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Abstract 

Spatial attention enhances sensory processing of goal-relevant information and improves perceptual 

sensitivity. Yet, the specific neural mechanisms underlying the effects of spatial attention on 

performance are still contested. Here, we examine different attention mechanisms in spiking deep 

convolutional neural networks. We directly contrast effects of precision (internal noise suppression) 

and two different gain modulation mechanisms on performance on a visual search task with complex 

real-world images. Unlike standard artificial neurons, biological neurons have saturating activation 

functions, permitting implementation of attentional gain as gain on a neuron’s input or on its outgoing 

connection. We show that modulating the connection is most effective in selectively enhancing 

information processing by redistributing spiking activity, and by introducing additional task-relevant 

information, as shown by representational similarity analyses. Precision only produced minor 

attentional effects in performance. Our results, which mirror empirical findings, show that it is possible 

to adjudicate between attention mechanisms using more biologically realistic models and natural 

stimuli. 
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Introduction 

Spatial attention is crucial for goal-directed behaviour in many everyday life situations in which one 

needs to dynamically prioritize processing of information at certain locations in the environment, such 

as when crossing the street. Spatial attention is generally thought to increase the signal-to-noise ratio of 

activity in sensory regions representing the attended location. Yet, currently, there are several proposals 

on how this could be implemented. Some theories propose that spatial attention selectively amplifies 

the neural signal by changing a neuron's gain (e.g. Martinez-Trujillo & Treue, 2004; Reynolds & 

Heeger, 2009), while others posit that spatial attention increases the reliability or precision of 

processing, thereby emphasizing noise reduction rather than signal amplification as a key mechanism 

underlying attention’s effects (Feldman & Friston, 2010; Parr & Friston, 2017; Yu & Dayan, 2005). 

Computational models may allow for arbitration between these different ideas, yet existing models 

either examined attentional mechanisms in simplified sensory conditions (Feldman & Friston, 2010; 

Yu & Dayan, 2005) or were not developed to predict changes in performance (e.g. Beuth & Hamker, 

2015; Ma, Beck, Latham, & Pouget, 2006; Reynolds & Heeger, 2009; Rothenstein & Tsotsos, 2014). 

As a result, it remains unclear how spatial attention may facilitate the processing of task-relevant 

information and thereby performance in more naturalistic settings: through gain modulation, precision 

modulation (internal noise suppression) or a combination of both. 

Deep convolutional neural networks (DCNN) are a way to close this gap in knowledge by linking 

changes in processing to performance in a fully controlled, yet statistically rich setting (Kietzmann, 

McClure, & Kriegeskorte, 2019; Richards et al., 2019; Scholte, 2018; Yamins & DiCarlo, 2016). 

Intriguingly, these networks not only parallel human performance on some object recognition tasks 

(VanRullen, 2017), but they also feature processing characteristics that bear a lot of resemblance to the 

visual ventral stream in primates (Eickenberg, Gramfort, Varoquaux, & Thirion, 2017; Güçlü & van 

Gerven, 2015; Khaligh-Razavi & Kriegeskorte, 2014; Kubilius et al., 2018; Schrimpf et al., 2020; 

Yamins et al., 2014). Leveraging this link between processing and performance has already enhanced 

insight into the potential mechanisms underlying shape perception (Kubilius, Bracci, & Op de Beeck, 

2016), scene segmentation (Seijdel, Tsakmakidis, de Haan, Bohte, & Scholte, 2020) and the role of 

recurrence during object recognition (Kar, Kubilius, Schmidt, Issa, & DiCarlo, 2019; Kietzmann, 

Spoerer, et al., 2019). DCNNs thus provide a promising avenue for systematically investigating how 

different attention mechanisms may modulate neural processing and thereby, performance. 

Here we use a recently developed class of networks, spiking deep convolutional neural networks 

(sDCNNs, Zambrano, Nusselder, Scholte, & Bohté, 2018), that combine state-of-the-art performance 

with biologically inspired processing to arbitrate between different proposals of how selective attention 

may be neurally implemented. Findings from recent studies using DCNNs suggest that changing a 
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neuron's gain is a viable way to implement selective processing in DCNNs (Lindsay & Miller, 2018; 

Luo, Roads, & Love, 2020; for a review, see Lindsay, 2020). Yet, these studies did not directly contrast 

different possible attention mechanisms. Spiking DCNNs as used here provide important additional 

constraints that can be used to evaluate the feasibility of different mechanisms. Due to their integrated 

neuron models, information is passed through these networks in temporal spike trains. This makes it 

possible to measure firing rates, examine population information, and estimate neural latencies and 

detection times in the network’s output, and then to compare the effects on these measures of different 

manipulations in relation to findings from neuroscientific studies of attention. 

sDCNNs provide two additional advantages compared to DCNNs for studying the mechanisms 

underlying selective attention. First, due to the neuron models that replace the activation functions used 

in DCNNs, sDCNN have a more realistic activation regime throughout the network. Commonly, 

DCNNs use a rectified linear units (ReLU, Nair & Hinton, 2010), while sensory neurons feature an 

activation that is more sigmoidal-like (e.g. Dayan & Abbott, 2001) and that saturates at high values 

(Naka & Rushton, 1966). This distinction becomes important when applying multiplicative gain: While 

for ReLUs there is no difference between the modulation of the in- or output, for sigmoidal activation 

functions there is a marked asymmetry, which either leads to input or response gain profiles (Ayaz & 

Chance, 2009; Martínez-Trujillo & Treue, 2002; Reynolds & Heeger, 2009). To understand how 

selective attention may modulate the gain of neurons, this is a crucial feature that can also help to further 

situate the findings of earlier DCNN studies using ReLUs for neural processing (Lindsay & Miller, 

2018; Luo et al., 2020). 

Secondly, sDCNNs feature task-unrelated noise due to their signal transmission properties after spiking 

conversion. In the brain, neural information transmission also incurs task-unrelated noise for similar 

reasons (e.g. Allen & Stevens, 1994), which may also affect perceptual performance (Wyart, Nobre, & 

Summerfield, 2012). One can conceive that a gain modulation might not only boost the signal during 

processing, but also the noise and can thus have detrimental effects depending on the signal-to-noise 

ratio. Therefore, having a model that also has task-unrelated noise is crucial for understanding how 

different attention mechanisms may affect and interact with this signal-to-noise ratio. 

In the current study, we capitalized on these properties of sDCNNs to examine how attentional 

modulation of neural activity may enhance performance. Specifically, we directly compared effects of 

three kinds of attention mechanisms on performance and network processing, namely: input gain, 

connection gain and precision. To study the separate effects of input and output gain modulations, 

exploiting the asymmetry in our activation function, we applied gain to the incoming current of a spiking 

unit (input gain, Fig. 1A) or we applied gain to the outgoing spike train of the spiking unit. The latter is 

equivalent to changing the connection strength to the postsynaptic unit (connection gain, Fig. 1B). To 

model precision, we implemented a mechanism that selectively modulates internal noise, i.e., does not  
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Figure 1. Overview of the three implemented attention mechanisms: input gain, connection gain, and 
precision. Here, the effects are illustrated in two ways: based on the modulation of the spiking neuron’s 
processes (top three rows, see inset for a schematic) and based on the activation function, the activity 
of a spiking neuron over infinite time steps (bottom row). The first three rows show how an incoming 
current (Ij) is converted into post-synaptic activation (𝑆!), which in turn leads to the neuron surpassing 
its firing threshold (ϑ!) and to produce spikes at times tj

s. This spike sequence is then again transmitted 
via a weighted connection and integrated by the next neuron, producing the postsynaptic activation 
𝑆".(A) For input gain, attentional modulation was implemented by multiplying the integrated current 
with a spatial weight and a gain factor (𝑆!; top row). This modulation in turn affected all subsequent 
processes and ultimately led to a modulated firing rate (ϑ!;	second row) and a changed activation in the 
next neuron (𝑆"; third row). Since this manipulation happened before the non-linear process of spike 
generation, the amplification most strongly affected middle range values in the activation function 
(bottom row). (B) For connection gain, attentional modulation targeted the postsynaptic weight thereby 
resulting in an increase of activation in the next neuron (𝑆"; third row) but without changing the spike 
production (first & second row). In the activation function, this resulted in slope changes, producing 
the largest modulations for the strongest inputs (bottom row). (C) For precision, attention concurrently 
modulated the adaptation speed mf and the post-synaptic weight. This changed the dynamic firing 
threshold (ϑ!, second row) and resulted in a change of precision by which the neuron is approximating 
the input current. By also adjusting the post-synaptic weight, this led to a mechanism that did not affect 
the mean value but only resulted in differences in the internal noise over time (see modulations of 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2020.12.15.422863doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422863
http://creativecommons.org/licenses/by/4.0/


 5 

𝑆" , 𝑡ℎ𝑖𝑟𝑑	𝑟𝑜𝑤). The same effect is also illustrated in the width of the shaded areas of the activation 
function that varies across attention conditions (bottom row).  

change the gain (precision, Fig. 1C). The effects of these three attention mechanisms were evaluated in 

the same network during a visual search task using real-world scene images with spatial cueing. 

Leveraging the full observability of the networks, we also examined the effects of the different attention 

mechanisms on markers of attentional processing derived from well-established empirical findings in 

primates, including the magnitude of evoked potentials, firing rates and response latency. In a final step, 

we systematically examined possible changes in representational content (or the relative change in 

information present in the network) caused by the three attention mechanisms using representational 

similarity analysis. 

Methods & Materials 

To directly compare the three different proposed attention mechanisms, we implemented these different 

mechanisms into the same spiking deep convolutional neural network architecture and assessed their 

effects on processing and performance during a visual search task with spatial cues.  

Visual search task & dataset 

As a first step, we curated a challenging visual search dataset that had a homogenous context, and could 

contain multiple target objects comparable to naturalistic visual search. In particular, we used street 

scenes that could contain eight possible target categories as stimuli. Furthermore, we used a dataset 

with food scenes during model development and for exploratory experiments. To obtain images with a 

set of potential target categories sharing a context, we first curated these two datasets from the Common 

Objects in Context database (COCO, Lin et al., 2014). To obtain a homogenous context, we quantified 

similarity in context as similarity in the stuff-annotations of the COCO dataset (Caesar, Uijlings, & 

Ferrari, 2016). Specifically, we focused on the super categories from the stuff-annotations (total: 15, 

e.g., wall, ceiling, sky, water) and defined a vector specifying the presence for all these stuff-annotations 

for every image. From this, we computed the Euclidean distance between different target category 

centres (average of all individual vectors belonging to the same target category) so that if a target 

category on average has the same stuff as another target category, these would have a small distance in 

such a stuff space. Based on this procedure, we identified a cluster with low distances in stuff-space for 

street scenes that contained 12 categories (person, bicycle, car, motorcycle, bus, truck, traffic light, fire 

hydrant, stop sign, parking meter, bench, dog) and for food scenes containing 16 categories (bottle, 

wine glass, cup, fork, knife, spoon, bowl, banana, apple, sandwich, orange, broccoli, carrot, pizza, 

donut, cake). 
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Next, these categories were further processed to select high-quality images with only one recognizable 

instance of a specific target category present. This is necessary to make the spatial cue informative and 

advantageous for performance, thus enabling us to quantify spatial cueing in the model’s performance. 

For the street scenes, we selected images that had a street stuff annotation, for the food scenes, there 

could be a table, cloth, food-other, vegetable, salad, fruit, and/or napkin stuff annotation. For both 

datasets, we selected images with target objects that were big enough (> 0.05 % of the image), placed 

in a not too complex scene (spatial coherence < 1.2 based on Scholte, Ghebreab, Waldorp, Smeulders, 

& Lamme, 2009), were not too central (outside of a radius of 5% from the image center) and salient 

enough (summed object probability density from DeepGaze II > 0.04, Kümmerer, Wallis, & Bethge, 

2016). This resulted in 8 eligible target categories with at least approximately 50 images with a single 

target object (street scenes: person, bicycle, car, motorcycle, bus, truck, traffic light, fire hydrant, stop 

sign, parking meter; food scenes: bottle, wine glass, cup, cutlery, bowl, sandwich, carrot, cake). To 

obtain a sufficient number of images (around 50 images) for 8 categories in the food dataset, we 

combined the categories knife, spoon and fork into a single category of cutlery. The code for recreating 

these datasets is available at https://github.com/lynnsoerensen/SpatialAttention_sDCNN_2020. Due to 

the datasets’ license status, the final datasets will not be shared publicly but can be requested directly 

from the authors. 

To assess the efficacy of every attention mechanism, each model performed the visual search task on 

the thus obtained single-target images from the street dataset (Ntotal = 1628, 224x224 pixels, see Fig. 2C 

for an example). To quantify the effect of spatial cue validity, we defined a valid spatial cue for every 

image based on the centre of mass of the target object and an invalid cue pointing to an irrelevant 

location (Fig. 2B & E). The invalid locations were obtained by randomly sampling from a uniform 

distribution that was constrained to the minimum and maximum values observed for the valid cues 

(0.1 - 0.94 for the horizontal and 0.03 - 0.95 for the vertical extent of the image). This sampling process 

was repeated until the invalid location was at least 0.5 of the image extent away from the valid cue. The 

valid and invalid locations had on average a distance of 0.62 of the image extent. Due to imperfect 

COCO annotations, some images also featured two instances of the same target category. To quantify 

the effect of the spatial bias introduced by the attention mechanisms, we compared performance 

between a validly cued (centre of mass of a target object in the scene), an invalidly cued (an unrelated 

location) and an uncued (neutral) processed dataset during most analyses.  
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Figure 2. The sDCNN and its naturalistic visual search performance as a function of spatial cueing. 
(A) An illustration of the ResNet18 architecture with spiking layers depicted by blue frames. The 
network either takes only an image or also a spatial cue as an input. We implemented the attention 
mechanisms only in the residual branches of the network (filled blue frames in the lower branch of the 
network). The output layer was a sigmoid activation function. (B) Illustration of the attention field 
centering on the cued location, where yellow-coloured regions are allocated more spatial attention and 
blue coloured less compared to baseline. (C) An example image from the curated dataset of street 
scenes. (D) Per image and cued location, the sDCNN produces a prediction time course indicating the 
presence of the eight target categories. An object is present once its prediction exceeds the detection 
threshold at 0.5. The x-axis shows time relative to the image onset. Passing information through the 
network takes approximately between 150 - 200 ms due to the spike generation. As a result, the first 
time points (-100 - 150 ms relative to the stimulus onset) show the biases in the network acquired during 
training and do not feature any information from the image yet. The left two panels show the network 
predictions when it was biased by a spatial cue (left: towards the location of the car, middle: away from 
location of a car). The right most panel shows the neutral predictions for the shown image in (C). (E) 
Summary of the cueing effects for the car category for the predictions shown in (D). As can be seen, 
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with a valid cue, the network reports the presence of a car more reliably, while it misses the car with an 
invalid cue. The example image used in B, C and E is licensed under CC BY-NC 2.0 and was obtained 
from Flickr (https://farm4.staticflickr.com/3326/3259041418_48c260317a_z.jpg). 

Spiking deep convolutional neural networks (sDCNNs) 

Training & Fine-tuning 

We adopted a sDCNN to investigate how different attention mechanisms shape processing and 

performance. In particular, we used a class of sDCNNs that are comparable to standard DCNNs in most 

aspects, such as their object recognition performance and training on large-scale database. One of the 

most important differences is that the standard ReLU activation function is replaced during training 

with one that captures the activation function of a biologically-inspired neuron model. Specifically, we 

used a first generation ResNet18-architecture (Fig. 1, He, Zhang, Ren, & Sun, 2015) in which the 

ReLUs were replaced with such a custom activation function approximating a spiking neuron’s in- and 

output relationship, which takes the form of a rectified sigmoid-like function. We converted the DCNN 

to a sDCNN after training and did not directly train a sDCNN because training spiking networks on 

these deep architectures is exceedingly time-consuming. While it would be desirable to also train a 

sDCNN in its spiking state, this approach allowed us to yield competitive performance and at the same 

time still experiment with the properties of spiking neuron models.  

We used the network implementation by (Zambrano et al., 2018) and details and derivations of the 

activation function can be found there. As with standard DCNNs, the network was trained on the 

ImageNet dataset (Russakovsky et al., 2015) with stochastic gradient descent (initial learning rate: 0.1 

with Nesterov momentum of 0.9, decay: 0.0001). The training parameter choices closely followed He 

al (2015; training augmentation: random cropping and horizontal flipping, test augmentation: center 

crop). The learning rate was divided by 0.1 every 30 epochs. The final model performed at 64.04% 

(Top-1 accuracy) on the ImageNet validation set. 

For the visual search task, the pre-trained network was fine-tuned on the street dataset by replacing the 

last fully-connected layer by one with 8 units and a sigmoid activation function. All remaining layers 

and their weights were kept unchanged. During finetuning, we used images with more than one target 

object present, selected based on less stringent criteria than the test images (only based on stuff-

annontations) resulting in 8640 training and 2160 validation images. The less stringent criteria were 

necessary to produce a version of the dataset that was large enough for training. The newly added 

weights were optimized with a binary cross-entropy loss, a learning rate of 0.0001 and an ADAM 

optimizer for 100 epochs. The final binary accuracy on the multi-object dataset was 88.74%. 
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Spiking inference 

After training and fine-tuning, every activation function in the network was replaced with a layer of 

spiking neuron models that feature membrane potentials, adaptive thresholds and that emit temporal 

spike sequences as outputs. This means that the trained weights were evaluated with a spiking network 

that computes continuously over time, thus encoding its activations in binary signals.  

The spiking neuron models used here operated on a rate code, and higher firing rates thus encoded 

higher activation values. This coding principle was implemented by using spiking neuron models that 

integrate and decay current over time in their adaptive firing thresholds, membrane potentials and 

refractory responses (Bohte, 2012). Together these features allowed us to convert a continuous signal 

into a binary signal over time (analog-to-digital converter, (Lazar & Toth, 2003; Yoon, 2017). This step 

also made it possible to obtain a network performing close to the state-of-the-art (Rueckauer, Lungu, 

Hu, & Pfeiffer, 2016; Zambrano et al., 2018), while also operating with biologically plausible firing 

rates. All implementation details of the spiking neurons can be found in (Zambrano et al., 2018) and  

only the key components are briefly summarised below: 

The spiking neuron model consists of four major processes: post-synaptic integration of the incoming 

spike trains 𝐼!(𝑡), their conversion to activation 𝑆!(𝑡) through a membrane filter, as well an adaptive 

threshold ϑ!(𝑡)	and refractory period 𝑆#0(𝑡),	which increase and decay as a function of the timing 

between emitted spikes. 

The post-synaptic current I in neuron j at time t is given by 

𝐼!(𝑡) =22𝑤$!𝑒𝑥𝑝
%!"

6
𝑡&$ − 𝑡
τ'

9
$

 

where 𝑡&$  is the timing of the incoming spikes from neuron i weighted with 𝑤$! . The post-synaptic 

current decays with the time constant 𝜏(. This becomes the neuron’s activation 𝑆!(𝑡)	by convolving 

𝐼!(𝑡)	with a normalized exponential membrane filter 𝜙(t): 

𝑆!(𝑡) = =ϕ ∗ 𝐼!@(𝑡) 

The adaptive threshold 𝜗! is determined by both the resting threshold 𝜗), the timing of emitted spikes 

by the neuron, 𝑡&
!, the speed of adaptation 𝑚* and the time constant 𝜏+: 

ϑ!(𝑡) = ϑ) +2𝑚*ϑ!=𝑡&
!@𝑒𝑥𝑝

%!
#

D
𝑡&
! − 𝑡
τ,

E 
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The refractory response 𝑆#0(𝑡), in turn, is also a function of the adaptive threshold ϑ! and the timing of 

emitted spikes 𝑡&
! 	but now decaying with the time constant 𝜏-: 

𝑆#0(𝑡) =2ϑ!=𝑡&
!@𝑒𝑥𝑝

%!
#

D
𝑡&
! − 𝑡
τ.

E 

A spike is emitted at time 𝑡&
! 	if S(𝑡) − 𝑆G(𝑡) > 0.5	ϑ!(𝑡), and no spike is produced if that condition is 

not met, resulting in a binary temporal sequence. This spike sequence is scaled by the constant h to 

correct for the adaptation speed 𝑚* such that the next neuron k receives the following post-synaptic 

current: 

𝐼"(𝑡) =22ℎ
%!
#

𝑤!"𝑒𝑥𝑝
!

D
𝑡&
! − 𝑡
τ'

E 

By concurrently adjusting the speed of adaptation 𝑚* and the spike height h, it is ensured that the same 

mean value is approximated by the spiking neuron and thus the trained weights obtained from the non-

spiking network are still informative.  

In all our experiments, the baseline firing threshold, 𝜗) and adaptation speed 𝑚* were set to 0.45, τ, 

was 15 ms and both τ. and  τ' were set to 50 ms resulting in a network in which every neuron fired on 

average at 18.63 Hz. During stimulus presentation, a 100 ms pre-stimulus period was included to take 

adaptation in the network, such as the saturation of the adaptive threshold, from the image onset 

response, into account (see Fig. 2D for an example). In total, the network was evaluated over a period 

of 750 ms. In contrast to the other spiking layers, the sDCNN output layer had a longer membrane 

potential time constant	(	τ/, 50 ms vs. 2.5 ms) and did not produce spikes as output but rather returned 

its activation 𝑆01&%(𝑡), thus producing the smooth prediction time courses as shown in Fig. 2. 

All DCNNs, as well as sDCNNs models were implemented, trained and evaluated in Keras with a 

tensorflow backend. The code is available at 

https://github.com/lynnsoerensen/SpatialAttention_sDCNN_2020. 

Attention mechanisms 

To compare the different proposed attention mechanisms (input gain, connection gain and precision), 

we implemented these attention mechanisms into the same base model, thus keeping weights, 

architecture, and internal noise levels exactly the same.   
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In line with earlier work (Anton-Erxleben & Carrasco, 2013; Reynolds & Heeger, 2009), we modelled 

the distribution of spatial attention R as a bivariate gaussian distribution over space (Fig. 2D). The centre 

of the gaussian was placed at the cued location. The standard deviations were kept at 40 pixels for both 

spatial dimensions. We chose this standard deviation because the average area of an object is equivalent 

to a circle with a ca. 41-pixel radius. The attention field was normalized to have an average of 0 over 

all spatial locations based on the assumption that attention involves a redistribution of resources. This 

thus resulted in some locations being upscaled, while others were downscaled. The spatial reweighting 

was applied identically for all mechanisms. 

The implementation of input gain to a neuron j followed 

𝑆!(𝑡) = =ϕ ∗ 𝐼!@(𝑡)=α$234%𝑅 + 1@ 

where R is the attention field and α$234% is the gain factor. Input gain thus scaled the incoming activation 

of the neuron and adjusted the spike production accordingly (Fig. 1A). 

For connection gain, a gain factor was applied to the outgoing synaptic connection 𝑤!"  to the next 

neuron k: 

𝐼"(𝑡) =22=α54%34%𝑅 + 1@
%!
#

𝑤!"ℎ	𝑒𝑥𝑝
!

D
𝑡&
! − 𝑡
τ'

E 

where α54%34%	is the gain factor. This step scales the out-going spike trains with regard to the impact 

they will have on the next layer (Fig. 1B). While input gain thus operated on the incoming activation, 

connection gain targeted the outgoing activation of a neuron by modulating the strength of the 

connection. 

During spiking inference, the binary signals passed between the layers of the network are temporal 

approximations of the static function learnt during training and these binary signals incur internal noise. 

Internal noise is thus an unavoidable consequence of using an sDCNN. For implementing precision, we 

capitalized on this aspect and exclusively changed the internal noise, but not the encoded values, by 

concurrently adjusting the speed of adaptation 𝑚* and the spike height h (Fig. 1C). Specifically, the 

speed of the adaptation mf was modulated by the spatial attention field R and the scale factor 𝛼3678$&$52: 

𝑚𝑓9 = 𝑚𝑓:1&70$27 − α3678$&$52𝑅 

Accordingly, 𝑚𝑓9 	defines the speed of adaptation for all spatial locations. Such a manipulation also 

changes the adaptive thresholds in the spiking neuron models, as can be seen in the equations above. 

When also adjusting the spike height h accordingly, this produces a situation, in which the mean 
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approximation of the neuron stays the same, yet the precision of the approximation is varied (Fig. 1C). 

Depending on the value of mf, a neuron thus produced a more or less precise approximation of the 

output value. As explained above this means that the same underlying function can still be computed, 

allowing the network to perform, but depending on the spatial attention field R and the scale factor 

𝛼3678$&$52	this happens in a more or less precise fashion for different spatial locations. So, in contrast 

to gain-based mechanisms that change the activation level in the neuron, this mechanism increases the 

precision, that is, reduces the internal noise, at attended locations, and reduces the precision at 

unattended locations.  

All attention mechanisms targeted the spiking layers in the residual branch of the network (Fig. 2B) and 

the skip branch was thus unaffected by the attentional modulation. This choice was made based on 

exploratory experiments on the food dataset (see Visual search task & dataset), in which we observed 

that these branches are set up to be antagonistic, thus modulating the skip branch while also targeting 

the residual branch cancelled out the effects of attention. In these exploratory experiments, we also 

observed that it was the most effective to target all residual branches simultaneously. To do this, the 

attention field was downsampled to match the spatial dimension of the residual branches. 

Figure 3. Optimization of attention mechanisms. (A) The impact of α  for the three attention 
mechanisms. Changing α led to the same redistribution of attentional resources across space for all 
mechanisms. A small value of α approximated the neutral condition (without attentional reweighting), 
while large values of α led to a strong amplification at the center of the cue and a concurrent suppression 
in the periphery. For gain-based mechanisms, higher values of α led to higher gain factors at the centre 
of the attention field. In contrast for precision, increases in α resulted in smaller adaptation speeds at 
attended locations, leading to increases in firing rates and reduced internal noise. Yet, precision could 
only be increased up to certain boundary, which was defined by the neuron’s sampling limit. Beyond 
this limit, the neuron’s signal processing capacity became corrupted. α affected the entire attention field 
R. Here, we only show the central section for illustrative purposes. (B) Identifying the best version for 
all attention mechanisms. To identify a well-performing version of every mechanism, we performed a 
grid search by evaluating the benefits in performance derived from a valid cue for all mechanisms on 
separate training set. This showed that all mechanisms were at their best at different α values, thus 
benefiting from differently extreme distributions (input gain: 0.15, output gain: 0.3, precision: 0.45, 
indicated by the same-coloured dots). The sudden collapse in performance of precision beyond α of 
0.55 is due to the neuron’s sampling limit. 
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For the main experiments, we compared all mechanisms by quantifying the effect of the spatial bias, 

that is the difference between a valid, invalid and a neutral cue, introduced by the different attention 

mechanisms (Fig. 2E for an illustration).  

All mechanisms contained a free parameter α. Varying α for all mechanisms effectively reshaped the 

distribution of attention across space, while keeping the mean identical to the neutral condition (see Fig. 

3A for an illustration). For the gain-based mechanisms, attentional modulation varied around a gain 

factor of 1, and for precision, attentional modulation varied around 𝑚𝑓:1&70$27. While for gain-based 

mechanisms, gain factors above one resulted in enhanced processing, for precision this was achieved 

with lowered mf values relative to 𝑚𝑓:1&70$27 . Importantly, in contrast to gain-based modulations, 

precision and the modulation of mf was limited by the properties of the spiking neuron model. In 

particular, adopting very low mf values produced too high firing rate regimes, resulting in information 

loss due to the sampling limit (i.e., the ability to distinguish different spiking sequences, dashed line 

Fig. 3A). 

To identify well-performing versions of every mechanism, we searched through different parameters 

for α between 0 - 0.75 in increments of 0.05 (α$234%, α54%34%	and α3678$&$52, respectively).  Based on 

the performance on a training set (50% of the single-target dataset, N = 814), we chose the best 

performing model with a valid cue on this data set. While searching the parameter space for α3678$&$52, 

we observed a rapid decay in performance once mf values were reached that surpassed the sampling 

limit (mfsampling limit ≈ 0.06, α3678$&$52 > 0.6, see Fig. 3). The best performing hyperparameters on the 

training set were 0.3 for α54%34%	 (connection gain), 0.15 for α$234%  (input gain) and 0.45 for 

α3678$&$52	(precision; see Figure 3B) and these values were adopted for all other simulations. 

Analyses 

Model performance - target discrimination & detection times 

The analyses on model performance were done on the output of the sigmoid activation function obtained 

from the sDCNN on the held-out single-target images (N=815). We evaluated the model’s target 

discrimination with the area under curve (AUC) metric across all experiments. To convert the spiking 

model predictions to this metric, we computed the average of the prediction time-course between 150 

and 650 ms after stimulus onset (Fig. 2D). We only evaluated the prediction time-course after 150 ms 

because the early model responses were largely dominated by the bias terms that the network acquired 

during training and the saturation of the adaptation in the spiking neuron models (ca. 100 ms before stimulus 

onset). That responses do not feature much information from the test image yet before this time is due to the 

temporal characteristics of the spiking neuron models, which require some time to integrate and pass on 
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signals throughout the network hierarchy. As a result, responses to individual images could only be obtained 

during these later periods. 

The attention conditions (valid, invalid, neutral) were statistically compared with permutation-testing 

for a difference in average AUC (10000 permutations). This was done separately for every mechanism. 

We performed four pairwise comparisons per mechanism and adjusted our alpha level of 0.05 according 

to the Benjamini-Hochberg procedure per inference (Benjamini & Hochberg, 1995) for this analysis 

and for all later analyses. For all analyses, permutation-testing was performed across stimuli, in contrast 

to model instances, and statistical significance thus implied a significant change caused by a mechanism 

that is significant given the variability in the dataset. 

The model was optimized to predict the presence of a target class by returning values larger than 0.5 

due to the use of a sigmoid function at the output layer. We used this feature to estimate the detection 

time of the model. We defined the detection time as the time point at which the target prediction time 

course crosses the detection threshold. As described above, prediction time courses were analysed 150 

ms after stimulus onset to separate the stimulus response from the general adaptation response caused 

by the biases in the network (see Fig. 2C for an example). 

For both AUC scores and detection times, we estimated 95% confidence intervals using stratified 

sampling with replacements across stimuli in the test dataset. 

Prediction modulation was estimated by subtracting the neutral models’ trials responses (to a single 

image in the dataset) from the valid or invalid trial responses (to that same image), thereby showing the 

actual change in prediction introduced by the spatial cue. The 95% confidence intervals were obtained 

by sampling with replacement from the trials separately per time point. 

Layer responses – evoked potentials, firing rates & latencies 

To determine how observed changes in performance by our attention manipulations may have affected 

network activity and to relate these to established neural indices of attention, we analysed a layer’s 

response more carefully. Specifically, we focused on effects on evoked potentials, firing rates and 

latencies and to this end, analysed the spiking layer of the sixth residual branch (layer 25, 14x14x256). 

All analyses attempted to follow approaches from neural recording studies as closely as possible. 

For all measures, we recorded units representing the centre of mass of the target object for all feature 

maps in a layer. We chose to do this because we did not want to make a sub-selection of units based on 

a small sample of stimuli, but instead our goal was to look at the entire layer to get a representative 

sample. Attention conditions (valid, invalid, neutral cue) were compared by recording from the same 

set of units. 
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As outlined above, some attention mechanisms targeted the outgoing synaptic connections 𝑤!", thus 

measuring the targeted units directly would have the side effect of measuring this very manipulation. 

We therefore added the spikes of the manipulated unit into another unweighted unit. 

For the evoked potentials, we integrated the spikes from the manipulated neurons and read out the 

potential. These are thus a direct precursor of the firing rates. For the firing rates, we reported the output 

of the unweighted neuron. For illustration purposes, the obtained spike histograms across all features 

maps were smoothed with a temporal gaussian kernel (standard deviation of 8 ms) in Fig. 5B. 

The response latency for the spike responses were calculated by a metric that closely followed (Lee, 

Williford, & Maunsell, 2007; Sundberg, Mitchell, Gawne, & Reynolds, 2012). Specifically, latency was 

defined as the time by which the spike density function reached 50% of the maximum firing rate of the 

first peak in the transient response after stimulus onset. 

To estimate the latency, the spike responses were first smoothed over time with a gaussian filter of 

8 ms. In a next step, every trial was compared back to baseline measurements in which 16 average 

images based on 50 randomly picked images from the training set were presented to the network. Based 

on the activation of the baseline activation in every trial, we determined the 99.99% percentile of 

activation (corresponding to 3.72 SEM in Sundberg et al., 2012) and used this value as a criterion to 

identify the first local peak after stimulus onset. Both baseline and experimental trials were baseline-

corrected based on the 50 ms prior to image onset. 

If a trial did not surpass the criterion for activation, we could not estimate the latency, which led to a 

different number of trials that were excluded per attention mechanism and cue (see Table 1) of a total 

of 815 trials for every cue condition. For all measures, we estimated 95% confidence intervals by 

resampling with replacements across trials. 

Table 1. Missing trials for latency estimation per attention mechanism and cue. The procedure of 

the latency estimation involved to assess whether a spiking unit was more active compared to baseline. 

If this baseline criterion was not exceeded, no latency estimate was made. More active networks are 

thus less likely to have missing trials compared to inactive networks. 

Mechanism Valid cue Invalid cue 
Precision 55 112 
Input gain 34 96 
Connection gain 25 96 
Baseline (no cue) 133  
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Representational similarity analysis 

We next looked at how our different attention mechanisms and conditions may have affected the 

information in our network using representational similarity analysis. Due to computational constraints, 

we used a subset of the images compared to the rest of the experiments (400 in total, 50 per category). 

The resulting sub-dataset was classified by the noiseless model with a similar level of performance as 

other randomly drawn samples from the dataset (AUC: 0.8452 vs. 0.8409, selected vs. resampled). 

For every image, mechanism and attention condition, we obtained the evoked activations for network 

layer 37. We chose this layer because it is the very last spiking layer of the ResNet blocks and is not 

targeted by attention itself since it is part of the skip branch. 

We obtained the pairwise Pearson correlation between every image for every time point and model with 

the respective mechanism and attention condition separately, thus giving us seven representational 

dissimilarity time courses. 

The goal for this analysis was to understand how the representations in the network are altered by the 

different attention mechanisms. We reasoned that a closer similarity to the non-spiking, noiseless 

network means that the spiking network recovers from the introduced noise due to the spatial attention 

cue. In a similar vein, we expected that the similarity with the categorical RDM should grow if there is 

additional target object information present that helps the network at the task. To test this, we correlated 

every timepoint of the seven RDM time courses with either the noiseless or categorical RDMs.  

The non-spiking, noiseless network’s RDM and the categorical RDM are correlated because the 

noiseless network has been optimized to distinguish these object classes and the categorical RDM 

embodies the best possible distinction between the object classes, the ideal observer. Yet, these RDMs 

are also not identical. For example, the noiseless RDM might contain systematic errors made by the 

network due its imperfect solution of the task found during training. Observing that this kind of variation 

(i.e., systematic errors acquired during training) increases due to selective attention is a unique signature 

of the noiseless network and indicative of an attention mechanism that reduces the noise on the 

distinction learned during training, a scenario we term noise suppression. Conversely, if the RDM 

affected by an attention mechanism contains more categorical information than the categorical 

information of the noiseless network, this indicates that the selective attention mechanism increased the 

distinction between the object categories beyond the trained weights. This would suggest that new 

categorical information was added and thus that the signal in the network was enhanced.  In our analysis, 

importantly, we could dissociate between these two scenarios. Specifically, to this end, we calculated 

the partial correlation for these two predictors, thus giving us the unique contribution of both predictor 

RDMs, while keeping the influence of the other predictor constant. To compare this to the neutral 
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model, we subtracted the partial correlations of neutral condition from all other partial correlations. We 

assessed statistical significance by comparing the mean bootstrapped difference between 150 - 650 ms 

to zero. For all time courses, we estimated 95% confidence intervals by resampling with replacements 

across the RDMS per timepoint. 

Software 

In addition to custom code (https://github.com/lynnsoerensen/SpatialAttention_sDCNN_2020), the 

results presented here were obtained while relying on the following Python packages: NumPy (Harris 

et al., 2020), keras (Chollet, 2015), TensorFlow (Abadi et al., 2016), Pandas (McKinney & Others, 

2010), Pingouin (Vallat, 2018), Scikit-Learn (Pedregosa, 2011) and SciPy (Virtanen et al., 2020). Data 

visualization was done using matplotlib (Hunter, 2007) and, in particular, seaborn (Waskom et al., 

2020). 
 

Results 

We adopted a sDCNN to investigate how different attention mechanisms affect processing and 

performance during a challenging visual search task.  

Connection gain most effectively produces spatial cueing effects on performance 

Human subjects are faster and more accurate when targets occur at a validly cued spatial location 

compared to an invalidly cued one (Carrasco, 2011; Posner, 1980). In our first analysis, we show that 

connection gain is best at changing the network’s performance in the same way.  

Fig. 4A shows the prediction modulation for all attention mechanisms (valid/invalid vs. neutral trial 

predictions) evolving over time. We see that for all mechanisms, the target class is modulated up or 

down depending on the cue’s validity, suggesting that the spatial cue led to a modulation of the target 

class predictions and thus came at a cost or benefit to the model’s prediction. To quantify the effect on 

target discrimination of this modulation per mechanism, we computed the area under the curve scores 

(AUC) and compared these scores to those of a neutral (without any spatial attention bias) and noiseless, 

non-spiking network (as obtained after training and before spiking conversion). For all networks, we 

inspected the average prediction in the period of 150 - 650 ms after stimulus onset. To assess whether 

the mechanisms introduced spatial cueing effects, we performed pairwise permutation tests contrasting 

target discrimination in validly and invalidly cued trials. We found that only connection gain produced 

different levels of target discrimination as a function of cue validity (p = .002) that were larger than the 

variability expected from the stimulus set (Fig. 4C). 
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Figure 4. Connection gain most strongly modulated performance. (A) Illustration of how the network’s 
average responses were modulated by the spatial cues by subtracting the attended trials from the neutral 
trials. The panels show the data for each attention mechanism. (B) Detection time distributions across 
the different trial types for all mechanisms. (C) Overview of spatial cueing effects on target 
discrimination (x-axis) for the different attention mechanisms (y-axis). The y-axis is ordered according 
to valid cue performance. The shaded area around the noiseless model as well as the error bars represent 
the 95% confidence interval resampled across dataset stimuli. The attention mechanisms were defined 
based on a prior grid search over the gain parameter on a separate data set (see Fig. 3). (D) Overview 
of spatial cueing effects on detection times for all attention mechanisms. 
 

Selective attention normally (in the brain) operates in the context of noise. It is hence not surprising that 

in the sDCNNs, that feature task-unrelated noise, target discrimination was reduced compared to the 

noiseless network (Fig. 4C). To assess how the different attention mechanisms can deal with noise, we 

tested for a difference between all mechanisms with a valid cue and the noiseless model’s target 

discrimination. We found that only for precision target discrimination was significantly reduced 

compared to the noiseless network (p = .01). This thus indicates that especially gain-based mechanisms 

were able to overcome the noise inherent in sDCNNs with a valid cue. 

As a next step, we evaluated if spatial cueing also influenced detection time. The sDCNN were trained 

to report the presence of a target category by using a sigmoid function with a cut-off at 0.5 during a 
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multi-label task. We here interpret the first time point after 150 ms at which this threshold is passed as 

detection time. Fig. 4B shows the detection time distributions for all studied mechanisms for the 

different trial types. Comparing the medians of these distributions between the valid and invalid cues 

reveals significant differences in detection times for both gain-based mechanisms (all p < .002), but not 

for precision (p = .359, Fig. 4D). Again, a model with connection gain produced the largest reaction 

time validity effects.  

Taken together, both the model’s ability to discriminate as well as its detection times were most strongly 

modulated by connection gain, reproducing the characteristic shifts in performance observed in spatial 

cueing studies in humans. 

All attention mechanisms can qualitatively replicate neural changes 

The effects of spatial attention on processing in visual cortices have been extensively documented 

(Maunsell, 2015). Here, we investigated how the different mechanisms implemented in our sDCNNs 

induced neural changes of the kind and magnitude observed in empirical studies. In particular, we 

examined changes in evoked potential, firing rates and latency. For this we looked at spiking units from 

the sixth ResNet block, which is in the middle of the network (Fig. 2A). These units still have some 

degree of spatial specificity while also having a sizable impact on network performance. Within the 

sixth block, we selected units that represented the features at the centre of mass of the target object. We 

recorded from these units under three conditions: without a cue, with a valid cue, and with an invalid 

cue. 

The evoked potentials, that is, the integrated currents inside of the spiking units, are the most 

comparable to the activations observed in non-spiking DCNNs. If an input gain mechanism works as 

expected, it should modulate these values, as these are the proportional markers of encoded activation. 

With the sDCNN, we have the possibility to see how the encoded values at valid and invalid locations 

change with the different attention mechanisms, and to link these changes directly to changes in firing 

rate. In contrast, measuring the evoked potentials in single neurons simultaneously in a large population 

can be experimentally challenging. To obtain the evoked potential without measuring the direct 

consequence of the attentional manipulations (e.g., a change in post-synaptic weight) as well, we 

integrated the spike trains into another neuron. 

Fig. 5A shows the average evoked response across the entire dataset (N = 815) for the three attention 

mechanisms. Comparing the mean modulation between 150 - 650 ms across mechanisms revealed that 

the evoked potentials were modulated significantly by all attention mechanisms, as indicated by 

significant differences in potential amplitude between the valid and invalid cue conditions (all p < .001,  
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Figure 5. Effects of precision, input and connection gain on key neural indices of attention: evoked 
potentials, firing rate and latency. (A) Evoked potential time courses measured from spiking units at 
the centre of the target object in a given image for the three different conditions (valid, invalid, neutral 
cue) for all mechanisms. Shaded areas depict the 95% confidence interval (CI) obtained with 
resampling across stimuli.  (B) Average spike count time courses from the same units shown in (A). 
The spike count time courses have been temporally smoothed with a gaussian kernel. (C) Latency 
estimate distributions for all mechanisms. Latencies were estimates from the smoothed spike count 
histogram and defined as the time when 50% of the first peak was reached. KDE stands for kernel 
density estimate. (D) Mean evoked potential between 150 - 650 ms compared across different attention 
mechanisms. The error bars depict the 95% CI for D, E and F. (E) Mean firing rates for the different 
attention mechanisms. The grey boxes indicate a modulation of 5 - 30% from baseline as observed in 
experimental data (Maunsell, 2015). (F) Median latencies for the different conditions across attention 
mechanisms. 
 

Fig. 5D). Following our behavioural results, connection gain numerically had the greatest effects on 

evoked responses, and precision the smallest. 
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Next, we studied how these changes in evoked potential may translate to changes in firing rate. 

Modulation of firing rate by spatial attention is a very common observation in electrophysiological 

studies. Firing rates typically change as a function of cue validity with a modulation range of 5 - 30% 

compared to baseline (Maunsell, 2015). Here, we found that all mechanisms resulted in changes within 

this range. 

For measuring the firing rates, we recorded spike trains at the output of the next unit. Since for 

connection gain, the strength of the connection to the next neuron was manipulated, this kept the impact 

of attention for all measurements the same. Fig. 5B shows the average response across the dataset for 

all mechanisms. In contrast to typical analysis protocols of experimental data, we did not make any 

preselection of units based on their responsiveness. Because our networks are sparse in their activations, 

this results in low firing rates (Fig. 5B). 

Across mechanisms, there was a significant increase in firing rates in response to a valid compared to 

an invalid cue (all p < .001, Fig. 5E). To link these changes back to experimental data, we plotted the 

range of 5 - 30% of modulation compared to the neutral model (grey shaded areas). It becomes clear 

that all models are producing changes that are within the biologically observed range with connection 

gain being the best performing mechanism. Interestingly, the two gain-based mechanisms were 

associated with comparable firing rate modulations. 

Lastly, spatial attention has not only been shown to alter the response magnitude of visual cortical 

neurons, but also to modulate the latency of their responses. (Sundberg et al., 2012) reported that 

attention was associated with a reduction in latency between 0.5 - 2 ms of both the spiking and LFP 

responses of neurons in V4. Similar findings have also been reported for MT, suggesting an overall 

reduction in response latency across multiple visual areas (Galashan, Saßen, Kreiter, & Wegener, 2013). 

In our next analysis, we examined the latency changes introduced by the different attention mechanisms 

in response to a valid and invalid cue. In brief, we find that all mechanisms markedly affected the 

processing latency, yet at a much larger magnitude than observed in neural data and that this change 

was mainly driven by benefits in response to a valid cue. 

To obtain latency estimates, we re-analysed the firing rate data with regard to the first modulation 

compared to baseline activity per trial. We defined latency as the time point by which the smoothed 

spike density function reached 50% of the maximum firing rate of the first peak in the response after 

stimulus onset following Sundberg et al. (2012). 

Fig. 5C shows the distribution of estimated latencies for all mechanisms. The difference in distributions 

along the x-axis indicates a large decrease in latency for valid cues. Indeed, for all attention mechanisms, 

we observe faster response latencies in valid compared to invalid cue conditions (all p < .033, Fig. 5F). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2020.12.15.422863doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422863
http://creativecommons.org/licenses/by/4.0/


 22 

Yet, only valid cues produced a reliable latency benefit across all mechanisms compared to the neutral 

condition (all p < 0.001). Again, following our behavioural results, latency reductions were largest for 

connection gain, and smallest for precision. Furthermore, observed latency differences were much 

larger than those typically observed in neural processing (11.5 - 44 ms vs . 0.5 - 2 ms). This suggests 

that there are potentially important differences between the neural and sDCNN firing rate data in the 

onset response and the temporal adaptation that may have made this analysis approach less suitable for 

sDCNNs. 

In sum, we found that all mechanisms modulated evoked potentials, firing rates and latencies according 

to cue validity, thereby mostly paralleling observations from neural recordings.  

Only gain mechanisms introduce additional information 

Lastly, we sought to capture the impact that these various attention mechanisms have on the 

representations in the network. In primates, spatial and category-based attention have been reported to 

improve neural population coding in inferior temporal cortex of real-world objects among distractors 

(McKee, Riesenhuber, Miller, & Freedman, 2014; Zhang et al., 2011), suggesting that selective 

attention can amplify information in a noisy neuronal population. What still remains an open question 

is whether this improvement in population coding stems from a less noisy representation (internal noise 

suppression) or rather can be attributed to additional information about the attended object or location 

(signal enhancement). Therefore next, we aimed to understand how specifically the different attention 

mechanisms increased the SNR. Using a representational similarity analysis, as detailed below, we 

show that gain-based mechanisms achieved this by adding signal to the network’s representations, while 

precision resulted only in noise suppression. 

With our models, we are in the position of having full access to all the units in a layer without incurring 

measurement noise. In addition, we also have a notion of the noise of the network at baseline (neutral 

network) and the representation of the noiseless network (non-spiking). With this, we can disentangle 

the relative contribution of noise recovery and added signal due to the spatial information of the 

attention cue by using representational similarity analysis (Kriegeskorte, Mur, & Bandettini, 2008). For 

this analysis, we define noise recovery as an increase in similarity between a spiking network and its 

noiseless counterpart (Fig. 6B), and an increase in signal as an increase in similarity of the spiking 

network to a fully categorical representation (Fig. 6A). 

Due to computational constraints for the sDCNN, we selected a random set of 50 images per category 

(400 images in total). Since the effects on population coding have been reported in inferior temporal 

cortex, we chose the first spiking layer of the decoding block (Fig. 2A, the first spiking layer after the 

last ResNet block). We constructed a representational dissimilarity matrix (RDM) for every time step 

separately for each network (attention mechanism) presented with a valid or invalid cue. Fig. 6C shows  
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Figure 6. Gain mechanisms selectively enhance categorical information. (A) Organization of the 
categories in the representational dissimilarity matrix (RDM). For every category, there were 50 
images. The categories were organized according to visual similarity. For illustration purposes, the 
correlation coefficients were ranked. (B) RDM of the layer of interest from the noiseless, non-spiking 
network. (C) RDMs from four timepoints after stimulus onset for the neutral network. (D) Left panel: 
Pearson-correlation coefficients between the noiseless model and the temporal RDMs separately for 
the three attention models (precision, input gain, connection gain) and the neutral model. The shaded 
areas represent the 95% confidence interval obtained from resampling across stimuli. Middle panel: 
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Partial correlation coefficients for the comparison in the left panel and now controlling for the 
categorical RDM shown in (A). Right panel: Average difference in partial correlation between attention 
models and the neutral model. (E) Left panel: Pearson-correlation between the categorical model and 
the temporal RDMs shown separately for the three attention models and the neutral model. Middle and 
right panel: Same as in D, but now controlling for the noiseless model. 

four example time frames from the neutral network to illustrate the temporal evolution of the RDMs. 

To quantify noise suppression and signal enhancement, respectively, we used the correlation with the 

noiseless (Fig. 6B) and categorical model (Fig. 6A) as our metric. Since both of the RDMs are highly 

correlated, we disentangled their unique contributions by computing the partial correlation. We used 

this metric to estimate whether there was a statistically significant shift in explained variance by 

comparing the unique correlations for a valid and invalid condition to the neutral condition, 

respectively. Within a given mechanism, we constructed a 95% confidence interval for the difference 

between the valid and invalid trials, and estimated variability by means of bootstrapping with 

replacement across stimuli. 

Examining the changes in RDMs over time across the different mechanisms and cues, we see an 

increasing correlation to the noiseless network over time that stabilizes around 300 ms after stimulus 

onset (Fig. 6D, left panel). Comparing the three different attention mechanisms to the neutral network 

after controlling for categorical information (Fig. 6D, middle panel), we observe that all mechanisms 

became more similar to the noiseless network upon presentation with a valid cue (all p < .002). When 

examining the effect of an invalid cue (Fig. 6D, right panel), only input gain and connection gain led to 

a decrease in similarity (all p < .002, pprecision = .02). Pairwise comparisons within a validity condition 

indicate that all mechanisms were different from one another (all p <.002) except for precision and 

connection gain with a valid cue (p =.836). Altogether, this suggests a reinstatement of the noiseless 

network representations for all mechanisms if presented with a valid cue, and a decrease in similarity 

for invalid cues for gain mechanisms. 

For signal enhancement as expressed in a correlation with the categorical model, we observed similar 

temporal characteristics as for the noise recovery (Fig. 6E, left panel). Yet, after controlling for the 

effect of noise recovery, we found that only the mechanisms that changed the signal (i.e., input and 

connection gain) featured significantly more additional categorical information with a valid cue (Fig. 

6E, middle & right panel, pprecision = .012, remaining p < .002). The same was true for an invalid cue, 

where only input gain and connection gain, but not precision, decreased the amount of categorical 

information compared to the neutral network (pprecision = .012, remaining p < .002). Pairwise 

comparisons between the mechanisms within a validity condition further support the existence of 

differences in signal enhancement, as significant differences between all mechanisms were observed 

for both valid and invalid cues (all p’s < .002). 
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In sum, the different attention mechanisms introduced different representational changes: While all 

examined mechanisms reinstated the representations used by the noiseless network to a similar degree, 

gain mechanisms that targeted the signal were more effective at adding categorical information beyond 

the trained weights compared to the noiseless network. This suggests that additional categorical 

information was derived from the spatial cue that effectively helped performance. 

Discussion 

In this modelling study, we examined how spatial attention may affect sensory processing and 

performance on a challenging visual search task using a sDCNN. Specifically, we directly contrasted 

effects of three different mechanisms previously proposed to subserve selective attention (e.g. Dayan, 

Kakade, & Montague, 2000; Feldman & Friston, 2010; Martinez-Trujillo & Treue, 2004; Reynolds & 

Heeger, 2009), namely gain modulation on the input to a neuron, gain modulation on its post-synaptic 

connection and modulation of the neuron’s precision (internal noise). We found that connection gain 

was most effective at implementing spatial attention, as indicated by the largest performance 

modulations, whereas precision and input gain were less effective. That is,  connection gain modulations 

produced the largest difference in detecting and discriminating targets occurring at a validly cued spatial 

location compared to an invalidly cued one, a pattern commonly observed in humans (Carrasco, 2011; 

Posner, 1980). Moreover, connection gain also well reproduced several key experimental findings in 

visual cortex (Maunsell, 2015), including a proportionate modulation in firing rates. Disentangling the 

representational changes introduced by the three main mechanisms in the network revealed that gain-

based mechanisms in particular added task-relevant information, while all networks showed similar 

recovery from the noise. These results mirror findings from the animal and human literature that show 

that attention can enhance the representational content of neural activity (e.g. Jehee, Brady, & Tong, 

2011; Zhang et al., 2011). Together, these findings advance our understanding of how spatial attention 

might be mechanistically implemented at the neural level, as discussed in more detail below. 

Our finding that connection gain was not only more effective than precision, but also than input gain, 

highlights that the asymmetry in the activation function plays a big role in the efficacy of gain on the 

model’s performance: connection gain was more effective at enhancing activation in a useful fashion 

and thereby biased the network’s performance more strongly compared to input gain. This result helps 

us to better understand how this asymmetry can act as a constraint for a gain mechanism. This finding 

also sheds new light on past studies that used ReLUs to implement gain (Lindsay & Miller, 2018; Luo 

et al., 2020): A shared feature between their gain implementation and our connection gain is that both 

approaches specifically boost larger values, that is, higher values are proportionally more affected 

compared to smaller values. Based on our results, we can thus speculate that these larger values in 

particular are important for boosting performance, at least in DCNNs. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2020.12.15.422863doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422863
http://creativecommons.org/licenses/by/4.0/


 26 

In contrast to gain, we found that precision was not as effective as gain-based mechanisms at 

implementing attentional selection as reflected in performance measures. This finding was unexpected 

since global changes in precision have been shown to lead to substantial changes in noise during 

processing in a previous sDCNN study and are a powerful way to increase and decrease the network's 

performance (Zambrano et al., 2018). It also does not align with notions that assign an important role 

to reliability or precision in selective information processing, and that emphasize noise reduction rather 

than signal amplification (Dayan et al., 2000; Feldman & Friston, 2010; Parr & Friston, 2017). One 

potential explanation that could reconcile our finding with this past work is that we did not use precision 

in the context of a Bayesian observer framework (Feldman & Friston, 2010; Parr & Friston, 2017). 

Instead, our notion of precision is directly grounded in the signal-detection framework, where a signal 

is represented in a more or less narrow distribution, making it thereby more or less distinguishable from 

noise. It is a possibility that such a mechanism proves to be more effective when used on prediction 

errors rather than on stimulus-driven information. Precision may also play a more dominant role in well 

trained systems: a set of event-related potential (ERP) studies by (Itthipuripat, Cha, Byers, & Serences, 

2017; Itthipuripat, Ester, Deering, & Serences, 2014) showed that spatial attention was associated with 

a gain modulation of early visual-evoked potentials early in training, but with noise reduction at 

advanced stages of training (Itthipuripat et al., 2017). These findings suggest that the mechanisms 

through which spatial attention facilitates performance may depend on the specific behavioural training 

regime used, with gain-type mechanisms subserving selective information processing in relatively 

untrained systems, as in our models. Under the assumption that learning affects the synaptic strength 

akin to a momentary gain change, we can make the prediction that precision should be especially 

successful in our models once we allow for weight adaptation after trials with attentional selection. 

Future studies are necessary to test this prediction. 

To accommodate our studied attention mechanisms, we augmented a standard DCNN with spiking 

neurons, resulting in three key changes: a changed activation regime due to the sigmoidal transfer 

function, temporal processing, and internal noise during spiking inference. While the first change was 

essential to define input and connection gain and to address the issue of saturation in biological neurons, 

the latter enabled us to implement precision and to mimic noisy neural transmission. The second change, 

temporal processing, was useful to connect our model to both behavioural reaction times and neural 

latencies. Interestingly, temporal processing in our model, which was solely obtained by combining the 

neuron model with standard feedforward network weights, already exhibited dynamics attesting to 

evidence accumulation over time (see Fig. 2D). This highlights how our approach can enrich the 

standard DCNN performance measures, for instance, as a baseline model for temporal dynamics and 

speed-accuracy trade-offs for other more complex temporal vision models deploying recurrency (e.g. 

Spoerer, Kietzmann, Mehrer, Charest, & Kriegeskorte, 2020). For the activation regime, our results 

establish that the asymmetry between input and connection gain can be a decisive factor for the efficacy 
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of an attention mechanism and that competitive task performance can be maintained despite this design 

choice (Zambrano et al., 2018). Indeed, some of our framework could be pursued without the spiking 

neurons and one could adopt a feedforward DCNN with an altered activation function instead as we 

have used during training. While sacrificing a level of detail, such a network would still permit to further 

explore the efficacy of attentional gain modulations in a leaner computational setting. 

The current results are based on a ResNet-18 architecture, and we chose this architecture because it has 

been shown to be successful at object recognition while having a relatively modest number of 

parameters, a desirable property when implementing memory-intensive spiking networks. The use of 

this particular architecture may have affected our results. For instance, it is conceivable that the interplay 

between the residual and skip connections typical for ResNets (see Fig. 2A for an illustration) was 

particularly suitable for gain-based mechanisms in contrast to precision. While we a priori did not 

anticipate such an interaction between architecture and attention mechanisms, follow-up studies with 

simpler feedforward architectures are necessary to further examine the extent to which our findings 

generalize to other network architectures. 

Our findings on input and connection gain raise the question of how these mechanisms might link to 

selective attention in biological neurons. The effects of input gain could be related to what has been 

referred to as contrast gain in neural processing (Reynolds, Pasternak, & Desimone, 2000). Such neural 

changes are mathematically equivalent to a multiplication of the incoming current (Reynolds & Heeger, 

2009). Yet, how specifically this multiplicative gain could be implemented in a neuron is still matter of 

active research (for a recent review, see Ferguson & Cardin, 2020). The effects of connection gain 

resemble neural changes described as response gain: increased firing rates that scale beyond the 

maximum response observed under neutral conditions (McAdams & Maunsell, 1999; Treue & Martínez 

Trujillo, 1999). This gain profile may arise from the same neural populations as contrast gain, yet in 

situations in which a relatively small attention field is paired with a large stimulus (Reynolds & Heeger, 

2009). For its biological implementation, it has been suggested that both neural contrast and response 

gain can be obtained by combining a multiplicative gain on excitatory inputs with lateral or feedforward 

inhibition (Beuth & Hamker, 2015). Another recent proposal is the addition of a current in a recurrently 

connected excitatory-inhibitory circuit, which results in a multiplicative gain that can also show a switch 

from contrast to response gain (Lindsay, Rubin, & Miller, 2019). An alternative for how connection 

gain effects could be implemented independently of contrast gain is as a change in synaptic efficacy, as 

was reported in a set of studies in LGN and V1 (Briggs, Mangun, & Usrey, 2013; Hembrook-Short, 

Mock, Usrey, & Briggs, 2018). Future experimental as well as modelling studies will be crucial to 

further link biological circuits to computational functions during attentional selection. Our results 

suggest that there is a computational advantage in amplifying a neuron’s outputs, akin to both response 

and connection gain, rather than its inputs, even when the system features noise. 
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A central goal of the current modelling experiments was to study attention mechanisms in the context 

of more biologically plausible processing constraints. A challenge inherent to any such endeavour is 

that the validity of findings is determined by the accuracy of the model in capturing relevant biological 

properties. Our study was conducted with adaptive spiking neurons (Bellec, Salaj, Subramoney, 

Legenstein, & Maass, 2018; Bohte, 2012). We chose this neuron model because it allowed us to 

implement key biological properties (e.g. adaptive thresholds, saturation at realistic firing rates, 

(Zambrano et al., 2018) and relate changes in firing rates, population information, neural latencies, 

discrimination performance and detection times in the network’s output to key findings from 

behavioural and neuroscientific studies of attention. While thereby providing important additional, 

neurally grounded constraints for evaluating the feasibility of different mechanisms compared to 

existing DCNNs that have used ReLUs, our neuron models do not have stochastic firing thresholds or 

other sources of inter-trial variability due to the intended conversion after training. As a consequence, 

it is not possible to relate our results to effects of selective attention on spike count variability or noise, 

that have also been reported in the literature as a measure of noise (Cohen & Maunsell, 2009; Mitchell, 

Sundberg, & Reynolds, 2007, 2009). A recent study suggests that such measures can be reproduced in 

a circuit of neuron models injected with synaptic noise (Lindsay et al., 2019). Future studies that include 

such synaptic noise and also assess the noise covariance between neurons are necessary to establish a 

more direct link to noise correlations and to complement the here presented results. 

Finally, while our results speak to the efficacy of the three studied attention mechanisms, there are 

numerous factors that we did not explore systematically in this study. For instance, it is well established 

that the degree of attentional modulation increases throughout the visual hierarchy, and is first observed 

in higher and later on in lower visual areas (Buffalo, Fries, Landman, Liang, & Desimone, 2010; Mehta, 

Ulbert, & Schroeder, 2000). Future studies using our modelling framework could study how these 

effects may dynamically come about. In particular, one could design different scenarios that 

independently vary the strength of attentional modulation, its timing and the targeted network layers to 

understand which combination may best match empirical results, and provide new insight into how 

attentional biases may be propagated through the visual hierarchy.  

In this study, we examined how three main attention mechanisms can shape a complex and noisy 

process such as object recognition in natural scenes. Leveraging sDCNNs, we were able to inspect the 

computational consequences of different proposals of how selective attention may be implemented in 

the brain. Across a variety of measures, we observed a computational advantage of gain-based and in 

particular connection gain-based mechanisms, in contrast to precision. Our results highlight that 

sDCNNs provide a suitable modelling framework for connecting empirical observations from 

performance to neural processing and illustrate how they can be used to differentiate between theories. 
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