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LATTICE REFORMULATION CUTS\ast 

KAREN AARDAL\dagger , ANDREA LODI\ddagger , ANDREA TRAMONTANI\S , FREDERIK VON

HEYMANN\P , AND LAURENCE A. WOLSEY\| 

Abstract. Here we consider the question whether the lattice reformulation of a linear integer
program can be used to produce effective cutting planes. In particular, we aim at deriving split cuts
that cut off more of the integrality gap than Gomory mixed-integer (GMI) inequalities generated
from LP-tableaus, while being less computationally demanding than generating the split closure. We
consider integer programs (IPs) in the form max\{ \bfitc \bfitx | \bfitA \bfitx = \bfitb ,\bfitx \in \BbbZ n

+\} , where the reformulation

takes the form max\{ \bfitc \bfitx 0 + \bfitc \bfitQ \bfitmu | \bfitQ \bfitmu \geq  - \bfitx 0, \bfitmu \in \BbbZ n - m\} , where \bfitQ is an n \times (n  - m) integer
matrix. Working on an optimal LP-tableau in the \bfitmu -space allows us to generate n  - m GMIs in
addition to the m GMIs associated with the optimal tableau in the \bfitx space. These provide new cuts
that can be seen as GMIs associated to n  - m nonelementary split directions associated with the
reformulation matrix \bfitQ . On the other hand it turns out that the corner polyhedra associated to an
LP basis and the GMI or split closures are the same whether working in the \bfitx or \bfitmu spaces. Our
theoretical derivations are accompanied by an illustrative computational study. The computations
show that the effectiveness of the cuts generated by this approach depends on the quality of the
reformulation obtained by the reduced basis algorithm used to generate \bfitQ and that it is worthwhile
to generate several rounds of such cuts. However, the effectiveness of the cuts deteriorates as the
number of constraints is increased.
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1. Introduction. In a series of papers Aardal et al. [3, 4, 1] have shown that
certain integer programs that cannot be solved by a standard mixed integer program-
ming (MIP) solver can be solved by using a lattice-reformulation of the problem. This
raises the question studied here of whether such a lattice-reformulation can also be
used to produce effective cutting planes.

Specifically we consider pure integer programs (IPs) in the form

(1.1) max\{ \bfitc \bfitx | \bfitA \bfitx = \bfitb ,\bfitx \in \BbbZ n
+\} ,

where \bfitA \in \BbbZ m\times n, \bfitb \in \BbbZ m, \bfitc \in \BbbZ n with rank(\bfitA ) = m and n > m. Let P = \{ \bfitx \in 
\BbbR n

+ | \bfitA \bfitx = \bfitb \} and S = P \cap \BbbZ n.
The reformulation takes the form

(1.2) max\{ \bfitc \bfitx 0 + \bfitc \bfitQ \bfitmu | \bfitQ \bfitmu \geq  - \bfitx 0, \bfitmu \in \BbbZ n - m\} ,
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where\bfitQ is an n\times (n - m) integer matrix and \bfitx 0 is a point satisfying\bfitA \bfitx 0 = \bfitb , \bfitx 0 \in \BbbZ n.
Here we let \^P = \{ \bfitmu \in \BbbR n - m : \bfitQ \bfitmu \geq  - \bfitx 0\} and \^S = \^P \cap \BbbZ n - m. The integer sets S
and \^S are related: \bfitx \in S if and only if there exists \bfitmu \in \^S with \bfitx = \bfitx 0 +\bfitQ \bfitmu , or in
other words S =projx\{ (\bfitx ,\bfitmu ) : \bfitx = \bfitx 0 +\bfitQ \bfitmu ,\bfitmu \in \^S\} .

Our idea is based on the computational experience with branch and bound on \^P
rather than on P . Branching in unit directions on \^P has proven to be computationally
more effective for certain problem types; see, e.g., [4, 1]. Here, we generate Gomory
mixed-integer (GMI) cuts [24] from \^P , which are not necessarily tableau cuts for P
but still computationally easy to generate.

A first practical observation is that if one considers the reformulated problem
(1.2), one can generate (n  - m) potentially different Chv\'atal--Gomory (CG) [12] or
GMI cuts off an optimal linear program (LP) tableau. Here we will concentrate on
GMI cuts (also viewed as split cuts [14]) that will be called (lattice) \ell -cuts. The study
of sets P, \^P , S, \^S and the proposed \ell -cuts raises a series of questions both theoretical
and computational. For example:

- What is the relationship between P and \^P?
- Given a point \bfitmu \in \^S, what is the corresponding point \bfitx \in S, and vice versa?
- How strong are the \ell -cuts when expressed in the \bfitx -space?
- Are the corner polyhedra associated to a basis in the \bfitx and \bfitmu spaces the
same?

- What, if any, is the relationship between the GMI or split closures of P and
\^P?

Computational questions that we investigate are:
- How effective are the \ell -cuts?
- Can the \ell -cuts associated to a basis tableau be easily generated in the \bfitx -
space?

Lattice reformulation of (mixed) integer optimization problems was introduced
by Lenstra Jr. [31]. For an overview of results on lattice reformulations and integer
programming we refer to [2]. For some articles, especially related to computational
aspects, see [15, 32, 28, 5].

We now point to some related computational work on cutting planes. Bonami et
al. [10] observed that one round of GMI inequalities generated from an optimal basic
solution closed 24\% of the integrality gap on average on 43 mixed integer MIPLIB
3.0 [8] instances. Cornu\'ejols et al. [17] suggested to multiply a row in the optimal
LP tableau by an integer k and then derive a GMI off of the resulting row. They
called a cut generated in this way a k-cut. The standard tableau GMI inequality is a
k-cut with k = 1. One motivation behind this approach is to create a large fractional
right-hand side of the resulting tableau row as this intuitively could lead to a stronger
inequality. Whether the inequality actually is stronger of course depends on the left-
hand side coefficients as well. Later Cornu\'ejols [16] suggested that one should look for
deep split cuts that can be separated efficiently. This is also the viewpoint taken here.

An alternative, but very costly approach, is to generate all the inequalities from
a given family, known as the closure. Balas and Saxena [7] performed a computa-
tional study of the split inequalities and concluded that the split closure closed 73\%
of the integrality gap, on average, on 41 mixed integer MIPLIB 3.0 instances, and
72\%, on average, on 24 pure integer MIPLIB 3.0 instances. It is, however, NP-hard
to optimize a linear function over the split closure [11], so achieving these results is
computationally expensive. Of course, a vast literature has been devoted to computa-
tionally viable ways of approximating the split closure; see, e.g., Dash and Goycoolea
[19] and Fischetti and Salvagnin [23].
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Our research aims to investigate \ell -cuts, which can be separated in polynomial
time, and their effectiveness in improving on the bounds obtained from easy-to-
generate GMIs, such as tableau GMIs and k-cuts.

In section 2 we present the background material we need concerning inequalities
and lattices. In section 3 we see that most of the theoretical questions have simple
and perhaps surprising answers. In particular, even though the GMI/split cuts gen-
erated may be different, the GMI/split closures are the same. We give a description
of our approach for generating violated inequalities in section 4 and present our com-
putational results comparing different possible variants in section 5. Finally, some
conclusions are drawn in section 6.

2. Background.

2.1. GMI inequalities and split inequalities. We define GMI inequalities
and split inequalities, k-cuts, and closures. For a more general exposition we refer the
reader to [13, 34].

Consider the single row mixed-integer set

X =

\left\{   (\bfitx ,\bfity ) \in \BbbZ n
+ \times \BbbR p

+ | 
n\sum 

j=1

ajxj +

p\sum 
j=1

gjyj = b

\right\}   (2.1)

and suppose that b \not \in \BbbZ . Let
b := \lfloor b\rfloor + f0 with 0 < f0 < 1,
aj := \lfloor aj\rfloor + fj with 0 \leq fj < 1.

The GMI inequality [24] for X is

(2.2)
\sum 

\{ j:fj\leq f0\} 

fj
f0

xj +
\sum 

\{ j:fj>f0\} 

1 - fj
1 - f0

xj +
\sum 

\{ j:gj>0\} 

gj
f0

yj  - 
\sum 

\{ j:gj<0\} 

gj
1 - f0

yj \geq 1 .

If the row (2.1) is a row from a simplex tableau of a linear relaxation, the associated
GMI inequality is referred to as a tableau GMI inequality.

Cornu\'ejols et al. [17] introduced k-cuts, which are cuts that are obtained by first
multiplying (2.1) from an optimal tableau in which one of the \bfitx -variables is basic by
an integer k and then deriving the GMI inequality. In this paper we introduce \ell -cuts,
which are tableau GMI cuts derived from an optimal tableau of the LP-relaxation of
(1.2). In sections 3 and 4 we explain how to generate these cuts in the space of the
\bfitx -variables.

Let T be a polyhedron in \BbbR n+p. Next, we consider a mixed integer set T \cap (\BbbZ n \times 
\BbbR p). For a given (\bfitpi , \pi 0) \in \BbbZ n+1 we define

\Pi 1 := T \cap \{ (\bfitx ,\bfity ) \in \BbbZ n \times \BbbR p | \bfitpi \bfitx \leq \pi 0\} ,
\Pi 2 := T \cap \{ (\bfitx ,\bfity ) \in \BbbZ n \times \BbbR p | \bfitpi \bfitx \geq \pi 0 + 1\} .

An inequality \bfitalpha \bfitx + \bfitgamma \bfity \leq \beta is called a split inequality [14] if there exists a
(\bfitpi , \pi 0) \in \BbbZ n+1 such that \bfitalpha \bfitx + \bfitgamma \bfity \leq \beta is valid for \Pi 1 \cup \Pi 2. The disjunction \bfitpi \bfitx \leq 
\pi 0 \vee \bfitpi \bfitx \geq \pi 0 + 1 is called a split disjunction. The GMI inequality can be viewed as
a split inequality for (2.1) with the split in which \pi j = \lfloor aj\rfloor if fj \leq f0, \pi j = \lceil aj\rceil if
fj > f0 and \pi 0 = \lfloor b\rfloor .

The elementary closure, or simply the closure, associated with a family F of
inequalities valid for T \cap (\BbbZ n\times \BbbR p) is the convex set obtained as the intersection of all
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inequalities in F . It is known that the split closure and the GMI closure are equivalent
[35] and that the separation problem for the split closure is NP-hard [11].

Observation 2.1. If X is replaced by

\=X =

\left\{   (\bfitx ,\bfity ) \in \BbbZ n
+ \times \BbbR p

+ | 
n\sum 

j=1

\=ajxj +

p\sum 
j=1

gjyj = \=b

\right\}   ,

where \=aj \equiv aj mod 1 for 1 \leq j \leq n and \=b \equiv b mod 1, the GMI (2.2) for X and the
GMI for \=X are the same inequality.

2.2. Lattices and lattice reformulation. Given l \leq n linearly independent
vectors \bfitb 1, . . . \bfitb l \in \BbbR n, the set L(\bfitb 1, . . . , \bfitb l) := \{ 

\sum l
i=1 ci\bfitb i, ci \in \BbbZ \} is called the lattice

generated by \bfitb 1, . . . \bfitb l. The vectors \bfitb 1, . . . \bfitb l are called a lattice basis, and we often
represent them as a matrix \bfitB = (\bfitb 1, . . . \bfitb l). Given a lattice L generated by \bfitB , the
basis \bfitB \prime is an alternative basis for L if and only if we can write \bfitB \prime = \bfitB \bfitU , where \bfitU 
is an l \times l unimodular matrix.

We now can explain the reformulation of the IP

(1.1) max\{ \bfitc \bfitx | \bfitA \bfitx = \bfitb , \bfitx \in \BbbZ n
+\} ,

presented in section 1, due to Aardal et al. [3]. The set ker\BbbZ (\bfitA ) = \{ \bfitx \in \BbbZ n | \bfitA \bfitx = 0\} 
is a lattice, called the kernel lattice of \bfitA .

Suppose \bfitx is a feasible solution in (1.1). If \bfitx 0 \in \BbbZ n satisfies \bfitA \bfitx 0 = \bfitb , it follows
that \bfitA (\bfitx  - \bfitx 0) = 0 and thus, if \bfitQ is a lattice basis for ker\BbbZ (\bfitA ), this is equivalent to
(\bfitx  - \bfitx 0) = \bfitQ \bfitmu , where \bfitmu \in \BbbZ n - m. Now substituting \bfitx = \bfitx 0 +\bfitQ \bfitmu and using \bfitx \geq 0
gives the reformulation

(1.2) max\{ \bfitc (\bfitx 0 +\bfitQ \bfitmu ) | \bfitQ \bfitmu \geq  - \bfitx 0,\bfitmu \in \BbbZ n - m\} .

Let L be a lattice in a Euclidean vector space E. A subset K \subseteq L is called a pure
sublattice of L if there exists a linear subspace D of E such that K = D \cap L.

A matrix \bfitA \in \BbbZ m\times n of full row rank is in Hermite normal form if it has the form
HNF(\bfitA ) = (\bfitH ,0m\times (n - m)) = \bfitA \bfitU , where \bfitH is a lower triangular nonnegative m\times m
matrix in which the unique row maxima can be found along the diagonal, and \bfitU is
an n\times n unimodular matrix.

Observation 2.2. A lattice L generated by the basis \bfitB = (\bfitb 1, . . . , \bfitb l) is a pure
sublattice of the standard lattice \BbbZ n if and only if HNF(\bfitB \sansT ) = (\bfitI ,0).

Observation 2.3. The lattice ker\BbbZ (\bfitA ) is a pure sublattice of \BbbZ n.

Theorem 2.4 (see Schrijver [37, Theorem 5.2]).The Hermite normal form (\bfitH ,0)
of a rational matrix \bfitA of full row rank has size polynomially bounded by the size of
\bfitA . Moreover, there exists a unimodular matrix \bfitU with \bfitA \bfitU = (\bfitH ,0) such that the
size of \bfitU is polynomially bounded by the size of \bfitA .

Proposition 2.5 (see Schrijver [37, Corollary 5.3a]). Given a rational matrix
\bfitA of full row rank, a unimodular matrix \bfitU such that \bfitA \bfitU is in Hermite normal form
can be found in polynomial time.

3. Relations between solutions and polyhedra in \bfitx - and \bfitmu -space. Here
we establish answers to the theoretical questions raised in the introduction.
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3.1. Expressing \bfitmu \in \^\bfitS as a function of \bfitx \in \bfitS . The lattice reformulation
gives a way of expressing each feasible vector \bfitx \in S as a function of \bfitmu . A natural
question is how to express a feasible vector \bfitmu \in \^S as a function of \bfitx . In particular, this
is our prime tool for generating general disjunctions for deriving split inequalities, as
described in more detail in section 4. Notice that, if the full instance is reformulated,
it would of course be possible to perform all computations using the reformulation
only. However, in a more general context, one could have large and heterogeneous
problems and reformulate only one part of the constraints and of the variables---those
that correspond to a clean structure on which the reformulation is expected to be
effective. In addition, it is often desirable to work in the \bfitx -space as the meaning of
these variables is clear to the user. Those considerations motivate us to derive a way
to translate information from the \bfitmu -space back to the \bfitx -space.

A consequence of ker\BbbZ (\bfitA ) being a pure sublattice of \BbbZ n, and of Theorem 2.4 and
Proposition 2.5, is that we can find, in polynomial time, a unimodular matrix \bfitU such
that

(3.1) \bfitU \sansT \bfitQ =

\biggl( 
\bfitI 

0

\biggr) 
.

Let \bfitW be the matrix consisting of the first n - m rows of \bfitU \sansT as in (3.1). Since \bfitW is
a submatrix of \bfitU \sansT it follows that all elements of \bfitW are integral. It is also clear that

(3.2) \bfitW \bfitQ = \bfitI .

This was also observed by Mehrotra and Li [33]. Note that \bfitW in general is not
unique: given a matrix \bfitW , we can form a matrix \bfitW \prime = \bfitW +\bfitC , where \bfitC is an integer
(n - m)\times n matrix consisting of rows obtained by taking an integer linear combination
of rows of \bfitA . The matrix \bfitW permits us to translate an expression in \bfitmu -variables back
to an expression in \bfitx -variables. Specifically we have \bfitW \bfitx = \bfitW \bfitx 0 +\bfitW \bfitQ \bfitmu , and thus

\bfitmu = \bfitW \bfitx  - \bfitW \bfitx 0 .

3.2. Relations between bases and polyhedra in the \bfitx - and \bfitmu -spaces.
Let \bfitB be an m\times m nonsingular submatrix of \bfitA . Such a basis exists as rank(\bfitA ) = m.
Given basis \bfitB , we examine the corresponding partitions of \bfitA ,\bfitx ,\bfitQ , and \bfitW .

Proposition 3.1. Given \bfitA ,\bfitQ ,\bfitW as described above and a basis \bfitB , write \bfitA =
(\bfitB ,\bfitN ), \bfitQ \sansT = (\bfitQ B ,\bfitQ N ), \bfitx = (\bfitx B ,\bfitx N ), \bfitW = (\bfitW B ,\bfitW N ), and \bfitB \bfitx 0

B +\bfitN \bfitx 0
N = \bfitb .

The following hold:
(i) \bfitQ B =  - \bfitB  - 1\bfitN \bfitQ N ,
(ii) \bfitQ N is nonsingular, and \bfitQ  - 1

N = \bfitW N  - \bfitW B\bfitB 
 - 1\bfitN .

Proof. (i) As\bfitA \bfitQ = 0,\bfitB \bfitQ B+\bfitN \bfitQ N = 0, and, as\bfitB  - 1 exists,\bfitQ B =  - \bfitB  - 1\bfitN \bfitQ N .

(ii) As \bfitW \bfitQ = \bfitI , \bfitW B\bfitQ B + \bfitW N\bfitQ N = \bfitI , and using (i), one has ( - \bfitW B\bfitB 
 - 1\bfitN +

\bfitW N )\bfitQ N = \bfitI . It follows as \bfitQ N and \bfitW N  - \bfitW B\bfitB 
 - 1\bfitN are both (n - m)\times (n - m)

matrices that \bfitQ N is nonsingular and thus \bfitQ  - 1
N = \bfitW N  - \bfitW B\bfitB 

 - 1\bfitN .

Now we show that not only vectors in S and \^S correspond one to one, but that
there is also a one-to-one correspondence between vectors in P and \^P .

Proposition 3.2. Given \bfitA \in \BbbZ m\times n and \bfitb \in \BbbZ m, define P = \{ \bfitx \in \BbbR n
+ | \bfitA \bfitx =

\bfitb \} . Define \^P = \{ \bfitmu \in \BbbR n - m | \bfitQ \bfitmu \geq  - \bfitx 0\} for \bfitQ and \bfitx 0 as given above. The map
f(\bfitmu ) = \bfitQ \bfitmu + \bfitx 0 is a bijective map from \^P to P .
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Proof. Take \=\bfitmu \in \^P , and let \=\bfitx = \bfitQ \=\bfitmu + \bfitx 0. The vector \=\bfitx is nonnegative since
\bfitQ \=\bfitmu \geq  - \bfitx 0. Moreover, \bfitA \=\bfitx = \bfitA \bfitQ \=\bfitmu + \bfitA \bfitx 0 = \bfitA \bfitx 0 = \bfitb , where the second equality
holds since \bfitQ is a basis for ker\BbbZ (\bfitA ).

Take \=\bfitx \in P . Since \bfitQ spans the Euclidean vector space \{ \bfitx \in \BbbR n | \bfitA \bfitx = 0\} , we
can write \=\bfitx as \=\bfitx = \bfitQ \=\bfitmu + \bfitx 0 for some \=\bfitmu \in \BbbR n - m. \=\bfitx \in P implies \=\bfitx \geq 0, and hence
\bfitQ \=\bfitmu + \bfitx 0 \geq 0, so \=\bfitmu \in \^P . Thus the function f is injective.

Finally consider \bfitmu 1,\bfitmu 2 \in \^P with images \bfitx i = \bfitQ \mu i + \bfitx 0 for i = 1, 2. If \bfitx 1 = \bfitx 2,
then \bfitQ (\bfitmu 1 - \bfitmu 2) = 0 implying that \bfitQ N (\bfitmu 1 - \bfitmu 2) = 0, where \bfitQ N is as in Proposition
3.1. But from the Proposition, \bfitQ N is nonsingular, and thus \bfitmu 1 = \bfitmu 2 and the function
f is also surjective.

Now we consider the representation of the basis in the \bfitx - and (\bfitx ,\bfitmu )-spaces.
A basic solution in the \bfitx -space is written as

\bfitx B +\bfitB  - 1\bfitN \bfitx N = \bfitB  - 1\bfitb , \bfitx B ,\bfitx N \geq 0 .

Consider the polyhedron \^P as defined in Proposition 3.2. If we write the con-
straints defining \^P in equality form we notice, from the definition of the reformulation,
that the \bfitx -variables are precisely the slack variables, i.e., \bfitQ \bfitmu  - \bfitx =  - \bfitx 0, or equiva-
lently,

\bfitx  - \bfitQ \bfitmu = \bfitx 0 ,

which we can write, in the (\bfitx ,\bfitmu )-space as

(3.3)

\biggl( 
\bfitx B

\bfitx N

\biggr) 
 - 
\biggl( 

\bfitQ B

\bfitQ N

\biggr) 
\bfitmu =

\biggl( 
\bfitx 0
B

\bfitx 0
N

\biggr) 
.

Observation 3.3. In a basic feasible solution of (3.3), all the \bfitmu -variables are
basic as they are free variables. In addition, m of the slack variables, i.e., m of the
original \bfitx -variables, are basic.

Hence, the basic variables are (\bfitx B ,\bfitmu ). Multiplying the last n - m rows of (3.3)
by  - \bfitQ  - 1

N yields

 - \bfitQ  - 1
N \bfitx N + \bfitI \bfitmu =  - \bfitQ  - 1

N \bfitx 0
N , or equivalently \bfitmu = \bfitQ  - 1

N \bfitx N  - \bfitQ  - 1
N \bfitx 0

N .

Substituting for \bfitmu in the first m rows of (3.3) gives

\bfitx B  - \bfitQ B\bfitQ 
 - 1
N \bfitx N = \bfitx 0

B  - \bfitQ B\bfitQ 
 - 1
N \bfitx 0

N ,

and we obtain an expression for a basic solution:

(3.4)

\biggl( 
\bfitx B

\bfitmu 

\biggr) 
 - 
\biggl( 

\bfitQ B\bfitQ 
 - 1
N

\bfitQ  - 1
N

\biggr) 
\bfitx N =

\biggl( 
\bfitx 0
B  - \bfitQ B\bfitQ 

 - 1
N \bfitx 0

N

 - \bfitQ  - 1
N \bfitx 0

N

\biggr) 
.

Now, using Proposition 3.1, the basic solution (3.4) can be rewritten as\biggl( 
\bfitx B

\bfitmu 

\biggr) 
+

\biggl( 
\bfitB  - 1\bfitN 

 - (\bfitW N  - \bfitW B\bfitB 
 - 1\bfitN )

\biggr) 
\bfitx N =

\biggl( 
\bfitx 0
B +\bfitB  - 1\bfitN \bfitx 0

N

 - (\bfitW N  - \bfitW B\bfitB 
 - 1\bfitN )\bfitx 0

N

\biggr) 

(3.5) =

\biggl( 
\bfitB  - 1\bfitb 

 - (\bfitW N  - \bfitW B\bfitB 
 - 1\bfitN )\bfitx 0

N

\biggr) 
.

From (3.4) we see that, given a basis, the \bfitmu -variables can be expressed solely as a
function of \bfitQ .
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LATTICE REFORMULATION CUTS 2545

We now illustrate the different basis representations in an example.

Example 3.4. Consider an instance with m = 2, n = 5:

(\bfitA | \bfitb ) =
\biggl( 

0 5 3 1 7 9
6 3 0 11 2 14

\biggr) 
.

To obtain a reformulation, one can take

\bfitQ =

\left(      
1  - 3  - 3
3 3 0
0  - 3 4

 - 1 1 2
 - 2  - 1  - 2

\right)      , \bfitx 0 =

\left(      
0
1
1
1
0

\right)      .

A matrix \bfitW corresponding to \bfitQ is

\bfitW =

\left(   - 2  - 1 0  - 4  - 1
 - 2 1 1  - 3 2
 - 3 0 1  - 5 1

\right)  .

For the feasible basis \bfitx B = (x1, x2), the corresponding \bfitx -tableau is\biggl( 
x1

x2

\biggr) 
+

1

30

\biggl( 
 - 9 52  - 11
18 6 42

\biggr) \left(  x3

x4

x5

\right)  =
1

30

\biggl( 
43
54

\biggr) 
.

Now setting \bfitmu = \bfitW \bfitx  - \bfitW \bfitx 0 and eliminating the basic variables \bfitx B by substitution,
the corresponding (\bfitx ,\bfitmu )-tableau consists of the above \bfitx -tableau plus\left(  \mu 1

\mu 2

\mu 3

\right)   - 1

30

\left(  0  - 10  - 10
 - 6 8  - 4
3 6  - 3

\right)  \left(  x3

x4

x5

\right)  =
1

30

\left(  10
 - 2
 - 9

\right)  .

From the \mu 3 row, one has f3 = 27
30 , f4 = 24

30 , f5 = 3
30 , and f0 = 21

30 giving the \ell -cut:

1

3
x3 +

2

3
x4 +

1

7
x5 \geq 1.

We now turn our attention to the group problem associated with the formulations
and the related corner polyhedra [25]. Let \bfitA = (\bfitB , \bfitN ), where \bfitB corresponds
to the basic variables in an optimal solution to the LP-relaxation of (1.1). The
following integer optimization problem is a relaxation of (1.1) obtained by dropping
the nonnegativity constraints on the basic variables \bfitx B :

(3.6) max\{ \bfitc \bfitx | (\bfitB \bfitN )

\biggl( 
\bfitx B

\bfitx N

\biggr) 
= \bfitb , \bfitx N \geq 0, \bfitx B ,\bfitx N integral\} .

Using the relation \bfitB \bfitx B + \bfitN \bfitx N = \bfitb and the integrality of \bfitx B gives the equivalent
formulation of (3.6) as
(3.7)
max\{ \bfitc B\bfitB  - 1\bfitb + (\bfitc N  - \bfitc B\bfitB 

 - 1\bfitN )\bfitx N | \bfitB  - 1\bfitN \bfitx N \equiv \bfitB  - 1\bfitb mod 1, \bfitx N \in \BbbZ n - m
+ \} .

Problem (3.7) is referred to as the group problem [25].
We will now prove that the feasible sets of the group problem are the same whether

we view them in the original \bfitx -space or in the reformulated space.
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2546 AARDAL, LODI, TRAMONTANI, VON HEYMANN, AND WOLSEY

Theorem 3.5. The groups

G = \{ \bfitx N \in \BbbZ n - m
+ | \bfitB  - 1\bfitN \bfitx N \equiv \bfitB  - 1\bfitb mod 1\} 

and

\^G = \{ \bfitx N \in \BbbZ n - m
+ |  - (\bfitW N  - \bfitW B\bfitB 

 - 1\bfitN )\bfitx N \equiv  - (\bfitW N  - \bfitW B\bfitB 
 - 1\bfitN )\bfitx 0

N mod 1\} 

are the same.

Proof. As \bfitW N\bfitx N ,\bfitW N\bfitx 0
N are integer,

\^G = \{ \bfitx N \in \BbbZ n - m
+ | \bfitW B\bfitB 

 - 1\bfitN \bfitx N \equiv \bfitW B\bfitB 
 - 1\bfitN \bfitx 0

N mod 1\} .(3.8)

Now as \bfitW B is an integral matrix, it follows that G \subseteq \^G.
Conversely, take \^G in the form (see (3.4)):

\^G = \{ \bfitx N \in \BbbZ n - m
+ | \bfitQ  - 1

N \bfitx N \equiv \bfitQ  - 1
N \bfitx 0

N mod 1\} .

Suppose \bfitx N \in \^G. As \bfitQ B is an integer matrix, \bfitx N lies in

\{ \bfitx N \in \BbbZ n - m
+ | \bfitQ B\bfitQ 

 - 1
N \bfitx N \equiv \bfitQ B\bfitQ 

 - 1
N \bfitx 0

N mod 1\} ,

which, as \bfitQ B\bfitQ 
 - 1
N =  - \bfitB  - 1\bfitN , is precisely G.

As the order of the groups is given by the determinant, it follows that | det(\bfitB )| =
| det(\bfitQ N )| , and as the corner polyhedron is the convex hull of the solutions to the
group problem, it follows immediately that the corner polyhedra are the same.

Based on Observation 2.1, we see that the \ell -cuts generated from the second set
of equations of (3.4), the second set of equations of (3.5) or from (3.8) are the same.

Observation 3.6. Taking \bfitmu = \bfitW (\bfitx  - \bfitx 0) or \bfitmu \prime = \bfitW B(\bfitx B  - \bfitx 0
B) leads to the

same \ell -cuts because \bfitW N\bfitx N \equiv 0 mod 1 and \bfitW N\bfitx 0
N \equiv 0 mod 1. Therefore a simple

way to obtain the \ell -cuts is to left multiply the \bfitx -tableau by \bfitW B. It follows that \bfitW B

is an m-dimensional generalization of the k in k-cuts. In particular, if m = 1, the
(n  - 1) integer entries of \bfitW B provide us with (n  - 1) k-cuts. On the other hand, if
m > 1, the \ell -cuts can be viewed as multirow tableau cuts; see, e.g., [18].

Now we consider closures. Let PS (PCG) be the split (CG) closure with respect
to P . Analogous notation is used for \^P . We show that the split closures associated
with P and \^P are equivalent.

Theorem 3.7. PS = \{ \bfitx \in \BbbR n | \bfitx = \bfitx 0 +\bfitQ \bfitmu , \bfitmu \in \^PS\} .
Proof. We use the definition of split cuts from [14]. Let (\bfitpi , \pi 0) \in \BbbZ n+1, and let

\bfitalpha \bfitx  - q(\bfitpi \bfitx  - \pi 0) \leq \alpha 0,

\bfitalpha \bfitx + r(\bfitpi \bfitx  - \pi 0  - 1) \leq \alpha 0

be valid inequalities for P with q, r \geq 0. Then, \bfitalpha \bfitx \leq \alpha 0 is valid for
(P \cap \{ \bfitpi \bfitx \leq \pi 0\} )\cup (P \cap \{ \bfitpi \bfitx \geq \pi 0+1\} ). The inequality \bfitalpha \bfitx \leq \alpha 0 is called a split cut.

Substitute \bfitx for \bfitQ \bfitmu + \bfitx 0. Let

\^\bfitpi = \bfitpi \bfitQ ,

\^\pi 0 = \pi 0  - \bfitpi \bfitx 0 ,

\^\bfitalpha = \bfitalpha \bfitQ ,

\^\alpha 0 = \alpha 0  - \bfitalpha \bfitx 0 .
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Notice that (\^\bfitpi , \^\pi 0) \in \BbbZ n - m+1 as \bfitQ and \bfitx 0 are integer. We obtain

\^\bfitalpha \bfitmu  - q(\^\bfitpi \bfitmu  - \^\pi 0) \leq \^\alpha 0,(3.9)

\^\bfitalpha \bfitmu + r(\^\bfitpi \bfitmu  - \^\pi 0  - 1) \leq \^\alpha 0 .(3.10)

If inequalities (3.9) and (3.10) are valid for \^P , then \^\bfitalpha \bfitmu \leq \^\alpha 0 is valid for
( \^P \cap \{ \^\bfitpi \bfitmu \leq \^\pi 0\} ) \cup ( \^P \cap \{ \^\bfitpi \bfitmu \geq \^\pi 0 + 1\} ).

Going from a split cut for \^P to a split cut for P is similar by using \bfitmu = \bfitW (\bfitx  - \bfitx 0)
and using that \bfitW and \bfitx 0 are integer.

Our result also follows as a special case of Theorem 1 in Dash et al. [20], which
was derived independently.

A Chv\'atal--Gomory inequality is a split inequality where one of the sets
(P \cap \{ \bfitpi \bfitx \leq \pi 0\} ) or (P \cap \{ \bfitpi \bfitx \geq \pi 0+1\} ) is empty. The following result can be proved
using the same method as in the proof of Theorem 3.7 together with Proposition 3.2.

Proposition 3.8. PCG = \{ \bfitx \in \BbbR n | \bfitx = \bfitx 0 +\bfitQ \bfitmu , \bfitmu \in \^PCG\} .

4. Separating cuts from lattice reformulations. In subsection 4.1 we give
a high-level description of our approach. In subsection 4.2 we describe three different
reduction methods to derive the basis \bfitQ in the reformulation (1.2). In our computa-
tions we test how the quality of the reduction influences the effectiveness of the cuts
generated. We also describe how to derive the matrix \bfitW in (3.2).

4.1. High-level description of our approach. As discussed in section 3, \ell -
cuts are tableau GMI cuts derived from an optimal tableau in the space of the \bfitmu -
variables. However, they can be generated by working directly in the space of the
\bfitx -variables. The approach for separating \ell -cuts in the space of the \bfitx -variables is as
follows.

Initialization: Generate a reduced basis \bfitQ for ker\BbbZ (\bfitA ) as in (1.2) and a correspond-
ing matrix \bfitW (3.2) as shown in section 4.2.

Iteration t: After the addition of t rounds of \ell -cuts,
1. Solve the resulting linear program and take the rows corresponding to the

\bfitx -variables in the basis. The resulting set of equations is of the form:

\bfitx B +\bfitN \bfitx N + \bfitS N\bfits N = \=\bfitx B ,(4.1)

\bfitx B \in \BbbZ | B| 
+ ,\bfitx N \in \BbbZ | N | 

+ , \bfits N \geq 0,

where \bfitx N are the nonbasic \bfitx -variables, \bfits N are nonbasic slack variables from
previously added cuts, and \bfitN and \bfitS are the associated matrices in this part
of the optimal tableau.

2. For every row \bfitw i of \bfitW B such that \bfitw i\=\bfitx B /\in \BbbZ , left multiply equation (4.1) by
\bfitw i to construct the ``aggregated"" tableau row

(4.2) \bfitw i\bfitx B +\bfitw i\bfitN \bfitx N +\bfitw i\bfitS N\bfits N = \bfitw i\=\bfitx B ,

generate the GMI cut from (4.2) (see (3.8)), and project out the slack variables
\bfits N to get the cut in the space of the structural \bfitx -variables only.

3. Add a selection of the separated cuts to the current LP.
In our implementation we used CPLEX 12.7.0 [26] as the LP solver. In or-

der to avoid numerical issues and prevent separating invalid or numerically unsta-
ble cutting planes, we adopted several tolerances and safeguards. First, cutting
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2548 AARDAL, LODI, TRAMONTANI, VON HEYMANN, AND WOLSEY

planes are generated only from rows (4.2) where \bfitw i\=\bfitx B /\in \BbbZ is fractional enough;
i.e., \bfitw i\=\bfitx B  - \lfloor \bfitw i\=\bfitx B\rfloor \in ]\delta , 1  - \delta [ with \delta = 10 - 3. Second, to limit numerical errors
in the calculation of the aggregated row (4.2), the tableau rows (4.1) are not read
from the final LP matrix factorization of CPLEX but are recalculated from scratch
by aggregating the original rows with the optimal tableau multipliers given by the
inverse of the basis matrix \bfitB  - 1. For cancelation of zero coefficients in (4.2), we use a
tolerance \epsilon = 10 - 10 and, as a further safeguard, we skip the row if the entries of the
basic variables are different from the entries of\bfitw i, using the same tolerance \epsilon = 10 - 10.
Finally, we discard the GMI cuts separated from (4.2) if they have dynamism (i.e.,
ratio between the largest and the smallest absolute value of the nonzero coefficients)
greater than D = 108, as they are deemed to be numerically unstable. We remark
that all of these safeguards are quite customary, and they are applied to all different
types of cuts that we discuss in section 5 (i.e., standard GMIs, k-cuts, and \ell -cuts).

4.2. How to generate the matrices \bfitQ and \bfitW . The reformulation (1.2) is
valid for any basis \bfitQ of the lattice ker\BbbZ (\bfitA ). We will, however, be interested in a basis
that is reduced. To test how the quality of the reduction plays a role in computations,
we consider three different reductions.

4.2.1. Lenstra--Lenstra--Lov\'asz reductions. Given linearly independent vec-
tors \bfitb 1, . . . , \bfitb l \in \BbbR n, the corresponding Gram--Schmidt orthogonalized vectors are

\bfitb \ast 1 = \bfitb 1 ,

\bfitb \ast j = \bfitb j  - 
j - 1\sum 
k=1

\mu jk\bfitb 
\ast 
k, 2 \leq j \leq l , where

\mu jk =
\bfitb \sansT j \bfitb 

\ast 
k

| | \bfitb \ast k| | 2
, 1 \leq k < j \leq l

Definition 4.1 (Lenstra, Lenstra, Lov\'asz [30]). A basis \bfitb 1, \bfitb 2, . . . , \bfitb l is called
LLL-reduced if

| \mu jk| \leq 
1

2
for 1 \leq k < j \leq l ,(4.3)

| | \bfitb \ast j + \mu j,j - 1\bfitb 
\ast 
j - 1| | 2 \geq y \cdot | | \bfitb \ast j - 1| | 2 for 1 < j \leq l(4.4)

for 1
4 < y < 1.

Many quality guarantees can be given for a reduced basis. Well-known guarantees
are that the first reduced basis vector is an approximation of the shortest nonzero
vector in the lattice and that all reduced basis vectors are approximations of the
successive minima of the lattice. We refer to [30] for details. A reduced basis can be
computed in polynomial time, and the larger the parameter y in (4.4), the better the
quality guarantees become.

4.2.2. Korkine--Zolotarev reduction. A basis \bfitb 1, . . . \bfitb l of the lattice L is re-
duced in the sense of Korkine and Zolotarev (KZ-reduced) [27] if it satisfies the fol-
lowing conditions:

1. \bfitb 1 is a shortest nonzero vector of L in the Euclidean norm,
2. | \mu i1| \leq 1

2 for 2 \leq i \leq l,

3. if L(l - 1) denotes the orthogonal projection of L on the orthogonal complement
(\BbbR \bfitb 1)\bot of \BbbR \bfitb 1, then the projections \bfitb i - \mu i1\bfitb 1 of \bfitb 2, . . . , \bfitb l yield a KZ-reduced
basis \bfitb 2  - \mu 21\bfitb 1, . . . , \bfitb l  - \mu l1\bfitb 1 of L(l - 1).
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So, the first basis vector in a KZ-reduced basis is a shortest nonzero lattice vec-
tor. Several other bounds on the quality of such a basis, along with a nonrecursive
definition of a KZ-reduced basis, can be found in [29]. Since a shortest lattice vector
is computed, determining a KZ-reduced basis is computationally much more costly
than determining an LLL-reduced basis.

In our computational study we test the following reduction methods.
LLL-low: LLL reduction with y = 26/100 to test a low-quality reduction.

LLL: LLL reduction with y = 99/100 to test a high-quality basis that is reasonably
fast to compute.

KZ: KZ reduction to test in some sense an ``optimally"" reduced basis.
All the reductions are computed using the NTL library [38]. A possibility would

have been to also include block KZ (BKZ) reduction [36] in our study. BKZ reduction
is a hierarchy of reductions going from LLL-reduction to KZ reduction depending on
the chosen block size. We chose not to include BKZ reduction as the computations
indicated that the LLL reduction with y = 99/100 yields cutting plane results that
are comparable with KZ reduction; see section 5.1.

4.2.3. Computing the matrix \bfitW . As mentioned before, the matrix \bfitW is not
unique. Let \bfite i be the ith column of the (n  - m)-dimensional identity matrix. The
matrix \bfitW can be calculated by computing the Hermite normal form as stated in
Proposition 2.5. However, any method for finding a feasible solution to the n  - m
systems of integer equations

(4.5) \bfitQ \sansT \bfitw i = \bfite i, \bfitw i \in \BbbZ n i = 1, . . . , n - m,

can be used. A valid matrix \bfitW is then obtained by taking the n  - m vectors \bfitw i as
its rows. In our computational study we again use the lattice reformulation technique
described in [3] to derive the vectors \bfitw i, as this technique yields vectors \bfitw i in which
the absolute value of the elements is relatively small. For each of the \bfitQ -matrices
generated according to the three reductions given above, we generated an associated
matrix \bfitW , and the computations for (4.5) are all done using LLL reduction with
y = 99/100.

From the perspective of theoretical runtime, the dominant part of our cutting
plane algorithm is the generation of the matrix \bfitQ that is done in the initialization.
Instead of generating \bfitW as described above, we could use expression (3.4), which
only involves inverting \bfitQ N . The runtime of LLL reduction to generate \bfitQ is
O((n - m)4 log \beta ), where \beta is the length of the longest vector in the input basis.

5. Computational experiments. The goal of the computational experiments
reported in this section is threefold.

\bullet In section 5.1 we compare the strength of \ell -cuts generated from different
reduced bases leading to different \bfitQ /\bfitW pairs as discussed in section 4.2.

\bullet In section 5.2 we compare \ell -cuts from a single\bfitQ /\bfitW pair (the ``best"" discussed
in section 5.1) against standard GMIs and k-cuts [17]. More precisely, we
considered those two families of cutting planes because the former is the
standard reference for cutting plane generation, while the generation of the
latter has some similarities with our approach, as previously discussed.

\bullet In section 5.3 we compare the strength of \ell -cuts from a single \bfitQ /\bfitW pair
obtained by iteratively separating from the tableau, i.e., by increasing the
rank, with approximate closure counterparts (\ell -cuts, lift-and-project, and
split closures), i.e., by optimizing over the row aggregation.
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Our computational investigation is focused on IPs in which all of the constraints
are of knapsack type. In the context of separating \ell -cuts, applying the lattice reformu-
lation to the whole matrix of such problems seems like a natural approach. Moreover,
such problems are expected to be amenable to both k-cuts and \ell -cuts. An alterna-
tive would be to consider MIP problems with different types of constraints for which
subsets of the constraints are treated by the lattice reformulation. Here one would
first have to identify the parts of the problem (if any) on which a lattice reformula-
tion might be effective. Identifying such substructures of general MIPs is a research
project in itself and goes beyond the scope of this paper.

The test instances are obtained as in Cornu\'ejols et al. [17] except that the matrix
coefficients aij , requirements bi, and variable upper bounds hj are required to be
integer. Specifically, the objective function coefficients cj are generated uniformly at
random in [1,1000] and the coefficients aij are integer-generated uniformly at random
in [1,1000]. For binary instances, denoted by ``B"", and for instances with unbounded
integer variables, denoted by ``U"", we compute bi as bi = \lfloor 0.5

\sum n
j=1 aij\rfloor . For instances

with bounded integers, denoted by ``I"", the hj are generated uniformly in [5,10] and
bi = \lfloor 0.5

\sum n
j=1 hjaij\rfloor . We considered equality constrained instances, which are more

suitable for basis reduction techniques, and we focused only on feasible problems, in
order to be able to measure the integrality gap closed by \ell -cuts. Concerning the size
of the problems, we considered instances with 1 row only (m = 1) and number of
variables n varying in \{ 10, 20, 50, 100\} , and multirow instances with m \in \{ 2, 3, 4\} and
n = 50. Despite the relatively small size of the instances, it is worth to remark that
this kind of problems may still be challenging for state-of-the-art MIP solvers. In
particular, none of the instances with m = 4 can be solved to optimality by CPLEX
12.7.0 [26] within 3 hours of time limit on an Intel Xeon 5160 quadcore CPUs machine
running at 3.00 GHz with 8 GB RAM.

Our experiments are focused on strengthening the LP relaxation by separating
cuts in a cutting plane fashion. Specifically, we compare the different types of cuts
by measuring the integrality gap closed by applying 1, 5, or 10 rounds of cuttings
planes to the LP relaxation of the problem. In the tables, we do not report on the
computing times for reformulating the problem and for cut separation because, on the
instances considered in our study, both times appear to be negligible. Concerning the
cut separation, we remark that all considered cut types (GMIs, k-cuts, \ell -cuts) can be
seen as ``tableau"" cuts, as they are separated by applying some basic algebraic opera-
tions and closed formula starting from the inverse of the optimal basis that is readily
available. In our experiments, we did not observe any noticeable difference among
the separation times for the different cut types, which are all a fraction of a second.
Concerning the problem reformulation, performing LLL-reduction on the instances in
our study takes less than a second of CPU time. Of course, the reformulation time
might become an issue on larger instances. The code used in our experiments can be
obtained from the authors upon request.

5.1. Comparing the effect of basis reduction algorithms. In this section,
we examine the effect of the basis reduction method used to generate lattice basis
matrix \bfitQ on the quality of the resulting \ell -cuts. In addition, as a reference, we
compare with GMI cuts. More precisely, we consider the three reduction methods
LLL-low, LLL, and KZ mentioned in section 4.2.

Table 1 reports on the results of the comparisons between GMIs from the optimal
LP tableau, denoted by GMI, \ell -cuts from the reduction method LLL-low, denoted
by \ell -LLL-low, \ell -cuts from the reduction method LLL, denoted by \ell -LLL, \ell -cuts from
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the reduction method KZ, denoted by \ell -KZ, and a combination of GMIs and \ell -LLL,
denoted by GMI + \ell -LLL).

The other column headings are R for the number of rounds of cuts, followed
by n and m for the number of variables and constraints, respectively, and T for
the type of the instance (``B"" for binary instances, ``I"" for instances with bounded
integer variables, ``U"" for instances with unbounded integer variables). Then, for each
approach, we report on the number of cuts generated and the percentage of the gap
that is closed between the optimal LP and IP values, on average over 20 instances.

The results in Table 1 clearly show that the gap closed by \ell -cuts, independently
of the basis reduction method, is significantly larger than that closed by only using
GMIs, but the number of cuts is much larger. Moreover, by using a strongly reduced
lattice basis (\ell -LLL or \ell -KZ), we obtain a significantly larger gap reduction than with
a weaker reduction (\ell -LLL-low). The gaps closed for the \ell -LLL and \ell -KZ reductions
are not significantly different, typically varying by less than 1\%. As the LLL reduc-
tion is much cheaper to compute, we will just report the \ell -LLL results for further
comparisons, although we performed the computation with both, confirming that the
results are very similar.

Concerning the type of instances, we can observe that the gaps closed for un-
bounded integer instances are larger than those for bounded integer instances, which
are in turn larger than those for binary ones. Unfortunately, as the number of rows
increases from 1 to 4, the gaps closed decrease significantly, while, on the bright
side, increasing the number of rounds up to 10 gives nontrivial improvements. Fi-
nally, GMIs very marginally improve on \ell -LLL, which somehow demonstrates that
the strength of \ell -cuts shown by this experiment does not only depend on the number
of cuts generated.

5.2. Comparing \bfitk -cuts and \ell -cuts. In this section, we compare the behavior
of \ell -cuts and k-cuts. More precisely, we separate k-cuts in the following two possible
ways. For each tableau row, with basic variable, say, xj , we

1. multiply the row by all integer values k = 1, . . . , 10, and we thereby generate
10 possibly different k-cuts,

2. multiply the row by all integers wij , i = 1, . . . , n - m, and we generate n - m
possibly different k-cuts.

In other words, we either use ``trivial"" values for k or individual k's from the reduced
basis LLL. Note that, for the latter, k-cuts and \ell -cuts are identical for the special case
of R = 1 and m = 1; see section 4.1.

Table 2 reports on the results of the comparisons among GMIs from the optimal
LP tableau, denoted by GMI, k-cuts of type 1 above, denoted by k - 10, k-cuts of type
2 above, denoted by k-LLL, a combination of GMIs and k-cuts, denoted by GMI + k-
LLL, \ell -cuts from LLL-reduced bases, denoted as before by \ell -LLL, and a combination
of GMIs and \ell -LLL, denoted by GMI+\ell -LLL. (Note that columns GMI, \ell -LLL, and
GMI+\ell -LLL are the same as in Table 1.)

The results in Table 2 clearly show that for R > 1 the gap closed by \ell -LLL is
significantly larger than that closed by k-LLL and with far fewer cuts. Recall that the
entries for k-LLL and \ell -LLL are necessarily identical for R = 1 and m = 1. Moreover,
the gap closed by k-LLL is slightly larger than that of k  - 10 but with more cuts in
general. Finally, the improvement of GMIs + k-LLL with respect to k-LLL is much
more significant than that of GMIs + \ell -LLL with respect to \ell -LLL.

5.3. Comparing rank and row aggregation. In this section, we compare the
use of \ell -cuts in multiple rounds, as in the previous tables, i.e., by using for separation
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Table 1
Comparing how the quality of cuts depend on the basis reduction method.

GMI \ell -LLL-low \ell -LLL \ell -KZ GMI + \ell -LLL

R n m T Cuts \%gap Cuts \%gap Cuts \%gap Cuts \%gap Cuts \%gap

1 10 1 B 1.0 18.61 5.8 44.19 9.0 50.86 9.0 51.21 9.9 51.17
20 1 B 1.0 9.75 6.6 23.08 14.7 34.83 15.2 36.63 15.5 34.88
50 1 B 1.0 12.41 6.3 23.62 15.1 34.40 15.1 33.55 15.4 34.46

100 1 B 1.0 10.66 6.5 25.54 15.3 31.00 12.9 31.16 15.4 31.00
10 1 I 1.0 15.67 6.1 45.63 8.9 55.10 8.9 56.62 9.9 55.23
20 1 I 1.0 13.36 7.2 30.17 14.4 39.88 14.7 41.46 15.4 40.45
50 1 I 1.0 11.59 6.6 20.48 15.5 35.22 15.3 32.62 15.6 35.22

100 1 I 1.0 13.83 7.2 27.72 15.9 34.71 13.8 37.92 16.1 34.71
10 1 U 1.0 37.27 5.3 70.12 7.8 76.65 7.8 74.23 8.6 76.65
20 1 U 1.0 34.88 6.1 65.65 10.4 77.52 11.1 77.48 10.9 77.96
50 1 U 1.0 62.36 4.5 85.17 7.5 92.13 7.5 89.71 7.6 92.13

100 1 U 1.0 64.07 3.4 85.89 5.1 98.59 4.9 98.71 5.3 98.59

50 2 B 2.0 5.31 10.0 9.30 26.6 12.03 31.6 12.32 27.6 12.13
50 3 B 3.0 2.55 11.9 3.62 32.5 5.10 41.8 5.68 34.7 5.19
50 4 B 4.0 1.17 14.8 1.66 37.0 2.06 45.4 2.25 40.4 2.14
50 2 U 2.0 13.02 10.0 22.23 26.6 32.14 31.5 32.58 27.7 32.50
50 3 U 3.0 5.48 11.9 9.34 32.5 12.26 41.7 13.60 34.9 12.68
50 4 U 4.0 3.48 14.9 4.91 37.2 6.95 45.4 7.42 40.4 6.99

5 10 1 B 9.0 35.29 28.2 68.88 36.6 79.98 36.3 81.02 51.8 81.23
20 1 B 10.4 25.32 42.2 47.77 75.3 57.27 79.6 57.93 96.1 57.04
50 1 B 10.5 28.08 44.6 43.38 91.7 51.77 92.4 50.78 100.4 52.06

100 1 B 10.1 28.91 45.8 44.23 95.0 50.46 87.9 50.38 99.5 50.58
10 1 I 8.3 31.12 30.4 68.06 40.3 77.55 40.4 79.05 57.9 77.55
20 1 I 8.0 25.27 41.4 51.85 74.0 65.32 72.6 64.08 91.9 67.32
50 1 I 7.7 22.17 40.9 41.89 88.8 57.70 88.7 54.03 95.2 57.73

100 1 I 7.9 25.27 46.2 48.96 93.3 57.45 87.5 57.45 97.7 59.02
10 1 U 6.6 53.44 17.5 87.47 22.2 95.12 22.7 94.36 30.5 95.58
20 1 U 5.7 57.01 23.2 90.73 29.5 97.82 24.1 99.04 35.0 98.65
50 1 U 4.5 84.83 10.2 94.83 16.6 95.73 15.9 95.03 17.6 95.73

100 1 U 4.1 81.91 8.1 97.67 7.6 100.00 6.4 100.00 8.0 100.00

50 2 B 19.1 11.20 62.0 15.03 141.8 18.09 167.9 18.66 158.8 18.36
50 3 B 25.5 4.66 72.1 5.73 170.4 7.59 210.9 8.30 196.4 7.61
50 4 B 31.1 2.08 85.0 2.68 189.8 3.30 227.4 3.79 224.8 3.36
50 2 U 15.9 19.87 59.2 33.04 139.9 40.10 162.3 40.98 156.2 41.17
50 3 U 21.9 9.75 68.2 14.71 166.9 17.14 208.2 18.51 192.9 17.63
50 4 U 28.2 5.45 81.7 6.87 188.7 9.11 226.9 9.66 222.0 9.18

10 10 1 B 24.6 42.46 55.7 73.29 61.2 82.80 62.1 84.12 98.0 83.78
20 1 B 28.8 31.28 91.0 51.74 149.1 60.55 160.4 61.13 198.8 60.08
50 1 B 30.5 32.59 100.0 45.48 192.6 54.40 194.1 53.39 214.5 54.65

100 1 B 30.4 32.62 102.6 46.52 197.1 54.13 185.4 53.18 206.7 54.19
10 1 I 20.6 38.43 62.2 71.23 74.8 80.21 74.7 81.23 115.9 80.16
20 1 I 21.7 28.71 87.4 57.48 145.8 68.55 143.3 68.61 184.0 70.02
50 1 I 19.2 26.97 88.3 46.20 184.6 61.12 184.8 58.64 201.6 60.96

100 1 I 21.1 28.98 98.4 51.84 191.7 60.43 184.9 60.35 204.5 61.82
10 1 U 14.2 58.53 32.9 91.43 35.8 95.98 36.4 95.91 49.9 96.27
20 1 U 12.8 68.65 39.6 95.33 37.1 99.76 24.7 100.00 39.1 100.00
50 1 U 9.1 89.69 13.9 95.55 19.1 96.52 21.0 95.99 20.2 96.52

100 1 U 7.3 89.50 10.8 99.33 7.6 100.00 6.4 100.00 8.0 100.00

50 2 B 49.2 12.32 133.8 16.04 288.7 18.92 340.3 19.55 330.7 19.04
50 3 B 61.4 5.02 153.1 6.14 345.1 7.85 423.2 8.61 404.1 7.95
50 4 B 71.8 2.27 179.3 2.87 383.5 3.43 455.0 3.93 463.6 3.47
50 2 U 36.5 21.70 124.7 35.30 281.5 42.25 326.5 42.71 318.8 43.02
50 3 U 51.0 10.41 144.0 15.45 336.5 17.93 416.7 19.23 394.2 18.24
50 4 U 62.3 5.77 168.3 7.39 379.0 9.53 453.6 10.12 451.9 9.55
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Table 2
Comparing k-cuts and \ell -cuts.

GMI k  - 10 k-LLL GMI + k-LLL \ell -LLL GMI + \ell -LLL

R n m T Cuts \%gap Cuts \%gap Cuts \%gap Cuts \%gap Cuts \%gap Cuts \%gap

1 10 1 B 1.0 18.61 10.0 34.46 9.0 50.86 9.9 51.17 9.0 50.86 9.9 51.17
20 1 B 1.0 9.75 10.0 23.74 14.7 34.83 15.5 34.88 14.7 34.83 15.5 34.88
50 1 B 1.0 12.41 10.0 26.83 15.1 34.40 15.4 34.46 15.1 34.40 15.4 34.46

100 1 B 1.0 10.66 10.0 29.40 15.3 31.00 15.4 31.00 15.3 31.00 15.4 31.00
10 1 I 1.0 15.67 10.0 30.16 8.9 55.10 9.9 55.23 8.9 55.10 9.9 55.23
20 1 I 1.0 13.36 10.0 30.92 14.4 39.88 15.4 40.45 14.4 39.88 15.4 40.45
50 1 I 1.0 11.59 10.0 24.08 15.5 35.22 15.6 35.22 15.5 35.22 15.6 35.22

100 1 I 1.0 13.83 10.0 31.55 15.9 34.71 16.1 34.71 15.9 34.71 16.1 34.71
10 1 U 1.0 37.27 9.8 66.25 7.8 76.65 8.6 76.65 7.8 76.65 8.6 76.65
20 1 U 1.0 34.88 9.7 74.18 10.4 77.52 10.9 77.96 10.4 77.52 10.9 77.96
50 1 U 1.0 62.36 7.4 87.95 7.5 92.13 7.6 92.13 7.5 92.13 7.6 92.13

100 1 U 1.0 64.07 5.6 98.71 5.1 98.59 5.3 98.59 5.1 98.59 5.3 98.59

50 2 B 2.0 5.31 19.7 10.11 50.0 12.87 50.9 12.87 26.6 12.03 27.6 12.13
50 3 B 3.0 2.55 30.0 4.22 92.5 5.54 94.5 5.61 32.5 5.10 34.7 5.19
50 4 B 4.0 1.17 40.0 2.17 139.7 2.51 142.9 2.53 37.0 2.06 40.4 2.14
50 2 U 2.0 13.02 20.0 24.49 42.7 33.06 43.5 33.14 26.6 32.14 27.7 32.50
50 3 U 3.0 5.48 30.0 11.20 87.9 13.41 89.9 13.58 32.5 12.26 34.9 12.68
50 4 U 4.0 3.48 40.0 6.32 137.2 8.50 139.9 8.50 37.2 6.95 40.4 6.99

5 10 1 B 9.0 35.29 127.6 47.98 105.7 54.14 126.1 62.70 36.6 79.98 51.8 81.23
20 1 B 10.4 25.32 156.1 33.03 235.8 37.52 266.2 45.44 75.3 57.27 96.1 57.04
50 1 B 10.5 28.08 157.8 38.24 283.1 41.54 300.0 42.91 91.7 51.77 100.4 52.06

100 1 B 10.1 28.91 164.0 40.02 261.0 40.92 270.3 41.71 95.0 50.46 99.5 50.58
10 1 I 8.3 31.12 122.9 42.23 140.5 56.14 145.2 64.05 40.3 77.55 57.9 77.55
20 1 I 8.0 25.27 135.1 36.05 234.9 43.39 256.6 49.93 74.0 65.32 91.9 67.32
50 1 I 7.7 22.17 132.9 32.33 236.3 42.28 243.4 44.61 88.8 57.70 95.2 57.73

100 1 I 7.9 25.27 138.9 39.05 254.2 42.27 262.0 43.13 93.3 57.45 97.7 59.02
10 1 U 6.6 53.44 88.9 73.83 68.2 79.29 68.2 83.30 22.2 95.12 30.5 95.58
20 1 U 5.7 57.01 77.8 84.04 98.7 81.13 103.0 87.07 29.5 97.82 35.0 98.65
50 1 U 4.5 84.83 30.9 91.36 43.9 94.87 45.0 94.88 16.6 95.73 17.6 95.73

100 1 U 4.1 81.91 12.8 100.00 16.2 100.00 15.9 100.00 7.6 100.00 8.0 100.00

50 2 B 19.1 11.20 244.3 13.47 675.0 15.27 711.1 15.98 141.8 18.09 158.8 18.36
50 3 B 25.5 4.66 320.6 5.80 1072.4 6.43 1104.2 6.79 170.4 7.59 196.4 7.61
50 4 B 31.1 2.08 372.8 2.79 1439.8 2.74 1472.2 2.97 189.8 3.30 224.8 3.36
50 2 U 15.9 19.87 225.0 28.63 654.0 36.15 663.0 36.99 139.9 40.10 156.2 41.17
50 3 U 21.9 9.75 314.9 13.29 1032.3 14.76 1031.1 15.97 166.9 17.14 192.9 17.63
50 4 U 28.2 5.45 358.6 7.39 1432.1 8.93 1495.8 9.51 188.7 9.11 222.0 9.18

10 10 1 B 24.6 42.46 301.9 52.21 223.9 54.93 300.7 65.92 61.2 82.80 98.0 83.78
20 1 B 28.8 31.28 359.9 37.12 510.0 38.10 645.3 47.84 149.1 60.55 198.8 60.08
50 1 B 30.5 32.59 397.3 40.99 637.5 43.25 688.2 45.17 192.6 54.40 214.5 54.65

100 1 B 30.4 32.62 398.8 42.82 600.7 44.02 624.3 44.82 197.1 54.13 206.7 54.19
10 1 I 20.6 38.43 269.6 44.70 285.8 56.77 318.5 65.69 74.8 80.21 115.9 80.16
20 1 I 21.7 28.71 308.3 37.71 499.9 44.22 551.8 52.77 145.8 68.55 184.0 70.02
50 1 I 19.2 26.97 320.5 34.75 515.2 43.31 532.9 46.65 184.6 61.12 201.6 60.96

100 1 I 21.1 28.98 326.8 43.72 536.0 43.22 541.4 45.74 191.7 60.43 204.5 61.82
10 1 U 14.2 58.53 183.3 76.06 143.6 80.54 143.3 85.03 35.8 95.98 49.9 96.27
20 1 U 12.8 68.65 158.7 87.45 212.3 82.67 212.2 89.62 37.1 99.76 39.1 100.00
50 1 U 9.1 89.69 63.3 92.12 77.9 94.98 75.7 95.04 19.1 96.52 20.2 96.52

100 1 U 7.3 89.50 12.8 100.00 16.2 100.00 15.9 100.00 7.6 100.00 8.0 100.00

50 2 B 49.2 12.32 573.2 14.08 1486.7 15.69 1580.3 16.62 288.7 18.92 330.7 19.04
50 3 B 61.4 5.02 726.6 6.05 2227.4 6.64 2318.9 6.98 345.1 7.85 404.1 7.95
50 4 B 71.8 2.27 847.6 2.90 2895.1 2.84 3035.1 3.07 383.5 3.43 463.6 3.47
50 2 U 36.5 21.70 486.8 29.71 1323.9 36.65 1360.1 38.22 281.5 42.25 318.8 43.02
50 3 U 51.0 10.41 672.9 13.75 2102.6 14.95 2118.5 16.26 336.5 17.93 394.2 18.24
50 4 U 62.3 5.77 760.1 7.64 2812.4 9.00 2960.1 9.65 379.0 9.53 451.9 9.55
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the row aggregation provided by the simplex algorithm, with the case in which we
optimize over the aggregation by solving an LP but we stay at rank 1; i.e., we only use
the original constraints and the \bfitW -matrix. The latter procedure, if iterated, allows us
to compute the approximated strengthened \ell -LLL closure by adapting the algorithm
proposed by Bonami [9] for the strengthened lift-and-project closure. More precisely,

\bullet The strengthened lift-and-project closure of a mixed-integer linear program
is the polyhedron obtained by intersecting all strengthened lift-and-project
cuts [6, 22] obtained from its initial formulation or equivalently all GMIs
read from all tableaus corresponding to feasible and infeasible bases of the
LP relaxation. An approximation of this closure is computed by iteratively
generating lift-and-project cuts and strengthening them by integer lifting; see
[9].

\bullet Analogously, given a reduced \bfitW -matrix to generate rank-1 \ell -cuts, the ap-
proximated strengthened \ell -LLL closure is computed as follows. If \bfitx \ast is the
optimal LP solution and \bfitw ix\ast /\in \BbbZ , one generates an intersection cut [6] on
the disjunction, \bfitw i\bfitx \leq \lfloor \bfitw i\bfitx \ast \rfloor and \bfitw i\bfitx \geq \lceil \bfitw i\bfitx \ast \rceil , which is then strength-
ened. This is repeated for each row i of \bfitW at each iteration until no more
violated cuts are found.

In terms of closures, the comparison is completed by reporting on the results for the
split closure. Exploiting the result reported [21] that shows the equivalence between
the split closure and the mixed-integer rounding (MIR) closure, the split closure is
computed by iteratively separating violated MIR cuts through the solution of a mixed-
integer program as in [21].

Table 3 reports on the results on the comparisons between
\bullet 10 rounds of (a) \ell -LLL cuts, (b) a combination of GMIs and \ell -LLL cuts,
denoted by GMI+\ell -LLL, and

\bullet the approximated closures of (c) strengthened lift-and-project cuts, denoted
by ``str. L\&P,"" (d) strengthened \ell -LLL cuts, denoted by ``str. \ell -LLL,"" (e)
split cuts, denoted by ``split.""

In contrast to the cases of strengthened L\&P and \ell -LLL closures, the term ``approx-
imated"" for the split closure refers to the fact that the computation is stopped after
a time limit of 5 hours. Such a time limit affects only the multirow instances with
binary variables and this is indicated in the table by ``*.""

The results in Table 3 clearly show that growing the rank of the \ell -cuts gives gen-
erally better results than optimizing over the approximate closure of the disjunctions
in the \bfitW -matrix although there is no domination. Nevertheless, it is confirmed that
the approximated strengthened \ell -LLL closure is way stronger than the approximated
strengthened L\&P closure. In other words, elementary disjunctions in the reformu-
lated space are stronger than elementary disjunctions in the original space. With
few exceptions, neither the strengthened \ell -LLL closure nor the strengthened L\&P
closure provide a good approximation of the rank-1 split closure. Finally, separating
both \ell -LLL and L\&P cuts together does not significantly improve over \ell -LLL alone,
although the results are not explicitly reported in the table.

6. Concluding remarks. Our \ell -cuts are generated based on general disjunc-
tions originating from information on the lattice structure of the underlying problem.
For the test instances, which are similar to the instances used by [17] in their compu-
tational study of k-cuts, we observe that the lattice structure gives useful information
to obtain cuts that improve on standard GMI/split cuts and k-cuts. For single-row
problems, a large percentage of the integrality gap is closed. For multirow problems
the results are not as good, and it remains a challenge to identify cuts that can be
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Table 3
Comparing higher rank cuts with rank-1 closures.

10 rounds ``Approximated"" closures

\ell -LLL GMI + \ell -LLL str. L\&P str. \ell -LLL split

n m T Cuts \%gap Cuts \%gap Cuts \%gap Cuts \%gap Cuts \%gap

10 1 B 61.2 82.80 98.0 83.78 4.1 29.87 41.6 99.73 62.3 100.00
20 1 B 149.1 60.55 198.8 60.08 4.0 18.56 71.4 61.93 148.4 84.11
50 1 B 192.6 54.40 214.5 54.65 4.1 22.32 48.0 50.84 174.7 88.29

100 1 B 197.1 54.13 206.7 54.19 4.4 21.38 42.8 46.81 162.3 89.72
10 1 I 74.8 80.21 115.9 80.16 1.3 16.89 14.3 63.87 48.3 88.97
20 1 I 145.8 68.55 184.0 70.02 1.3 13.68 21.2 47.42 53.9 81.90
50 1 I 184.6 61.12 201.6 60.96 1.2 12.26 21.1 42.02 61.6 82.28

100 1 I 191.7 60.43 204.5 61.82 1.3 14.94 20.2 42.28 57.0 85.22
10 1 U 35.8 95.98 49.9 96.27 1.0 37.27 8.8 79.31 25.9 97.58
20 1 U 37.1 99.76 39.1 100.00 1.0 34.88 10.4 77.52 27.0 92.57
50 1 U 19.1 96.52 20.2 96.52 1.0 62.36 7.5 92.13 38.1 99.97

100 1 U 7.6 100.00 8.0 100.00 1.0 64.07 5.1 98.59 35.9 98.70

50 2 B 288.7 18.92 330.7 19.04 10.1 9.95 84.4 18.96 460.8 41.24 *
50 3 B 345.1 7.85 404.1 7.95 15.8 4.23 99.7 8.09 519.0 18.95 *
50 4 B 383.5 3.43 463.6 3.47 20.7 1.99 140.5 4.05 518.6 8.49 *
50 2 U 281.5 42.25 318.8 43.02 2.0 13.02 26.7 32.28 178.6 71.87
50 3 U 336.5 17.93 394.2 18.24 3.3 5.57 34.7 12.81 342.4 42.08
50 4 U 379.0 9.53 451.9 9.55 4.7 3.76 40.9 7.49 372.8 22.41

generated within reasonable computing time and that work well on multirow prob-
lems.

We observe that the better the quality of the basis generating the lattice, the
better the quality of the resulting \ell -cuts. We have, however, only tried one lattice
reformulation [3], and given the partial success of the approach it would be useful to
investigate other reformulations, in particular a reformulation that captures multirow
problems better. Also, extending our approach to mixed-integer problems with dif-
ferent types of constraints would be interesting. Finally, we have applied our cutting
planes only at the root node, i.e., to strengthen a priori the initial LP relaxation.
This turned out not to be enough to transform instances that are very difficult for
branch and bound into ``easy,"" i.e., solvable in short computing times. A more com-
plete approach would require to perform cut selection and, likely, to generate cuts in
the tree. This is left for future research.
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