
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Attentive Decision-making and Dynamic Resetting of Continual
Running SRNNs for End-to-End Streaming Keyword Spotting

Bojian Yin
Bojian.Yin@cwi.nl

CWI
Amsterdam, The Netherlands

Qinghai Guo
guoqinghai@huawei.com

Huawei
Shenzhen, China

Henk Corporaal
h.corporaal@tue.nl

TU/e
Eindhoven, The Netherlands

Federico Corradi
f.corradi@tue.nl

TU/e
Eindhoven, The Netherlands

Sander M. Bohté
S.M.Bohte@cwi.nl

CWI
Amsterdam, The Netherlands

ABSTRACT
Efficient end-to-end processing of continuous and streaming signals
is one of the key challenges for Artificial Intelligence (AI) in par-
ticular for Edge applications that are energy-constrained. Spiking
neural networks are explored to achieve efficient edge AI, employ-
ing low-latency, sparse processing, and small network size result-
ing in low-energy operation. Spiking Recurrent Neural Networks
(SRNNs) achieve good performance on sample data at excellent
network size and energy. When applied to continual streaming
data, like a series of concatenated keyword samples, SRNNs, like
traditional RNNs, recognize successive information increasingly
poorly as the network dynamics become saturated. SRNNs process
concatenated streams of data in three steps: i) Relevant signals have
to be localized. ii) Evidence then needs to be integrated to classify
the signal, and finally, iii) the neural dynamics must be combined
with network state resetting events to remedy network saturation.

Here we show how a streaming form of attention can aid SRNNs
in localizing events in a continuous stream of signals, where a
brain-inspired decision-making circuit then integrates evidence
to determine the correct classification. This decision then leads
to a delayed network reset, remedying network state saturation.
We demonstrate the effectiveness of this approach on streams of
concatenated keywords, reporting high accuracy combined with
low average network activity as the attention signal effectively
gates network activity in the absence of signals. We also show that
the dynamic normalization effected by the attention mechanism
enables a degree of environmental transfer learning, where the same
keywords obtained in different circumstances are still correctly
classified. The principles presented here also carry over to similar
applications of classical RNNs and thus may be of general interest
for continual running applications.

CCS CONCEPTS
• Computing methodologies→Machine learning algorithms.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ICONS 2022, July 27–29, 2022, Knoxville, TN, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8851-1/20/07. . . $15.00
https://doi.org/10.1145/3407197.3407225

KEYWORDS
spiking neural networks, continual running, decision making

ACM Reference Format:
Bojian Yin, Qinghai Guo, Henk Corporaal, Federico Corradi, and Sander
M. Bohté. 2022. Attentive Decision-making and Dynamic Resetting of
Continual Running SRNNs for End-to-End Streaming Keyword Spotting.
In International Conference on Neuromorphic Systems 2022 (ICONS 2022),
July 27–29, 2022, Knoxville, TN, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3407197.3407225

1 INTRODUCTION
Many observational tasks are inherently of an intermittent and con-
tinuous nature: while one has to continuously observe surroundings
for dangers, the proverbial tiger is fortunately present most spar-
ingly. In a more applied context, keyword spotting requires a similar
continuous, or streaming, environmental monitoring with relevant
stimuli appearing relatively rarely. In each case, a proper balance
has to be found between the false alarm rate (seeing a tiger where
there is none) and the false reject rate (overlooking the tiger).

Continuous online processing of streaming information is a par-
ticular challenge in energy-constrained situations such as appli-
cations running on battery-operated devices. Event-based neural
networks like spiking neural network are explored as a means to
achieve both low-latency and sparse neural processing, and Spiking
Recurrent Neural Networks (SRNNs) in particular achieve good
performance on sample data at excellent network size and energy.
When continually applied on streaming data however, for example
a series of concatenated keyword samples with or without extended
pauses, SRNNs, like traditional RNNs, recognize successive infor-
mation increasingly poorly as the network dynamics become satu-
rated [?]. For RNNs, including modern transformer-based variants
like the Conformer [5], solutions have been sought in periodically
resetting the internal state of the network, where resetting is typi-
cally done using empirical measures tuned for the task at hand [?
].

Here, we take inspiration from biology to dynamically reset
compact SRNNs to process concatenated continuous streams in
continually. For this, we introduce an efficient form of self-attention
to localize relevant signals, which also gates information to be
integrated into the decision-making circuit to obtain a classification
of the detected event. The actual classification is then used as a
trigger for resetting the SRNN network state.

1

https://orcid.org/0000-0002-5074-4337
https://orcid.org/0000-0002-5868-8077
https://orcid.org/0000-0002-7866-278X
https://doi.org/10.1145/3407197.3407225
https://doi.org/10.1145/3407197.3407225

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICONS 2022, July 27–29, 2022, Knoxville, TN, USA Yin, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

We show that compact spiking recurrent neural networks trained
on single samples integrated into such extended circuitry can then
successfully classify sequences of concatenated keywords. More-
over, they can do this without signal buffers or additional post-
processing, demonstrating an efficient and compact end-to-end
event-based solution. We also show that the dynamic normalization
effected by our attention mechanism enables a degree of environ-
mental transfer learning, where the same keywords obtained in
different circumstances are still correctly classified.

2 BACKGROUND
Current approaches to continuous and streaming keyword spot-
ting include three independent steps [18]. First, a stream is typi-
cally chunked into segments, for example, using Voice-Activation-
Detection algorithms [?]. Second, each segment is processed using
a set of overlapping fixed windows on the signal into a set of fea-
ture maps. Third, the concatenated features maps are processed to
determine a classification label. Single windows can be processed
into feature maps with learned approaches, such as Convolutional
Neural Networks (CNNs), trained on single labeled samples. CNN’s
outputs are then converted into a sequence of labels using, for
example, recurrent neural networks trained on the Connectionist
Temporal Classification loss (CTC) [?]. These RNNs can also be
replaced by modern transformers [5, 14] which improve perfor-
mance but are still applied to segmented utterances. In each of
these examples, a post-processing stage transduces observed signal
sequences into a labeled sequence.

In [15], a spiking neural network (SNN) version of a CNN is
applied to single keyword samples, demonstrating competitive per-
formance with the equivalent non-spiking CNN. The WaveSense
model [12] is derived from the classical WaveNet network [9] and
is shown to effectively process single samples from various bench-
marks up to 5s in length.

Still, these approaches rely on pre-processing to obtain segments
and buffering to map sequences into labels. For energy-constrained
continuous-monitoring applications, there is a need for continual
running end-to-end SNN solutions that minimize pre- and post-
processing and have minimal memory and processing requirements.

3 ATTENTIVE SPIKING RECURRENT NEURAL
NETWORKS

We are specifically interested in continual online keyword recogni-
tion and localization in recurrent spiking neural networks, where
the network omits buffering and only has access to the current
information. To achieve this, we turn to a form of “attention” to
help guide the recurrent spiking neural network in localizing and
classifying utterances compatible with continual running.

Attention has been at the center of current Transformer models,
where initially attention was introduced to learn long-range depen-
dencies on image classification and Natural Language Processing
(NLP) tasks [10]. In the context of limited or no buffering, attention
in recurrent spiking neural networks only allows forms of local
and causal self-attention without relying on long-term temporal
dependencies. We observe that a straightforward measure of cur-
rent signal-variability (Temporal Intensity) resembles a temporally

local attention-like signal with the potential for localizing speech
patterns in a sequence.

We define a specific version of Temporal Intensity based on the
Mel-frequency spectrum representation of the signal, which is also
the input to the network.We define a temporal average over a single
time-step as `𝑡 = |𝑥𝑡 + 𝑥𝑡−1 |/2 and associated signal variability as
𝜎𝑡 = |𝑥𝑡 − 𝑥𝑡−1 | based on current input 𝑥𝑡 . The real-time Temporal
Intensity 𝑡𝑣𝑎𝑟𝑡 is then derived from `𝑡 and 𝜎𝑡 and rescaled to [0,1]
by the 𝑡𝑎𝑛ℎ function:

𝑡𝑣𝑎𝑟𝑡 = tanh([𝜎𝑡 `𝑡), (1)

where [is a hyperparameter we emperically set to [= 4 in all
experiments.

We further define a smoothed Temporal Intensity 𝑡𝑣𝑎𝑟𝑠𝑡 as 𝑡𝑣𝑎𝑟
𝑠
𝑡 =

𝑡𝑣𝑎𝑟𝑠
𝑡−1 + (1 − 𝜙) (𝑡𝑣𝑎𝑟𝑡 − 𝑡𝑣𝑎𝑟𝑠

𝑡−1) where 𝜙 = exp(−1/𝜏𝑡𝑣𝑎𝑟) deter-
mines the smoothness. This smoothed Temporal Intensity is used to
facilitate the process of evidence accumulation along speech as the
the curve of 𝑡𝑣𝑎𝑟𝑡 tends to be discontinuous (illustrated in Fig 1). In
contrast to advanced attention models, our 𝑡𝑣𝑎𝑟𝑠𝑡 directly localizes
speech patterns in ongoing speech sequences, is parameter free,
and can be computed in an online manner.

The 𝑡𝑣𝑎𝑟𝑡 and 𝑡𝑣𝑎𝑟𝑠𝑡 measures are illustrated on several keywords
speech audio samples and corresponding MFCC representation in
Fig. 1: in the samples, we see that both measures map closely to the
envelope of the signal.

SRNNs. To implement continual running spike-based RNNs, we
use Adaptive Spiking Recurrent Neural Networks, SRNNs, as de-
veloped in [16], comprised of adaptive spiking neurons[16?]. Here,
the SRNNs are comprised of an input layer converting the input
spectrum into spikes. This input layer is densely connected to a
single recurrent layer, where the 𝑡𝑣𝑎𝑟𝑠𝑡 is also added as an input
to the recurrent layer. The final layer is comprised of leaky inte-
grators to generate the prediction probabilities, 𝑝𝑖𝑡 for the 𝑖th class
at a timestep 𝑡 . The structure is illustrated in Fig 1, described as a
structure of 512D-(512+1)R-(12/36+1)I, where the number of output
neurons (12 or 36) is task-dependent, and D denotes a dense layer,
R the recurrent layer, and I the layer of integrators. The network
omits any bias units as they proved detrimental for continual run-
ning. As illustrated in Fig 1, the SRNN reads the spectrum row by
row at each time step, where we call each row a frame; the SRNN
thus makes an online prediction at each time step.

We train the parameters of the SRNN using BPTT[16], with some
modifications. In the continual running model, the SRNN needs
to extract a class-probability label at every timestep. This means
that also when learning, the SRNN needs to assign a label to each
timestep. For pre-segmented samples however, in many cases only
the label for the whole segment is given, and while the actual signal
is somewhat centered, it is often flanked by silence or noisy frames.
When trained on such pre-segmented samples, the ASRNN ideally
only learns from the actual signal and not from the silent or noisy
flanks. To achieve this, we introduce an instantaneous Temporal
Intensity -gated loss-function between prediction 𝑦𝑡 and target 𝑦
for the labeled sample:

𝑙𝑡 = 𝑙𝑜𝑠𝑠 (𝑦,𝑦𝑡) ∗ 𝑡𝑣𝑎𝑟𝑠𝑡 . (2)
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Attentive Decision-making and Dynamic Resetting of Continual Running SRNNs for End-to-End Streaming Keyword Spotting ICONS 2022, July 27–29, 2022, Knoxville, TN, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: a) Continual running as decision-making vs single sample training; note the pauses in the speech signal where no
utterance is present. b) Example of speech audio data and corresponding MFCC figure. The red and green curves correspond to
the Temporal Intensity and smoothed Temporal Intensity measures. c) End-to-end decision-making procedure. The Temporal
Intensity measures and MFCC spectrum are continually computed in an online manner. For each frame 𝑡 , the smoothed
Temporal Intensity and MFCC spectrum are fed into the SRNN, resulting in class probability outputs 𝑝𝑡

𝑗
. These outputs are

integrated in the decision-making action value nodes 𝑎𝑡
𝑗
and associated gated values 𝑎𝑡

𝑗
. Once a threshold \ is reached, the most

activated action is selected and the other action values are suppressed. Once the action value for the selected action falls below
a set threshold again, at the end of the utterance typically, the label is assigned and the network state is reset. The decision
duration𝑇 𝑖 = 𝑡𝑖𝑠 , 𝑡𝑠+1, ..., 𝑡𝑖𝑟 represents the period between the starting time of decision collection 𝑡𝑖𝑠 and the reset timestep 𝑡𝑖𝑟 . 𝑎𝑐𝑐𝑖𝑓
is the framewise accuracy and 𝑎𝑐𝑐𝑖𝑝 is the prediction accuracy for the sample 𝑖

As the Temporal Intensity calculates an envelope of the signal (i.e.,
Fig. 1b), this loss helps the network to learn primarily from actual
signal data.

4 STREAMING DECISION MAKING
When a network continually generates class predictions for ev-
ery frame, the challenge is to concatenate this sequence of class
predictions into a sequence of predicted labels. Complex methods
like the CTC exploit interdependence between frames or segments
combined with implicit sequence modeling to determine the most
likely sequence interpretation. However, in an online setting of con-
catenated keywords and silence/noise parts, labels are independent
and temporally sparse, and the task is more closely related to se-
quential decision-making. We take inspiration from neural models
of decision-making [4, 17], and introduce a decision-making cir-
cuit with dynamic resetting modeled after the Basal Ganglia brain

structure, which is specifically involved in decision-making and
context-dependent gating.

The decision-making circuit is shown in Fig. 1c, in the grey box:
it accomplishes action selection by integrating class-probability
inputs 𝑝𝑖𝑡 for class 𝑖 , where actions correspond to labels. An action
is selected when a pre-defined threshold \ is reached, and results in
the temporary inhibition of other actions. Resetting of the network
is triggered when the integrated evidence falls below the threshold
again while the Temporal Intensity signal is also rapidly declining
at the same time (the effect of this latter condition is that in Fig. 2,
for dynamic resetting, the third sample is correctly classified even
though initially the wrong action/label is selected).

Action selection. The activity of the action selection system is
modeled as a leaky integrator where a leak time-constant 𝜏𝜌 is
associated with the typical duration of each action [17]. In the

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICONS 2022, July 27–29, 2022, Knoxville, TN, USA Yin, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: An example of the different decision-making process on concatenate speech audio sequence. Top: MFCC spectrum of
four concatenated speech utterances. Next is plotted the Temporal Intensity as directly calculated and framewise classifica-
tion probabilities 𝑝𝑡 and resulting classifications (green: correct label, red: incorrect label). The plot below, ‘Periodic Reset’,
demonstrates the effect of smoothing the Temporal Intensity (𝑡𝑣𝑎𝑟𝑠𝑡), the resulting firing rate (𝑓 𝑟) and gated action value (𝑎𝑡),
and resulting framewise classifications given fixed periodic resets. The ‘Dynamic Reset’ plot illustrates what happens when
resets instead are triggered by the decision-making circuit, and additionally winning actions inhibit other actions. Vertical
black arrows denote the time of resets.

circuit, the action value 𝑎𝑖𝑡 of class 𝑖 at time 𝑡 is computed as:

𝑎𝑖𝑡+1 = 𝑎𝑖𝑡 + (1 − 𝜌) (𝑢𝑖𝑡 − 𝑎𝑖𝑡)

where 𝑢𝑖𝑡 = −𝑤−
𝑧 𝐼

𝑖
𝑡 +𝑤+

𝑧

𝑛∑︁
𝑗≠𝑖

𝐼
𝑗
𝑡 ,

(3)

and where the input 𝐼 𝑖𝑡 = 𝑝𝑖𝑡 and 𝜌 = exp(−𝑑𝑡/𝜏𝜌). As in [4, 17] the
balance between disinhibition and inhibition is chosen as𝑤+

𝑧 /𝑤−
𝑧 =

1/𝑛, where 𝑛 is the number of classes and 𝜏𝜌 = 20, chosen to match
the average speech length.

To pick up the prediction of the network only on the data, we
use a gated action value as a conditional prediction probability or
confidence to determine when speech is present. The gated action
value is calculated as 𝑎𝑖𝑡 = tanh(𝑡𝑣𝑎𝑟𝑠𝑡 𝑎𝑖𝑡) for class 𝑖 . The frame-wise
class label for each timestep is derived from the gated action with
minimal value (maximal disinhibited) as well as

𝑧𝑘𝑡 =

1, if 𝑘 = arg min

𝑖∈1,2,...𝑛
(𝑎𝑖𝑡) ∧ min

𝑖∈1,2,...𝑛
(𝑎𝑖𝑡) < −\ .

0, otherwise.
(4)

where we use a default value \ = 0.3. Note that the same measure
can be used as an indicator for speech/no-speech at time 𝑡 .

Action Inhibition. Once an action (class label) is selected, all other
classes are inhibited (where 𝑧 𝑗𝑡 = 0, 𝑗 ≠ 𝑖) when speech is first
detected at time 𝑡 . Inhibition is implemented by providing negative
inputs to the non-selected action values in the action selection
system: an exponentially decaying inhibitory current is added at
timestep 𝑡 ′ as follows:

𝐼𝑘𝑡 ′ =

{
𝑝𝑘
𝑡 ′, if 𝑧𝑘𝑡 = 1.
− exp

(
𝑡 ′−𝑡
𝜏𝜙

)
𝑝𝑘
𝑡 ′, otherwise.

(5)

where 𝜏𝜙 controls the leaky speed of the inhibition current for un-
selected classes. We empirically set 𝜏𝜙 = 20 to match the average
speech length.

Network resetting. To counter the state saturation problem asso-
ciated with continual running in RNNs, network state resets are
one solution [5?], where the challenge is to determine when to
reset the network state. Here, we reset the network as a function
of when a decision is made and when the following empirically
derived criterion is satisfied:

• min(𝑎𝑖𝑡) < −\
• 𝑡𝑣𝑎𝑟𝑠𝑡 is decreasing and 𝑡𝑣𝑎𝑟𝑠𝑡 − 𝑡𝑣𝑎𝑟𝑠

𝑡−1 < 0.1.
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Attentive Decision-making and Dynamic Resetting of Continual Running SRNNs for End-to-End Streaming Keyword Spotting ICONS 2022, July 27–29, 2022, Knoxville, TN, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

We see the effect of this condition in the ‘Dynamic Resetting’ bottom
row in Fig. ??, where the initially incorrect framewise classification
in the third sample does not result in a reset, and the sample is
correctly classified according to the 𝑎𝑐𝑐𝑝 measure. Resetting is only
applied in the continual running inference phase and not during
training.

Metrics. For network accuracy, we measure two metrics: the
framewise accuracy 𝑎𝑐𝑐 𝑓 and the prediction accuracy 𝑎𝑐𝑐𝑝 .

The framewise accuracy for a single sample 𝑖 is computed as the
average accuracy during the network decision process as well:

𝑎𝑐𝑐𝑖
𝑓
=

1
𝑡𝑖𝑟 − 𝑡𝑖𝑠

𝑡𝑖𝑟∑︁
𝑡=𝑡𝑖𝑠

𝛿 (𝑦𝑖𝑡 , 𝑦𝑖), (6)

where 𝑦𝑖𝑡 is the prediction at timestep 𝑡 ∈ 𝑇 𝑖 , 𝑦𝑖 the correct label for
the sample 𝑖 , and 𝛿 (𝑦𝑖𝑡 , 𝑦𝑖) the Kronecker delta. The average frame-
wise accuracy 𝑎𝑐𝑐 𝑓 is computed as the average over all samples,
1
𝑁

∑𝑁
𝑖 𝑎𝑐𝑐𝑖

𝑓
.

For a sample 𝑖 , the prediction accuracy 𝑎𝑐𝑐𝑖𝑝 is calculated as:

𝑎𝑐𝑐𝑖𝑝 = 𝛿 (𝑦𝑖𝑡𝑟 , 𝑦
𝑖) iff |𝑇 𝑖 | > 10, (7)

where 𝑇 𝑖 represents the evidence collection duration calculated
as the difference between starting time 𝑡𝑖𝑠 and reset time step 𝑡𝑖𝑟
in sample 𝑖 , as in Fig. 1. The average prediction accuracy over N
samples 𝑎𝑐𝑐𝑝 is calculated as 𝑎𝑐𝑐𝑝 = 1

𝑁

∑𝑁
𝑖 𝑎𝑐𝑐𝑖𝑝 .

Summary. In Algorithm 1, we illustrate the details of the decision-
making procedure, including network initialization, network pre-
diction computation, action value calculation based on inhibitory
input, dynamic resetting, and metric evaluation.

5 EXPERIMENTS
Dataset. We trained our SRNN on both single training samples

from the Google speech dataset v1 (GSCv1) or v2 (GSCv2) [11]. Ad-
ditionally, we trained a conventional GRU network with an equal
number of parameters augmented with the same Temporal Intensity
-gating and decision-making structures to provide baseline perfor-
mance – the GRU network was made up of two densely connected
GRU layers with 256 units each. We evaluated these networks by
training them to classify all 10 keywords in the GSCv1 and 35 key-
words in the GSV2 dataset. Each dataset also contains an additional
class for “unknown”, and GSV1 also contains a “silence” class. In
GSCv1, there are 22,236 training samples and 3,081 test samples,
GSCv2 dataset comprises 36,923 training samples and 11,005 test
samples. The raw audio is pre-processed via MFCC bandpass filters:
each audio sample is passed through 40 2nd order bandpass filters
distributed along the Mel-scale between 20Hz and 4kHz. We rescale
the response of 40 bandpass filters at each timestep by dividing by
the standard deviation across the spectrum. Each keyword sample
is converted to a sequence of 101 timesteps in a 40-by-3 matrix
representing the spectrum at each time step.

Direct, single sample performance is measured on the respec-
tive test datasets. We evaluate the continual running of both the
SRNN and GRU on long sequences comprised of concatenations
of keywords. To evaluate the network performance on single key-
word prediction, we define prediction accuracy 𝑎𝑐𝑐𝑝 by comparing

the prediction and the target when the speech pattern disappears
and the network is reset (see also Fig. 1c). We also measure the
network performance on long sequences by comparing average
frame-wise accuracy 𝑎𝑐𝑐 𝑓 as measured over the whole sequence
length. To evaluate the networks’ robustness to noise, we applied
background noise to each speech audio. Different levels of synthetic
noise were applied on the first 10 filter bandpass filters. The noise
was generated as Gaussian, 𝑟N(0, 1) where 𝑟 is the noise ratio.

5.1 Results
Performance on single samples. We evaluated the networks
on single speech audio samples. For this, we evaluated the GRU
network including the Temporal Intensity gating and the decision-
making circuit. Then, we compared it to SRNN networks with or
without Temporal Intensity gating. Results are shown in Fig. 3:
we find that the SRNN with Temporal Intensity gating slightly
outperforms the other networks in terms of classification accuracy,
including the GRU network, for GSCv1 (Fig. 3a) and GSCv2 (Fig. 3b).
Compared to the literature, in [16] ASRNNs achieve 92.14% on
GSCv1, slightly better than our dynamic SRNN (89.98%), while the
GSCv2 accuracy (87.31%) represents new State-of-The-art (SoTa),
exceeding the 79.6% reported in [13].

Noting average activity in the network (Fig. 3c,d), we see that
using Temporal Intensity gating lowers the required number of
spikes by some 50% for both GSCv1 and GSCv2 tasks. We also
find that 68% of spikes in the networks are on average generated
during the “active” parts where Temporal Intensity exceeds the
signal threshold \ .

Effect of Threshold \ . The parameter \ distinguishes between
noise/quiet and speech patterns. Smaller \ will result in noise being
more likely treated as part of the speech pattern, while larger \ will
cause the network to not identify more words in the recognition
process. As such \ directly controls the false positive and false
negative rates. In Fig. 4, we plot how \ influences keyword detection
as measured in terms of average framewise accuracy 𝑎𝑐𝑐 𝑓 . We see
that indeed, as \ increases, the number of missed words grows, and
accuracy improves.

Continual running: long sequences. The same networks are
also evaluated in the continual-running setting, carrying out con-
tinuous inference on speech sequences over longer periods of time.
In Table 1, we note the SRNN and GRU networks’ performance on
concatenated sequences of commands, ranging from a single key-
word to 128 concatenated keywords from either GSCv1 or GSCv2.
For easy comparison, we report average frame-wise accuracy 𝑎𝑐𝑐 𝑓
when 𝑡𝑣𝑎𝑟𝑠𝑡 > \ for raw output of the network, networks with
periodic resetting, and networks with dynamic resetting.

We make several observations from Table 1: first, without reset-
ting both, GRU and SRNN networks saturate, and recognition per-
formance suffers dramatically. Including a periodical reset resolves
this issue for the SRNN network (and also for the GRU network,
not shown). We then see that our dynamic resetting scheme based
on the action selection circuit provides essentially equal (GSCv1)
or even slightly better (GSCv2) accuracy.

We also find that with the dynamic resetting mechanism, adding
longer silences between concatenated speech samples does not

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICONS 2022, July 27–29, 2022, Knoxville, TN, USA Yin, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

GRU
w/ tvar

SRNN
w/ tvar

SRNN
w/o tvar

76

78

80

82

84

86

88

90

92

Ac
cu
ra
cy
: %

(a) GSC V1
acc_p
acc_f

GRU
w/ tvar

SRNN
w/ tvar

SRNN
w/o tvar

76

78

80

82

84

86

88

90

92

Ac
cu
ra
cy
: %

(b) GSC V2
acc_p
acc_f

SRNN
w/o tvar

SRNN
w/ tvar

0.00

0.02

0.04

0.06

0.08

0.10

M
ea
n
Fr

(c) GSC V1: Fr

SRNN
w/o tvar

SRNN
w/ tvar

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
ea
n
Fr

(d) GSC V2: Fr

Figure 3: Single sample performance. a) Classification accu-
racy 𝑎𝑐𝑐𝑝 and average framewise accuracy 𝑎𝑐𝑐 𝑓 for various
baseline networks for GSCv1, and b) for GSCv2. c) average
network activity (spike probability per timestep) for GSCv1
and d) GSCv2.

Figure 4: Effect of threshold \ on frame-wise accuracy and
% of missing words. The calculation of framewise accuracy
only accounts upon detected words.

affect the framewise classification accuracy; an example of such
added silence is shown in Fig. 5.

To further quantify the quality of dynamic resetting, we calculate
the editing distance [7], both for the GRU and for the SRNN, on
concatenated sequences of samples that are correctly classified
when presented as single samples. In Fig. 6a, we plot the average
number of editing operations needed when evaluating a sequence
of 1000 concatenated samples on GSCv2: we find that for both GRU
and SRNN, the dynamic reset outperforms the fixed periodic reset

�

Figure 5: Effect of long salience on SRNN. Label “-1” denotes
the added silence audio patches.

GRU SRNN

Av
g
Ed
it
Op

t

159

112

158

70

(a) Average edition distance
 1000 words sequence

Periodic
Dynnamic

GRU SRNN
 w/o tvar

SRNN
w/ tvar

ac
cv

2 p
/a
cc

v1 p

91%

97%

99%

(b) Train on GSC V1;
Test on GSC V2

GRU SRNN
 w/o tvar

SRNN
w/ tvar

ac
cv

1 p
/a
cc

v2 p

93%
94%

108%

(c) Train on GSC V2;
Test on GSC V1

Figure 6: (a) Average editing distance and (b,c) distribution
shift robustness computed as percentage of accuracy on the
original distribution.

(159 vs 158 for GRU and 112 vs 70 for SRNN); we also find that the
SRNN network substantially outperforms the GRU network (70 vs
158 operations).

Temporal Intensity compensates distribution shift. While typical
speech benchmarks are comprised of clean samples recorded un-
der essentially ideal conditions, new recordings processed under
different circumstances may result in a shifted frequency distri-
bution leading to degraded performance. For example, in [11] a
standard CNN model was trained on either of the two versions of
GSC datasets and then assessed on both datasets. Depending on
the type of CNN, performance was more or less degraded when a
network trained on one dataset was evaluated on the other.

Here, we optimized RNNs on either GSCv1 and GSCv2, and eval-
uated their performance on both datasets. As shown in Fig. 6, we
find that standard GRU networks, not gated by Temporal Intensity,
show substantial susceptibility to distributions shifts, as average
performance drops by 9% (GSCv1 vs. GSCv2) and 7% (GSCv2 vs.
GSCv1). For SRNN networks not gated by Temporal Intensity, we
find a similar issue; SRNNs with Temporal Intensity -based atten-
tion, however, prove to not be sensitive to distribution shift and
maintain accuracy (GSCv1 vs. GSCv2) or even improve accuracy
(GSCv2 vs. GSCv1, due to the larger training dataset).

6 DISCUSSION
We demonstrated how the inclusion of a local signal-detection mea-
sure combinedwith brain-inspired decision-making circuitry allows
compact and high-performance SRNNs to be applied to continual

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Attentive Decision-making and Dynamic Resetting of Continual Running SRNNs for End-to-End Streaming Keyword Spotting ICONS 2022, July 27–29, 2022, Knoxville, TN, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Dataset Model T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128

GSC V1

GRU raw output 84.31 60.96 47.72 41.37 40.67 37.86 27.98 35.10
GRU Dynamic Reset 84.31 84.45 83.28 83.74 84.02 82.84 83.07 82.86
SRNN raw output 83.85 59.54 40.10 27.10 21.28 16.82 15.42 15.03
SRNN periodicc reset 83.85 83.31 83.07 83.05 82.95 82.98 82.92 82.84
SRNN action selection
with dynamic resetting 84.10 84.09 83.34 83.09 83.03 82.77 82.99 82.88

GSC V2

GRU raw output 80.82 55.25 44.46 39.95 37.59 35.73 35.30 33.02
GRU Dynamic Reset 80.82 79.58 80.11 79.46 79.77 79.85 79.94 79.82
SRNN raw output 79.39 48.53 31.45 21.58 15.62 13.49 12.24 11.70
SRNN periodic reset 79.42 79.38 79.03 79.02 79.31 78.98 78.93 78.88
SRNN action selection
with dynamic resetting 81.73 80.54 80.36 80.12 79.98 80.39 80.05 80.35

Table 1: Average frame-wise accuracy 𝑎𝑐𝑐 𝑓 when min 𝑎𝑖𝑡 < −\ for different concatenated sequence lengths.

running scenarios. For signals comprised of concatenated keywords,
this results in constant-accuracy continual running. Importantly,
Temporal Intensity -gating resulted in much reduced average ac-
tivity in the SRNNs, potentially improving energy consumption.
Measured in terms of editing distance, we find that dynamic re-
setting results in substantially better accuracy, where the SRNN
networks outperform GRU networks. We also showed how the
decision-making criteria enable the trading-off of false alarms ver-
sus missed keywords. A next step will be to evaluate SRNNs on
real-world continual running scenarios, which we omitted for lack
of a current suitable public benchmark to use and compare to.

We observed furthermore that the Temporal Intensity -gated
SRNNs are insensitive to a distribution shift, as measured in terms
of environmental transfer performance from GSCv1 to GSCV2 and
vice versa. We find this observation somewhat curious, but as noted,
similar observations have been made for CNN architectures where
some architectures are more or less susceptible to distribution shift.

The absolute classification performance achieved by the SRNN
networks is compelling and approaches or exceeds state-of-the-art
for SNNs. Still, we believe that the accuracy of the SRNNs can likely
be further improved by, for instance, replacing the MFCC features
with custom learned ones [8], and optimizing circuit parameters like
reset intensity, decision thresholds, and action-selection triggered
via lateral inhibition for class specificity. Furthermore, more com-
plex SRNNs can additionally improve sample recognition rates [16],
potentially at the expense of increased computational complexity.

Our results open new possibilities in the design of always-on
keyword-spotting devices such as the one presented in [6]. This
device exploits switched ring oscillators for generating event-based
frequency outputs from audio streams. Today, these outputs are
processed in a frame-based way using a GRU network. By replacing
the frame-based GRU network with SRNNs that directly process
event-based features, it will be possible to compute on-demand on
the streamed frequency output features, thus further reducing the
overall system’s power and latency [16] while increasing accuracy.

REFERENCES
[3]]Bellec2018-gh Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Leg-

enstein, and Wolfgang Maass. [n. d.]. Long short-term memory and Learning-to-
learn in networks of spiking neurons. In NeurIPS 2018.

[3]]Chang2018-vj Shuo-Yiin Chang, Bo Li, Gabor Simko, Tara N Sainath, Anshuman
Tripathi, Aäron van den Oord, and Oriol Vinyals. [n. d.]. Temporal Modeling Us-
ing Dilated Convolution and Gating for Voice-Activity-Detection. In ICASSP2018.

[3]]Graves2006-wp Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen
Schmidhuber. [n. d.]. Connectionist temporal classification: labelling unseg-
mented sequence data with recurrent neural networks. In Proceedings of the 23rd
international conference on Machine learning (ICML ’06).

[4] Kevin Gurney, Tony J Prescott, and Peter Redgrave. 2001. A computational model
of action selection in the basal ganglia. I. A new functional anatomy. Biological
cybernetics 84, 6 (2001), 401–410.

[5] Juntae Kim, Jeehye Lee, and Yoonhan Lee. 2021. Generalizing RNN-
Transducer to Out-Domain Audio via Sparse Self-Attention Layers. (Aug. 2021).
arXiv:2108.10752

[6] Kwantae Kim, Chang Gao, Rui Graça, Ilya Kiselev, Hoi-Jun Yoo, Tobi Delbruck,
and Shih-Chii Liu. 2022. A 23`W Solar-Powered Keyword-Spotting ASIC with
Ring-Oscillator-Based Time-Domain Feature Extraction. In ISSCC2022, Vol. 65.
IEEE, 1–3.

[7] Vladimir I Levenshtein et al. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. Soviet Union, 707–710.

[8] Tara Sainath, Ron J Weiss, Kevin Wilson, Andrew W Senior, and Oriol Vinyals.
2015. Learning the speech front-end with raw waveform CLDNNs. (2015).

[9] Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W Senior, and Koray
Kavukcuoglu. 2016. WaveNet: A generative model for raw audio. SSW 125
(2016), 2.

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[11] Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv preprint arXiv:1804.03209 (2018).

[12] Philipp Weidel and Sadique Sheik. 2021. WaveSense: Efficient Temporal Con-
volutions with Spiking Neural Networks for Keyword Spotting. (Nov. 2021).
arXiv:2111.01456 [cs.LG]

[13] Philipp Weidel and Sadique Sheik. 2021. WaveSense: Efficient Temporal Con-
volutions with Spiking Neural Networks for Keyword Spotting. arXiv preprint
arXiv:2111.01456 (2021).

[14] Chunyang Wu, Yongqiang Wang, Yangyang Shi, Ching-Feng Yeh, and Frank
Zhang. 2020. Streaming Transformer-based Acoustic Models Using Self-attention
with Augmented Memory. (May 2020). arXiv:2005.08042

[15] Emre Yılmaz, Özgür Bora Gevrek, Jibin Wu, Yuxiang Chen, Xuanbo Meng, and
Haizhou Li. 2020. Deep convolutional spiking neural networks for keyword
spotting. In Interspeech 2020. ISCA, ISCA.

[16] Bojian Yin, Federico Corradi, and Sander M Bohté. 2021. Accurate and efficient
time-domain classification with adaptive spiking recurrent neural networks.
Nature Machine Intelligence 3, 10 (2021), 905–913.

[17] Davide Zambrano, Pieter R Roelfsema, and Sander Bohte. 2021. Learning
continuous-time working memory tasks with on-policy neural reinforcement
learning. Neurocomputing 461 (2021), 635–656.

[18] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. 2017. Hello
Edge: Keyword Spotting on Microcontrollers. (Nov. 2017).

7

https://arxiv.org/abs/2108.10752
https://arxiv.org/abs/2111.01456
https://arxiv.org/abs/2005.08042

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICONS 2022, July 27–29, 2022, Knoxville, TN, USA Yin, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Algorithm 1: Dynamic resetting

1 Variables:
2 is_rest – network has been reset(1) or not(0)
3 ℎ𝑡 – networks’ hidden states
4 𝑎𝑐𝑐 𝑓 – framewise accuracy
5 𝑎𝑐𝑐𝑝 – prediction accuracy
6 𝑡𝑠 – start point
7 𝑡𝑟 – reset time
8 Initialization:
9 ℎ0 = 𝑟𝑒𝑠𝑒𝑡 (𝑆𝑁𝑁)

10 is_rest=1, 𝑎𝑐𝑐 𝑓 = 𝑎𝑐𝑐𝑝 = 0

11 for 𝑡 = 0 to 𝑇 do
12 // tvar information:
13 `𝑡 = ∥𝑥𝑡 + 𝑥𝑡−1∥/2, 𝜎𝑡 = ∥𝑥𝑡 − 𝑥𝑡−1∥
14 𝑡𝑣𝑎𝑟𝑡 = tanh([𝜎𝑡 `𝑡)
15 𝑡𝑣𝑎𝑟𝑠𝑡 = 𝑡𝑣𝑎𝑟𝑠

𝑡−1 + (1 − 𝜙) (𝑡𝑣𝑎𝑟𝑡 − 𝑡𝑣𝑎𝑟𝑠
𝑡−1)

16 𝑑𝑡𝑣𝑎𝑟𝑡 = 𝑡𝑣𝑎𝑟𝑠𝑡 − 𝑡𝑣𝑎𝑟𝑠
𝑡+1 – derivative of smoothed tvar

17 //Network prediction:
18 𝑝𝑡 = 𝑆𝑁𝑁 (𝑥𝑡 , 𝑡𝑣𝑎𝑟𝑠𝑡 , ℎ𝑡)
19 //Action selection:
20 for 𝑖 = 1 to 𝑛 do
21 // Inhibition current : if detected class is k at 𝑡0
22 if is_reset ==0 and 𝑖 = 𝑘 then
23 𝐼 𝑖𝑡 = 𝑝𝑖𝑡
24 end
25 if is_reset ==0 and 𝑖 ≠ 𝑘 then
26 𝐼 𝑖𝑡 = − exp

(
𝑡−𝑡0
𝜏𝜙

)
𝑝𝑖𝑡

27 end
28 // Action value:
29 𝑢𝑖𝑡 = −𝑤−

𝑧 𝐼
𝑖
𝑡 +𝑤+

𝑧

∑𝑛
𝑗≠𝑖 𝐼

𝑗
𝑡

30 𝑎𝑖
𝑡+1 = 𝑎𝑖𝑡 + (1 − 𝜌) (𝑢𝑖𝑡 − 𝑎𝑖𝑡)

31 𝑎𝑖𝑡 = tanh(𝑡𝑣𝑎𝑟𝑠𝑡 𝑎𝑖𝑡)
32 end
33 Prediction: 𝑧𝑡 = arg min

𝑖∈1,2,...𝑛
(𝑎𝑖𝑡)

34 // Decision making:
35 if min(𝑎𝑡) < −\ and 𝑑𝑡𝑣𝑎𝑟𝑡 > 0 and is_rest ==1 then
36 // Start decision collection, detected class k at 𝑡0
37 // rest statue
38 is_reset = 0 ; 𝑡𝑠 = t
39 end
40 // Framewise Accuracy: compare current prediction 𝑧𝑡 and

target label 𝑦
41 if is_reset ==0 then
42 𝑎𝑐𝑐 𝑓 + = (𝑧𝑡 == 𝑦𝑡)
43 end
44 if min(𝑎𝑡) < −\ and 𝑑𝑡𝑣𝑎𝑟𝑡 < 0 and is_rest ==0 then
45 // End decision collection and reset hidden states
46 ℎ𝑡 = 𝑟𝑒𝑠𝑒𝑡 (𝑆𝑁𝑁)
47 if (𝑇 = 𝑡 − 𝑡𝑠) > 10 then
48 // Prediction Accuracy: compare final prediction 𝑧𝑡

and target label 𝑦
49 𝑎𝑐𝑐𝑝+ = (𝑧𝑡 == 𝑦𝑡)
50 end
51 // rest statue
52 is_reset = 1
53 end
54 end

8

	Abstract
	1 Introduction
	2 Background
	3 Attentive Spiking Recurrent Neural Networks
	4 Streaming Decision Making
	5 Experiments
	5.1 Results

	6 Discussion
	References

