 40.7258 2294 -19.272 <.0001
C2, R3 - C2, R4 -270.7506 40.7258 2294 -6.648 <.0001
Results are averaged over the levels of: DoF, Contents

Degrees-of-freedom method: kenward-roger

P value adjustment: tukey method for comparing a family of 8 estimates
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