
Supervised

Boundary Formation

Carol Orange

Supervised B011ndary Formation

Supervised Boundary Formation

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft

op gezag van de Rector Magnificus Prof. ir. K.F. Wakker,
in het openbaar te verdedigen ten overstaan van een commissie,

door het College van Dekanen aangewezen,
op maandag 31 oktober 1994 te 13.30 uur

door

Carol Marie ORANGE

Bachelor of Arts,
Reed College, Portland, Oregon

geboren te Salem, Verenigde Staten

Dit proefschrift is goedgekeurd door de promotoren:
Prof. dr. ir. F.C.A. Groen
Prof. dr. LT. Young

This research was partially supported by The Netherlands Project Team for Computer Science Re-
search (SPIN Project: Three Dimensional Image Analysis). ·

Portions of Chapters 4 and 5 are reprinted with permission from [OG93, OG94] @1993, 1994 IEEE.

Published and distributed by:

Delft University Press
Stevinweg 1
2628 CN Delft
The Netherlands

Telephone
Fax

+31 15 783254
+31 15 781661

CIP-DATA KONINGLIJKE BIBLIOTHEEK, DEN HAAG

Orange, C.M.

Supervised Boundary Formation C.M. Orange - Delft:
Delft University Press. - Ill.
Thesis Delft University of Technology. With ref. - With summary in Dutch.
ISBN 90-407-1045-7
NUGI 841
Subject headings: image analysis, processing, segmentation.

Copyright @1994 by C.M. Orange
Cover: Carol Orange and Hans van Herwijnen

All rights reserved.
No part of the material protected by this copyright notice may be reproduced or utilized in any
form or by any means, electronic or mechanical, including photocopying, recording or by any infor­
mation storage and retrieval system, without permission from the publisher: Delft University Press,
Stevinweg 1, 2628 CN Delft, The Netherlands.

Printed in the Netherlands.

The camera is an instrument of detection. We photograph not only what we know, but
also what we don't know.

Lisette Model

Contents

1 Introduction 1
1.1 Image Segmentation 1
1.2 Related Work 4
1.3 Automatic Boundary Formation 5
1.4 Human Boundary Formation. 7
1.5 Supervised Boundary Formation . 8
1.6 Scope of this Thesis . 10

2 Errors in Corner Specification 11
2.1 Introduction . 11
2.2 Problem Statement 12

2.2.1 Geometrical Characteristics of a Corner . 12
2.2.2 Corner Specification Errors 13
2.2.3 Questions 14

2.3 The User Experiments 15
2.3.1 The Session 15
2.3.2 The Stimuli 15

2.4 Results . 19
2.4.1 Comparison of Error Distributions 20
2.4.2 User Error Summary 27
2.4.3 Modeling User Error Sets 33
2.4.4 Performance on Texture 34

2.5 The User Error Model 35
2.6 Conclusions 36
2.A Instructions 37

3 An A* Algorithm for Inexact Polygon Matching 39
3.1 Introduction 39
3.2 The Cost Function 41

3.2.1 General Form of the Cost Function 42
3.2.2 Line Based Templates and Springs 44
3.2.3 Point Based Templates and Springs 47

3.3 An A* Algorithm to Find an Optimal Match . 49
3.3.1 Node Expansion. 52
3.3.2 The Heuristic Function . 53

Vll

viii

3.4 Experimental Methods and Error Measures .
3.5 The Optimal Jump Cost J
3.6 Results
3.7 Complexity Analysis .. .

3.7.1 Cost Computations
3.7.2 Matching Computations
3.7.3 Evaluation

3.8 Inexact Polyhedra Matching
3.9 Conclusions .. .
3.A Node Expansion

4 Model Based Corner Detection
4.1 Introduction
4.2 From User to Corner Model: an Overview
4.3 The Segmentation Model

4.3.1 The Image Corner Model.
4.3.2 The User Corner Model .
4.3.3
4.3.4

Evaluating>..
The Corner Detection Model .

4.4 Example: Constructing a Corner Template
4.5 Results
4.6 Conclusions & Further Research

5 Magnetic Contour Tracing
5.1 Introduction
5.2 Theory

5.2.1 Background
5.2.2 Interpreting User Data

5.3 Dynamic Programming to Find Vi
5.3.1 The Cost of a Path
5.3.2 The Cost of a Path Element
5.3.3 Related Work

5.4 Experiments
5.4.1 The Images ...
5.4.2 User Simulation .
5.4.3 The Error Measure
5.4.4 Measuring the Error: Practical Considerations

5.5 Parameter Tuning
5.5.1 Optimizing the Direction ak

5.5.2 Optimizing the Cost Function c(x, y)
5.6 Evaluation .
5.7 Conclusions

6 Concluding Remarks
6.1 Conclusions

Contents

54
56
57
59
59
59
60
61
62
63

65
65
67
69
70
75
78
79
79
80
84

87
87
90
90
93

101
101
105
107
108
109
110
110
112
113
113
114
115
119

121
. 121

Contents

6.2 Discussion
6.3 Concluding Remarks

A GRIP - A GRaphics library for Image Processing
A.1 Introduction
A.2 Direct Manipulation and Image Analysis
A.3 Design Considerations

A.3.1 The GRIP Input Model
A.3.2 The NDC Grid

A.4 GRIP - A Functional Overview
A.4.1 Workstations
A.4.2 Graphical Output . .
A.4.3 Primitive Attributes
A.4.4 Transformations .
A.4.5 Input

A.5 GRIP versus GKS .
A.6 Implementation
A.7 Conclusions

Summary

Samenvatting

Acknowledgements

Curriculum Vitae

lX

124
126

127
127
128
131
132
133
136
136
137
138
139
142
145
146
J47

157

161

165

167

X Contents

Chapter 1

Introduction

1.1 Image Segmentation

The segmentation of an image into meaningful parts is a key step in nearly every image
analysis problem. It is crucial to the successful identification of image objects, and
to the accuracy of object analysis such as shape and area. In general, a successful
partitioning results in either a description of one or more regions associated with each
object of interest, or a description of the boundary between each image object region
and the remainder of the image. In most cases, either representation can be directly
computed from the other. It is the manner in which the partitioning is extracted that
distinguishes the two.

In region formation, a similarity measure is used to establish which parts of the
image should be associated. Based on that measure, the image is separated into
connected regions determined to be similar. One or more such regions may be identified
as a segment of the image corresponding to a specific object. A simple example is when
each image object is associated with a single connected region, and all objects are either
darker or lighter than the background region which separates the objects. Such an
image is shown in Figure 1.la. In this case, the grey value intensity can be used as
a similarity measure, and the object and background regions can be distinguished by
selecting an appropriate intensity threshold, producing an image such as that shown
in Figure l.lb.

Alternatively, one might seek paths along which the image function changes sig­
nificantly, thus indicating a boundary between an image object and its background.
In boundary formation, one generally makes use of a difference measure which should
have a strong response between the object and background regions and a low value
in uniform regions. For the example in Figure 1.la, this results in a figure like that
in Figure 1.lc, which was obtained with the Prewitt difference operator [Pre70]. The
boundary paths are then extracted based on the strength of the change in grey value
intensity. Figure 1.ld, for example, shows the results obtained with the Hilditch skele­
ton [Hil69] applied after thresholding Figure 1.lc.

In spite of the apparent ease with which segmentation is accomplished with the
human eye, it remains a central problem in computer vision [BB82, Pra91, GW92]. For

1

2 1. Introduction

c) a grey level difference operator d) image object boundaries

Figure 1.1: Segmentation of a grey value image (a). In (b), image object regions are
determined based on grey value intensity as a similarity measure. In (c), the response
to an intensity difference measure is shown, and in (d) we show the paths of the image
object boundaries as determined by thresholding (c) and thinning the resulting paths
with a skeleton operator.

1.1. Image Segmentation 3

a limited set of applications in medical and industrial image analysis, a model-based
approach to segmentation has proven effective. In [SD89] and [GAW93], for example,
appropriate models for the expected objects are incorporated in the segmentation
process.

Implicitly or explicitly, all region formation methods are based on some model
of similarity which determines what parts of an image should be associated, and all
boundary formation techniques are based on some difference model which determines
where the boundary is. The effectiveness of the segmentation technique depends on
how well the underlying segmentation model fits the image and problem at hand. For
example, to obtain the results both in Figure l.lb and in Figure l.ld, we used the
knowledge that the objects in the image in Figure l.la have a lower grey value intensity
than the background.

A model used for image segmentation may also contain knowledge of the geometri­
cal attributes of the object boundary, such as shape (e.g. circular) and size (e.g. radius
r). This information may be used to direct and verify the partitioning of the image,
and to adjust parameters (such as the threshold value), in the course of segmentation.
It can also be used to correct the initial segmentation results. For example, the ex­
pected size of image objects may be used to eliminate small objects in Figure 1.1 b, and
short boundary paths in Figure l.ld. Further, if image object boundaries are known
to be smooth (curvature ,,,, > 1/r) and connected, most of the object boundaries in
Figure l.ld can be corrected.

For the majority of images, sufficient models of the objects contained in the image
have not been developed. Segmentation then requires some form of input from an
expert. Traditionally, the role of the human expert in the segmentation process is
limited to the selection of algorithms for detecting object boundaries or for defining
object regions. In general, these operations do not result in the object boundaries
or regions perceived by the expert. Much effort is thus spent trying to find the best
combination of operations, and to correct unsatisfactory results.

In this thesis, we investigate techniques with which an expert can facilitate the
segmentation process in a more direct and less frustrating manner. Because the human
vision system is particularly sensitive to discontinuities in an image which may be
due to object boundaries [Wat87], we want to develop interactive techniques for two
dimensional path specification. Direct manipulation drawing tools have proven to be
effective for path specification in packages such as MacDraw [Cla92], and Xfig [Sut85].
Similar techniques for object boundary specification, would allow a user to draw the
path of an object boundary, rather than requiring a user to understand how the object
differs from its background, and how this information can be translated to determine
an effective segmentation technique.

Because the motor control capabilities of users vary and because hardware devices
(such as mice) for screen location specification [HHN86] are indirect, a sketch acquired
from a user cannot be considered more than a rough approximation to the image object
boundary. Thus, simple tools for graphical interaction will not produce results from
which we can reliably measure object features, such as area, average grey level, and

4 1. Introduction

shape. Furthermore, interactive specification of boundaries is tedious at best, and the
effort required of the user should be minimized.

Rather than expecting a human expert to provide an accurate description of an
object boundary, we therefore aim to use the information obtained from the expert to
develop a model of the boundary, based on the geometry of the sketch and an associated
evaluation of the image function in the immediate region. This model is used in turn
to produce the correct path of the object boundary. We thus introduce a collaborative
approach to the segmentation problem, which we call supervised boundary formation.

1.2 Related Work

Assisting users in precision drawing has been a topic of interest to human computer in­
terface (HCI) specialists since the origins of interactive drawing environments1 [Sut63].
The grid technique available in most interactive drawing packages gives intersection
points in a rectangular grid gravity, thereby moving any point specified by the user
to the nearest grid point (see for example [Cla92]). This allows users to specify and
line up rectangular objects in a precise way, but not to define geometrical shapes,
such as equilateral triangles with arbitrary orientations, because these geometrical
constraints cannot be specified in terms of a rectangular grid. Constraint based meth­
ods [Bor81, Bor86, Sut63], allow users to specify geometrical and other relationships
among graphical objects in a scene with a large degree of freedom. Specification of
such constraints is, however, awkward and time consuming. Snap-dragging, introduced
by Bier in [BS86], allows users to control drawing with a compass and ruler. These
techniques are easier to use because of the direct manipulation of the compass and
ruler in the display of the drawing. Snap-dragging provides a compromise between
grid-based and constraint-based techniques, by providing more geometric flexibility
than grid based techniques, without the complexity of constraint based techniques.
This technique has also proven useful in three dimensional drawing editors [Bie90].

Hudson introduced the concept of semantic snapping to make particular screen
locations attractive based on semantics of an application which are unrelated to ge­
ometry [Hud90]. For example, within the context of visual programming, an icon
representing a function may have connection points for input parameters and return
values. If a connection is initiated from some function A, which returns a valid type
for input to function B, the input connection on B's icon will be made attractive when
the connection is initiated. If, on the other hand, B requires input of another type,
the input connection will be made repellent when a connection is initiated at A.

If the concept of semantic snapping is applied to the problem of image segmen­
tation, and in particular to the problem of image object boundary formation, then
locations between image objects should be made more attractive as boundary points
than those in the object and background regions. An example is found in [KWT88],
where Kass, Witkin and Terzopoulos introduce an approach to boundary formation

1 In fact, long before computers were used for drawing, rulers and compasses were used to solve
the same problems for draftsmen using paper and pencil.

1.3. Automatic Boundary Formation 5

which they called active contours. They define an energy functional in terms of a set of
constraints evaluated over the length of the object boundary. The optimal boundary
is that for which the functional

is optimized. Contributing to the functional are the gradient magnitude (Eimage),
which has a high value along object boundaries in images such as Figure l.la, and
measures of continuity and smoothness (Eint) over the length of the path. To support
interactive tools for pulling a contour toward the user pointer, and pushing it away,
they incorporate a set of external constraints (Econ) in the functional. This allows the
user to influence the energy or cost of a path, and in so doing to easily select a path
which satisfies the semantics of an object boundary, and which agrees with the path
the user perceives as the object boundary.

1.3 Automatic Boundary Formation

The detection of discontinuities in a grey level image has been the traditional focus
of research in boundary formation. If one views an image as a continuous intensity
landscape, those areas corresponding to hills in the landscape may correspond to edges
between light and dark regions, and local extrema may correspond to lines or points
in the image. Traditionally, edges have been sought by inspecting the gradient

VJ() = (EJJ(x, y) EJJ(x, y))
x,y ox ' By

of the image function f(x, y). In the continuous domain, the magnitude of the gradient
is high in hilly regions, and the direction of the gradient is perpendicular to the path
of the edge and pointing towards the hill top. Likewise, the Laplacian

V2f() = 82 f (x, y) 82 f (x, y)
x, y EJ2x + EJ2y '

has a strong positive or negative response at extrema of the image function f(x, y).
Viewed in this fashion, it is logical that initial attempts at edge detection centered
on the design of convolution kernels to approximate the gradient [FC77, Kir71, Pre70,
Rob65, Rob76]. Likewise, detection of lines and dots was attempted using kernels
which approximate the Laplacian (cf. [GW92, Pra91, RK76]).

The ideal result of a convolution with one of these kernels is a new image function
which has high values at positions of edges, lines, or spots, and in smooth regions has
the value zero. The determination of a path corresponding to an image object bound­
ary based on the images resulting from these operations, however, remains problematic
for a number of reasons.

6 1. Introduction

1. Localization error Edges and lines are somewhat blurred in digital images
due to the image formation process. Depending on the degree of blur, there may
be multiple high responses perpendicular to a single edge or line.

2. Noise sensitivity Both the gradient and the Laplacian, being differentiation
operators are very sensitive to noise. This may result in some boundary points
having a weak response, while some nonboundary points have a strong response.

3. Smoothness constraints The detection of boundary points based on differ­
entiation requires the path of the edge to be locally linear [MH80]. Key points
such as corners and junctions, at which the path of the boundary is not smooth,
will not be detected. If the image is blurred sufficiently, these points may be
detected as edge points, but be poorly localized.

4. Homogeneity assumptions The measure with which an object may be distin­
guished from its background is restricted to differences in intensity. Not only will
the boundaries between textured objects be missed because of this assumption,
but many nonboundary points within textured regions will have a significant re­
sponse to derivative based image operations. Detecting the discontinuities of the
image function may be neither a useful nor a sufficient approach to extracting
object boundaries in an unknown image.

5. Data selection In the vast majority of image segmentation problems, only a
subset of the detected boundary points will be of interest. Given an image of
a house and garden, one may be interested in deriving the dimensions of the
house, or in identifying the plants in the garden. If the former, the boundaries
of the plants are superfluous, and if the latter, the boundaries of the house are
irrelevant.

6. Interference Depending on the spatial extent of the convolution filter, other
image objects, shadows and reflections may interfere with the detection of sec­
tions of an object boundary.

In the field of edge detection, significant progress has been made towards solving
the first two problems [GW92, Pra91]. In particular, the work of Canny [Can86] was
central in its formalization of edge and line models upon which detection can be based,
and in formalizing the goal of edge detection to be that of minimizing the localiza­
tion error and sensitivity to noise simultaneously. For a limited set of homogeneity
models, progress has also been made towards the detection of key boundary points
such as corners and junctions at which the boundary does not satisfy the smoothness
requirements assumed by the gradient model [MNR90, tHRFKV92].

The final three problems listed above, have only been solved for specific applica­
tions in which models have been developed containing the required information about
the geometrical and homogeneity properties of the image objects of interest. For un­
known images and new applications, these problems remain significant obstacles in
the segmentation process.

1.4. Human Boundary Formation 7

Without a priori information, there is no basis for deciding which image features a
detection operation should be modeled upon. Inherent to every boundary and region
formation method is an assumption of the image feature measure which can be used
to distinguish an object from its background. A given method is only applicable when
the assumptions are well suited to the application and image at hand.

Even when appropriate boundary extraction techniques have been applied, given
the set of resulting contour segments,2 there is no way to automatically evaluate the
data as to whether it is necessary and sufficient to describe the boundary of an image
object. Many of the contour segments may be due to shadows and reflections caused
by lighting conditions and object surface properties. In two dimensional images of
three dimensional scenes, some objects may be partially occluded by others due to the
position of the camera. In both two and three dimensional images of biological spec­
imens, the grey value behavior associated with object boundaries may be extremely
subtle. Mist in a natural scene, inconsistent lighting conditions, or significant noise in
the imaging process may be impediments to identification of the proper set of contour
segments to describe an object boundary. Fully automatic segmentation techniques
which perform consistently and satisfactorily under the above mentioned conditions
when no formal knowledge of image content is available have yet to be developed.

1.4 Human Boundary Formation

In general, a human observing an image will immediately segment it into meaningful
parts. Reflections and shadows not only do not prevent the human eye from identifying
an object, but play an important role in the recognition process. Object boundaries are
immediately identified [Cor70, Wat87], often in spite of poor lighting conditions and
significant noise. Further, the human vision system is robust to boundary sections
being occluded by other image objects. In most cases, this will not result in an
increased difficulty in recognition of the object in the scene. A classic example is the
ability to instantly recognize a house when it is partially occluded by trees. Although
the exact position of an image object boundary may be difficult to identify for some
homogeneity criteria, a rough outline can generally be specified. For example, most
people will correctly identify a bush in a field of grass, even if the grass and the bush
are the same shade of green.

It is difficult, however, for a human observer to describe what change in an image
lead her to perceive the presence of a boundary. Even when a person is able to describe
the change, a question arises as to how this information can be communicated to the
computer, and subsequently transformed to a set of homogeneity criteria which may be
used to locate the boundary. Consider the problems involved in translating a human
description of a texture pattern such as "small leaves in the wind" to homogeneity
criteria which may be used to distinguish the bush from the grass in a digital image.

In summary, we may assume a user is able to provide information regarding the

2We use the term contour segment to refer to a geometrical representation of a section of an image
object boundary.

8 1. Introduction

approximate form and location of object contours in an image. However, one should
not expect a user to specify the contour of an object to a satisfactory degree of precision
for object analysis [HHN86]. A human expert can often indicate significant rather than
negligible transitions between homogeneous regions,3 and is able to associate a set of
contour segments, whether connected or not with the boundary of a particular object.
A human expert should not, however, be expected to specify the properties of the
image function which can be used to separate an object of interest from the remainder
of the image.

1.5 Supervised Boundary Formation

Claim: While neither humans nor machines possess capabilities sufficient for the
accurate segmentation of unknown images, their combined capabilities are sufficient
for the accurate segmentation of a significant set of images which cannot be segmented
by either independently.

In terms of the problems listed in Section 1.3, the progress in automated and
model-based boundary formation shows that the first two problems, localization error
and sensitivity to noise, can be solved automatically, for images with dark objects on
a bright background (and vice versa). If a good model for the boundary geometry is
also available, the third problem, namely the detection of points at which a boundary
is not smooth, can be solved automatically. This geometrical model can easily be
furnished by a user if it is unavailable. Further, humans are able to identify the object
boundaries for a wider set of homogeneity criteria, and can provide information on
significant versus superfluous changes in an image, even if interference occurs along
parts of the image object boundary.

The work in [KWT88] provides an example of interactive boundary editing tools in
which the user provides this information when an object of interest is partially occluded
by another image object. The interactive model presented there, while elegant, is
limited to techniques for correcting previously extracted image object boundaries.

In this thesis, we investigate interactive models for boundary specification, assum­
ing no estimation of the boundary has been computed. Because a human expert can
be expected to indicate the approximate form and location of a transition between an
object and its background, using tools similar to those provided in interactive drawing
packages, we must address the following question.

Problem: Based on an approximate location and geometry of an image object bound­
ary, can the difference model which may be used to localize it be deduced?

In practice, this would mean data gathered from the user would be used to construct
a model for a section of the object contour, which would be used to develop and/or

3 Any image phenomena which is not of interest for a particular segmentation task, be it due to a
shadow, or a boundary of an object which is not of interest, is considered negligible.

1.5. Supervised Boundary Formation 9

select an appropriate detector to locate the object boundary. In the segmentation
process, such a scheme would simultaneously exploit the image understanding inherent
to the human vision system and the precision which can be obtained with a machine.

Input/Correction Models A common input model for path specification which
has proven successful in interactive drawing packages is connect-the-dots model. Using
a pointer tool (usually a mouse) the user specifies a series of (x, y) positions in a two
dimensional plane. In most packages, a polygonal or smooth (spline) path can be
generated based on the user input positions.

For image object boundary formation, a series of (x, y) locations can be used to
generate a variety of paths. If the object boundary is smooth, the user may intend
to specify a spline like path which follows the boundary, and interpolates some point
in the neighborhood of each position specified. For polygonal objects, one may seek a
corner near each point specified by the user similar to that defined by the user point
set. Some correction of the boundary between the corner points may also be desired.
Thus if the input is an ordered sequence of points, a variety of corrections may be
applied to acquire the required image object boundary.

Another generally supported input model is free-hand drawing. In this case a path
is traced as the user draws, which results in a sense of drawing with a pen on paper.
The actual path generated is usually different than the set of points the user traces.
Historically, computers have been too slow to store all points through which the user
pointer passes, so some form of interpolation is used to produce a connected path. Even
when this is no longer the case, however, some form of smoothing may be desirable.

In forming object boundaries, one wants the resulting path to be well connected,
and fall between an object and its background. This might be approached by first
deriving a path using traditional interpolation techniques, and subsequently correcting
the result. Alternatively, one may want to produce a correct boundary as it is drawn.
Other alternatives, such as a best polygonal approximation to the boundary based
on some previously defined criteria, might be among the set of required boundary
corrections.

Input tools which allow one to specify circles, ellipses and rectangles are available
in most packages. In general, however, these geometric models are too strict to specify
the boundary of an arbitrary object in an unknown image. Model-based approaches
which incorporate an approximate geometric model in addition to an appropriate
difference model have proven effective for extracting the boundary of objects with a
simple geometrical form in [BD92].

User Interpretation Perhaps the biggest obstacle in the development of tools for
supervised boundary formation is the question of user interpretation. Suppose a tool­
box of input/correction techniques are at the user's disposal, and the user has selected
one of them, how close, geometrically, can we assume the user sketch is to the ob­
ject boundary? In a direct manner, this influences the error which the user should
be permitted. More importantly, however, it determines whether we can model the
properties of the image function near the boundary. Suppose we investigate a neigh-

10 1. Introduction

borhood about the user sketch to model the image function in the object, boundary
and background regions, and suppose the size of the neighborhood is determined by
the permitted user error. If the permitted error is too small, the neighborhood about
the user sketch defined may be too small to extract a model of all three regions, as
one or more may not be present. If the neighborhood is too large, our image region
evaluation may be disturbed by other objects in the region.

1.6 Scope of this Thesis

In Chapter 2, we perform experiments in which the user error near corner points on
polygonally shaped objects, specified with a connect-the-dots input tool, is evaluated.
This allows us to construct a user error model for the specification of points on similar
objects. The evaluation of errors made at each corner of a user input polygon, however,
requires the user polygon to be matched with the model polygon used in the user
experiments. Because various users make a variety of errors in the specification of
such polygons, the matching problem turns out to be nontrivial, and is addressed in
Chapter 3. The user error model for corner specification which we derive in Chapter 2
is employed in Chapter 4 to derive corner models from user specified polygonal paths.
Each corner model is used to localize the corner on the image object which corresponds
to that specified by the user.

In Chapter 5, we turn our attention to a technique called magnetic contour tracing.
In this case, a user traces a contour with a free-hand drawing tool, and the correct path
of the boundary is produced as the user draws. To produce a path which follows the
image object boundary, we develop a dynamic programming algorithm to attract the
ink of the pen, as it were, to locations near the user with a high gradient magnitude.
Using dynamic programming guarantees we produce a well behaved path in terms of
connectivity and smoothness. By allowing the user to influence the boundary path
definition while relying on gradient based techniques, we obtain a well localized bound­
ary path, and overcome the problems of data selection and interference described in
Section 1.3.

The methods described in this thesis were implemented using the Scil.Jmage pack­
age for image analysis [vBtKK+93, oA91]. Because software which supports the de­
velopment of highly interactive methods for image analysis is not publicly available,
we designed the GRIP library for image processing, which is described in Appendix A.
All interactive methods described in this thesis were implemented with GRIP.

Chapter 2

Errors in Corner Specification

2.1 Introduction

For deriving the correct path of an object boundary from a user sketch, we first need
to estimate the type and degree of errors a user makes in task of polygonal boundary
specification. To sketch boundaries in our system, users are provided with a connect­
the-dots tool, which is similar to those available in general purpose drawing packages
like MacDraw [Cla92].

In light of Attneave's work [Att54], which showed that human perception is par­
ticularly sensitive to corners and local peaks in curvature, the geometry of the user
sketch at each dot specified is likely to provide a good model for the geometry of a
corner near the point. Likewise the boundary is likely to be relatively smooth between
the dots. In this chapter, we thus aim to extract a model for errors made by users at
corner points in the specification of polygonal object boundaries.

The error model is derived based on a set of experiments in which users are asked
to sketch the (known) boundaries of objects in test images. In the terminology of
user modeling (see [Cou92]), the user error model we extract is called an explanatory
user model because it predicts the type and degree of user error based on actual user
performance, rather than on a theoretical hypothesis (which corresponds to a predictive
user model). Because the error model we derive turns out to differ for individual
users, it should be viewed as a user dependent model which may be incorporated in an
adaptive user interface (see [KDMSH92]), for boundary specification. More specifically,
based on the user error model derived in this chapter, the method to extract corner
points described in Chapter 4 can be adapted for individual users, increasing the
likelihood of a correct corner model being extracted from the image.

In the following section, we state the questions which must be addressed to develop
a user error model for polygonal boundary corner specification. In Section 2.3, we
describe the experiments performed to measure user errors. The results are presented
in Section 2.4, and in Section 2.5, we derive a user error model for corner specification.

11

12 2. Errors in Corner Specification

2.2 Problem Statement

Suppose a user specifies an image object contour with a polygonal shape defined by the
point set P = {Pi}i=I · In practice, we treat the points p1 and Pn as a single point if they
are sufficiently close (thus a closed polygon) and as two distinct end points otherwise.
Because we are interested in corner points, we simplify the discussion by assuming
Pn = PI, which means P describes a closed polygonal path. Now, for 1 ::; i < n, each
point Pi in the user sketch may be seen as an approximation of a corner on the object
boundary. The geometric characteristics of the corner on P at the point Pi can be
expressed in terms of the corner triplet Pi= {Pi-I,Pi,Pi+i}. 1

We assume in the ideal world that the user has an interactive toolkit at hand for
object contour specification which allows the user input to be interpreted and corrected
in a variety of ways, just as with interactive drawing package one may sketch using a
variety of tools. In this case, however, the user can choose both the input tool and the
correction model. In this chapter, we assume the nature of the correction requested
is an adjustment of the location of each point specified in the sketch. We therefore
expect there to be an object in the image, the boundary of which can be described by
a polygonal shape Q = {qj}J=l> such that for each corner Pi E P, there is a corner
Qj E Q which is close to Pi. By close, we mean the differences between the key
geometric characteristics of Pi and Qj should be small.

2.2.1 Geometrical Characteristics of a Corner

Given a corner Pi = {Pi-I,Pi,Pi+1}, geometric characteristics which are relevant to
the corner model are the position Pi, the corner angle o:(Pi), and its orientation (3(Pi).
The latter can be expressed in terms of the two vectors which define geometry of the
corner on the sketch at Pi· Let

ai = Pi-I - Pi and bi =p;+i -pi, (2.1)

and consider Figure 2.1. The angle of the corner on the path defined by P at the point
Pi is given by

(2.2)

We use corner orientation to measure the direction of the cone section of the corner,
and so we define it as the average direction of the vectors ai and bi, which determine
the cone geometry. As can be seen in Figure 2.1, this is simply the direction of the
vector which bisects the corner defined by ai and bi, defined by

(2.3)

1 Due to the cyclic nature of polygonal point sets, if i ;:o: n, Pi should be interpreted as Pimod(n-l),

and if i ~ 0, Pi should be read Pi+n-lmod(n) .

2.2. Problem Statement

y

P;

(a)

a.
l

(b)

13

Figure 2.1: The geometric characteristics of a corner on a polygonal shape defined by
(a) the triplet Pi= {Pi-l,Pi,Pi-i} which determines the corner geometry of the path
Pat the point Pi, and (b) the vectors a; and bi derived from the triplet Pi.

Finally, the size or scale of the corner is significant for proper construction of a
corner model. The following definition for corner scale provides a measure of the
boundary detail near the corner.

Definition 2.1 The scale of a corner Pi in a polygonal shape P is given by the length
of the shorter of the two line segments which meet at the corner point p;. If ai and bi
are defined as in Equation 2.1, the scale is given by

S(Pi) = min{llaill, llb;II}. (2.4)

If Qj is a corner triplet on an object boundary, and there are no disturbances in
the boundary model due to nearby or occluding sources of interference, then the scale
S(Qj) tells us at what distance from the corner point qi the image function should
look like a corner transition. This assumes other sections of the path of Q do not
intersect the immediate neighborhood of%·

2.2.2 Corner Specification Errors

When a user produces a point set P = {p;}i=l in specifying an object boundary defined
by a polygonal shape Q = { qi }J'=1 , we are concerned with the errors made at each
corner P;. In particular, if the user point Pi E P corresponds to an object boundary
point qj E Q, we are interested in user performance with respect to the following
errors.

1. Positional Error - the Euclidean distance between the user specified point Pi,
and the position qj of the corner on the boundary, given by

(2.5)

14 2. Errors in Corner Specification

2. Corner Angle Error - the difference between a(Pi), the angle of the corner in the
user sketch at Pi, and a(Qj), the angle of the corner in the image object at qj.
This is defined by

(2.6)

3. Orientation Error - the difference in corner orientation between Pi and Qj- This
can be measured with the corner angle between the bisecting vectors B(Pi) and
B(Qj) defined in Equation 2.3, which is given by

(2.7)

4. Scale Error - the difference between the scale S(Pi) of the user defined corner,
and the scale S(Qj) of the corresponding corner on the object boundary. The
error is defined by

(2.8)

The second and third errors depend on the error a user makes in the angle of
each of the lines which meet at the corner. Thus, we might have examined errors in
line angle rather than in corner angle and orientation. The geometry of the corner,
however, depends on both lines which meet there. The corner angle and orientation
capture the full corner geometry, and are therefore the relevant measures for study of
errors at corner points.

2.2.3 Questions

Suppose a user specifies a corner triplet Pi= {Pi-i,Pi,Pi+1} as part of an object bound­
ary, the path of which is correctly described by Q = {qJT=i· If Qi= {qj-l, % qH1} is
the corner triplet which corresponds to that specified by the user, we want to know if
the user behavior with respect to the four errors defined above depends on the geom­
etry of the object corner defined by Qj- We also want to know if the error level varies
among users or if it is influenced by the characteristics of the image function near the
boundary. Specifically, we are concerned with the following.

For each of the four corner measures defined in Section 2.2.2, does the difference
between the user defined corner triplet Pi and the image object corner triplet Qj
depend on one or more of the following factors?

A) The scale S(Qj) of the corner on the image object boundary;

B) The characteristics of the image function in the object, background and transition
regions in the neighborhood of the corner point qj;

C) Whether there is disturbance to the image function, such as noise and shading in
the neighborhood of the point qi;

D) Which user specified the sketch P of the image object boundary; and

2.3. The User Experiments 15

E) The object shape.

Both O;j and 8(3;j are nonnegative entities, which by definition, produce an error
magnitude. The definitions of Oa;j and 8S;j allow inspection to the bias of the user
error. This will be used to form a model for user errors in Section 2.5.

2.3 The User Experiments

The experiments described in this section were designed to collect data on user errors
made in corner specification. They are used to address the questions posed above.

2.3.1 The Session

The six subjects who produced the object boundary sketches were computer science
graduate students and programmers, each of whom had substantial experience using a
mouse. Prior to the session, all subjects were unaware of the questions to be addressed
in the experiment. Each subject was presented a series of 20 images containing a
polygonally shaped object, and asked to specify the object boundary.

A connect-the-dots tool was provided for the specification of polygonal boundaries.
It should be familiar to those who have used interactive drawing packages to draw
polygonal or curved paths by indicating a number of points, which are to be connected
in the order specified. After the first point is specified, the movement of the cursor is
tracked, and a line is drawn from the specified point to the current cursor location.
The line is constantly updated as the user moves about. When a new point is specified,
the line is made a permanent part of the polygonal shape. The process then continues
with the new point as the starting point for the moving or rubber-band line. When the
last point is specified, the object is complete.

Each subject was presented with the written instructions in Appendix 2.A. In
addition to directions on the use of the tool for boundary specification, the instructions
encourage the subjects not to specify the points with too much care. The session
required approximately 15 minutes including time to read the instructions and practice
with the tool.

2.3.2 The Stimuli

Each image in the series presented to the users contains an object with a boundary
defined by one of the two polygonal shapes in Figure 2.2. Each shape was used to create
a variety of ten 256 x 256 images. The ten images differ in the grey level functions
f0(x,y), fi(x,y) and fb(x,y) in the object, background and boundary regions.

16 2. Errors in Corner Specification

Figure 2.2: The shapes poll (left) and pol2 (right) used in the experiments.

Object Shapes

The two polygonal shapes used to define the images for this study share the following
properties. Each contains corners of scale S(Qj) EL, where

L= {15,30,45,60,75},

with the length fi.. E L expressed in image pixels. Further the angle of each corner
satisfies a(Qj) EA, where

A= {45, 90,135},

with the angle a E A expressed in degrees.
We defined each shape Q, so that for each corner angle a E A, and each corner

scale fi.. EL, there would be at least one corner Qj E Q with a(Qj) = a and S(Qj) = fi...
Because the number of angles is n(A) = 3 and the number of corner scales is n(L) = 5,
this requires the number of points on test shape Q = { qj }:f=1 to satisfy m ~ 15.
Meanwhile, the number of points on each object shape must be kept at a minimum
to prevent intrasession fatigue [GS66]. To satisfy both criteria, we defined each of the
shapes in Figure 2.2.

Test Images

We created a variety of images for each shape in Figure 2.2. Specifically, 20 images were
created in which the object, background, and boundary were characterized according
to Table 2.1. The images have been categorized in one of four groups, namely ramp,

roof, disturbed, and texture, depending on the object and physical imaging models used

2.3. The User Experiments 17

(a) (b)

(c) (d)

Figure 2.3: Image Models: a) ramp, b) roof, c) disturbed ramp, d) texture

to create them. Each of these groups are described in detail below, and models are
shown in Figure 2.3. To prevent learning effects, the images were presented to the
users in the order: a) texture, b) disturbed, and c) ramp and roof.

Let fo denote the value of the image function in the object region, Ji the value
in the background region, and fb the value in the boundary region. In describing the
image functions, we make use of the signal magnitude, as defined by

s(f) = I max{< fo >,<Ji>,< fb >}-min{< fo >,<Ji>,< fb >}I- (2.9)

Thus, the signal is the difference in the average value of the image function in the object
and background regions. For some images (namely roofs), it will be the difference in
average value in the boundary and background regions.

Ramp Images An X x Y image, in which the image function is similar to that
which would have occurred had the object been imaged with a camera, is generated
as follows. We create the shape in an 8X x SY image, the resulting image is smoothed
with a two dimensional Gaussian filter, with standard deviation a-= 8. The test image
is then obtained by subsampling the smoothed image to obtain an X x Y image with
realistic edges. The resulting images are those displayed in Figure 2.2. For each shape,
we created both a bright object (!0 = 150) on a dark background (!1 = 50) as well as a
dark object on a bright background, resulting in the four images in the ramp category
in Table 2.1. The signal level for these images is s(f) = Iii - fol = 100. Simple objects
obtained with a perfect noise free camera would fall in this category, and would have
boundary functions fb similar to those depicted in Figure 2.3a.

Roof Images The roof images are created as the ramp images, but in this case, we
have fo = Ji and fb, the boundary function is a roof like peak, with its maximum

18 2. Errors in Corner Specification

Figure 2.4: On the left, a bright roof boundary disturbed by noise and shading. On the
right, an image with different Brodatz textures in the object and background regions.

(or minimum) between the object and background regions. The one dimensional roof
boundary model is depicted in Figure 2.3b, and an example of a roof boundary (dis­
turbed by noise and shading) is shown in Figure 2.4. For each shape the background
function f1 E {50,150}, was used to create the roof images. The average value along
the peak of the boundary is <]b >= 90 for a dark roof on a bright background, and
<]b >= 107 for a bright roof on a dark background. We thus compute the signal
for the roof images as the difference between the average background value and the
average roof value s(f) = I < Ji > - <]b > I ;::;; 58.5. The values are close to this for
all four roof images which make up the roof image category in Table 2.1.

Disturbed Images The third group of images was generated by adding shading and
noise to each of the images in the roof and ramp groups. Before sampling the image,
we added a linear shading function is to each of the images. The function increased
linearly as a function of x starting on the left with J.(o, y) = 0, and ending on the
right with the signal value J.(X, y) = s(f). Independent Gaussian noise resulting in a
signal to noise ratio SNR = 2 was then added to each of the images, where

SNR = s(f)

and O"noise is the standard deviation of the Gaussian noise. The eight images resulting
from these modifications make up the disturbed category of images in Table 2.1, an
example of which is shown in Figure 2.4.

2.4. Results 19

Test Images

Image
Shape

Object Background Boundary Signal
Category Function Function Function s(f)

Ramp 1,2 Bright: f o=l50 Dark: fi=50 Blurred 100
(4 images) 1,2 Dark: fo=50 Bright: Ji =150 Blurred 100

Roof 1,2 Dark: fo=50 Dark: fi=50 Bright: k:~107 57
(4 images) 1,2 Bright: fo=l50 Bright: fi=l50 Dark: fb~go 60
Disturbed Ramp and roof images disturbed with additive linear shading in

' (8 images) the range [O, s(f)] and additive Gaussian noise giving SNR = 2.
Texture 1 D28 D6 Blurred 0

(4 images) 1 D36 D93 Blurred 0
2 D105 D57 Blurred 0
2 D19 D38 Blurred 0

Table 2.1: The object, background and boundary functions which characterize the 20
test images. The Dn labels are the identifiers for the Brodatz textures in [Bro66].

Texture Images To create the texture images we made use of images2 of the tex­
tures in the Brodatz album [Bro66]. Th~ size of the images used was 512 x 512. To
assure the difference between the foreground texture function f O and the background
Ji was strictly due to a difference in texture and not due to a difference in average
grey value, we normalized the images used so that < fo >=< Ji >= 128, where the
average was taken over a large region encompassing the object3 . In order to simulate
the camera model along the boundary without averaging out the texture pattern, we
created the texture images by filling the object region in a 2X x 2Y image. Sub­
sequently we blurred with a two dimensional Gaussian (er = 2), and subsampled to
obtain the X x Y image presented to the user. We made two images in this fashion
for each of the two shapes resulting in the images in the texture category in Table 2.1,
an example of which is shown in Figure 2.4. The textures selected for the experiment
were required to have small texture elements in relation to the smallest corner so that
all corners would in principle be visible.

2.4 Results

In this section, we examine the data collected from the user experiments with respect
to the issues posed in Section 2.2.3. Our analysis is geared toward the development
of a user error model for the task of corner specification. Before the errors can be
measured, the points in each polygon obtained from a user must be matched with the
points in the polygon used to generate the test image. Because users sometimes skip

2We used images from the set scanned at MIT
3 There are some artifacts near the edges of the images we used which we did not want to include

in our computations, as they did not effect the region in which the user was to draw.

20 2. Errors in Corner Specification

corner points on the polygon, and insert points between two corners on the object, this
turns out to be a nontrivial step in the user error evaluation. To address this problem,
we developed the matching algorithm in Chapter 3. In the remainder of this chapter,
we assume the user and polygon point pairs evaluated, are correctly matched.

The four errors {O;j,OCT;j,o,B;j,OS;j}, defined in Section 2.2.2, were measured for
each of the user/model corner point pairs. Before evaluating the degree and type of
errors made in defining the corners, we must determine whether the data collected for
different types of images should be evaluated as a set. By grouping the data appropri­
ately we can address the influence of variation in B (image function), C (disturbance),
and E (shape) on user behavior (see Section 2.2.3). In Section 2.4.1, the errors made on
various groups of images will be compared using the Kolmogorov-Smirnov test [vM64].

In Section 2.4.2, for each of the four errors, we summarize each data set in terms
of its mean value and standard deviation, for the four errors. The results are used to
model the user error distributions in Section 2.4.3. Because user performance on the
texture images differed dramatically from the performance on the remainder of the
images, the results for these images are considered separately in Section 2.4.4.

Outlyers In specifying the polygonal boundary paths, each of the users B, D, and
F twice inserted an extra point. These points were not matched with points on the
true polygons, and do not contribute to the error measures. However, they introduce
a severe error in corner scale c5 S;j, as the length of the line to the neighboring corner is
much shorter than it should be. Unless these points are removed prior to evaluation,
the error scale data, and sometimes angle data, cannot be correctly evaluated, as these
points have a strong influence both on the mean and standard deviation. The outlyers,
seven in total, were removed prior to the evaluation presented in the following sections.

Note that in practice, the presence of such outlyers indicates the necessity of good
correction facilities for this form of boundary specification. They not only introduce
errors in the neighborhood of the extra point, but introduce errors in the modeling of
the immediate neighboring points on the polygon.

2.4.1 Comparison of Error Distributions

Before examining the errors made in corner specification, we first need to establish
which of the data can be grouped and viewed as a consistent set to be evaluated. Be­
cause the variation in the distance and scale error distribution parameters among users
is significant, the error levels for each user must be examined separately. Moreover,
angle errors show a clear dependence on corner scale, which means the errors made
at each scale should be viewed separately. Both of these points will be established in
Section 2.4.2, but first we must establish which errors can be viewed as a group for
individual users at each scale.

Data Groups

For each user, we want to know if the distance errors made on ramp and roof images
are drawn from the same distribution. In the experiments, there were eight ramp and

2.4. Results 21

Number of corners

Corner Scale
Shape 15 30 45 60 75 all

poll 5 3 3 3 3 17
pol2 4 4 3 3 3 17
both 9 7 6 6 6 34

Table 2.2: The number of corners in each polygon at the given scale.

eight roof images used. Of the eight ramp images, four were of one shape shown in
Figure 2.2, and four of the other. Four contained added disturbance, and four did
not. Four were of a bright object on a dark object, and four contained the reverse.
The same variations held for the roof images. To see if the error levels are effected by
whether an image contains a ramp or roof boundary, we pool the eight distinct ramp
images and compare each error set with that for the group of eight roof images to see
if this aspect (ramp versus roof) of the image function is a significant factor in the
user error level.

Likewise, to compare the influence of disturbance on user error levels, we pool
the user errors at each scale for all eight images with added noise and shading, and
compare them to the errors made for the group of eight images without disturbance.
Each of these groups contain eight distinct images, namely, ramp and roof images with
dark and bright objects of each form. The error sets for dark and bright images are
similarly pooled and compared, and finally the error sets for all images containing one
shape is compared with those for all images containing the other.

The left polygon in Figure 2.2 is referred to as "poll" and the right polygon is
referred to as "pol2". Table 2.2 shows the number of points of a given scale (see
Definition 2.1) present in each polygon. Because there are four ramp images in the
"poll" shape and four in the "pol2" shape, and four of each shape in the eight roof
images, we compare 4 x 5 + 4 x 4 = 36 errors made at corner scale 15 on the ramp
images with the 36 errors made on roof images at corners of the same scale. All error
sets compared below are constructed similarly.

Kolmogorov-Smirnov Statistics

For a given user specifying points on a set of images, we can view the errors mea­
sured with each of the functions in Section 2.2.2, at each corner scale, as a set
E = { e1 , e2 , ... , eN }. If we define the subset

E(x) = {y EE: y::; x},

22 2. Errors in Corner Specification

then the distribution function of the error set E is given by

S () = n(E(x))
Ex n(E) ' (2.10)

where n(X) denotes the number of elements in a set X. To compare the performance
of a user on two nonintersecting error sets E1 and E2 , we can compute the Kolmogorov­
Smirnov statistic [Smi39], defined by

(2.11)

For significantly large values of D, we can assume the two error sets are from distinct
distributions. In comparing two data sets, the significance of D is given by

>..= N1N2 D
N1 +N2 '

(2.12)

where Ni= n(Ei)- As shown in [vM64], the probability that the null hypothesis "E1

and E 2 are drawn from the same distribution" is not false, is given by

p(>..) = 2 f (-1/-1e2k2>-2' (2.13)
k=l

where >.. is defined in Equation 2.12.
Each of the errors Jij, 5aij, 5f3ij and 5Sij, for a given user were grouped according

to corner scale. For each of the error set groupings described above, we computed the
Kolmogorov-Smirnov statistic D as well as the probability defined in Equation 2.13
for the pair of error distributions. For example, we compare errors in E1 and E2

where E 1 = { user A, scale = 15, Jij, ramp images } and E2 = { user A, scale
= 15, Jij, roof images }. The Kolmogorov-Smirnov D statistic for this comparison is
shown in the 6ij column in the row marked 15 in Table 2.3. Lower in the table, the
probability of the significance of D is given. We present the statistic D along with its
associated probability for user "A" for the four image groupings to be compared in
Tables 2.3, 2.4, 2.5 and 2.6 below, to illustrate the set of statistics gathered for each
user.

Note that for nearly all error measures, at all scales, the difference in error dis­
tributions on the groups compared is not significant. That is, in almost all cases,
p(>..) » 0.05. This is, however, not always the case. We therefore summarize the
results for all users, to see if there are patterns which should influence the data groups
examined.

Consider the set of error set pairs evaluated for ramp versus roof images (Table 2.3).
Suppose we call it 3. There are four error set pairs (1 for each error type), for each of
the five corner scales, and there are six users. So there are n(3) = 120 error set pairs
compared in the ramp versus roof evaluation. Likewise there are 120 error set pairs
compared in the disturbed versus clean, dark versus bright, and "poll" versus "pol2"
evaluations. Let 2x denote the number of pairs in a given group 3 of error set pairs

2. 4. Results 23

K-S statistics for E1 = ramp versus E2 = roof

Corner Error Sets for user "A" Size
Scale 5ii 5aii 5/3ij 5Sii N1 N2

D(E1, E2)
15 0.1389 0.3056 0.2778 0.2778 36 36
30 0.2857 0.2143 0.3214 0.2143 28 28
45 0.1667 0.2500 0.2917 0.3333 24 24
60 0.2917 0.3333 0.2083 0.2500 24 24
75 0.2083 0.2083 0.0833 0.1667 24 24

p(>.)
15 0.8782 0.0694 0.1243 0.1243 36 36
30 0.2032 0.5412 0.1108 0.5412 28 28
45 0.8928 0.4413 0.2591 0.1389 24 24
60 0.2591 0.1389 0.6749 0.4413 24 24
75 0.6749 0.6749 1.0000 0.8928 24 24

Table 2.3: The Kolmogorov-Smirnov statistics for comparing error sets on ramp and
roof images. There were eight ramp and eight roof images used in the experiments.

II K-S statistics for E 1 = disturbed versus E2 = clean II
Corner Error Sets for user "A" Size
Scale 5ij 5aii 5f3ij 5Sij N1 N2

D(E1, E2)
15 0.1944 0.1389 0.1389 0.3056 36 36
30 0.1786 0.2143 0.1429 0.2500 28 28
45 0.1667 0.2083 0.1250 0.2917 24 24
60 0.0833 0.1250 0.2083 0.0833 24 24
75 0.2500 0.2500 0.2500 0.4167 24 24

p(>.)
15 0.5041 0.8782 0.8782 0.0694 36 36
30 0.7634 0.5412 0.9375 0.3457 28 28
45 0.8928 0.6749 0.9920 0.2591 24 24
60 1.0000 0.9920 0.6749 1.0000 24 24
75 0.4413 0.4413 0.4413 0.0310 24 24

Table 2.4: The Kolmogorov-Smirnov statistics for comparing error sets on disturbed
and clean images. The disturbed images are the eight with added noise and shading,
and the clean images are those without added disturbance.

24 2. Errors in Corner Specification

K-S statistics for E1 = dark versus E 2 = bright

Corner Error Sets for user "A" Size
Scale 6;j 60'.;j 8/3;j 8S;i N1 N2

D(E1, E2)
15 0.1944 0.1667 0.2778 0.2500 36 36
30 0.1429 0.2143 0.1786 0.4286 28 28
45 0.1250 0.2500 0.2917 0.1667 24 24
60 0.2917 0.1250 0.2083 0.2500 24 24
75 0.2500 0.2083 0.1667 0.1667 24 24

p(>.)
15 0.5041 0.6994 0.1243 0.2106 36 36
30 0.9375 0.5412 0.7634 0.0117 28 28
45 0.9920 0.4413 0.2591 0.8928 24 24
60 0.2591 0.9920 0.6749 0.4413 24 24
75 0.4413 0.6749 0.8928 0.8928 24 24

Table 2.5: The Kolmogorov-Smirnov statistics for sets from dark and bright images.
The four ramp images with a dark object, and the four roof images with a dark border
are the dark images. The bright images are the eight for which the reverse holds.

K-S statistics for E1 = poll versus E2 = pol2

Corner Error Sets for user "A" Size
Scale 6;j 60'.;j 8/3;j 8S;i N1 N2

D(E1, E2)
15 0.3438 0.2188 0.1938 0.2125 40 32
30 0.2500 0.2188 0.2396 0.2083 24 32
45 0.3750 0.3333 0.2500 0.3750 24 24
60 0.1667 0.2500 0.2917 0.3333 24 24
75 0.2917 0.2500 0.2500 0.4167 24 24

p(>.)
15 0.0299 0.3626 0.5169 0.3983 40 32
30 0.3581 0.5278 0.4106 0.5911 24 32
45 0.0684 0.1389 0.4413 0.0684 24 24
60 0.8928 0.4413 0.2591 0.1389 24 24
75 0.2591 0.4413 0.4413 0.0310 24 24

Table 2.6: The Kolmogorov-Smirnov statistics for error sets from poll and pol2 images.
The eight ramp and roof images of the first shape (Figure 2.2 left) make up poll, and
the eight of the second shape make up pol2 (Figure 2.2 right).

2.4. Results 25

Summary of K-S statistics for all users

Image Sets (3) n(3) n(2o.o5) %(20.05) n(So.01) %(2o.oi)
ramp/roof 120 7 5.83 3 2.50

disturbed/ clean 120 11 9.16 2 1.67
dark/bright 120 4 3.33 0 0.00
poll/pol2 120 13 10.83 5 4.17

Measure (3) n(3) n(2o.o5) %(20.05) n(So.01) %(20.01)
O;j 120 6 5.00 1 0.83

OCX;j 120 5 4.17 1 0.83
of3ij 120 8 6.67 2 1.67

oS;i 120 16 13.33 6 5.00

all 480 35 1.29 1 10 2.08 11

Table 2.7: A summary of the significant Kolmogorov-Smirnov probabilities on various
groupings (3) of the error set pairs. For each set 3 of error set pairs, the number and
percentage of error set pairs in 3 for which p(>.) < x is given, for both x = 0.05 and
x = 0.01. See Equations 2.14 and 2.15.

which are significant in the sense that p(>.) ::; x, so

(2.14)

where >. is defined in Equation 2.12. The number of error set pairs in 3 for which
p(>.) ::; x is given by n(2x), and the percentage of 3 with p(>.) ::; x is given by

(2.15)

In Table 2.7, we show the number and percentage of pairs for which p(>.) < 0.05,
and for which p(>.) < 0.01 when the statistics are grouped in various manners.

Evaluation

Suppose we require p(>.) < x before we reject the null hypothesis that two error sets
come from the same distribution. Consider the first three error measure sets { O;j},
{ OCX;j }, and { 0/3;j} in Table 2. 7. We see the percentage of error set pairs in 3 for which
p(>.) < 0.01 is very low (%(20.01) « 5%), and the percentage %(20.05) ~ 5%, for which
p(>.) < 0.05 is insufficient to reject the null hypothesis.

In contrast, we see that the set 3 = { oS;j} of error set pairs, contains a significant
number of pairs which, based on the Kolmogorov-Smirnov test, appear to come from
different distributions. At the x = 0.05 significance level, we have %(20.0.5) = 13.33%
and at the x = 0.01 significance level, we have %(20.oi) = 5%. We therefore inspect

26 2. Errors in Corner Specification

Summary of K-S statistics for 8Sij - all users

Image Sets (2) n(2) n(20.05) %(20.05) n(20.01) %(20.01)
ramp/roof 30 2 6.67 1 3.33

disturbed/ clean 30 7 23.33 1 3.33
dark/bright 30 1 3.33 0 0.00
poll/pol2 30 6 20.00 4 13.33

all 1 120 1 16 13.33 1 6 5.00

Table 2.8: A summary of the Kolmogorov-Smirnov probabilities for comparing corner
scale error sets { 8 Sij}. For each set 2 of error set pairs, the number and percentage
of error set pairs in 2 for which p(,\) < x is given, for both x = 0.05 and x = 0.01.

the contributions to the set 20.01, and 20.05 for 2 = 8Sij in Table 2.8, to see which
image function comparisons, contribute to the error set pairs in 3 0_05 and 2 0.01 .

Inspection of Table 2.8 shows that the majority of the error set pairs which are
significantly different at the x = 0.05 are found when comparing the sets with and
without disturbance, and when comparing the error sets on the two polygons. Note
that the former (disturbed/clean) does not contribute significantly to 2 0_01 . When
comparing the scale error set pairs on the two polygons (poll/pol2), however, we find
13.33% of the comparisons fall in 2 0_01 . We therefore reject the hypothesis that the
corner scale error sets are drawn from the same distributions for the two polygons.
In the following section, the corner scale errors on each polygon will be evaluated
separately.

Because the error set pairs on corner scale 2 = {8Sij}, account for the majority
of error sets which appear to be significantly different in Table 2.7, we evaluate the
performance on all other error measures as a single set.

Information With respect to the questions posed in Section 2.2.3, from the above
analysis, we can conclude the following.

B) User performance in corner specification is not influenced by whether the image
function which determines the nature of the object boundary is best described
in terms of a ramp or a roof model. For ramp model images, it does not matter
if the object is bright or dark, in comparison with the background. Likewise,
whether a roof is dark or bright as compared with the background does not
influence the errors in corner specification.

C) With the possible exception of the corner scale error, there is no significant change
in user error levels when noise and shading are added to an image.

E) The degree of corner scale error depends on object shape. Other errors are unin­
fluenced by shape.

2.4. Results 27

2.4.2 User Error Summary

In this section, we present statistics on user errors as a function of the corner scale
S(Q1), defined in Definition 2.1. The mean and standard deviation of each of the
measures defined in Section 2.2.2 are presented for each user. In Figures 2.5, 2.6,
and 2.7, the summary of the statistics for distance, angle, and orientation errors for
the sixteen nontexture images in our experiments is shown. Due to the results in the
previous section, the corner scale error statistics are evaluated separately for the two
polygons in Figures 2.8 and 2.9.

Note that for the measures of distance error 6;j and orientation error 6/3;1 , the mean
corresponds with the average user error magnitude, whereas for corner angle 6CY.;j and
scale 5S;1, the mean gives the bias.

Evaluation From Figure 2.5, we see that user errors in distance are fairly consistent
for various scales, and the deviations are small. Further, with the exception of users
E and F, the error magnitude for the various users is distinct.

In Figure 2.6, the average difference in corner angle (5a;j = a(P;) - a(Qj)), for
each of the users is shown. With the exception of A and C, the users tend to slightly
overestimate the corner angle. Both in Figure 2.6 and in Figure 2.7, we see the
magnitude and variation of corner angle errors decrease as a function of corner scale
for all users. This is logical, considering the error in distance does not depend on
corner scale, and can be understood as follows.

Let v be a vector in R 2 , and let v = av for some a E (0, 1). Let e E R 2 be a
constant vector. Consider the angles of v and v + e given by

-1 (V · (1, 0)) 0 = cos llvll and _ _ 1 ((v+e) · (1,0))
'Y - cos llv + ell

If we denote the angles of v and v + e with 0 and i respectively, then

with equality holding only when e = cv for some c E R. This is easy to prove using
arguments in [MT81]. Because both corner angle and orientation depend on the angles
of the lines which define the corners, the errors decrease for increasing corner scales,
as shown in Figure 2.10.

In Figures 2.8 and 2.9, we show the bias and standard deviations of the corner
scale error for the two polygons used in the experiments. As was expected from the
conclusions of the evaluation in the previous section, the user patterns for scale error
differ. For corners with scale S(Qj) > 15, however, all users other than "A" share
the tendency to underestimate the corner scale. Interestingly, the scale error patterns
for all users are quite similar on the second polygon (Figure 2.2 right), and somewhat
similar on the first polygon (Figure 2.2 left). Finally, the magnitude of the corner scale
error is small for very small corners S(Qj) = 15.

28

2.8

2.6

2.4

2.2

2
< D;· >

J 1.8

1.6

1.4

1.2

1
15

1.7

1.6

1.5

1.4

1.3

c,(D;j) 1.2

1.1

1

0.9

0.8

0.7
0.6

15

2. Errors in Corner Specification

Average Magnitude of Euclidean Distance Error (in pixels)

.X· ·X. . .

·x-.

·*.
·6·

30 45 60

S(Qi)--+

Standard Deviation of Euclidean Distance Error

.x

30 45 60

75

75

A~
B +-
C -B-
DX-
E -6.
F ·*·

A~
B +­
C -B­
D -x-­
E6
F ·*·

Figure 2.5: Above: the average magnitude of the error in Euclidean distance 8;j =
IIP; - qill made by each of six different users as a function of corner scale. Below: the
standard deviation c,(8;j) of the distance errors for each of the users.

2.4. Results

Bias of Corner Angle Error (in radians)
0.14 -----~----~-----~----~

0.12
0.1

0.08

0.06

" 0.04 < UO!ij >
0.02

o~=.-:_:....:_.::.._~;;.,41:::=:::::;;;;;;a,,,;,,~==~..:...~~;....;c.--:::=~
-0.02

-0.04

-0.06
-0.08 '------~----~-----~----~

15 30 45 60 75

Standard Deviation of Corner Angle Error

A.O­
B +­
C -a­
D ·X··
E·.6
F ·* ..

A .O­
B +­
C -B­
D X­
E .,6. .

F ·*·

29

Figure 2.6: Above: for each of the six users, the average difference in corner angle size
8aij = a(Pi) - a(Qj) is plotted as a function of corner scale. Below: the standard
deviation cr(8a;j) of the angle difference for each of the users.

30

0.1

0.09

0.08

0.07

0.06

< 6/3ij > 0.05

0.04

0.03

0.02

0.01

0
15

0.14

0.12

0.1

0.08
0"(6/3ii)

0.06

0.04

0.02

2. Errors in Corner Specification

Average Error in Corner Orientation (in radians)

30 45 60

Standard Deviation of Corner Orientation Error Set

30 45 60

75

75

A~
B +­
C -B­
D ·X· -
E-,6..

F ·*·

A~
B +­
C -8-
D ·X··
E ·6
F ·* ..

Figure 2. 7: Above: the average error in corner orientation 8 /3ij (defined in Equation 2. 7)
made by each of the six users, plotted as a function of corner scale. Below: the standard
deviation 0"(8/3ij) for each of the users.

2.4. Results

0.5

0

-0.5

-1
< 8Sii >

-1.5

-2

-2.5

-3
15

3.5

3

2.5

a-(8Sii) 2

1.5

1

0.5
15

Scale Error Bias for Polygon 1 (in pixels)

X

30 45 60

S(Qi)--+

Standard Deviation of Scale Errors on Polygon 1

X

--~
X·

. . . . •' ..

30 45 60

S(Qi)--+

75

75

A~
B +­
C -S­
D ·X· -
E ·6 ·
F ·* ..

A~
B +-
C -S-
D ·X·-
E L, .
F ·* ..

31

Figure 2.8: Above: for each of the users, the average difference in corner scale oSij =
S(Pi) - S(Qj), plotted as a function of the true corner scale S(Qi) for the left shape
(poll) in Figure 2.2. Below: the standard deviation a-(oSij) of the scale difference on
this polygon (poll) for each of the users.

32

< bSiJ >

u(bSiJ)

2. Errors in Corner Specifi.cation

Scale Error Bias for Polygon 2 (in pixels)
0.5a.-----,---------,------,cts------,

oq...,----,,.~---------;;~=-----'i<--:----=:~------j

-0.5

-1

-1.5

-2

-2.5

-3

-3.5
-4 c_ ____ _,_ ____ -'--------'-----~

15 30 45 60 75

Standard Deviation of Scale Errors on Polygon 2
5

.X
4.5

4 :x ..
3.5 ·····x

3

2.5

2

1.5

30 45 60 75

S(Qi)--+

A~
B +­
C -8-
D X ·
E-6
F ·*·

A~
B +-
C -8-
D x-
E ·L's·
F ·*·

Figure 2.9: Above: for each of the users, the average difference in corner scale 8Sij =
S(P;) -S(Qi), plotted as a function of the true corner scale S(Qj) for the shape (pol2)
on the right in Figure 2.2. Below: the standard deviation u(liS;j) of the scale difference
on this polygon (pol2) for each of the users.

2.4. Results

e

a

•
I

I jll
I: ,_.

,:
!-'

33

Figure 2.10: The same distance error results in larger angle errors for a corner of
smaller scale.

Information With respect to the issues raised in Section 2.2.3, we can conclude the
following based on the data presented in Figures 2.5, 2.6, 2.7, 2.8, and 2.9.

A) Errors in distance are unrelated to corner scale. The magnitude of the corner scale
error, however, are smaller for corners of small scale (S(Qj) = 15). Meanwhile,
angle related errors increase in magnitude for corners of very small scale.

D) For all the errors measured, the performance of the users as measured by the
magnitude of the means depends on the individual user. The error patterns for
the users are, however, very similar.

2.4.3 Modeling User Error Sets

Suppose for each of the users, and each error measured, we investigate the error set at
each scale. Then we can extract some set of parameters which describe the error set,
and may help us to find a statistical model which it fits.

In considering the corner angle error (cfo;j), at each scale, we may expect the user
error to behave as a Gaussian distribution, centered aboutµ=< 8a;j >, with standard
deviation a = a(8a;j). Given the parameter pair {µ,a}, the Gaussian distribution is
defined by

1 lx 1 '(=)2 F(x) = F(x;µ,a) = - -e2 a dt.
y2'ff -oo a

(2.16)

We might also suppose the corner scale error (8S;j) sets to fit a Gaussian distribution,
withµ=< 8S;j > and a= a(8S;j)-

We can evaluate the validity of these hypotheses, using the Kolmogorov statistic
for comparing a single data set with a known distribution. Suppose F(x) describes the
distribution we expect the data to fit. And suppose SE(x) is the distribution function
of the error set, as defined in Equation 2.10. Let

D = max ISE(x) - F(x)l-
-oo<x<oo

(2.17)

For comparing a single data set with a known distribution, the significance of D is
given by

(2.18)

34 2. Errors in Corner Specification

where N = n(E). The probability that the null hypothesis "E is drawn from the
distribution described by F(x)" is not false is given by p(>.), as defined in Equation 2.13
[vM64].

Corner Angle 00'.;j: For each of the six users, there were five scales for which the
corner angle error sets were generated. For each set, we computed D and p(>.) for
comparing the error set E with the Gaussian distribution, using the parameter pair
{µ,CJ} drawn from the error set. In every case, p(>.) > 0.05. We may therefore assume
that user errors in corner angle are well modeled with a Gaussian distribution.

Corner Scale 8S;j: The corner scale error sets were handled in the same fashion,
but in this case, there were three different sets of errors generated for each user, one for
all images, and one for each of the two polygons. In each case, there were 30 error sets
compared with the Gaussian distribution. In each case, there was exactly one set for
which p(>.) < 0.05. Since this is insufficient to be considered statistically significant,
we may assume the sets are well modeled by a Gaussian distribution for which the
parameter pair {µ,CJ} corresponds with the mean and standard deviation of the set
at hand. In light of the results in Section 2.4.1, it is interesting (and useful), that this
holds even when the data for both polygons is pooled.

Distance O;j and Orientation 8/J;j Although we were unable to find distributions
for the errors in distance and orientation, both data sets were well behaved.

In particular, ifµ and CJ represent the mean and standard deviation for the distance
error made by a given user at a given scale, then the actual error made by that user
at that scale satisfies O;j :::; µ + 2CJ for at least 93% of the distance errors O;j made by
the same user at that scale. This was true for every user at every scale. Moreover, in
many cases, the distribution of the distance squared error fit that of a x2 distribution.

Likewise, if µ and CJ represent the parameters of the orientation distribution for a
given user at a given scale, then 8/J;j :::; µ + 2CJ, for more than 91% of the errors 8/3;j,
made by the same user at that scale. This held for every user tested.

Although we did not find a mathematical model which could be used to describe
the distributions of these errors in all cases, the above findings allow us to derive a
model for the expected worst case for these two errors.

2.4.4 Performance on Texture

The polygons traced by users in texture images have been excluded from the analysis to
this point. Users showed large variation in the specification of the object boundaries
in these images. These were the first images presented to the users, so the object
shapes were not yet familiar. In some cases, a user specified the boundary with far
more points than in Q, while others skipped many points in Q. Even after the points
in the user polygon P were matched with those in Q, the missing and extra points in
P introduced spurious large errors for the angle and scale for other corners. Because
each of the texture images was created from a different pair of Brodatz textures, the

2.5. The User Error Model 35

performance on the different images varied widely for each user. Unlike the other
images used in the experiments, the differences in the Brodatz texture images is not
easily quantified [Har78]. Based on the experiments performed here, it is therefore not
possible to quantify a user model for performance on texture images.

2.5 The User Error Model

Based on the results in the previous section, we are now able to extract a user error
model for the specification of polygonal objects in grey level images. Given a point set
P = {p;}f=1 specified by a user, the user error model is characterized by the following
properties.

Maximum Euclidean Distance Let µ(8ij, S, U) be the mean of the distance errors
made by the user U for corners of scale S, and let a-(8;j, S, U) be the standard deviation
of the same set. Inspection of the user error sets shows that for every user U and every
scale S, the distance error 8ij satisfies

for more than 93% of the measurements 8;j made for the user U at scale S. Therefore,
given a user point p; specified by user U, there should be a corner point qj on the
image object boundary which satisfies IIPi - qill :::; c, for

(2.19)

when the scale of the triplet P; is close to S. Because the distance error did not show
any dependence on scale, for each user U we can simply use the worst case value (for
all scales S for user U) for the maximum user error c.

Corner Angle Let µ(8a;j, S, U) be the mean bias of the corner angle for user U at
scale S, and let a-(8aij, S, U) be the standard deviation of this angle error set. The
corner angle errors for a given user a given scale were shown to fit a Gaussian distri­
bution in Section 2.4.3, if the parameter pair{µ= µ(8aij, S, U), a-= a-(8a;j, S, U)}, is
used in Equation 2.16. Therefore, if we have a user defined triplet Pi which defines a
corner at the point p;, the probability is at least p = 0.92 that there is a corner in the
image object defined by Qj such that

µ(fo;j, S, U) - 2a-(fo;j, S, U) :::; fo;j:::; µ(fo;j, S, U) + 2a-(fo;j, S, U), (2.20)

for the error 8aij = a(Pi) - a(Qj) generated by the user U of scale S(P;) 2: S. The
inequality is because the error level for all users decreases as a function of corner
scale, and because users underestimate corner scale almost uniformly (see Figures 2.8
and 2.9). Therefore if the user U defines a corner Pi of scale S(P;) in a boundary
sketch, there is a high probability (p 2: 0.92) of a corner Qj on the object boundary

36 2. Errors in Corner Specification

which satisfies

a(Pi)- µ(foij, S, U)- 2<J"(foij, S, U) :S a(Qi) :S a(Pi)- µ(foij, S, U) + 2<J"(foij, S, U).
(2.21)

Corner Orientation Let µ(8/3ij, S, U) be the mean error in orientation produced
by the user U at scale S, and let 0"(8/3ij, S, U) be the standard deviation of the set.
For the user error in orientation, the errors 8/3ij for each user at each scale satisfy

for more than 91% of the errors 8/3ij generated for the user U at scale S. Thus, given
a user defined corner Pi, with orientation fJ(Pi), and scale S(Pi), there should be a
corner Qj on the object boundary, the orientation fJ(Qi) of which satisfies

fJ(Pi) - µ(8/Jii, S, U) - 20"(8/3ii, S, U) :S fJ(Qi) :S fJ(Pi) + µ(8/Jii, S, U) + 20"(8/3ij, S, U),
(2.22)

for S :S S(Pi)- Again, the inequality holds because the orientation scale decreases as
a function of scale, and because users underestimate corner scale.

Corner Scale Finally, let µ(8Sij, S, U) be the mean bias of the corner scale error
for the user U at the scale S, and let 0"(8Sij, S, U) be the standard deviation of the
set. Because 8Sij was shown to fit a Gaussian distribution in Section 2.4.3, if a user
defines a corner Pi with scale S(Pi), then p = 0.92 is the probability that the user
error in scale satisfies

(2.23)

where 8Sij = S(Pi) - S(Qj), where Qj is a corner on the image object at some point
qj near Pi· Given a corner Pi, there is likely to be a corner on the image object defined
by Qj such that

S(Pi) - µ(8Sii, S, U) - 20"(8Sii, S, U) :S S(Qj) :S S(Pi) - µ(8Sii, S, U) + 20"(8Sii, S, U).
(2.24)

Additionally, in light of the variation in the error distributions for corner scale on the
two objects tested, the user errors in scale can be predicted more closely if the user
data is gathered on objects which are representative for a particular application. If
this is not possible due to a lack of a priori object models, the user data should be
gathered for a variety of objects, and if critical, the error should be based on the worst
case performance.

2.6 Conclusions

Based on a simple set of user experiments, we have been able to extract a wealth of
information about the degree and nature of the errors users make in the specification

2.A. Instructions 37

of polygonal object boundaries. With respect to the questions posed in Section 2.2.3,
we have shown

A) 1. User errors in distance and scale do not show any clear relationship to the
scale of the corner on the object being specified.
2. Both the error in corner orientation and the absolute value of the corner angle
bias decrease as a function of corner scale.

B) The user ability to specify the boundary of an unknown object is severely hindered
if the object and background functions are arbitrary unknown textures with the
same average grey value.

C) User errors in boundary specification are not significantly affected by the presence
or absence of noise and shading in an image.

D) All errors depend on which user specifies the boundary. The differences among
users are accentuated for the distance and scale error measures.

E) The user errors on corner scale depend on the shape of the object being sketched.

In addition to addressing these questions, we were able to develop the user error
model described in Section 2.5, which predicts a bound for each of the corner errors
defined in Section 2.2.2. For errors in corner angle and scale, the predictions were
based on the result that the error sets for each user at each scale behave as a Gaussian
distribution.

2.A Instructions

Please outline the object in each of the images presented with the tool for polygonal
shape specification which works as follows:

Mouse:

Left Button Press
Specify start and corner points

Middle Button Press
Last point in polygon (connect to first)

Keyboard:

n - Request next image

r - Redo drawing for this image

q - Quit run

38 2. Errors in Corner Specification

Practice Run

You may practice using the tool by outlining the objects in the practice images. Each
of the objects should be outlined by specifying exactly one point for each of the corners
on the image objects.

1. Press I Practice I in dialog box using Left mouse button.

2. Repeat until comfortable:

• Specify object boundaries in image (Mouse - Left and Middle).

• Request next image (n) or repeat drawing (r).

3. Quit practice run (q).

Experiment

In each of the 20 images used in the experiment, a single object is present. Please
outline the object by specifying a point with the left mouse button for each corner in
the image object, and close the polygon with the middle mouse button.

Important:

• You have 10 minutes to outline the objects in all 20 images.

• A point must be specified for each corner in the object, however the location of
each point needn't be perfect. Please refrain from using a lot of care and time
in specifying each point.

• Please refrain from using the redo facility (r) unless corners have not been spec­
ified, or a mouse button is accidentally pressed causing a seriously erroneous
drawing.

• Please stop only when finished with all images.

If the instructions are unclear, please request clarification now. The practice run can
also be repeated with these instructions in mind by choosing I Practice I in the dialog
box.

1. Press I Start I in dialog box using Left mouse button.

2. Specify object boundaries in image (Mouse - Left and Middle).

3. Request next image (n).

Chapter 3

An A* Algorithm for Inexact
Polygon Matching

3.1 Introduction 1

In Chapter 2, we compared the geometric properties of two polygons near correspond­
ing points. This allowed us to evaluate the type and extent of user error in the perfor­
mance of polygonal sketching tasks. Prior to the comparison of corresponding points
in the user and reference polygons, each point in the user polygon must be matched
with some (at most one) point in the reference or model polygon. The matching task
is problematic because users sometimes skip points in a reference polygon and insert
some which are not.

Matching polygons, either of which may contain points missing in the other is
a common problem in computer vision applications. In particular, in model based
vision, matching a polygon extracted from a database with one extracted from an
image can be difficult due to noise in an image, and due to occluding objects in an
imaged scene. Even when a polygonal boundary is compared with a correct object
model, an isomorphic match may not exist because the boundary obtained from an
image may include points not present in the model and miss some that are. It is
therefore often useful to seek a best fit or an inexact match of two polygons, such as
that in Figure 3.1, rather than an isomorphism. If a polygon is viewed as a cyclic
graph of nodes, this can be approached by introducing a similarity measure between
nodes in two polygons.

As suggested by Ballard and Brown in [BB82], such a measure can be used to gen­
erate an association graph in which a maximal clique is sought using graph theoretical
methods. A binary decision is made for each pair of nodes which can be generated
from the polygonal graphs, to determine whether it may be part of a match and thus
should be incorporated in the association graph. A match is then selected by seeking
a maximal clique in the association graph.

To match 3D wire-frames in the stereo system described by Buurman and Duin

1 A shortened version of this chapter will appear in [OGA94].

39

40 3. An A* Algorithm for Inexact Polygon Matching

p

2

3

best-fit

~2,d

'·'u
5,b 3,a

4

Figure 3.1: Polygons P and Q and the best fit.

in [BD90], for each node2 extracted from a scene, a best match is sought in a model.
If there is sufficient support, a vote is added for support of the model. If the model
receives sufficient support as a whole, verification is sought. This is similar to the
decision process in the association graph method, but stops when there is sufficient
support for some hypothesis.

Geometric hashing, introduced by Lamdan and Wolfson in [LW88] and analized by
Gavrila and Groen in [GG92], can be used to match polygons as follows. A polygon is
viewed as a set of m interest points, which might correspond to the points p = (x, y)
which define it. For each of the the m(m - 1) ordered point pairs in a model polygon,
a basis for a coordinate system is defined and the (model, basis) is stored at the
coordinates of each of the remaining m - 2 interest points in the hash table. When a
polygon made up of n interest points is extracted from an image, a basis pair is selected,
and for each of the n - 2 remaining interest points, a vote is given to every (model,
basis) pair stored at its coordinates in the hash table. If some (model, basis) pair has
received sufficient support, the process halts, and verification is sought. Otherwise,
a new basis is selected from the object interest points. Geometric hashing has been
successfully applied to several 2D and 3D vision problems. It is particularly suitable
when an object and its transformation (location and orientation) are to be identified
among numerous alternatives.

For inexact matching, there are two primary drawbacks shared by these meth­
ods. First, because node pairs are eliminated prior to the matching step, global
considerations cannot influence the selection of node pairs to be included in a so­
lution match. Second, a best fit of the polygons is neither defined nor guaranteed.
The maximal clique finding favors matching as many nodes as possible which can
easily result in matching nodes which should have been skipped [BB82]. Both the
3D wire-frame matching and the geometric hashing methods generate a hypothesis
based on a voting mechanism, and decide upon a match based on a verification step
[BD90, LW88, GG92]. Whereas a maximal clique fully describes the match in terms of
node pairs, some extra effort either in terms of storage or computation, is required to
obtain the match with geometric hashing or 3D wire-frame matching. In the method
proposed here, we separate the node pair evaluation step from the matching step.

2The nodes correspond to edges in the wire-frame.

3.2. The Cost Function 41

This allows us to quantify the characteristics of a best fit, and to develop an algorithm
guaranteed to produce one.

Because we are concerned with identifying which parts of two polygons should
be paired up in addition to whether the polygons are well matched, the L2 metric for
comparing polygonal shapes, introduced by Arkin, et al in [ACH+91] is not applicable.
There are two additional drawbacks in using the L2 metric for matching problems.
First, although it performs well in the presence of noise, points missing due to occluding
objects may severely effect the shape, and therefore result in a very high value for the
metric for an otherwise good match. Secondly, because it is invariant with respect
to affine transformations (rotation, translation, and scale) it is inapplicable for some
matching problems. For example, for model based vision systems in which the camera
position is known a priori, it should be possible to distinguish a large object from a
much smaller one of a similar shape. In matching a user specified polygon with one
in an image, no form of affine transform should be tolerated, because the absolute
position of the points is relevant.

In our method, each pair of nodes which can be generated from the two polygons is
evaluated using a "templates and spring" cost function. The cost function is designed
to be adaptable with respect to its sensitivity to affine transformations, and to decrease
as a function of similarity between the nodes. As shown in Section 3.2, it incorporates
aspects of the geometrical relationship of a node with its neighbors, and thus acts
much like the voting mechanism used in geometric hashing. It is used to produce a
cost matrix containing an entry for every node pair generated by the two polygons. In
Section 3.3, an A* algorithm is described to find an optimal path through the matrix,
which corresponds to a permissible match between cyclic graphs. Our algorithm is
particularly efficient in its exploitation of the cyclic characteristics of the graphs.

Because the node evaluation/voting procedure is completely separate from the
matching procedure, every possible match of the two polygons can be obtained. Meth­
ods which eliminate some pairs in the evaluation stage [BB82], or generate a hypothesis
about the best fit without evaluating all node pairs [BD90, LW88], cannot guarantee
an optimal fit of the polygons.

The algorithm is designed to allow paths which result in a match with skipped
nodes such as that shown in Figure 3.1. A node may be skipped at an added jump
cost J, if this will result in a reduction of the total match cost. The jump cost J
thus determines whether matches with skipped nodes can be obtained. We describe
an empirical method for finding an optimal value for the jump cost J in Section 3.5.
Results are described in Section 3.6. In Section 3.7, we analyze the complexity of
the algorithm, and in Section 3.8, minor modifications are discussed which make the
method applicable for matching 3D polyhedra.

3.2 The Cost Function

Let P = {p;}i=I be a polygon defined by n points Pi E R 2
. The key properties of a

polygon can be described either in terms of the points Pi E P, or in terms of the line

42 3. An A* Algorithm for Inexact Polygon Matching

segments L; between them:

{ (1 - v)Pi + VPi+l : 0 :S v :S 1} for 1 :S i < n, and

{(1-v)pn +vp1: 0 :S V '.S l}.

(3.1)
(3.2)

We can view a polygon as a directed cyclic graph of nodes, Gp = {µ;};'=1 , each
with a predecessor µ[1 and a successor µ4 1 . Whether a polygonal graph Gp should
be defined with nodes represented by points µ; = Pi or by line segments µ; = L;
depends on the application. For example, the position of the points is significant in
the matching problem in Chapter 2, and µ; = Pi is a suitable node representation
for comparing the polygons. In model based vision systems (cf [GAW93]), however,
position is irrelevant, as the object may be transformed in relation to the model. In
this case the representation µ; = L; is convenient, because a number of position
independent properties can easily be derived with it.

3.2.1 General Form of the Cost Function

We apply the "template and spring" paradigm [FE73], to design the cost functions
used to evaluate node pairs in polygonal graphs. If Gp= {µ;}i=l and GQ = {µJ}7'= 1

are polygonal graphs, then we compare a nodeµ; E Gp with a node µJ E GQ based

on the similarity ofµ; and µJ (templates). We can also evaluate the relationship of
a nodeµ; E Gp with its neighbors in Gp, in comparison with the relationship of a
node µJ E GQ to its neighbors in GQ (spring).

Templates A template function t(µ;, µJ) measures the similarity of µ; E Gp and

µJ E GQ. For example, if µf = Pi, then t(µf, µJ) can be defined in terms of the
distance II Pi - qi II between two points Pi E P and qi E Q.

Springs A spring function measures the difference between the relationship r(µf, µf)
of µf to µf E Gp, for some k-/- i with the relationship r(µJ,µf) of µJ to µf E GQ,
for some R. -/- j. For example, if k = i ± 1 and R. = j ± 1, the a spring function compares
the relationship of the two nodes to their immediate neighbors.

If the node representation is µ; = Pi, then a spring function might compare the
length and direction of the vectors Pi - Pk and qj - q£, as in geometric hashing [LW88,
GG92]. If there is an isomorphism between Gp and GQ, and ifµ; and µJ should

be matched, then r(µ;, µf) should be close to r(µJ, µf) when k = i + o mod n and
R. = j + o mod m, for 1 :S o '.S n.

Voting Let t(µf, µJ) be a template function which compares a node µf E Gp with

a node µJ E GQ. Further let s{r(µ;, µf), r(µJ, µi)} be a spring function which

compares the relationship of µf to µf with the relationship of µJ to µi. Suppose that
both t(·) and s(·) are bounded functions which increase as a function of similarity, and

3.2. The Cost Function 43

that their sum

satisfies
0 ~ rt{r(µf, µf), r(µJ, µf)} ~ B.

For some range of owe want to add a vote for the pair (µf, µf) if the response

to rt{r(µf, µf), r(µf, µf)} measure is strong, where k = i + o mod n and .f.. = j +
o mod m. To obtain a voting mechanism based on the response to rt(·), we can define
a threshold value T, and add a vote for the pair (µf, µf) for every o resulting in

rt{r(µf, µf), r(µf, µf)} > T. Alternatively, we can define a function which increases
rapidly, so that small differences in the response to n (·) are accentuated. Choosing
the latter is advantageous because it makes the estimation of a threshold parameter
unnecessary. In the voting function described below, we use the exponential function
to translate the response to rt(•) to a vote for or against a given pair (µf, µf). For
the exponential to have the desired effect, we require the bound B » 1.

If Gp and GQ were known to be isomorphic, we could define a voting function as

t /l{(µf ,µrJ,(µJ ,µ~)}'

a=l

where k = i + o mod n and .f.. = j + o mod n. If t(·) ands(·) are appropriately defined,
then the pairs with the most votes should be members of the correct match. If,
however, a pointµ;, has no match in GQ, then the contribution to the above sum will
be negligible for o ?: u - i. For o > u - i, the relationship r(µf, µf+a) is comparable

with that of r(µJ,µJ+a+i). To be sure we get a vote for 15 when µf and µJ are well
matched and Gp and GQ are not isomorphic, we thus want to summarize votes for
neighboring elements of µf and µf.

If we let !::,.s denote the maximum number of nodes which may be missed in Gp
or GQ, then we can evaluate the support for pairing µf E Gp with µf E GQ with the
voting function

(3.4)

where k = i + o + a mod n and .f.. = j + o + b mod m.
The inner sum allows votes from node pairs that would be missed if either or

both polygons were missing up to !::,.s consecutive points. The outer sum is used to
summarize support over both polygonal graphs for the node pair.

A Normalized Cost Function Given a voting function V(µf, µf) which increases

as a function of similarity ofµ; E Gp and µf E GQ, the maximum value for all pairs

44 3. An A* Algorithm for Inexact Polygon Matching

is given by

and the function

max
l<i<n
li;j::;m

F(p 9) = Vmax(Gp,GQ) -V(µf,µJ)
µ,,µ; T7 (G G) '

Ymax P, Q
(3.5)

is a normalized cost function, with O :S F(µf, µJ) :S 1 for all µf E Gp and all

µJ E GQ. The cost function F(µf, µJ) decreases as a function of node similarity.

The Global Cost Function Given two polygonal graphs Gp= {µf}:'= 1 and GQ =
{µJ}Tc'=1 we can define a match M = {(air, a2r)}~=l of Gp and GQ in terms of R pairs

of indices of the nodes µr and µ~ to be matched. Given a cost function F(µf, µ
1
Q)

lr 2r

for comparing nodes µf E Gp and µJ E GQ, the cost of a match Mis defined as

R

C(M) = J(m + n - 2R) + L F(µ~1r, µ~J (3.6)
r=l

where J is the cost of a missing node in either Gp or GQ and m + n - 2R is the total
number of nodes in Gp and GQ unaccounted for in M. Because F(µf ,µJ) decreases

as a function of similarity of µf and µJ, an optimal match of the polygonal graphs is
one for which C(M) is minimal. The definition of a best fit therefore depends on the
template and spring functions with which F(µf, µJ) is defined, and on the value of
the jump cost J.

3.2.2 Line Based Templates and Springs

Representation of a polygonal graph Gp in terms of line segments µf = Lf, as defined
in Equation 3.1, lends itself to the definition of template and spring functions which
are invariant under various affine transformations. In this section, we define measures
which are invariant under translations and rotations but sensitive to changes in scale.
They are particularly suitable when the camera position relative to the imaged plane
is known a priori, but the exact location of the object is not.

Template Because the polygons being compared should not differ in scale, but may
differ in position and orientation, length is the significant attribute of a line segment
to be compared in a template function. Let R(Lf) = IIPi+l - Pill- The ratio of the
lengths of line segments L1 and L2 defined by

(3.7)

3.2. The Cost Function 45

satisfies O :=; >.(L1 , L2) :=; 1. It provides a measure of similarity for line segments
Lf E Gp and Lf E Gq, which increases as the difference in line length decreases, and
is therefore a suitable template function. It is later exploited in the spring function as
well.

Springs Because we aim to define a spring function s{r(µf,µf),r(µf,µr)}, which
is sensitive to changes in scale, but not to translations and rotations, the relationship
r(L;, Lf) should express the distance and relative difference in angle between two line
segments in a graph Gp.

In defining these aspects of the geometric relationship between line segments, it is
clear that the two points which determine each of the line segments should be given
equal weight. We thus employ the midpoint

(3.8) .

of a line segment Lf E Gp in examining the relationship between two line segments,
as geometric comparisons based on this point are equally influenced by the two points
which define the line segment.

The distance d(L;, Lf) between two line segments in Gp is now defined as [[mi -
mk[[. Given a line segment Lf E Gp with k #- i, we can define a connecting line from
the midpoint mi of L; to the midpoint mk of Lf with

Now >.(Lile, Li), as defined in Equation 3.7, provides a bounded measure which com­
pares the distance between line segments L[and Lf, with the distance between line
segments Lf and Lf

Consider the size of the corner angles aik = a(L;, Lile) and aki = a(Lile, L;) shown
in Figure 3.2.2. The two angles express the rotational and positional relationship of the
line segments Lf and Lf. The angle a(Lf, Lile) can be compared with a corresponding
angle derived from a pair (Lf, L<j) if we define

(3.9)

If the direction of the midpoint of L<j from the midpoint of Lf as defined by the

vector L% differs from the direction from mi to mk defined by Lt, then [a(Lf, Lf) -
a(Lf, L<j) [will be nonzero, and will increase as the difference increases. Meanwhile,

if the angle a(Lf, Lf) differs from a(Lf, L<j), then Ja(Lf, Lf) - a(Lf, L<j)J will be
nonzero, and will increase as the difference does.

Thus O::; .6.a[(Lf, Lf), (Lf, Lr)]::; 1 for all pairs (Lf, Lf) E P and (Lf, Lr) E Q,
and .6.a(·) increases as the difference in the corner angles decreases . .6.a(·) is invariant
under affine transformations, and can thus be used in any cost function which tolerates
one or more such transformations.

46

P;

3. An A* Algorithm for Inexact Polygon Matching

p
----L. ----➔

l

Figure 3.2: A polygonal graph Gp represented as a set of line segment nodes {Lft'=i·
Relationships between line segments Lf E Gp and Lf E Gp can be evaluated in terms
of the line L{:, connecting their midpoints. Here CXik = cx(Lf, L{:,) and cxki = cx(Lf, Lfi)

A spring measure for line based polygonal graphs, which is sensitive to changes in
scale, but invariant under translations and rotations, can now be expressed in terms
of the relative distance and angles between line segments. Let

s{r(Lf, Lf), r(LJ, Lf)} = >.(Lf, Lf) + >.(L{:,, Li)+ .6.cx[(Lf, Lf), (LJ, Lf)]
+.6.cx[(Lf, Lf), (Lf, LJ)],

(3.10)
Note that we incorporate a term >.(Lf, Lf) which measures the relative of the two
segments being evaluated. If the Lf and Lf are the relative neighbors of Lf and LJ,
and the latter match, then the lengths of Lf and Lf should be the same.

Template and Springs If we define

(3.11)

using Equations 3.7 and 3.10, then we have template and spring measure for line based
polygonal graphs, which satisfies the requirements outlined in Section 3.2.1. Because
D is defined in terms of the functions >. and .6.cx, we have

for all pairs (Lf, Lf) and (LJ, Lf), and D{(Lf, Lf), (LJ, Lf)} increasing as a function
of the similarity of line segment pairs. It can therefore be incorporated in the voting
function V(µf, µJ) in Equation 3.4.

3.2. The Cost Function 47

3.2.3 Point Based Templates and Springs

If the location of the points in both polygons being compared is relevant, then a
point based representation P = {Pi}i=i of a polygonal graph Gp = {µf}i=i is useful
for making local comparisons. In this case, a template and spring function must be
sensitive to any affine transformation of one polygon with respect to to the other.

Template A template measure t(µf, µf), intolerant of affine transformations can
be defined in terms of the distance between the points Pi E P and qi E Q. Given
P = {Pi}i=i and Q = { qi }f=i, the maximum distance between any pair of points on
the two polygons is

The normalized measure of distance

i<i<n
i~j;:m

(3.12)

increases as a function of closeness of the points Pi and qi and satisfies O ::; d(pi, qi) ::; 1
for all Pi E P and % E Q, and thus provides an appropriate template measure for
polygonal graphs with point based nodes.

Springs The geometrical relationships between a point Pi E P and its neighbors, to
be compared in the spring function should reflect the required constraints on transfor­
mations between the polygons to be compared. By incorporating measures of angle
and orientation, we penalize rotations between the two polygons. Measures of length
are incorporated to restrain scaling.

We can express the geometrical properties of the relationship between a point Pi
and its neighbors on a polygon in terms of a triplet C = {ci, c2, c3 }, with c2 = Pi
and ci, c3 E P, which defines a corner at Pi if ci -f. c2 -f. c3 . Likewise, if d2 = qi and
di, d3 E Q, then a triplet D = { di, d2, d3 } defines a corner at qj.

If P and Q are isomorphic, and Pi and qi should be matched, then the corners
C = {ci,c2,ca} = {Pi-a,Pi,Pi+b} and D = {di,d2,da} = {qj-a,qi,%+b} should be
similar in terms of angle, orientation and scale for nonzero pairs (a, b). Comparing
corners C and D at Pi and qi respectively for a set of pairs { (a, b)} is similar to
comparing node relationships for varying ,5 in the general spring function.

We denote the angle of a corner C with a(C) = a(c2 - ci, c2 - c3). This is the
angle a in Figure 3.3. Clearly if P and Q match and Pi and qi should be paired,
a(C):::::: a(D) when C and Dare generated with the same pair (a,b). The angles of
C and D can be compared by applying ,::,.a(·) to a(C) and a(D). For corners, we
therefore use

L:..a(C, D) = 1r - la(C) - a(D)l 1

7r
(3.13)

as the spring component for corner angle.

48 3. An A* Algorithm for Inexact Polygon Matching

_________ ,,,.. x-axis

Figure 3.3: Significant properties of a corner C = { c1 , c2, ca}: the corner location, c2,
the small corner angle a= a(C), the orientation /3 = f3(C), and l1 = llc2 - c1 II and
l2 = llc2 - call, the length of the lines which meet at the point c2.

Let /3(C) be the orientation of a corner C, defined by the angle the bisecting vector
B(C), makes with the x-axis (Figure 3.3). This definition of corner orientation is used
because it gives equal weight to both line segments which define a corner C. Let
/3diff(C, D) denote the difference in orientation of corners C and D. Then

_ 1 (B(C) · B(D))
/3diff(C,D) = cos IIB(C)IIIIB(D)II ,

and
1::,.f3(C, D) = 1r - f3<liff(C, D)

7r
(3.14)

provides a measure of the closeness of orientation. Since O ::; f3<liff(C, D) ::; 7r, for any
corners C and D, we have O::; 1::,.f3(C, D) ::; 1. Note that !::,.f3(C, D) penalizes rotations,
but is invariant to translation and scale. It can therefore be used for comparing corners
in applications where an object's orientation is known a priori, as may be the case in
a model based vision system in which the stable positions of an object are known.

We can now define a spring function to compare the relationships of points in two
polygons with their respective neighbors. Let

where !::,.a(·) and 1::,.f3(·) are defined in Equations 3.13 and 3.14. The function >.(-)
defined in Equation 3. 7 will penalize a difference in scale.

Template and Springs We define

(3.16)

as a template and spring function to compare corners C and D derived from two
polygons, where d(·) and s(-) are defined in Equations 3.12 and 3.15. Together, the
components of A(C, D) assure its sensitivity to any form of affine transformation.

3.3. An A* Algorithm to Find an Optimal Match 49

For any corner triplet C defined by three distinct points in the polygon P, and any
corner D defined by three distinct points in Q, we have

0 ::; A(C, D) ::; 5

and A(C, D) increasing as a function of similarity of the corners C and D.

Voting Because the spring contribution is measured in terms of three points in
each of the polygons, we introduce the following variation on the voting function in
Equation 3.4. To evaluate the similarity of a point Pi E P and a point qj E Q we want
to compare the corners Pi= {Pi-1,Pi,Pi+1} and Qj = {qj-1, qj, qj+I} generated by the
immediate neighbors in P and Q. To obtain a good measure when up to l:,.s consecutive
points may be missed in either P or Q, we also evaluate A(C, D) for a range of corners
about Pi and qi. Let P(k1,i,k2) = {Pk,,Pi,Pkz} and Q(/\,j,£2) = {q£"qj,%}- To
evaluate the similarity of a point Pi E P and a point qj E Q, we define:

t.s+l t.s+l t.s+l t.s+l
V(µf' µf) = L L L L eA{P(k1,i,k2),Q(£,,j,£2)}

a, =1 a2=l b1 =1 b2=l

k1 = i - a1 mod n

£1 = j - bi mod m

and k2 = i + a2 mod n

and £2 = j + b2 mod m

(3.17)

If lmax is the maximum number of jumps allowed in P or Q, to prevent the evalu­
ation of collapsing corners (C = { c1 , c2 , c3 = c1}), we evaluate Equation 3.17 with

. { lmin{m, n}J } l:,.s ::; mm lmax,
2

- 1 .

3.3 An A* Algorithm to Find an Optimal Match

Given polygonal graphs Gp = {µf}i=l and GQ = {µf}7'=1, and a cost function

F(µf, µf) as defined in Equation 3.5 to compare nodes, we can use it to compute
the cost of all n x m node pairs which can be generated form Gp and GQ, and store
the results in a cost matrix C. An example is shown in Figure 3.4. Given such a
matrix, the matching problem can now be approached by finding a minimum cost
path through the matrix C which satisfies the following constraints specific to polygon
matching.

Because each node µf E Gp can be matched with at most one node µf E GQ, at
most one element in a row or column can contribute to a path. The cyclic nature of
polygons implies that a path through C for an acceptable match of Gp and GQ must
have a diagonal form. To be precise, any path through the (i, j) matrix element must

50 3. An A* Algorithm for Inexact Polygon Matching

--Gp----- --Gp----s,,-
p

I 2 3 4 5 I 2 3 4 5

1
0.7 0.8 0.9 0.7 0.1

1 2 0.1 0.8 0.9 0.6 0.8 2

r 3 0.7 0.4 0.6 0.9 0.7 r 3

4 0.8 0.2 0.8 0.7 0.7 4

5 0.7 0.6 0.5 0.2 0.5 5

Figure 3.4: A sample matching problem. On the left, two polygons to be matched, in
the middle the cost matrix C computed with a function F(µf, µJ), and on the right,
the minimum cost permissible path in the matrix.

have a preceding neighbor (ip, jp) with ip :s; i - 1 and jP :s; j - l, and the next node in
the path (in,jn) must satisfy in;:::: i + 1 and jn;:::: j + 1.3

If an isomorphism between Gp and GQ could be assumed, then a minimum cost
path could be found by simply summing the costs for the n pairs in each of the n
diagonal paths in the cost matrix and choosing that with the minimum total, an
O(n2) operation. However, if up to k nodes may be missed in P and .f.. may be missed
in Q, then there are k.f.. · mkne paths to be inspected in C. Assuming m ,::;; n, an
exhaustive search has run time O(k4n4k+I), including the selection of the minimum
cost path. To avoid this expense, we perform a heuristic search of the cost matrix to
find a minimum cost diagonal path which represents a permissible match between the
polygonal graphs Gp and GQ,

Consider the cost matrix illustrated in Figure 3.5 containing the cost cij of pairing

each element in Gp = {µft'= 1 with each element in GQ = {µJ}T=i· A permissible

match of Gp and GQ should account for all nodes µf E Gp and µJ E GQ, either in
a match pair, or by explicitly being skipped and adding a jump cost J to the total
cost of the match. Thus, a diagonal path which represents a permissible match, must
cover the entire length and breadth of the cost matrix.

To facilitate the search, we maintain a list of path nodes 'T/, to store relevant data
about a path from its start position to its current position. If up to SQ nodes may
be skipped in GQ, then we don't know in which of the first SQ rows of C an optimal
path will start, nor on which of the m - SQ rows it will end. To address this issue, we
introduce a set of virtual start nodes S = { 'T/s}~=l with corresponding positions (s, 0)
at the top of the matrix C, and a set of virtual goal nodes G = { 'T/g};=l with positions
(g, m + I) at the bottom of C. A diagonal path which accounts for every node in Gp
and GQ starting at 'T/s must end at 'T/g with g = s + I mod n. Mentally inserting a start
and goal row for the example in Figure 3.4 helps clarify this.

3 These statements should of course be interpreted in terms of the nodes in each polygon and thus
modulo n and m should be understood where applicable.

3.3. An A* Algorithm to Find an Optimal Match

0

1 2 n

- START ----'3--

C
II

C

C

-GOAL-

0

1
2

1 n

-~ -------
T\

g

51

Figure 3.5: The cost matrix for matching Gp and Gq starting with a set of virtual
start nodes and ending with virtual goal nodes. On the right, the expansion of a node
7J in a path is illustrated.

To find an optimal path through the matrix we apply the general purpose heuristic
search algorithm described in [Nil80], and listed in Figure 3.6. Beginning with the
first start node, we expand it by generating a node for each of its candidate neighbors
and place the new nodes on the OPEN list to be expanded, ordered according to how
promising they appear. This process is repeated for each node on the list starting with
the most promising, and halts when a goal node has been reached.

The position of a node 7J in the OPEN list depends on its estimated cost /(71).
Every node 7/ on the OPEN list has two cost functions associated with it: g(71) is the
cost of the path from the start node 7/s to 7/, and h(7J) is the cost to reach the goal node
719 associated with 7/s· The cost of a path starting at 7/s constrained to pass through 7/
is given by

f(TJ) = g(71) + h(71). (3.18)

When a node 7/ is created, the cost g(7J) is given by the sum of the costs including the
jump costs, of the path from 7/s to 7/, and is maintained cumulatively as the nodes are
expanded. The cost h(71) to reach the goal node is unknown. h(71) might however be
estimated with a heuristic function h(71), and the estimated cost of a path from 7/s to
719 constrained to pass through 7J can be defined as

(3.19)

If
h(71) ~ h(71), (3.20)

then the algorithm in Figure 3.6 is called A* and is guaranteed to produce an optimal
path through C [Nil80].

Thus, to assure the path we find is optimal, there are two key points which must
be considered. First, when expanding a node, all neighbors which might be part

52 3. An A* Algorithm for Inexact Polygon Matching

l. For 1 :::; s :::; n, create a start node T/s and add it to the OPEN list.

2. While OPEN is nonempty

Remove first node TJ from OPEN.
If T/ E G (goal node reached)

Else

Stop. Retrace path or evaluate match.

(a) Expand T/· ,
(b) Place each successor T/J in OPEN list positioned according to f(TJJ)­
(c) Place TJ on CLOSED list.

3. Destroy all items on OPEN and CLOSED lists.

Figure 3.6: The best first search algorithm.

of a permissible path, as determined by how many nodes may be skipped in Gp
and GQ must be inspected. Second, we need a heuristic function h which satisfies
Equation 3.20.

3.3.1 Node Expansion

If the number of nodes in the polygonal graphs differ (n =f m), then at least Jn - mJ
nodes must be skipped in the larger of the two graphs for any permissible match.
Without loss of generality, assume Gp = {µft'=1 is mapped horizontally, and GQ =

{µJ }f=1 is mapped vertically in the cost matrix, as in Figure 3.5. Skipping k nodes in
Gp results in a path with k horizontal jumps over columns in the match matrix. For
each path node 7/, we maintain Hmin(rJ), the number of nodes µf E Gp which must
be skipped between 7/ and its goal node 7/g, if the path corresponds with a permissible
match. This value is initiated for each start node as Hmin(rJs) = max{n - m, O},
because at least that many will have to be skipped in Gp to match it with GQ.
Additionally, to find matches such as those depicted in Figures 3.1 and 3.4, we allow up
to lmax additional jumps in Gp and GQ· Suppose we denote the number of additional
horizontal jumps permitted between a node 7) and its goal node 7/g with Hmax(rJ). Then
every path starts with Hmax(TJs) = lmax·

Analogously, we maintain Vmin(rJ), the number of nodes µf E GQ which must be
skipped between 7) and its goal node 7/g, which is initiated for each start node with
Vmin(rJs) = max{m - n, O}, and of course Vmax(TJs) = Hmax(rJs)-

When a node 7) positioned at (i,j) is expanded, the values of Hmin(rJ), Vmin(rJ),
Hmax(rJ), and Vmax(rJ) determine the nodes to be generated in the expansion as follows.
The candidate nodes for the next path element 7/J will be positioned at (if, JJ) with

i + 1 _::; if _:; i + 1 + Hmin(rJ) + min{Hmax(rJ), m + 1 - j, g - i mod n} (3.21)

j + 1 _::;]f _:; j + 1 + Vmin(rJ) + min{Vmax(rJ), m + 1 - j, g - i mod n}. (3.22)

3.3. An A* Algorithm to Find an Optimal Match 53

The minimum prevents the expansion of invalid or nonexistent nodes near the bottom
of the matrix.

For a newly generated node T/J, Hmin(TJ1),Hmax(TJ1), Vmin(TJJ) and Vmax(TJJ), depend
on the number of jumps in the horizontal and vertical directions between the expanded
node T/ and the new node T/f, and the values for the node T). They are computed
using the formulas in Equations 3.30, 3.31, 3.32, and 3.33, based on the arguments in
Appendix 3.A.

Using the above formulas to compute the expansion regions, if all nodes T)J are
expanded when (if,)f) satisfy Equations 3.21 and 3.22, then every permissible path
will be investigated, and no impermissible paths will be generated.

3.3.2 The Heuristic Function

To be sure the path we obtain is optimal, we must guarantee satisfaction of Equa­
tion 3.20. The smaller the difference h(TJ) - h(TJ), the greater the heuristic power of h,
and in turn the more efficient the search process. We thus consider the knowledge we
have about the path from T/ to its goal node T/g· We know there must be a minimum
of lmin(TJ) = max{Hmin(TJ), Vmin(TJ)} jumps made, each with a cost of J. J · lmin(TJ) is
therefore a lower bound on the cost of the path from T/ to its goal node T/g· Further,
the path must reach the bottom of the matrix, either by adding a node for the kth
row in the matrix or by jumping over it. Another lower bound on the cost of a path
from a node T/ to its goal T/g is thus

m

T/min(TJ) = ~ min{J, m_in F(µf,µf)}.
k=j+l 1:,:,:,:n

(3.23)

Because T/min(TJ) depends only on the row position j for the node TJ, it can be computed
once for all rows prior to starting the search. If we now define

(3.24)

then Equation 3.20 is satisfied, and using Equation 3.19 to order the OPEN list will
result in the first path found being an optimal path.

When there is a good match between the two polygons, the cost of the pairs
(µ;, µJ) in the match will correspond to the elements which contribute to T/min (T/) in

Equation 3.23, and the heuristic power of his very high, making the algorithm quite
efficient. If it is unknown whether the two polygons match, or a match may be poorly
behaved (as in the experiments in Sections 3.5 and 3.6), then variations on h(TJ) which
reduce the evaluation of the minimum to the elements of C which can be reached
from TJ in moving to T/g may have substantially higher heuristic power, preventing
extensive (costly) node expansion. Unless a good match is known to exist (as in the
application in Chapter 2), there is a direct trade off between the heuristic power of h
and the computational requirements to compute it. This will be considered further in
Section 3.7.

Further, if the method is used to decide whether Gp and GQ match, then a decision

54 3. An A* Algorithm for Inexact Polygon Matching

threshold T, appropriate for the application, will be necessary to decide whether the
cost of a match is low enough. Because f (TJJ) is a lower bound on the cost of the path
constrained to pass through T/f in reaching its goal node, T/f needn't be added to the

OPEN list for expansion if f(TJJ) > T. This modification is clearly useful for reducing
the number of nodes maintained and expanded in the decision process.

3.4 Experimental Methods and Error Measures

Depending on the application, the best match of two graphs will be that for which the
number of one or both of the following errors is minimized:

false positive - the presence of an incorrect node pair; and

false negative - the absence of a node pair which should have been in the match.

In this section, we describe the experimental methods and error measures used
to tune the parameter J, and evaluate the algorithm for a specific application. The
general scheme is to create a pair of polygons, one of which is a controlled random
distortion of the other, so that the polygons are well matched and we know the correct
pairing of nodes. After running our algorithm on the polygon pair, we compare the
resulting match with the correct match, and measure the number of false positives and
negatives.

The polygon distortion mechanism described here is designed to simulate a worst
case user for the experiments in Chapter 2. Clearly for other applications, permitted
affine transformations should be incorporated in the distortion scheme.

Random Polygon Distortions Suppose, given a polygon P = {Pi}i=l' and some
integer c 2: 0, we have a polygon Q = { qj }j=l where for 1 ::; i ::; n,

llqj - Pill ::; ci if j = i + c mod n (3.25)

If ci = 0, Q is simply a cyclic permutation of P. Let cmax be the maximum error a user
is permitted in specifying a corner on a polygon. Further, let df denote the minimum
distance from a point Pi E P to any other point Pk E P:

df = mm IIPi - Pkll-
l<k<n
k#i

If, for 1 ::; i ::; n, we choose

. {df } Ci= m1n 2 , cmax , (3.26)

then given a polygon P = {p;}i=l and some c 2: 0, for every polygon Q = { qj };'=1 for
which each qj E Q satisfies Equation 3.25, there is a one to one mapping between the
points in P and those in Q, which can be expressed in terms of distance. For cmax > 0,
such a polygon Q might be thought of as a disturbed permutation of P.

3.4. Experimental Methods and Error Measures 55

Figure 3. 7: The polygon P used for tuning the jump cost J for the user experiments,
and the selection of a point qj E Q from Pi E P.

Given a polygon P = {Pi}i=l and some integer c ~ 0, we can produce a worst case
polygon Q which satisfies Equation 3.25 as follows. For each i E [1, n], we generate
a point qj E Q, where j = i + c mod n, by selecting a random point from those on a
digital approximation (generated with [Bre77]) to the circle of radius L c;J centered at
Pi (Figure 3. 7).

Error Measures Suppose now that we create X such polygons Q = Q(x), using a
randomly chosen c = c(x) for each x E [1, X]. For each polygon, we can apply our al­
gorithm to obtain a match M[P, Q(x), J] using J as the jump cost in Equation 3.6. Let

Et
150

(M[P, Q(x), J]) denote the number of false positives(µ;, µf(x)) in M[P, Q(x), J].

In this case, any pair (µ;, µJ(x)) for which j =/- i + c(x) mod n is a false positive. We
define the percentage of false positives in X experiments as

(3.27)

where n(M[P, Q(x)]) is the number of pairs found in a correct match of P and Q(x).
Likewise, let Efulse(M[P, Q(x), J]) be the number of false negatives in a match.

These are the points found in the correct match of P and Q(x), but not in found in
M[P, Q(x), J]. We can define the percent of false negatives in X experiments as

E-(P,X, J) = 100. I:;'=1 ffulse(M[P, Q(x), J])
I:~=l n(M[P, Q(x)])

(3.28)

If M[P, Q(x), J] is a match of P and Q(x) to be evaluated, and C[P, Q(x), J] is the
subset of all pairs in M[P, Q(x), J] also found in the correct match M[P, Q(x)], then

n(C[P, Q(x), J]) = n(M[P, Q(x), J]) - Et1s0
(M[P, Q(x), J]).

56 3. An A* Algorithm for Inexact Polygon Matching

The percentage of pairs correctly found for a series of X experiments is thus given by

(3.29)

Depending on the application at hand, we may want to minimize E+(P, X, J),
E-(P, X, J), or both, thereby maximizing F(P, X, J).

Missing Points Because the algorithm is designed to match polygons each of which
may be missing points found in the other, we want to examine the errors when points
are eliminated from either P or Q, or both. Given a reference polygon P = {p;}i=I as
above and a polygon Q = { qi }J=1 generated from it, we can generate two new polygons
Pcut = {pk}f=l and Qcut = {q£}f=1 by deleting cut = 2n - K - L randomly selected
points from either P or Q or both.

To evaluate the behavior for a set of X randomly generated polygon pairs Pcut, Qcut,
we can apply defined Equations 3.27, 3.28 and 3.29. To indicate that cut points have
been randomly eliminated from the polygon pair, the measures are then referred to as

respectively.

3.5 The Optimal Jump Cost J

In Equation 3.5, we defined the cost of matching nodes from two polygonal graphs.
An equally relevant question is when two nodes should not be matched. As used in
Equation 3.6, the jump cost J is the value for which it should be cheaper to skip a point
pair in matching Gp and GQ, than to include it. Combined with the cost function
F(·), the value of J determines whether a fit such as that depicted in Figure 3.4 can
be found.

The criteria used to determine the optimal jump cost for a particular application,
are application dependent, and closely related to the criteria used to design the cost
function. We determine the jump cost empirically, by varying its value, and choosing
a value for which specific criteria are met.

Given a representative reference polygon P = {p;}:"=1 for a specific application,
we might seek a value for J, for which the number of false positives, the number of
false negatives or the total number of errors is minimized. If T(n) nodes might be
missing in either polygonal graph for a specific application, then the number of errors
should be minimal for matches between two polygons with up to T(n) missing points.
For most applications, the tolerated number of missing points will increase with the
number of points on the polygons to which it is applied.

To find the optimal value of J for matching the user defined polygons in Chapter 2,
we use the polygon P = {p;};=1 in Figure 3.7, and set T(n) = Ln/4J = 2. The polygon
is similar to, but simpler than those in the user tests. T(n) = Ln/4j is more than the

3.6. Results

% False positives and negatives for varying jump cost J
25 -------------~----~--~

20

15

0.1 0.2 0.3
J--+

E+(P,X,J) 4--­
E-(P,X,J)-+-

0.4

57

Figure 3.8: The result of varying Jon E+(P, X, J), the percent of false positives, and
on E-(P, X, J), the percent of false negatives, when Q is a distorted version of P, and
P = {p;}f=o is the polygon depicted in Figure 3.7. The results are summarized for
X = 500 experiments for each value of cut E {0, 1, 2}.

number of misses than occurred in practice, and therefore sufficient for tuning the
jump cost for this application.

For each value of J tested, we performed X = 500 experiments for each of the
permissible cut values {0, 1, 2}. The results are pooled for all three cut values in
Figure 3.8, where we show E+(P, X, J) and E-(P, X, J), the percent of false positives
and negatives found the 1500 experiments for each value of J. For the evaluation of
user corner errors, we choose the jump cost J = 0.38 as this is the point where the
false positives and negatives are nearly equal.

3.6 Results

Having obtained an optimal value J = 0.38 for the jump cost, we proceeded to apply
the method to the polygons depicted in Figure 2.2 to which the user experiments
were applied. Both polygons are made up of points with connecting line lengths
i!(Pi+I - p;) E {15, 30, 45, 60, 75}, as measured in screen pixels. In the experiments,
we allowed a maximum distance between generated point pairs to be cmax = 7 (see
also Equation 3.26). Each of the polygons contains n = 17 points, and we allow
T(n) = ln(P)/4J points to be missed in either polygon. We therefore tested the
method for cut E {0, 1, ... 4}. The percentage of false positives for each value of cut,
is given in Table 3.1. The tests were performed on X = 100 polygon pairs per cut
value for each of the polygons.

As expected, the performance deteriorated slightly as the number of points deleted
from the polygons increased. Note that in all cases tested, less than 8% of the matches

58 3. An A* Algorithm for Inexact Polygon Matching

% False Positives - E;};_,_t(P, X, J)
Points cut 0 1 2 3 4 All
% Polygon 1 0.18 2.00 3.78 6.31 7.36 3.69
% Polygon 2 0.00 0.62 2.13 4.27 6.51 2.50
% Both 0.09 1.31 2.95 5.29 6.94 3.09

Table 3.1: The percentage of false positives, as defined in Equation 3.27, found in
matching a set of polygon pairs. For each of the polygons in Figure 2.2, there were
X = 100 polygon pairs Pcut, Qcut(x) matched for each value of cut E {0, 1, ... , 4}. The
individual and combined results are presented for all cut values and for both polygons
tested.

% Correct Pairs Found - Fcut(P, X, J)
Points cut 0 1 2 3 4 All
% Polygon 1 99.35 97.62 95.62 93.12 93.47 96.05
% Polygon 2 97.52 96.69 96.28 94.59 93.26 95.80
% Both 98.44 97.16 95.95 93.85 93.37 95.92

Table 3.2: The percentage of node pairs correctly identified with our algorithm. For
each of the polygons in Figure 2.2, there were X = 100 polygon pairs Pcut, Qcut(x)
matched for each value of cut E {O, 1, ... , 4}. The individual and combined results are
presented for all cut values and for both polygons tested.

were bad, and that on average only 3% were. This means that 97% of the matched
pairs were correct.

In Table 3.2, we show the percentage of point pairs in a correct match that were
identified with our algorithm. On average we find 96% of the point pairs in a correct
match.

Given the random nature of the input data, this is quite good. Recall that corner
angle and line length both weigh heavily in the voting function (see Equation 3.16).
These factors can be badly influenced by the local differences in shape between P
and Q. This problem is accentuated when points are eliminated from either polygon,
which accounts for the deterioration for increasing cut values. In practice, users are
far less random in the geometric deformations of the input polygon in relation to the
reference polygon, and the percentage of points correctly matched is close to 100%.

3. 7. Complexity Analysis 59

3. 7 Complexity Analysis

The algorithm for inexact matching described in this chapter is a two step procedure.
In the first step, a matrix of costs is computed with an element for each pair of
nodes which can be generated from the two polygons, and in the second, a best fit
is determined by finding a minimum cost path through the matrix. We consider the
complexity of each step separately and conclude with a comparison with geometric
hashing.

3.7.1 Cost Computations

The computations required to compute the cost of matching a node in Gp with one
in Gq depend primarily on the number of consecutive nodes which may be missed
in either of the polygonal graphs. Based on the voting function in Equation 3.4,
voting requires n • (26.s + 1)2 steps. Since this is required for all node pairs in the two
polygons, the cost computation is of order 0(n3 6.s2

). Likewise, the variant introduced
in Equation 3.17 and used in our tests is of order O(n26.s4

).

3. 7.2 Matching Computations

The complexity of the matching step can be evaluated in terms of the total number of
nodes expanded, and in terms of the number of nodes generated in the process. The
number of nodes expanded depends on how well the polygons fit with respect to the
cost function. For every node 7) expanded, there are (Hmin(7J) + Hmax(7J))(Vmin(7J) +
Vmax(rJ)) ~ J':riax nodes generated, each of which must be inserted in the ordered list
OPEN.

The run time performance of the best first search algorithm shown in Figure 3.6
is clearly dominated by the sorted insertion of the newly generated nodes 7/J· The
insertion is accomplished with a merge sort (cf. [CLR90]). We first sort the J;,ax
newly generated nodes 7/J using an insert sort with worst case run time 8(J!aJ, and
then merge the two sorted node lists.

Best Case When there is a clear match between the nodes in the two polygons,
then after the n start nodes, the only nodes expanded are the roughly n nodes on a
best match. In the best case, there are roughly 2n · J;,ax nodes generated, and each
must be inserted at the appropriate position in the OPEN list. Since the size of the
0 PEN list is of order O (n · J;,ax) (for the best case), the merge step has worst case
run time e (n . J':riax)

So we may conclude that algorithm has run time n(n 2 J':riax) in the best case, that
is when the number of nodes expanded is of order O(n). The best case for the number
of nodes expanded is examined because it does arise in practice (e.g. Chapter 2), and
its run time is therefore of interest. However, there is no reason to believe that it is
coupled with best case sorting, which is why we use worst case run time for sorting
when evaluating the best case run time.

60 3. An A* Algorithm for Inexact Polygon Matching

Worst Case When no good match exists, the number of expanded nodes can in­
crease dramatically. In practice, this case arises when a decision must be made as to
whether two polygons match. To reach a conclusion, there must be a decision thresh­
old T, which determines whether the cost of a path as defined in Equation 3.5 is low
enough to to infer a match, as in [Ant93].

In the worst case, we expand every node generated until we reach a goal. For the
start nodes, we generate n · J!ax nodes. Expanding all of those, generates at most
n • J;,_ax · J;,_ax nodes. Continuing this process until a goal node is reached will result
in the generation and expansion of at most n · J;.:X nodes . The algorithm therefore
has worst case run time 8(n2 1,;,':,_x)-

Preventing the Worst Case Given T, an application dependent threshold (which
can be selected in much the same fashions as was jump cost in Section 3.5), it can be
used to reduce the run time costs of the matching procedure significantly. Suppose
we know a no match conclusion should be reached, if the minimum cost path has cost
f(ri) > T. Since f(ri) :::; f(ri), it is unnecessary to insert a freshly generated node 7/J

in the OPEN list if f (ri1) > T. The length of the OPEN list can thus be reduced
significantly if T is small. In the most extreme case, if T :::; 7/min(O) as defined in
Equation 3.23, then a no match decision will be made before the first start node is
generated. On the other hand, if T?: L-j=0 max1-5,i-5,nF(µf,µJ), then until a goal
node is reached, all nodes generated will be expanded.

When the presence of a good match is in question, and no small threshold T has
been defined, we can prevent unnecessary growth of the OPEN list if we modify the
heuristic function h(ri) to provide a better estimate of h(71). From Equation 3.23, it
is easy to see that 7/min(ri), and therefore h(ri), increases as the as number of elements
contributing to the minimum for each row is decreased. However, the minimum must
be evaluated for all row members which the path from 7/ to its goal 7/g can pass through

or it may not satisfy h(ri):::; h(ri), as required.
For every start node 7/s, the set of elements in each row which can contribute to a

permissible path from 7)5 to its goal node 7/g can be determined at a cost of 0(nlmax),
Computing 7/min(ri) as a function of the start position as well as the row position can be
done with 0(n3 lmax) operations, rather than the 0(n2) operations required to compute
7/min(ri) solely as a function of row position as in Equation 3.23. This additional cost
is clearly worthwhile if worst case behavior may occur. If however, best case behavior
is expected, then the additional computations are superfluous, and the formula used
to compute 7/min(ri) in Equation 3.23 is more efficient.

3.7.3 Evaluation

In Table 3.3, we summarize the best (fl(•)), the average (O(·)), and the worst (8(·))
case run time for the experiments performed in Section 3.6 on the polygons in Fig­
ure 2.2. Note first that the best case behavior is fl(n2 J;,_ax) as predicted in the dis­
cussion above. Secondly, the worst case performance 8(n6 J!ax) is much better than
predicted, in spite of the random nature of the data. The worst case prediction is

3.8. Inexact Polyhedra Matching 61

Run time complexity: # expanded x # generated
r2(n) r2(n, lmax) O(n) O(n, lmax) 8(n) 8(n, lmax)

n n n

Table 3.3: The runtime behavior of the algorithm for the 500 matches performed in
Section 3.6 on each of the two polygons in Figure 2.2. The values r2(n) and r2(n, lmax)
show the best case behavior, O(n) and O(n, lmax), the average behavior, and 8(n) and
8(n, lmax) the worst case. The variations due to the value of cut were small enough
not to influence the above values. Each of the polygons contain n = 17 points and
the maximum number of points allowed to be skipped in a match was lmax = 4. The
combined results are presented for all cut values and for both polygons tested.

based on a breadth first search (h(77) = 0), where in fact we perform a depth first
search, which, depending on the definition of h(77), is far more efficient.

In the experiments here, using h(17) defined in terms of 7'/min (77) as defined in Equa­
tion 3.23, the worst case runtime is far better than O(n4Jmax+1 J!ax), the computation
time required for a brute force decision.

Based on the complexity analysis performed by Gavrila and Groen in [GG92],
the voting procedure required by geometric hashing for matching two polygons as
considered in this chapter has worst case run time 8(n6), assuming a point pair in
each polygon is used to define a basis set. Given that our method produces a match
if it is present, and quantifies its quality, in addition to performing a decision task,
the run time behavior as summarized in Table 3.3 compares very well with that of
geometric hashing.

3.8 Inexact Polyhedra Matching

It is interesting to note that with minor modifications, the method described in this
chapter can be applied to the problem of matching polyhedra in three dimensions.
Suppose we have a polyhedron Lp = {L~}:1=1 represented in terms of n line segments
L~ between points p;.,p;2 E R 3

:

Lf = {(1 - v)p;, + vp;2 : 0 :S v :S 1}

The major difference between a polyhedron and a polygon is that it is not cyclic, and
thus no ordering or connectivity of the set Lp can be assumed. A vertex vi at position
Pi = (xi, Yi, zi) is connected to its neighbors by some unknown number of line segments
Lf and thus the position alone is insufficient to evaluate and compare vertices from
two polyhedra. If a vertex is defined in terms of its position Pi and the position of
each vertex to which it is connected by a line segment, then a set of templates and
spring might be defined to compare it with a vertex from another polygon.

It is of course possible to represent a polyhedron as a set of connected faces, each of

62 3. An A* Algorithm for Inexact Polygon Matching

which can be described in terms of a polygonal graph. The template contribution to a
cost function might then be computed with one of the functions defined in Section 3.2.
Because the run time of the algorithm depends on the size of the node sets, both of
these alternatives can be used to reduce the run time considerably, as they can be used
to represent a polyhedron with substantially fewer nodes than required if line segment
representation is used.

For the sake of discussion, suppose we view a polyhedron as a graph Gp = {µ~ }f=1

made up of nodes µt = Lt. Given a second polyhedron represented by Gq = {µb}~ 1 ,

we can define a template and spring cost function F(µ~, µb) to compare each pair of
nodes which can be generated from the two graphs Gp and Gq. Depending on the
transformations tolerated for a specific application, template and spring functions can
be defined which are minor variations on those defined in Section 3.2.2 for line based
polygonal graphs.

We may thus produce an n x m cost matrix containing the value of the metric
F(µt, µb) for comparing the ith and jth members of Gp and Gq respectively. To find
an optimal match using the cost matrix, we again note that every node in Gp and
Gq should be accounted for, either by being explicitly skipped or by being included in
a match. This means that any match will cover the entire width and breadth of the
matrix. We can thus start and end with virtual start and goal nodes as in Section 3.3
forcing the polyhedron which is vertically mapped to be fully accounted for. Since no
row or column can be included more than once in a match, the columns considered in
the expansion should be those not yet accounted for in the path up to node T/· Skips
can be permitted, by allowing jumps over rows.

The restriction that the path through the cost matrix be diagonal was necessary
for polygons due to the cyclic nature of the data sets being matched. Dropping the
restriction has two consequences for the search algorithm. First, h(T/) resulting from
the definition of T/min(T/) in Equation 3.23 is the best estimation which can be obtained
prior to the actual search procedure. Second, the run time behavior is somewhat
worse, as any two nodes might be neighbors. This means in the estimations presented
in Section 3.7, lma:x should be replaced by n.

3.9 Conclusions

We have described a technique for inexact matching of polygons in which the evalua­
tion of node pairs is separated from the optimal fit algorithm. The characteristics of
a cyclic graph representing a polygon in terms of either points or line segments are
incorporated in a "template and spring" cost function used to measure the similar­
ity of nodes from different graphs. Further, we presented an efficient A* algorithm
guaranteed to produce an optimal match with respect to the cost function. A method
for selecting an optimal jump value is described, and the method is shown to work
successfully in the user experiment application described here as well as for the model
based vision system described in [GAW93]. Finally, we analized the run time complex­
ity of the algorithm, and showed that unnecessary growth can be prevented in various

3.A. Node Expansion 63

application contexts. Our algorithm can easily be extended to match 3D polyhedra as
illustrated in Section 3.8.

In addition to matching the user input sketches with polygonal object boundaries
in Chapter 2, in the model based robot vision system described in [GAW93], our
matching algorithm provides a reliable and efficient mechanism for deciding whether
a polygonal object boundary detected with the sensor system should be identified as
the boundary of an object expected in the scene, the description of which is obtained
from a database.

3.A Node Expansion

In the A* algorithm described in Section 3.3, the set of nodes generated when a
node is expanded determine which paths through the cost matrix, and therefor which
matches of two polygonal graphs, can be obtained. When a node 7J positioned at
(i,j) is expanded, the values of Hmin(T/), Vmin(T/), Hma:x(T/), and Vma:x(T/) determine the
positions of the nodes to be generated, based on Equations 3.21 and 3.22. These values
are determined when a node is first generated as follows.

The values of Vmin (T/J), Hmin (7/J) Vma:x(T/J), and Hma:x(T/J) associated with each newly
generated node T/J, depend on its position in the cost matrix with respect to T/, and on
the values of Vmin(T/), Hmin(TJ) Vma:x(TJ), and Hma:x.(T/) for its predecessor. A candidate
node 7/J created to follow T/ involves Jh = if - (i + 1) horizontal and Ju = j f - (j + 1)
vertical jumps in the matrix. This corresponds to skipping Jh nodes in the polygonal
graph Gp and lv nodes in Gq.

To simplify the discussion, suppose Jh ~ 0 and lv = 0. Then if Hmin(T/) ~ 0,
at least some of the Jh horizontal jumps were required, and the number of required
horizontal jumps in the new node will be

If Jh ~ Hmin(T/), then Jh - Hmin(T/) permitted, but not strictly required, horizontal
jumps were made to reach (i1 ,)f), and the number of permitted horizontal jumps in
the remainder of the path through T/J is

Note, however, if jumps not strictly required, as maintained in Hmin('TJ), are made
in the horizontal direction, then in the remainder of the path, the same number of
vertical jumps must be made to guarantee a permissible matching of the polygonal
graphs. This restriction can be enforced if

Vmin(T/1)

Vmax(T/J)

Vmin(T/) + (Jh - Hmin('T!))

Vmax(T/) - (Jh - Hmin(T/))

Extending the above arguments, we can define formulas for Hmin(T/1), Hmax(TJ1),
Vmin(T/J), VmaAT/J) for the general case (Jh ~ 0 and Jv ~ 0). First, in moving from 7J to

64 3. An A* Algorithm for Inexact Polygon Matching

T/t, the number of not strictly required jumps in the horizontal and vertical directions
is given by

It is easy to see that
Hreq = max{Vt - Ht, O}

steps must later be made in the horizontal direction. Likewise

must be made in the vertical direction. The minimum jumps required and the maxi­
mum jumps allowed to get from T/t to its goal T/g is given by:

Hmin(TJt)

Hmax(TJt)

Vmin(TJt)

Vmax(TJt)

max{(Hmin(TJ) - Jh + Hreq), O}

Hmax(TJ) - max{Jh - Hmin(TJ), O} - Hreq

max{(Vmin(TJ) - lv + V,.eq), O}

Vmax(TJ) - max{Jv - Vmin(TJ), O} - V,.eq

(3.30)

(3.31)

(3.32)

(3.33)

If these formulas are used to compute the expansion regions, then expanding all nodes
T/t when (it,]f) satisfy Equations 3.21 and 3.22 prevents investigation of impermissible
paths, while it guarantees that every admissible match can be obtained with the
algorithm.

Chapter ·4

Model Based Corner Detection

4.1 Introduction 1

If an object boundary can be described by a set of line segments connected at points,
then the connection or corner points are sufficient to fully reconstruct the object
boundary. In [FW94], Fischler and Wolf show that corners and points of high curvature
form the best point set for recovering more general curves. They also show that users
select these points when asked to specify the most significant points on a curve.

A sketch derived from a user-defined point set which is specified with a connect­
the-dots interaction tool as described in Section 2.3.1, cannot be considered more than
an approximation to an object boundary, and is thus not suitable for analysis of object
features, such as shape, grey level moments and area. This is due to the indirection of
hardware devices for screen location specification, and the variation in human motor
capabilities described in [HHN86]. For the task of polygonal boundary specification,
variation in user errors is illustrated in Chapter 2 of this thesis. We thus seek a user
adaptable method for correcting a user defined polygonal sketch of an image object
boundary. Even if users could specify boundaries to a satisfactory degree of accuracy,
correction mechanisms reduce the tedium inherent to this task by allowing users to
sketch less carefully.

In this chapter, we address issues involved with correcting the corner points on
a user sketch of a polygonal image object boundary. Because the corner points fully
determine the boundary path for polygonal objects, the accuracy of all object measure­
ments depend on the accuracy of these boundary points. When a polygonal boundary
path is specified by a user, we therefore view the user sketch as a set of straight lines
connected at corners, and concentrate our attention on correcting the corner locations.
This approach is particularly suitable for images in which the object shapes are close
to polygonal, as is frequently the case in industrial applications.

Initial attempts to detect and locate corners on image object boundaries were based
on inspection of boundary paths already extracted from the image (see for instance
[RJ73, FD77]). Because of the local nature of the inspection performed, these methods

1 Portions of this chapter are reprinted, with permission, from [OG93] @1993 IEEE.

65

66 4. Model Based Corner Detection

often fail to detect corners with wide angles. Moreover, because in general, the path
on which corners are detected has been extracted using edge detection methods or
region based segmentation techniques, those corners which are detected will be poorly
localized. By definition, edge detectors are intended to detect points on a smooth
boundary path [MH80]. Because the smoothness condition is violated at corners on
the object boundary, edge detectors perform poorly at these points. Meanwhile, most
region based segmentation methods classify pixels after some form of local averaging.
Depending on the size of the region which influences the decision, a pixel near an acute
corner will often be misclassified due to the heavy influence of background pixels in
the decision process. An object boundary extracted from the partitioning will thus be
rounded near corners, and if the corners are detected, they will necessarily be poorly
localized.

To address these issues, more recent approaches are geared towards detection of
corners in the original grey value image, as opposed to on a geometric path already
derived from it [KR82, ZH83, LSWM86, RSB89, MNR90, LT90, SS90]. While the
proposed methods vary, they share two basic assumptions:

1. The corner is located between two relatively smooth regions which differ signifi­
cantly in average grey value. That is, a priori knowledge is assumed about the
behavior of the image function on the object and background regions, which can
be used to distinguish the two.

2. No a priori knowledge is available regarding the geometrical aspects of the corner.
Thus corners of arbitrary angle, orientation, and location must be identified with
the corner detector.

The role of interactive segmentation in image analysis is most important when the
validity of the first assumption is unknown. In new applications, there is generally no
a priori knowledge of the image function on the images being analyzed.

Meanwhile, in interactive segmentation, a user can provide an approximation of
the contour in terms of location and form. Detection of corners for which there is
a good estimate of the angle, orientation, and location has been neglected in the
literature, although this information is frequently available. This is not only the case
in interactive segmentation, but also in model based segmentation techniques, and in
variations of the active contour method [KWT88], such as that described in [WS92].

Given an approximate geometric model for a corner on an image object contour,
we want to extract a model of the image function in the immediate region. The
two models can then be combined and exploited to localize the corner on the object
boundary as follows. We design a template which should look like the corner in the
image based on the geometric and image function models. This is used to locate the
corner in the image, using a variation of the cross correlation technique described in
[RK76]. We demonstrate our method by employing it to model and locate a variety
of corners in a grey value image.

4.2. From User to Corner Model: an Overview 67

/
y

Ramp Corner Roof Corner

X ~

Figure 4.1: Ramp and roof corner models for an image feature measure >...

Our method provides a context in which a variety of segmentation models can
be evaluated for their capacity to locate a corner. With very little effort, it can be
extended to other geometrical forms. With this approach, a segmentation model for a
new application can be derived far more easily than with traditional methods (often
trial and error), and the need for human intervention quickly eliminated.

4.2 From User to Corner Model: an Overview

Suppose we have an image which contains an object, the boundary of which can be
described by the set of line segments which connect neighboring points in the ordered
set Q = {qj}J=l> with qj E R 2 for all qj E Q. Suppose a user, in the process of
specifying the object boundary generates the point set p = {Pi}r=l> where for each
Pi E P, we have Pi E Z2 corresponding to the position of a pixel in a digital image.

For every Pi E P, the user implicitly specifies a corner in the object boundary,
the geometrical properties of which are determined by the triplet P; = {Pi-l,Pi,Pi+1}­
From the results presented in Chapter 2, we can expect there to be a corresponding
corner in the image object boundary defined by a triplet Qj = { qj-l, qj, qj+1} of neigh­
boring points in the point set which defines the boundary. Unless the user specifies
superfluous points near the corner Qj, or neglects to specify one of the points which
define Qj, then we may assume the relationship between P; and Qj satisfies the con­
straints on position, angle, orientation and scale described by the user error model in
Chapter 2.

If there is a corner Qj in the image object boundary, not occluded by another
object, or disturbed by other sources, then based on some image feature measure >..,
the image data in a region near the point qj should be well modeled as a ramp or roof
corner as shown in Figure 4.1. For example, >.. may measure the grey value intensity,
but more complex feature measures (e.g. graininess) may be appropriate to model the
image function near the corner.

68 4. Model Based Corner Detection

Figure 4.2: Division of a subimage R in three regions of interest, based on a corner Pi
in a user input sketch.

In an ideal image, this means that there is some neighborhood S centered at the
point qj, which can be divided in three sections depending on the response to the
image feature measure .A. If the object boundary follows the path defined by Qj in the
neighborhood S, then there should be two regions in S separated by the path of Qj. We
call the region which corresponds to the cone of the corner Sin, and its counterpart Bout·
These regions are labeled in Figure 4.1, and are separated by a central or transition
region Sc along the path Qj, in which the image function changes. If .A is an image
feature measure which can be used to described the change in the image function near
the point qj, then one of the following must hold.

A) The constant value Ain of the function >.(x, y) on Sin is distinct from the constant
value >-out of >.(x, y) on Bout· In the central region Sc, the value varies between
Ain and >-out· This criterion corresponds with the ideal ramp corner model in
Figure 4.1.

B) >.(x, y) has the same value in Sin and Bout· The average value of >.(x, y) in the
transition region Sc is higher or lower than Ain = >-out• A corner which satisfies
these conditions is described by the roof corner model in Figure 4.1.

C) One of the above two statements holds when some portion of S is measured, but
not for the entire region. This may be due to an occluding object near the corner,
such as a pen lying near or across the corner of a piece of paper, or to changes in
the object itself, such as that in the house near the corner outlined in Figure 4.2.
Further, nearby objects and lighting conditions such as shadows and reflections
may result in interference with the corner model.

4.3. The Segmentation Model 69

D) The section of the contour associated with the corner Qj is subjective. There is
no measurable change in the image data in the three regions, but Qj would be
part of the boundary were it fully visible. A subjective corner may be due to low
contrast in the image region or due to the presence of an occluding object. Often
a human or a high level process (e.g. [GAW93]) can hypothesize the presence of
a corner which would be nondetectable based only on the behavior of .\(x, y) in
the region S.

Based on the results in Chapter 2, given a triplet Pi= {Pi-l,Pi,Pi+i} produced by
a user as part of an object boundary specification, we can assume there is a similar
corner Qj on the boundary for which one of the above holds for some image feature
measure .\. Based on the corner defined by the triplet Pi, and the user error model in
Section 2.5, we can define three regions R;n, Re, and Rout which should correspond to
the regions Sin, Sc, and Sout about the corner point qj on the image object boundary.
(See Figure 4.2.) The regions R;n, Re, and Rout, can then be used to estimate param­
eters for a given image feature measure .\ in the corresponding image corner regions
Sin, Sc, and Sout·

The results can be used to evaluate the likelihood of a ramp or roof corner Qj
which is similar to Pi, in terms of angle, orientation and location. A model of the
image corner can then be constructed based on the likelihood of a ramp or roof model
for a measure .\, and the region parameters. The model might be incorporated in a
simple template and subsequently used to locate the corner in the image, as illustrated
in Sections 4.4 and 4.5. However, more complete corner models which take into account
the user error models for in corner angle and orientation derived in Section 2.5 may
be constructed.

4.3 The Segmentation Model

Suppose we have an image I(x, y) containing an object, the boundary of which can be
expressed as a polygonal path defined by Q = { qj }~1 . Suppose that for some image
feature measure .\, the difference in the response on the object and background regions
is significant. Then, for each point qj E Q, there will be a small region centered about
qj, for which the image function when measured with .\ will fit a ramp corner model.
Alternatively, the response to .\ along the path defined by Q may be measurably
different from the response to .\ in the object and background regions. The image
data will then fit a roof corner model in the regions about the points % E Q.

In both cases there will be a transition region along the path of Q near q1, in which.
the value of the image feature measure .\ changes. The geometry of the transition
region depends on the size of the neighborhood over which .\ is measured, the width
of the point spread function of the optical system used for image formation, and
the geometry of the boundary near the point qj as determined by the triplet Q1 =
{ qj-l, qj, qj+1}. For roof corners, line thickness also contributes to the geometry of the
transition region.

Given a corner triplet Pi= {Pi-l,Pi,Pi+1} in a user sketch of the object boundary,
let R be an N x N subimage centered at the point Pi· Based on the user error model

70 4. Model Based Corner Detection

derived in Chapter 2, we can expect there to be a corner on the object boundary
described by a triplet Qi = {qj-l, qj, qj+i} which satisfies a number of constraints
with respect to the user defined corner triplet Pi. We can therefore extract a region
Re C R centered about the two lines which meet at Pi which is known to contain the
path section Qi n R of the object boundary in the subimage R. Given the size of
the neighborhood required to measure A, the region Re can be defined to contain the
entire subset Sc n R in which the object to background transition takes place.

If the size N of the subimage R satisfies certain conditions (defined below) with
respect to the length of the lines which define the corner at qj, and the corner angle is
not too small, then the remainder R\Rc of the region R will be made up of two disjoint
regions Rin and Rout, separated by Re. See Figure 4.2. If R;n and Rout are sufficiently
large, then measurements on the image data in the respective regions can be used to
estimate the parameters of an image function model in the object and background
regions.

Based on the user error model and the image corner model, we therefore aim to
construct a region Re for a postulated corner Pi = {Pi-i,Pi,Pi+i} in the user sketch.
We then estimate the image function parameters based on the resulting division of R
(R = Rin U Re U Rout),

4.3.1 The Image Corner Model

Given a corner on an image object boundary defined by a triplet Qj = { qj-l, qj, qj+1},
the following geometrical properties are of interest. Let a and b be the vectors defined
by

a = qj-l - qi and b = qi+1 - qj.

The triplet Qj can then be expressed as Qj = {qj + a, qj, qi+ b}, and we can derive:

S (Q j) - the corner scale, which we define as the length of the shorter of the two line
segments which meet at the corner,

(4.1)

a(Qj) - the angle of the corner defined by Qj,

(4.2)

/3(Qj) - the corner orientation, as given by the angle of the line which bisects the
corner in the cone direction. 2

The set of points p E R 2 on the two line segments which meet at the corner is
given by

(4.3)

2We choose this definition of orientation because it gives equal weight to the direction of both
vectors which define the corner.

4.3. The Segmentation Model 71

where
(4.4)

Let S be an M x M region of the image centered about the point qj. Suppose that
disturbances such as those due to lighting or occluding objects do not occur in the
region S. If other sections on the path of the polygonal boundary do not intersect S,
then there should be three distinguishable regions Sin, Sc and Sout in which a ramp or
roof corner model describes the image data based on some image feature measure >...
This condition can be stated more formally as follows.

Let UC R 2 , and let d(v, U) denote the minimum distance from the point v E R 2

to any point u E U, so
d(v, U) = min llv - ull-

uEU

Given a polygonal image object boundary path Q = {qj}J=l> if for each qj E Q,
there is an M x M region S centered at qj for which

for lk - JI> 1, (4.5)

then in the region S, the image data should behave as a simple corner model with the
geometry defined by Qj.

Corner Geometry

Locally, the nonintersection assumption imposes restrictions on the geometry of the
neighboring corners Qj-l and Qj+l· Intuitively stated, the positions qj-l and qj+1 of
these corners must be outside S, and the path of Q cannot turn so sharply at these
points, that it passes through S on the segment between qj-l and qj_2 or on the
segment between qH1 and qH2 . This means the corner angles a(Qj_1) and a(Qj+1)

must be wide enough so the line segments Lf_2 and Lf+l will not intersect S. See
Figure 4.3.

To guarantee qj-l and qj+l are outside an M x M neighborhood S centered at qj,
we need only require

(4.6)

because M /-/2 is the distance from qj to the corner points on S, and we need only
assure this is smaller than S(Qj}, the distance to the closer point.

Without loss of generality, let llall ::::; llbll, so qj-l is the closer point, and the corner
scale S(Qi) = llall, based on Equation 4.1. Influence from the corner in the image
defined by the triplet Qj-l in an M x M region S centered at qj, can only occur if
Lf_2 intersects the region S. 3

Given the point % if the nearest neighbor qj-l E Q is positioned outside the region
S, then Lf_2 will not intersect the region S if a(Qj_1) ~ a, where a is the angle shown
for the two extreme cases in Figures 4.4a and 4.4b. The lower bound a on a(Qj_1)

3This condition is weak in that it neglects the width of the strip influenced by the transition along

£7-2·

72 4. Model Based Corner Detection

Figure 4.3: To prevent intervention in the region S with the corner model defined l
Qj = {%-I, qj, qj+i}, the points qj-I and qH1 must be outside the region S, and tl
corner angles o:(Qj-I) and o:(QH1) must be large enough to prevent Lf_2 and Li
from intersecting the region S.

/ 5-1
/ ' ' / ' / a ' /

s s
--- M----sa--

(a) (b)

Figure 4.4: To prevent intervention in the region S with the corner model defined by
Qj = {qj-I, qj, %+1}, the angle o:(Qj_1) of the corner at qj-l cannot be smaller than
the angle o: shown in the two figures. It is clear that if the line segment from qj-I to qi

is vertical (or horizontal), the lower bound o: on the corner angle o:(QJ-i) is maximal.
Further as the distance d(qj-I, S) decreases, the lower bound increases.

4.3. The Segmentation Model 73

depends on the distance d(qj-I, S) from the point qj-l to the region S and on the
direction of the vector a= qj-1 - qj. In Figure 4.4, it is easy to see that if the llall is
fixed, the lower bound a increases as the vector a becomes vertical (or horizontal).

Assuming a = qj-I - qj is vertical (worst case), given the distance llall from qj-l
to qj, we can express the lower bound on a as a function of the width M of the region
S.

_ 1 (M/2)
a(M) = tan S(Qj) _ M/2

(4.7)

Note that the restriction in Equation 4.6 guarantees that the denominator is nonzero.
This condition can be met for all corners Qj E Q if we use

(4.8)

and if for all Qj E Q,
(4.9)

where S(Qi) is the corner scale as defined in Equation 4.1, and a(Qj) is the corner
angle defined in Equation 4.2.

Regions in S

Given an M x M region S centered at a point qj, let Sc C S be the set of points
influenced by the transition along the path of Qin Sas measured by>... The geometry
of the region Sc depends on the geometry of the corner defined by the line segments
Lj_1 and Lj and on the point spread function. If the image boundary fits a roof model,
then the width of the line or roof will also influence the geometry of Sc. Finally, for any
given image feature measure >.., the geometry of Sc depends on the radius of influence
of the measure >... For example, if the value of >.. at a point p is defined as a function
of the image data in a k x l window centered at p, then the radius of influence is
r(>..) = ✓k2 + l2 /2.

Given a point q E cf n S on the object boundary in S (Equation 4.3), let W(q)
be the minimum distance to any point p E S which is not influenced by the presence
of the boundary on S. Then if we let

W = max{W(q) : q E Cf n S}, (4.10)

all points p E S which satisfy d(p, Cf) ~ W are not influenced by the image function

along the path cf of the object boundary in S.
We thus define the transition region Sc as the set of points p E S within distance

W of cf. Formally,

Sc = {p E R 2
: p E S and d(p, Cf) :::; W}. (4.11)

If Equations 4.9 and 4.8 are satisfied, and if W < M/4, the remaining members
p E S\Sc of the set S fall in two disconnected regions S;n and Bout on either side of

74

s

I

I

4. Model Based Corner Detection

s

Figure 4.5: The behavior of the measure A in the immediate region about the path
of Q is different for those p E Sc within distance r of the corner point qj, from those
further away (IIP - qill > r) where the transition should be well modeled by either a
ramp or roof edge model.

the region Sc, and we have

(4.12)

In both the ramp and roof corner model, there exist constants cin, Cout and cL, such
that:

{

C£ if XE Cf
A(X) = Cin if X E S;n (4.13)

Cout if X E Sout

The behavior of A on Sc\ cf, the region influenced by the boundary between the
object and its background, but not on the boundary itself, will differ for two regions
on Sc. In the region immediately about the point qj (see Figure 4.5), the value of
A will be influenced both by the transition along the path from qj to qj-l and from
the transition along the path from qj to qi+I· This is because many of the points in
that region are within distance W from both of these edges. Outside the immediate
neighborhood of the corner, it will only be influenced by the transition along one of
these line segments, and the behavior of A in these regions will fit a simple ramp or
roof model described below.

Consider Figure 4.5. Given the width 2W of Sc, the region influenced by the object
to background transition, points in the set

may be influenced both by the transition in the image function on Lj-l and in the
transition on Lf.

Then the set of points not in Scorn will be influenced by the transition along only

4.3. The Segmentation Model 75

one of the line segments which meet at qi. We can define this set simply as

(4.14)

The image function in the Sedge region should behave as a simple edge or roof model,
and be uninfluenced by the presence of the corner point. We can thus define ramp
and roof image corner models as follows.

The ramp model A corner is described by a ramp corner model, when in addition
to Equation 4.13, one of the following two criteria is met:

l. C0 ut > cin, CL = (Cout +c;n) /2, and in the region Sedge, A is a strictly monotonically
decreasing function of the distance to the set Bout· More precisely stated, for all
p,q E Sedge, Cin:::; A(p),>.(q):::; Cout, and

(4.15)

2. C0 ut < Cin, CL= (cout+C;n)/2, and in the region Sedge, A is a strictly monotonically
increasing function of the distance to the set Bout, or formally, for all p, q E Sedge,

Cin ~ A(p), >.(q) ~ Cout, and

d(p, Bout) > d(q, Bout) ===} A(p) > A(q) (4.16)

The roof model A corner is described by a roof corner model, when in addition to
Equation 4.13, one of the following two criteria is met:

3. C;n = Cout, CL > Cout, and for all p E Sedge, A is a monotonically decreasing
function of the distance to the set Cf Formally, for all p, q E Sedge,

d(p, cf) > d(q, cf)===} >-(p) :::; >-(q) (4.17)

4. Cin = C0 ut, CL < C0 ut, and for all p E Sedge, A is a monotonically increasing
function of the distance to the set Cf. Formally, for all p, q E Sedge,

d(p,Cf) > d(q,Cf) ===} >.(p) ~ >.(q) (4.18)

Note that the use of:::; and ~ in Equations 4.17 and 4.18, allows a wide line or roof
corner to be modeled with a roof corner model.

4.3.2 The User Corner Model

Suppose a user produces a polygonal point set P = {p;}i=l in the course of sketching
an image object boundary defined by Q = { qj }J::=1 . In particular, suppose the corner
triplet Pi = {Pi-i, p;, Pi+1} corresponds to the corner defined by the triplet Qi =
{qj-1, qj, qi+i} on the object boundary. Let R be an N x N region centered about the

76 4. Model Based Corner Detection

point Pi· Based on the user error model obtained in Chapter 2, we can define a region
Re C R which contains all points on the boundary path Q in the region R. Given the
image corner model derived above, we caµ in fact define the regions R and Re so that
Sc n R C Re, where Sc is the region influenced by the change in the image function in
the transition from object to background.

This results in a division of the region R, much like that shown in Figure 4.2. R\Rc,
the remainder of R, is made up of two disjoint regions Rin and Rout which correspond
to the image regions Sin and Sout described above. In fact, if

R c S and Sc n R c Re, (4.19)

then Rinn SC Sin and Rout n SC Sout·
If Rand Re are so defined, then the regions R;n, Re and Rout can be used to estimate

the behavior of the image feature measure ,\ in the object, transition, and background
regions4 Sin, Sc and Sout respectively. Our task is therefore to define the region Re in
terms of the user error model and the image corner model so that Equation 4.19 holds.
To model the image boundary corner defined by Qj, however, we must be sure the
regions Rin and Rout are large enough to estimate the behavior of ,\ in that region.

The Region Re

Given a triplet Pi= {Pi-I,Pi,Pi+1}, let R be an N x N subimage centered about the
point Pi· Let c be the maximum likely error in distance between a point Pi E P and its
corresponding point qj E Q. Based on Equation 2.19 derived in Chapter 2, we know
that for each individual user, an appropriate value of c can be determined. We use
this value as the maximum permitted error in distance for a given user.

Let oS denote the maximum amount the user may overestimate the corner scale.
Then the scale of the corner Qj on the image object boundary satisfies

(4.20)

A user dependent upper bound on oS was derived in Section 2.5 (Equation 2.23).
Suppose S is an M X M region centered at the corner point qj on the image object

boundary. If M = S(Qj), then Sis the largest square region guaranteed to contain a
nondisturbed model of the corner defined by the triplet Qj, assuming Equations 4.5
and 4.9 hold.

Since IIPi - qill ::; c, if the size N of the region R centered at Pi satisfies

then we have RCS. Therefore, given S(P;), based on Equation 4.20, we define R to

4This labeling of the regions in S has been chosen arbitrarily to simplify the discussion. Of course
Sin might correspond to the background region, Saut to the object region, etc.

4.3. The Segmentation Model 77

be an N x N region centered at Pi with

N = S(P;) - oS - 2 · c . (4.21)

. Given W, as defined in Equation 4.10, we define

Re= {p ER: d(p,Ci) :Sc:+ W}, (4.22)

where er is defined analogously to cf in Equation 4.3. If the user error model and
the image corner model are valid, then with this definition of Re, we have Sc n R C Re-

The Region R;n

Having defined Re as the minimum neighborhood of the path P in R known to contain
Sc, consider the remainder of the region R,

(4.23)

If the size N of R is sufficiently large, then there will be two nonempty disjoint regions
Rin and Rout such that R\Rc = Rin U Rout•

Suppose there is an M x M region S centered about the corner point qj, in which
the image object boundary fits a ramp or roof corner model, as defined in the previous
section. If the size M of S is the largest for which we know there can be a clear corner
model, then from Equation 4.8, M = S(Qj)- If N satisfies Equation 4.21, but is large
enough so that R;n is nonempty, then

If Rin is sufficiently large, then R;,n and Rout can be used to model the behavior of A
on the object and background regions in the image.

We thus turn our attention to the area of the smaller region R;,n. We want to
specify a set of conditions under which we can be sure the area A(R;,n) of the smaller
region will be greater than some lower bound B(>-), where B(>-) is the smallest region
in which we can hope to model the behavior of A.

Consider Figure 4.6a. The area of R;n, decreases with a(P;), the angle of the corner
at p;. We thus limit our attention to corners P; with angle a(P;) < 7r /2. Further, it
is clear that the area of R;,n is minimal for corners which are horizontally or vertically
oriented. So the horizontal case is sufficient to determine the lower bound of the area
A(R;n) for a given angle a.

To simplify the discussion, suppose p; = (0, 0), then from Figure 4.6b, it is easy to
see that

A(R;n) = (N/2 - l:,.x)(y(pb) - l:,.y)

where y(pb) is they coordinate of the point on Lf with x = N/2, and

l:,.x = W +c
· sin[a(P;)/2]

and
W+c

£:;.y=------­
sin[(1r - a(P;))/2]"

(4.24)

(4.25)

78

R

P;

(a)

4. Model Based Corner Detection

R

P;---~------,
~x

N

(b)

Figure 4.6: For a given corner angle a < 1r /2, the area of the inner region Rin is smallest
for a horizontally (or vertically) oriented corner Pi. The area can be computed in terms
of the user point Pi, the position Pb of the boundary intersection on the line segment
L;, and l:,.x and l:,.y. These in turn are determined by a= a(Pi) and W + c.

For a given user and image measure >.., W + c is fixed. If a lower bound B(>..)
on the area necessary to measure >.. is known, then we can specify the set of corners
which can be modeled by defining and splitting a region R in terms of the minimum
corner scale S(Qj), and the minimum corner angle a(Qj). The latter can be predicted
(a(Qj) 2': a(Pi) - Ja) based on Equation 2.20 of the user error model in Section 2.5.

4.3.3 Evaluating A

Suppose given a user-defined corner Pi, we want to evaluate the likelihood of a ramp
or roof corner Qi on the image object boundary based on some image feature measure
>... If we construct and divide an image region R as suggested in the previous section,
we can estimate parameters for the measure >.. in the three regions of R. Because
the region R is divided so that Rin C Sin and Rout C Sout, parameters estimated in
Rin and Rout are representative of the image feature measure >.. in the corresponding
regions Sin and Sout in the neighborhood S, which is centered at the true location qj
of the corner on the image object boundary. Because Sc C Re, however, only part of
the data which contributes to parameters estimated in the central region is known to
come from the boundary region of S. Still, if there is a corner Qj near Pi which can
be detected with >.., the data in Re should satisfy certain conditions associated with
the ramp and roof corner models described in Section 4.3.1.

The actual parameters to be estimated for a given image feature measure >.. depend
on the statistical model associated with it. As an example, suppose >.. is a simple
measure of image intensity, and that the image is known to contain added Gaussian
noise with a maximum deviation of O'noise· The image function in Rin and Rout should
fit the model fN(p; µin, O'in) and fN(p; µ0 ut, 0'0 ut), respectively, where fN(P; µ, rY) denotes

4. 4. Example: Constructing a Corner Template 79

a Gaussian density function with mean value µ and standard deviation a-. If image
intensity is a good measure for a ramp or roof corner, then the triplet {µin, µc, µout}
should satisfy one of the four conditions outlined in Section 4.3.1. Further, unless
there is disturbance to the model from another image object in the region, or there is
a poor fit, then we should have

Higher deviations cannot be attributed simply to the presence of noise.
For more complex functions >., the expected distribution may not be so easily

evaluated. In this case, various parameter estimation methods may be applied, or
the Kolmogorov-Smirnov test [vM64] may be applied to examine the significance of
difference between the data sets in R;n and Rout when measured by,\ (see Section 2.5).

4.3.4 The Corner Detection Model

Given a corner Pi on a user defined polygonal sketch P of an image object boundary,
suppose we have an image feature measure ,\ which, based on measurements in an
N x N region R centered at P, appears to fit either a ramp or roof model as described
in Section 4.3.1. Then, based on Equation 4.13, there will be three constants Ain,
Ac, and >-out, which may be associated with the image corner regions Sin, Sc, and
Sout respectively. If for a given user, the user error model is expressed in a set U =
{1::,8a,8,B,8S}, then the set

D ={Pi,,\, U} (4.26)

determines a detection model for the corner Qj on the image object boundary. As
is illustrated in the following section, the detection model can be used to locate the
corner position qi in the image.

4.4 Example: Constructing a Corner Template

Suppose we have identified a detection model D for a particular corner Pi in a user
sketch P. One method to localize the true corner point qj in the image is to construct a
template from the derived corner model, and match it in the neighborhood of Pi using
standard matching techniques. The geometry of Pi combined with the characteristic
values Ain, Ac, and Aout can be used to define a template which should match the image
data near qj when measured by ,\. In the example in Section 4.3.3, where ,\ simply
measured grey value intensity, µin, µc and µout are the characteristic values for ,\.

Let
(4.27)

be the vectors defined by the line segments which meet at the point Pi in the user
sketch. We can localize the corner point qj if we define a K x K digital template T
centered at the origin.

Let Tc be all points in T which fall on a Bresenham approximation to aP or bP. In

80 4. Model Based Corner Detection

Figure 4.7: Designing a template based on a detection model

the template T, we assign the value Ac to these points. Tc, like its counterparts Re
and Sc splits the remainder of the template T into two disjoint regions

To these regions we assign the constants Ain and Aout respectively. See Figure 4. 7.
Given c, the maximum error in distance allowed for this user in the specification

of the point Pi, we define E'max = r cl - The point qj is then sought in the n2 region
centered at Pi with n = 2 · E'max + 1. In practice, this allows a user to make a slightly
larger error in the specification of any single point than was determined likely in the
user experiments. For all pixels in this n2 neighborhood centered at Pi, we measure
the value of the normalized cross correlation C(m, n) between the template T and the
image data >..(x, y), as defined by Rosenfeld and Kak[RK76, p. 302]. We select the
pixel with the maximum response as the corner location.

Note that the actual values of the parameters in the template is not essential for
this matching method. As long as we have been able to identify one of the four image
corner models described in Section 4.3.1, the parameters can be replaced with members
of { -1, 0, + 1} for the template matching procedure.

4.5 Results

To evaluate the effectiveness of our method, we performed a number of experiments
designed to evaluate:

• The accuracy of the image evaluation method in identifying the presence of ramp
and roof corners.

• The effectiveness of the template matching to localize the corner when the ap­
propriate corner model (roof or ramp) has been identified.

4.5. Results 81

Figure 4.8: Examples of the test images, without noise and with SNR = 5.

Test Images
We performed our evaluation on a set of test images containing ramp corners and roof
corners. These were created by quantizing filled triangles for ramp corners and two
lines which meet at a known point for roof corners. The edges of the filled triangle are
assigned the value half way between the object and boundary values to improve our
estimation of the true corner location. We did this for corner angles ranging from 1r /8
to 31r /8, and performed our experiments both for dark objects on a bright background
and vice versa. In order to simulate a ramp or roof edge which may be formed by a
camera, we applied a Gaussian smoothing with O" = 1.5 to the images.

Finally, for each of the images, we tested our method with added white Gaussian
noise, with signal to noise ratios ranging from 5 to 20. We use

SNR = {(min - max)/2}2
a;oise

to compute the signal to noise ratio. Some example images are shown in Figure 5.

Experiments Our experiments are intended to simulate a user specifying a corner
in an image. Given three points which define the corner in the test image, we select
a random point in an n 2 neighborhood about each, where n = 2 · €max + l, with
€max= fcl.

The length of the lines used to define the corners in our experiments is 80. There
was no significant variation in the results as the length was varied until it became quite
short with respect to c:, as predicted in Equations 4.24 and 4.25. In the experiments
presented here, we use €max = 8 which is far larger than necessary in practice (see

82

100

95

90

% Correct
85

Model 80

75

70

65
1r/4

4. Model Based Corner Detection

% Correct Corner Model - 1000 Trials

31r/8 1r/2
Corner Angle (rad)

BrightRamp ~
DarkRamp +­
DarkRoof -B­

BrightRoof ·X· ..

31r/4

Figure 4.9: Percent of time correct segmentation model is selected, SNR = 10.

Chapter 2). The size of the region in which the corner point will be selected is therefore
17 x 17. Because this is the degree of error the user may make in specifying each of
the points which define the contour, the random points in our experiment are selected
from a 17 x 17 neighborhood around each of the three points which correctly define the
corner. Note that using random points introduces an error not only in the position of
the points, but a significant error in the angle and orientation of the corner. Therefore,
the geometrical errors allowed in our experiments are far worse than users make in
practice (see Chapter 2).

For each of the test images, we select 1000 sets of three random points to which
our algorithm is applied. We consider all points in the n 2 neighborhood of the random
point near the corner point, to be candidate points. The template used to model the
corner is 11 x 11.

In Figure 4.9, we show the percentage of cases we correctly select the detection
model with SNR = 10. Note that both dark and bright ramp corners are correctly
identified in 100% of the cases at all but the smallest corner scale (1r / 4). Roof corners
are correctly identified in the majority of the cases (more than 90%), but performance
deteriorates severely for very small corners.

In Figure 4.10, we present the average distance to the true corner location selected
by our method when the correct model has been selected. Of course the true corner
location is not well defined on a discrete grid. To simplify our experiments, we consider
it to be the corner location in the filled triangle which is always set to the object value,
or for ramp corners to the value halfway between the object and background values. A
number of points in the 8-connected neighborhood are however also good candidates.

4. 5. Results

Average
Distance

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6
n:/4

Average Distance to Corner - 1000 Trials

3n:/8 n:/2
Corner Angle (rad)

no noise +­
SNR = 5 -t-­

SNR = 10 -a-­
SNR = 20 -x ··

Figure 4.10: Average distance to correct corner location.

83

3n: /4

For this reason, in Figure 4.11, we present the percentage of the points selected that
lie in this neighborhood.

Finally, in Figure 4.12, we show the adjustment of some contours specified by a
user in two images.

Evaluation The results in Figure 4.9 show that we detect the appropriate model
consistently both for dark and bright objects, with corner angles 0 > n: / 4 used in
these experiments. The method is particularly effective for correct identification of
both bright and dark ramp corners.

Because we allowed a substantial error in distance (€max = 8), roof corners were
harder to identify than ramps. This is because of the substantial influence of the
background regions in the transition region. The data along the path of the roof in
the image gets averaged out.

In these experiments, identifying the corner model for small corners is more difficult
due to the increased effect of the angle variation in the random point selection, resulting
in the collapse of the region Rin C R.

When the corner model is correctly identified, the difference in line angles in the
template and the image is severe, resulting in poorer localization for small angle cor­
ners. Localization mechanisms which incorporate the user angle errors derived in
Chapter 2 are more suitable in this case. These effects are less significant for larger
corners due to the increased influence from the inner corner region.

Figures 4.10 and 4.11 show the precision of the template we build from our detection
model to be quite satisfactory in the range (3n: /8, 3n: / 4). There was little variation in
the results for the ramp and roof corners.

84

% Within
1 Pixel

90

80

70

60

50

40

4. Model Based Corner Detection

% In 8-connected Neighborhood - 1000 Trials

no noise~
SNR=5+­

SNR = 10 -a­
SNR = 20 x ··

30 '----------'-------'-------'--------'
1r/4 31r/8 1r/2 51r/8 31r/4-

Corner Angle (rad)

Figure 4.11: Percent of locations selected in the 8-connected neighborhood of the
correct location.

In further experiments not displayed in the graphs, we discovered the segmentation
model can be determined for larger corners, but the corner is not well localized due
to the response of nearby edge points. This implies that for larger corners, template
matching is not an appropriate localization technique.

4.6 Conclusions & Further Research

We have presented a context in which the segmentation model appropriate to an image
region can be determined, given a geometrical model of a corner on a polygonal object
boundary. For corner angles in the range (31r /8, 31r / 4), the method identifies 100% of
both dark and bright ramp corners, and more than 90% of the roof corn~rs. The simple
template design and matching procedure used to localize a corners is effective at pixel
accuracy for the same range of angles, but other mechanisms should be employed to
localize very small and very wide angled corners.

The approach to corner modeling developed in this chapter can be applied to any
image feature measure >-. with a limited radius of influence. The results suggest we
may extract significant information about a segmentation model from a simple user
sketch. The results for wide angle corners also indicate that the method can be used
to determine the appropriate segmentation model for edges and curves.

4.6. Conclusions & Further Research 85

Figure 4.12: Examples: On the left, user input. On the right, the corrected contour.

86 4. Model Based Corner Detection

Chapter 5

Magnetic Contour Tracing

5.1 Introduction 1

Because the segmentation of unknown images remains a critical unsolved problem in
image analysis, it is often useful to allow a human expert to influence the segmentation
process interactively. Discontinuities in an image due to significant object boundaries
can be distinguished by a human expert from those due, for instance, to lighting
conditions such as shadows and reflections, or to boundaries of image objects which
are not of interest for the application at hand. Further, a human is often able to
continue an object boundary through areas where it is not visible, and therefore not
detectable using solely automatic means. Such areas will occur, for example, whenever
an object of interest is partially occluded by another image object, such as a house
behind a tree. To date, no machine vision system has been developed which matches
the human capability to perform virtually unlimited image segmentation.

Due to limitations in human motor control and the indirect methods available
for screen location specification (see for example [HHN86]), the data obtained from
a human expert cannot be considered accurate. Thus, while the user may provide
information suggesting the location and geometrical properties of an image object
boundary, measurements based on this data are subject to an unknown error. Before
object analysis which depends on the boundary can be performed, the user data must
somehow be corrected to provide accurate object boundary descriptions.

In the area of graphical user interfaces, much progress has been made in the devel­
opment of techniques to aid the user in the specification of precise screen locations, or
to correct a screen location specified by a user according to some predefined rules. By
far the best known is the gr-id technique used in packages such as MacDraw[Cla92],
which allows a user to precisely line up objects along horizontal or vertical lines.
Constraint-based methods [Bor81, Sut63] were introduced to assist in the precise def­
inition of a broader range of geometric forms and relationships. For example, con­
straints can be used for specifying an equilateral triangle, or to line up objects along
the path of an arbitrary curve. Recent efforts such as the snap-dragging techniques

1 Portions of this chapter are reprinted, with permission, from [OG94] @1994 IEEE.

87

88 5. Magnetic Contour Tracing

introduced in [BS86, Bie90], and the techniques for interactive constraint specification
discussed in [Bor86] have aimed to reduce the effort required of the user to specify a
broad range of geometrical forms and relationships between objects.

The central goal of grid and constraint based methods is to make certain screen
locations attract the mouse pointer, while others repel it. The result is that attractive
locations act as gravitational masses for screen location specification. Hudson[Hud90]
introduced the concept of semantic snapping techniques to make particular screen lo­
cations attractive based on nongeometric application semantics. For example, within
the context of visual programming, an icon representing a function may have connec­
tion points for input parameters and return values. If a connection is initiated from
some function A, which returns a valid type for input to function B, the input con­
nection on B's icon will be made attractive when the connection is initiated. If, on
the other hand, B requires input of another type, the input connection will be made
repellent when a connection is initiated at A.

If the concept of semantic snapping is applied to the problem of image segmen­
tation, and in particular to the problem of image object boundary formation, then
locations along the boundary of an object should be made more attractive than those
"inside" it. For a significant body of images, the magnitude of the gradient of the
image intensity function can be used as a measure for boundary strength. In general,
if the region corresponding to an image object differs from neighboring regions in grey
value intensity, then the gradient magnitude will be high along the boundary of the
object, and low on either side of it. The gradient magnitude can then be used as a
measure for the strength of the boundary, and therefore to determine how attractive
an image location is.

In the context of active contours, Kass, Witkin and Terzopoulos [KWT88] incor­
porate user input in their method for obtaining an optimal object boundary based
on a number of criteria. Criteria designed to embody the characteristics of an image
object boundary are expressed as components of an energy functional and simulta­
neously minimized using calculus of variations. Their criteria are as follows: a) the
distance between points along the path must be minimal to encourage continuity; b)
the curvature at each point must be minimal to encourage smoothness; and c) the
average gradient magnitude along the path should be maximal so it will tend to follow
the image object boundary.

The user can make use of tools for pulling and pushing the contour, resulting in
it jumping between local minima in the functional. In this sense it is similar to a
tool which jumps to the nearest point on a grid. This is achieved by incorporating a
term in the functional which either minimizes or maximizes the distance to the user
location, thereby resulting in a pulling or pushing of the boundary. The method may be
considered a semantic snapping technique in which the semantics are a combination of
the expected geometrical (continuity and smoothness) and nongeometrical (magnitude
of the image intensity gradient) properties of an object boundary.

The method introduced in [KWT88] can play an important role in correcting an
object boundary. Some form of pre-segmentation, which produces an initial estimate
of the object boundary is necessary, however, before the method can be applied. The

5.1. Introduction 89

tools for pulling and pushing a boundary may therefore be seen as editing tools for an
already existent boundary path.

As illustrated by Amini, Weymouth and Jain in [AWJ90], the continuity criterion
(a) above) as posed in [KWT88] makes shorter paths more attractive and results in
large variations in the distance between the points which define the contour. Further
they show calculus of variations to be an instable optimization technique, because the
solution produced often corresponds to a local rather than a global minimum of the
functional. They suggest dynamic programming be applied to optimize the functional,
and show that it addresses both problems. This is because it allows the incorporation
of hard constraints which can be used to regulate the distance between path points,
and because dynamic programming always produces a global minimum (or maximum),
and thus provides a stable solution given the criteria used to define the problem. In
[Ger88], Gerbrands also used a dynamic programming algorithm to extract the path
of an object boundary given an initial estimation (see also Section 5.3.3).

In this chapter, we introduce a method for tracing an object boundary when no
a priori estimate of its path is available. Rather than correcting or editing an initial
estimate of a boundary path, we produce a path from scratch based on user input. We
allow a user to trace a contour by means of freehand-drawing. As supported in most
graphical drawing packages, freehand drawing is very similar to drawing with a pen on
paper, and thus is an intuitively attractive input model for the task of image object
boundary specification. Depending on the underlying interaction model supported in
the system, the user's screen location may be known at regular or irregular intervals in
terms of either space or time. To simulate a pen on paper, if the user's location is not
known frequently enough to define a connected path, straight lines are interpolated
between points.

If we incorporate the concept of semantic snapping in the free-hand drawing model,
then we may envision a pen containing magnetic ink. As the user traces a path in the
image, the ink is attracted to those locations near the tip of the pen which are most
attractive. For image object boundary specification, we want locations along image
object boundaries to be highly attractive, and those away from the boundary to be
somehow repellent. As with active contours [KWT88], the contour must remain both
connected and smooth unless otherwise indicated by the user. We present a method
called magnetic contour tracing which feels like a freehand drawing tool, but satisfies
constraints based on the semantics of image object boundary formation.

Our method generates the correct path of the object boundary in real time as the
user traces. To do so, we examine the relationship of the user path with the correct
boundary path. The boundary path is then produced by incorporating this relation­
ship and the semantics of image object boundary formation in a particularly efficient
variation on Gerbrands' dynamic programming method [Ger88], which is guaranteed
to produce an optimal path with respect to these criteria.

Extracting the correct path of the object boundary as it is traced rather than as a
postprocessing correction is well justified from the viewpoint of human computer in­
teraction, because it results in an interactive method which satisfies the requirements
of direct manipulation as outlined in [Shn83]. The feeling of direct control over the ob-

90 5. Magnetic Contour Tracing

ject of interest[HHN86] (in this case an object contour), which results from immediate
feedback on the effects of a user's action, is of particular importance in this regard.

The magnetic ink paradigm supported in the contour tracing tool is achieved by
interpreting the path traced by the user as an estimation of the position and direction
of the image object boundary. Based on the user input, in Section 5.2, we determine the·
set of 8-connected paths through the region which may be part of the object boundary.
These criteria are balanced with those related to the magnitude of the gradient in a
cost function (Section 5.3.2), and the path selected is that with the minimum total
costs as determined with a dynamic programming algorithm (Section 5.3.1).

Our method produces a smooth path which follows the user closely in regions with
little or no contrast and the object boundary closely in areas where the magnitude of
the gradient is significant. Achieving this in the presence of noise requires an optimal
balance in the weighting parameters used in the cost function. Experiments used to
tune these parameters for specific conditions are described in Sections 5.4 and 5.5. The
tuning method may easily be applied to user data, making the method suitable for
incorporation in an adaptive user interface (see for example [KDMSH92]), for image
segmentation.

Quantitative results obtained for a simulated user using random data are presented
in Section 5.6 as are qualitative results for an actual user tracing boundaries in actual
images.

5.2 Theory

We describe a method with which we extract a digital approximation to an image
object boundary while it is traced by the user. The path is extracted in a piecewise
fashion, by repeatedly finding a minimum cost path segment from the last known point
in the approximation to some point near the most recent user location.

Before describing our algorithm in depth, we provide a theoretical argument for
our approach. In particular, we focus on the class of paths p: [a, b] --+ R2 for which
the method is applicable, and the constraints which must be satisfied by the user input
data if it is to lead to a digital approximation of the boundary path p.

5.2.1 Background

Definition 5.1 A path p: [a, b] --+ R 2 is called en if it is continuous on [a, b], and
the nth partial derivatives of p exist and are continuous on (a, b).

Definition 5.2 A path p: [a, b] --+ R 2 is non-intersecting if for all t 0 , t1 E (a, b),
p(to) = p(t1) implies t 0 = t1 .

A non-intersecting path is one which does not cross itself. The path of the digit
2 is non-intersecting whereas the path of the digit 8 is not. The path of the digits 0
and 6 are both non-intersecting, because Definition 5.2 does not restrict the path at
its endpoints p(a) and p(b).

5.2. Theory 91

Definition 5.3 A C2 path p: [a, b] -+ R 2 is closed if its endpoints p(a) and p(b)
satisfy the following conditions:

p(a) p(b)

p'(a) p'(b)

p"(a) p"(b),

A C2 path p: [a, b] -+ R 2 which is not closed is open.

Because pis defined only on [a, b], the derivatives in the above definition should of
course be understood as one sided limits. For example, p'(a) = limq.a p'(t).

Definition 5.4 A non-intersecting open C2 path p: [a, b] -+ R 2 is non-interfering
with respect to distance 8 if for all to E (a, b), the two points p0 on the principal
normal vector to the path p at the point p(t0) which satisfy

II Po - p(to) II= 8 (5.1)

also satisfy
II Po - p(t) II> 8 for all t E [a, b], t =/- to.

A non-intersecting closed C2 path p: [a, b] -+ R 2 is non-interfering with respect
to distance 8 if the above conditions are also satisfied for t 0 = a and t 0 = b.

For all t 0 E (a, b), the existence of the principle normal vector top at p(t0) is guar­
anteed by the existence (p is C 2) and uniqueness (p is non-intersecting) of the tangent
vector top at p(t0). Thus, for all t 0 E (a, b), there exist exactly two points p0 on the
principle normal vector to p at p(to) which satisfy Equation 5.1. By Definition 5.3,
the same holds for all t0 E [a, b] if p is closed.

Intuitively, a path p which is noninterfering with respect to 8 is one which may be
traced with a pen of width w _.::::: 28, without effecting its shape. A straight line between
any two points is noninterfering with respect to 8 for all J > 0. For all J E (0, r), an
arc of a circle of radius r is noninterfering with respect to 8. A path p: [a, b] -+ R2

which is noninterfering with respect to J has curvature K,(t) :S: 1/8 for all t E (a, b) (see
Struik [Str50, pp 14-15]).

Definition 5.4 could also have been expressed in terms of mathematical morphology
(see [Ser82]). Let B0 = {p E R 2 :II p 11:S: 8/2} be a disc of diameter 8 centered at the
origin. The dilation of a set P C R 2 with B0 is given by

P EB Bo= {p E R 2 :II p - x 11:S: J for some x EX}

Its complement, the erosion of a set X C R 2 with B0 is given by

Pe Bo= {p E R 2 :II p - x 112: J for some x {/. X}

Now, if P is the set of points on a path p: [a, b] -+ R 2 which is noninterfering with
respect to 8

P={p(t):a:S:t:S:b},

92 5. Magnetic Contour Tracing

then

Therefore the medial axis of P E& B0 which can be obtained with an erosion with B0

is simply P. In morphological terminology, P is said to be closed with respect to B0

(not to be confused with Definition 5.3 above).
We choose distance from the path on the principal normal axis to express the

concept of noninterference in Definition 5.4, however, because it allows us to express
the requirements an object boundary path must meet, if we are to approximate it
based on a point set obtained from a user. (This assumes the latter satisfies the
requirements of an ordered approximation to p as defined in Definitions 5.5 and 5.6
below.)

Lemma 5.1 Let p: [a, b] --+ R 2 be a C2 path which is non-interfering with respect to
o. Then for all E > 0, if E < o, p is noninterfering with respect to E on [a, b].

Proof Suppose false. Then there is a t0 E (a, b) such that for one of the two points
Pe on the principal normal vector to p at t0 , with [[p, - p(to) [[= E there exists a
t1 E [a, b], t1 -/- t0 , such that

II Pe - p(t1) 11::; E

Then we have
II Pe - Po II+ II Pe - p(t1) [l:s;[[Po - p(t1) II

which violates the triangle inequality. □

Definition 5.5 Let p: [a, b] --+ R 2 be a C2 path which is non-interfering with respect
to o. Given E :s; o, we call Q = {q1 , q2 , ... , qM} an approximation to p with
respect to E if the fallowing conditions hold:
1) Q is close top: [[q; - p(t) [[:s; E for all q; E Q.
2) q1 and qM approximate the end points p(a) and p(b) respectively:

[[q1 - p(a) [[< [[q1 - p(t) [[for all t E (a, b)

[[qM - p(b) [[< [[qM - p(t) [[for all t E (a, b).

3} For l :s; i < M, let l;(s) = (1 - s)q; + sqi+l· The points p E {l;(s) : 0 :s; s :s; 1},
on the line segment between neighboring points of Q satisfy [Ip - p(t) I[::; E for some
t E [a, b].

Lemma 5.2 Let p: [a, b] --+ R 2 be a C2 path which is non-interfering with respect to
o. If for some E :s; o, Q = { q1 , q2, ... , qM} is an approximation to p with respect to E,

then for all q; E Q there exists a ti E [a, b] such that fort E [a, b], if t-/- ti, then

II q; - p(t;) 11<11 q; - p(t) II. (5.2)

Proof For q1 and qM, the above is guaranteed by the second condition in Defini­
tion 5.5. For 1 < i < M, Since II q; - p(t) [[::::>: 0 for all t, there is a t0 E [a, b] such

5.2. Theory 93

that
II qi - p(to) 11:::;JJ qi - p(t) II for all t E [a, b].

It is easy to show qi is on the principal normal vector top at to. (Let f(t) =II qi-p(t) II,
differentiate f(t) and inspect the derivative of p at the minimum points.) Because
II qi - p(t0) 11:::; 8, by Lemma 5.1, pis noninterfering with respect to 11 qi - p(to) 11,
and therefore, by Definition 5.4, for all t E [a, b], if t -1- to,

11 qi - µ(to) 11<11 qi - p(t) 11.

If for each qi E Q, we take t; = t 0 , this completes the proof. □

Definition 5.6 Let Q = {q1, q2 , .•. , qM} be an approximation with respect to E to a
path p: [a, b] -+ R 2 which is noninterfering with respect to 8. For each i E [1, M], let
p(ti) be the point on p to which qi is closest. Q is ordered if i < j implies ti < tj.

Note that if Q is an ordered approximation with respect to E to a path p: [a, b] -+ R 2

which is noninterfering with respect to 8, then q; = qj implies i = j.

Lemma 5.3 An ordered approximation Q = {q1 , q2 , ... , qM} with respect to E:::; 8 to
a path p: [a, b] -+ R 2 which is noninterfering with respect to 8 introduces a partition

of the interval [a, b].

Proof The second condition in Definition 5.5 guarantees the existence of two points
q1 and qM which are uniquely associated with the end points of the path p on [a, b] and
therefore with a and b. For 1 :::; i :::; M, by Lemma 5.2 there exists a unique ti E [a, b]
for which Equation 5.2 holds. Definition 5.6 guarantees ti < tj if i < j for an ordered
approximation Q. It can therefore be used to generate a partition of [a, b]. □

Definition 5.7 Let Q = {q1,q2,••·,qM},q; E Z2 be a point set. If II q; - q;+i IIE
{1, -v'2} for 1 :::; i < M, then Q is an 8-connected digital path.

Definition 5.8 Let Q = { q1 , q2 , ... , qM} be an ordered approximation with respect to
E = -v'2/2 to a path p: [a, b] -+ R 2 which is noninterfering with respect to some
8 ~ -v'2/2. If Q is an 8-connected digital path, we call Q a discrete or digital
approximation to p.

5.2.2 Interpreting User Data

Suppose now that a user traces the boundary of an object in an image, that can be
described by a C 2 path p: [a, b] -+ R 2 which is noninterfering with respect to some
8 ~ -v'2/2. Assume that as the user moves the pointer about in the image, the user
position is recorded in the point set U = { uk}f=i · We want to show that if U is an
ordered approximation to p with respect to some c :::; 8, it can be used to extract

94 5. Magnetic Contour Tracing

a digital approximation to the path p. To provide immediate feedback and simulate
magnetic ink, we want to extract and display a digital approximation to the boundary
path p as the user is tracing.

By Lemma 5.3, there is a partition T = { t 1 = a < t 2 < · · · < tK = b} on [a, b]
defined by the user approximation U. Imagine that when the user point Uk E U
is acquired, a digital approximation V = { v1 , v2, ... , vn} to p: [a, tk-I] --+ R 2 has
already been extracted based on the first k-1 points in U. In this section, we want to
show that based on the last known position vn E V and the most recently obtained user
position uk E U, we can describe a region known to contain a digital approximation
to the kth boundary section p: [tk-I, tk] --+ R2

. Further, we will derive additional
properties of a digital approximation Vi top: [tk-I, tk] --+ R2 , which can be used to
restrict the number of solutions.

Goal Set We begin by considering the candidate end points for the kth path segment
Vi- We assume the user point Uk is roughly the same distance from p(tk-I) as the
boundary point p(tk) it approximates. Thus p(tk) should fall on or near the path of
a circle centered at p(tk-1) with radius II p(tk-i) - Uk 11- Given points q1 , q2 E R 2

, let
O(q1, q2) denote the set of points on a circle of radius II q1 - q2 II centered at q1. So

Since, by assumption, II uk - p(tk) II::; c, every candidate goal point should also satisfy
IIP - ukll ::; c. Let

(5.3)

then p(tk) E C(p(tk-I),uk,c). Because we seek a digital path segment Vi, we define
the goal set Gk as the Bresenham approximation [Bre77] to the arc C(vn,uk,c). An
example is shown in Figure 5.1.

The Half-plane Containing p: [tk-I, tk] --+ R 2 The assumption that the set
U is an ordered approximation to the path of the boundary is intuitively equivalent
to saying the user moves along a strip centered about the object boundary, without
making u-turns, just as one might drive on a multilane highway, occasionally changing
lanes. Meanwhile, one can see a path p which is non-interfering with respect to some
distance 5, as a highway containing 25 + I lanes of traffic in the direction of movement.
The following theorem states this formally.

Theorem 5.1 Let U = { u1 , u2, ... , UK} be an ordered approximation with respect to
c ::; 5 to a path p: [a, b] --+ R 2 which is noninterfering with respect to some 5 ~ -/2/2.
Let T = { t1 = a < t2 < · · · < tK = b} be the partition on [a, b] introduced by U. All
points p: [tk-1, tk] --+ R 2 are in the half-plane starting from p(tk-I) and moving
towards uk E U, where the half-plane is defined as all points on the lines normal to
£(s) = (1- s) p(tk_1) + suk which contain a point in L = { .e(s) : s 2'. 0}. See Figure 5. 2.

5.2. Theory 95

Figure 5.1: The region R about the vector Lk from Vn to uk in which we seek the digital
approximation Vi to the path p: [tk-l, tk] -----+ R 2 of the image object boundary. The
shaded points are the goal points g E Gk, the Bresenham approximation to the circular
arc C(vn,uk,c) defined in Equation 5.3.

Figure 5.2: The planar region, or half-plane known to contain the kth section of the
boundary path p: [tk-I, tk]-----+ R2

.

96 5. Magnetic Contour Tracing

Proof The theorem is true for p(tk-I) by the definition of the half-plane. Let £(s) =
(1- s)p(tk_1) + suk be the line defined by p(tk-1) and uk E U, the point most recently
obtained from the user. The third condition in Definition 5.5 assures that all points
on the line segment

L = {£(s): 0 s:; s s; l}

satisfy 11£(s) - p(t)II s:; c for some t E [tk-l,tk]- Therefore any partition of the unit
interval can be used to generate an ordered approximation top: [tk-l, tk] --t R2 with
respect to E:, made up of the points £(s) EL. Let S = {O = s1 < s2 < · · · < SJ= l}
be an arbitrary partition of the unit interval [O, 1]. For some j with 1 < j s; J, let
£(sj) be a point on L corresponding to the jth member of S. By Lemma 5.2, there is
some t0 E [tk-l, tk] such that

If the point p(t0) is not in the half-plane defined by p(tk-i) and uk, then

This contradicts Lemma 5.2, and therefore completes the proof. □

Given a digital approximation V = { v1, v2, ... , vn} to p: [a, tk-1] --t R2
, The­

orem 5.1 implies that in the search for a digital approximation Vi to the kth path
section p: [tk-l, tk] --t R 2

, we can restrict our attention to the half plane starting at
the last known point Vn and moving towards the user point uk.

Path Direction Let
£k(s) = (1 - s)vn + suk

be the line determined by the points Vn and uk. Then

(5.4)

is the set of points on the segment of £k (s) between Vn and uk. Let rk denote the
length of Lk, given by

(5.5)

and let 0k denote the angle the directed line segment Lk makes with the x-axis, so

(5.6)

Because U is an ordered approximation top with respect to c, from Theorem 5.1
we know that for all t E [tk-l, tk], p(t) E R, where R is the region centered about
Lk depicted in Figure 5.1. Now, because p is noninterfering with respect to o on
[a, b], we can derive limitations on the direction of the tangent p'(t) to p at p(t) for
all t E [tk-l, tk]- Clearly any limitations on the direction of the tangent vector p'(t)

5.2. Theory 97

a

Figure 5.3: The angle 00 the vector a makes with the x-axis is the same as the corner
angle at the vertex Vn of the triangle T = { Vn, uk, p0 }.

introduce corresponding restrictions on the local direction of a digital approximation
Vi= { Vn, Vn+i, ... , Vm} top: [tk-1, tk] ---+ R 2

.

Limitations on p'(t) can be expressed in terms of e, the maximum distance be­
tween the user point uk and p(tk), the point it approximates, o, which determines the
maximum curvature of p on [a, b], and rk, the distance covered in the kth path section.

In the remainder of this section, we derive a set of conditions which allow the
set of candidate paths for a digital approximation Vi to be reduced. When these
conditions are met, we can guarantee a digital approximation to p: [tk-l, tk] ---+ R 2

is among the reduced set of candidates for Vi- This allows us to exploit a particularly
efficient dynamic programming algorithm (described in Section 5.3) to extract a digital
approximation Vi top: [tk-I, tk] ---+ R 2

.

The Direction of p Let p: [a, b] ---+ R 2 be a path which is noninterfering with
respect to o and let U = { uk}f=1 be an ordered approximation to p with respect to
e :s; o. Let 0(t) be the direction of the tangent vector p'(t) of pat p(t). Let !:,0 denote
the maximum difference in the direction 0(t) of the path p on [tk-l, tk], and 0k, the
direction of the line segment Lk. From the argument in the proof to Theorem 5.1, we
know that for all t E [tk-l, tk], if !:,0 = 1r /2, then

(5.7)

We now derive conditions on p and U, with which the value of !:,0 in Equation 5.7
can be reduced.

Let Bave denote the direction of the cord from p(tk-I) to p(tk)- Let Pc be one of
the points which satisfies

So Pc is an extreme point on the arc shown in Figure 5.3.
Clearly, if 0" is the corner angle at the vertex Vn of the triangle T = { Vn, uk, p,:},

98 5. Magnetic Contour Tracing

p(t k-1)

p(t k)

Figure 5.4: The extent to which 0(t) can differ from 0ave depends on rk and 8. In this
example, 0ave = 0.

then
0k - 0e ::; 0ave ::; 0k + 0e. (5.8)

Consider Figure 5.3. By the law of similar triangles, we have

(5.9)

Let 0dev be the maximum difference between the angle 0(t) of the tangent vector
p'(t) on [tk-l, tk], and 0ave, the average direction of the tangent vector on [tk-l, tk].
Then

0dev = max {l0(t) - 0avel}
tE[tk-1,tk]

Because p is noninterfering with respect to 8, the maximum curvature of the path p
on [tk-l, tk] is 8. Therefore, 0dev can be expressed in terms of the relationship of rk
to 8. From Figure 5.4, it is clear that the maximum deviation in angle on [tk-l, tk] is
given by

0
. -1 rk

dev = sm
28

. (5.10)

Theorem 5.2 Let p: [a, b] --+ R 2 be a C2 path which is non-interfering with respect
to 8. Let U = { u 1 , u2 , •.• , UK} be an approximation to p with respect to c ::; 8. Let
T = { t 1 = a < t 2 < · · · < tK = b} be the partition of [a, b] introduced by U. Further,
suppose V = { v1 , v2 , •.. , vn} is a digital approximation to p: [a, tk_1] --+ R 2 . Let /::,.0
denote the maximum absolute difference between the angle 0k defined in Equation 5. 6,
and the angle 0(t) of a vector p' (t) tangent to p on [tk-l, tk]. If rk ::; 28, then

1::,.0 ::; cos-
1

(1 - ;:i) + sin-
1
(;;) , (5.11)

where rk is defined in Equation 5. 5.

5.2. Theory 99

2
3

4 -E--------Jli,---➔ 0

5 7
6

Figure 5.5: The Freeman codes for the 8 possible directions between two neighbors on
an 8-connected digital path.

Proof Clearly the absolute difference between the path direction and the direction 0k
is bounded above by the sum of the maximum difference 0, between the average angle
of the path 0ave and 0k, and the maximum deviation (0dev) from the average angle on
[tk-l, tk]- The theorem thus follows from the arguments leading to Equations 5.8, 5.9
and 5.10 above. D

As is clear from the arguments leading to Theorem 5.2, there are two key factors
which contribute to the upper bound on 60.

l. 0, increases as a function of s/rk.

2. 0dev increases as a function of rk/ o.

If rk is fixed, then 60 decreases a function of 8 / E.

What about Vi? The upper bound on 1:,,0 derived in Theorem 5.2 introduces cor­
responding restrictions on a digital approximation Vi top: [tk-l, tk] --+ R 2 . We now
examine the effect on Vk of Equations 5.7 and 5.11, and show how the results can be
exploited to restrict the set of 8-connected paths which may be seen as candidates for
Vi- In the next section, an efficient algorithm is described to find an optimal path
among the reduced set of candidates.

Given two points p, q E Z2
, let </J(p, q) be the Freeman chain code for the direction

from p to q if p and q are 8-connected neighbors, and be undefined otherwise. In Z2 , the
direction of movement from p to an 8-connected neighbor q is limited to 'Yi E K · -rr / 4
for K E {O, 1, ... , 7}, where the value of K is the Freeman code for the path movement
from p to q as shown in Figure 5.5.

Let V = { v1, v2, ... , vn} be a digital approximation to a segment L E R2 of a line
R(s) = (1 - s)p1 + sp2 (with P1,P2 E R 2

). From Bresenham [Bre65], we know two
Freeman codes are sufficient to express the direction between neighboring elements of
a straight line segment. An example is shown in Figure 5.6.

100

J•ttttff
~

5. Magnetic Contour Tracing

L = (1-s)p / sp2

V = {v
1
, v2' ... , v1)

Figure 5.6: A line segment L E R 2 with a digital (Bresenham) approximation V
superimposed on it, and the path direction ¢(Vj, Vj+1) between neighbors in Vindicated
with arrows. Two Freeman codes are sufficient to encode the direction from one
member to the next for all members Vj E V.

Clearly the set of Freeman codes required to express the direction between neigh­
bors of a digital approximation Vi to the kth section of a path p: [tk-l, tk] --+ R 2

, is
limited to those required for the tangent vectors p'(t) to p on [tk-l, tk].

Assume the direction from Vn to Uk given by 0k in Equation 5.6 satisfies3

(5.12)

We can transform any region in a digital image defined about a vector v, with angle
0k (/. [31r /2, 71f / 4] to a region defined about a vector Vt with angle 0t E [31r /2, 71r / 4]
with a rotation of m · 1r /2 form E {1, 2, 3}, and/or a reflection about the x or y axis.
Since neither of these transformations require a resampling of the image data, we may
restrict our attention to 0k E [31r /2, 71r / 4] without loss of generality.

Suppose 1:::,.0 :s; 1r / 4. From Equation 5. 7, we have

(5.13)

This means the direction from a point Vj to its neighbor Vj+l in a best approximation
(in the Bresenham sense) top: [tk-l, tk] --+ R 2 can be coded by some member of the
set F = {5, 6, 7, O}, as is the case for every vector p'(t) tangent to p on [tk-l, tk]-

In the following section, we describe an algorithm with which we can extract any
8-connected path from Vn to some g E Gk (see Figure 5.1) with the Freeman code for
the path direction between neighboring points satisfying

(5.14)

If c: is the error permitted the user in specifying the set U = { uk}:=1, then from
Theorem 5.2, we can specify conditions on rk and o, for which we can be certain

3 The preference for this octant is because it is used to express the path direction in our algorithm
in the next section.

5.3. Dynamic Programming to Find Vi 101

that an approximation to p: [tk-l, tk] ---+ R 2 is among the set of digital paths which
can be obtained with our algorithm. Clearly a lower bound on r5 limits the set of
paths for which an approximation to the boundary path is guaranteed to be among
the candidates. On modern workstations, we can manipulate rk to be as small as
required. It may therefore be seen as the sampling frequency on the user input, and
can be manipulated freely.

From Equations 5.9 and 5.10, we can be certain that if

then by Theorem 5.2, we then have l:,.0 ::::; 1r / 4 as desired.
In Section 5.6, the method is shown to work well even when these conditions are

not met. In particular, we use c = 4 and rk = 4c/3 = 6, and the method works even
for r5 = 5rk/3 = 10. The results in this section should be interpreted as describing the
combination of boundary path and user input conditions for which we can guarantee
a good digital approximation is within the set of candidates. As such, they express
limitations (r5 2: 4c) which must be met if we are to find a path in the worst case. Our
results show the method to work quite effectively for a far wider range of conditions
in practice.

5.3 Dynamic Programming to Find Vk

In the previous section, we showed that given an approximation U to a boundary
path p: [a, b] ---+ R 2 , characteristics of a digital approximation to the kth section of
the boundary path are known when the conditions in Theorem 5.2 are met. We now
look for an digital approximation Vi to the kth boundary section p: [tk-l, tk] ---+ R2

starting from vn, the last point on a digital approximation V to p: [a, tk_1] ---+ R 2 .

Vi should end at some point g E Gk, as described in Figure 5.1. Further, assuming
Equation 5.12, the Freeman code of the direction between neighboring elements in the
path must satisfy Equation 5.14. Assuming we have a cost function c(x, y) which is
low on boundary points and high elsewhere, we now develop a dynamic programming
algorithm with which we can extract a minimum cost path among the candidates.

5.3.1 The Cost of a Path

Given the point Vn and the goal set Gk, consider the region R in Figure 5.1 made up of
the points in the minimum rectangle oriented about Lk containing Gk. Let Rw be the
vertically oriented rectangle shown in Figure 5. 7 defined so that based on the points in
Rw, the cost function c(x, y) can be computed for all points (x, y) E R. To illustrate the
algorithm, we compute the cost of each point (x, y) E R using a diagonal directional
difference operator to estimate the gradient magnitude c(x, y) = Q - lg'(x, y)I, and
choose Q 2: lg'(x,y)I for all (x,y) E Rw to assure c(x,y) 2: 0 for all (x,y) E Rw (see
Section 5.3.2 for the real cost function).

To eliminate paths not fully contained in R, we redefine the cost of each element

102 5. Magnetic Contour Tracing

18 18 17 18 18 24 31 35 33 36 37 35

R

1

16 ~.,....,..-...,34
14,

I
16• 33

I

16~1 __ , 26

16 1 14 19

g(x, y) Q - lg'(x,y)I

Figure 5.7: The image function g(x, y) in the image matrix Rw, and the cost matrix
c(x, y) = Q- lg'(x, y)I with Q = 17. To compute lg'(x, y) I with the diagonal difference
operator for all points (x, y) E R, extra columns and rows of image data are used. In
the matrix on the left, the circled point is the start point vn; the line from Vn leads
to the point Uk proposed by the user, and the boxed points which are those on the
Bresenham approximation to the circular arc, make up the goal set G.

in the image matrix Rw to be:

C(x, y) = { ~x, y) if (x, y) E R
otherwise

(5.15)

Let \Ji denote the set of candidate paths for Vi- From Equation 5.14, for every path
1/; E \Ji, we have the Freeman code for the direction of movement from 1Pi to 1Pi+l limited
to those in the set F = {5, 6, 7, O}. Therefore, the valid forward neighbors 1Pi+1 for a
path element 1Pi E 1/; are those points 1Pi+I E Z2 for which¢(1Pi, 1Pi+1) E F, and the valid
backward neighbors 1Pi-l are those for which ¢(1/;i, 1Pi-i) EB, where B = {I, 2, 3, 4}.
See Figure 5.8. To enforce connectivity and path direction requirements, we now define

(x, y)

B

Figure 5.8: Given 1/;; = (x('l/;i),y(('!j;i)), the candidate preceding path neighbors 'lj;i-l
(left), and subsequent neighbors 1Pi+1 (right).

5.3. Dynamic Programming to Find Vi

the cost of a path element 'l/Ji given 'l/Ji-l as

if ef;('lf;i, 'l/Ji-1) EB
otherwise

103

(5.16)

Note that we could also have expressed the conditional statement in terms of the set
of permitted forward movements F. If we now define the cost of a path 'lj; as

n(,p)

<I>.('l/J) = L <I>('l/Ji-1, 'l/Ji)
i=l

we know that every path 'lj; for which <I>.('lf;) is finite, is 8-connected, satisfies 'lj; CR,
and for all 'lj;i E 'lj;, rp('l/Ji, 'l/Ji+1) E Fas required.
To assure the path begins at Vn, we use4

<I>('l/Jo,'l/Ji) = { ~(x('l/;1),y('l/;1)) if 'l/Jo = Vn and ef;('l/Jo, 'l/J1) E F
otherwise

(5.17)

With the use of the following recursive functions, for all points (x, y) E Rw, we can
compute the cumulative cost of the minimum cost subpath leading from the start point
Vn to (x('lf;i), y('l/Ji)), as follows. We start with cp(x, y) = oo for all (x, y) E Rw-

cp(x(Vn), y(Vn))

cp(x('l/Ji), y('l/Ji))

0

min[cp('l/Ji-1) + <I>('lj;i-1, 'l/Ji)]

(5.18)

(5.19)

where Equation 5.19 is computed for all (x, y) E Rw with y 2: y(vn)- Note that
because <I>('l/Ji-i,'l/Ji) is finite only for path neighbors which satisfy rp('lf;i,'l/Ji-i) EB,
for each point (x, y) E Rw, we need only compute the values for the four preceding
neighbors (Figure 5.8). This means that the cumulative costs cp(x('lf;;),y('lf;;)) can be
computed with a single pass through the cost matrix C(x, y).

As the cumulative cost matrix cp(x('l/Ji), y('lf;i)) is computed, we maintain a matrix of
pointers containing the backward direction ¢('lf;;, 'lf;;_1) to the neighbor which resulted
in the minimum value.

(5.20)

We have ef;(x, y) EB for all (x, y) E Rw, which are valid candidate path elements for
Vi.

The effect of applying these computations to our example is shown in Figure 5.9,
along with the optimal path found by scanning the matrix of pointers by means of the
recurs10n:

arg min cp(p),
pEG

4 See paragraph on join points in Section 5.3.1.

(5.21)

104 5. Magnetic Contour Tracing

- c---- X
I IX
\ IX \
\ X \
I X \

X
I -1--

\ ---
cp(x, y) <j>(x, y)

Figure 5.9: Each element cp(x, y) in the leftmost matrix contains the minimum cumu­
lative cost for a path from Vn to (x, y). The boxed elements make up the goal set G.
A dash indicates cp(x, y) = =· The elements cp(x, y) in the central matrix contain the
pointers (stored while computing cp(x, y)) necessary to retrieve the path. On the right
is the path 'I/; C R from vn to the point p E G with the minimum costs, retrieved by
following the pointers in ef>(x, y) from p to Vn-

'lpi-1 = cp(x('1/;i), y('1/;i)) (5.22)

where m = n('I/;) is the number of points in the minimum cost path 'I/; from the point
Vn leading to some point p E G, the goal set.

Combined with the recursive cost computations, it is the maintenance of cp(x, y),
later used to retrieve the minimum cost path, which characterizes the algorithm pre­
sented here as a dynamic programming algorithm [CLR90].

Notes

End Points The begin point for the path extracted is fixed to Vn in Equations 5.17
and 5.18. The algorithm can easily be adjusted to permit a set S of start points with
a slight modification to the if statement in Equation 5.17 (if '1/;0 E S), and by applying
Equation 5.18 to all points s E S. Of course, it could also be made to end at a specific
point (x, y) E Rw if we replace Equation 5.21 with '1/;m = p, which is equivalent to
reducing the goal set G to a single point.

We draw attention to these alternatives because they are used to determine the end
points of the path V. Further, they are minor modifications to the algorithm which
can be used to make it applicable to a wide range of "one-way" path search problems
other than that considered here.

Join Points Each point Vn for n > 1, from which we seek a kth path segment is
also an end point for the (k - l)st path segment. To assure the behavior of the path
is consistent with respect to the restrictions on both path segments at the join point,
the set of permitted points for '1/;1 in the kth segment must satisfy the restrictions on

5.3. Dynamic Programming to Find Vi 105

the (k - l)st segment as well as those on the kth. Denote the set of permitted forward
movements on the kth path section in its initial orientation as Fk, and define

Unless the user turns 180°, F0 i= 0. If we rotate F0 along with Fk, the path at each
joint point vn will satisfy both sets of restrictions, if the set F0 replaces the set F in
Equation 5.17.

5.3.2 The Cost of a Path Element

In the dynamic programming algorithm described in Section 5.3, it is the cost function
that determines which of the candidate paths will be extracted from the region of
interest R. Thus, the cost function must embody the properties of the object boundary
to the best of our knowledge. In this section, we develop a cost function based on the
following image model known to be appropriate for a variety of imaging methods
[GW92, Pra91]. The cost function can be adapted to extract object boundaries when
a priori knowledge supports the presence of a different model.

The Image Model

Let g(x, y) denote the image intensity function, defined on an XX Y image I. Assume
g(x, y) is be corrupted with independent Gaussian noise n(x, y):

g(x, y) = J (x, y) + n(x, y) (5.23)

where J (x, y) denotes the noise free image function, with constant value Jo in the
object region and Ji in the background region. The object and background regions
are assumed to be separated by a connected transition region, with values between
Jo and Ji, corresponding to the image object boundary. (The image data in Rw C I
used in the example in Figure 5.7 follows this model with Jo = 36, Ji = 16 and the
standard deviation of the Gaussian noise, O"noise = 2).

Because the transition region is earmarked by a change in image values, we aim
to define a cost function which will have a high value in smooth areas of the image
and a low value in transition areas. We further assume that the noise free image
function may consist of additional values h, h, ... which correspond with the intensity
of objects which are not of interest for the segmentation task at hand. These objects
may intersect or be near the transition region we seek to detect, thereby interfering
with its detectability based solely on the model in Equation 5.23. We therefore aim to
suppress sensitivity to both the noise function n(x, y) and the presence of other image
objects.

The Hypothesized Direction ak

When a point uk is obtained from the user, the direction 0k, defined in Equation 5.6
from Vn to uk, is also obtained. This provides an indication of the boundary direction

106 5. Magnetic Contour Tracing

on the kth path section. Full reliance on 0k, however, results in sensitivity to jitteryness
on the part of a user. To estimate the boundary direction, we therefore want to average
it with the mean direction of the last contour segment, to obtain the hypothesized
direction a.k. To this end, we define

(5.24)

where fJk denotes the average direction of movement in the kth extracted path section.
Note that as v increases, the user is followed more closely, whereas small values of
v make it hard to change direction. To encourage a smooth path which follows the
user when the boundary is weak, a.k is incorporated in the cost of a path element as
described below. These values are optimized for our rather jittery user simulations in
Section 5.5.1. One may argue that in practice, these values should be adapted for a
particular user. Our optimization method could be applied to user data to achieve
this.

The Cost Function

We now design a cost function with which an optimal path will follow the object
boundary when the image gradient is high, and the user otherwise. This is accom­
plished by defining the cost of a path element in terms of a weighted combination of
factors depending on the strength of the image gradient and the hypothesized bound­
ary direction a.k, described in Equation 5.24 above.

Consider the following function defined in terms of O'.k (see Section 5.3.2),

e(x,y) = la.k - 0(x,y)I (mod 1r)

where 0(x, y) is the direction from vn to the point (x, y). By definition

0 :s; e(x, y) :s; 1r (5.25)

and 0(x, y) decreases as the direction to the point (x, y) from Vn gets close to O'.k.

If a.k is the direction of the contour, then the directional derivative defined by

Dga(x,y) = "vg(x,y) · (cosa.,sina.)

will be high along areas of the contour either for a.= O'.k + 1r /2, or for a. = O'.k - 1r /2. It
will be low for transitions in the image function in other directions. Let Q be a large
positive number which satisfies

Q 2 l"vg(x,y)I for all (x,y) EI. (5.26)

Then,
0 :s; Q - Dga(x, y) :s; 2 · Q (5.27)

5.3. Dynamic Programming to Find Vi 107

for all a and for all (x, y) E Rw. If we choose

Q = max g(x, y) - min g(x, y))
(x,y)El (x,y)EI

then Equation 5.26 is satisfied and we have a positive bounded function Q- Dga(x, y) ·
which decreases as the magnitude of the gradient increases and its direction approaches
that expected. Figure 5. 7 contains an example of this function with Q = 17, and
a = 51r / 4. The use of the directional derivative rather than the gradient magnitude,
results in large values of Q - Dga(x, y), if the gradient direction differs significantly
from a, even when the gradient magnitude is large. This results in a suppression of
interference from points on (nearly) perpendicular object boundaries. If incorporated
in the cost function, it will therefore make transitions which agree in direction with
the hypothesized boundary direction ak have low costs. By selecting

depending on which results in a positive value for Dgo:(x, y) at the point Vn (which we
assume is correct), disturbance from nearby parallel boundaries is also suppressed.

If we multiply Equation 5.27 by 1r /2Q, then, given Equation 5.25, we have both
cost functions restricted to the range [O, 1r]. Because we want to balance the influence
of the user input and the image data, assuming the actual direction of the contour is
close to ak, we define the cost of a point (x, y) E Rw as the weighted sum

c(x,y) = wG(x,y) + (1-w) (
2
~[Q-Dgo:(x,y)]) (5.28)

The parameter w determines the balance of user influence and the influence of
image data in the cost function. Increasing w will reduce sensitivity to noise in the
image, but increase sensitivity to user error. In Section 5.5.2, criteria to optimize w

are defined and experiments are described with which we obtain its optimal value. If
a priori knowledge of the image objects or a specific user is available, the experiments
may be repeated to tune w for the specific problem.

5.3.3 Related Work

Dynamic Programming

The method developed in Section 5.3 to extract a path 1/; E R based on user input is
similar to that described by Gerbrands in [Ger88] to extract the path of a boundary
given an initial estimation. A key benefit of our method as compared to Gerbrands'
is that ours does not require a resampling of the image data. Permitting movement
in the four Freeman directions of a half-plane and using the directional derivative in
the cost function makes the resampling required in Gerbrands' method superfluous.
Elimination of the resampling step produces a sufficient performance improvement to
allow extraction of the boundary path in real time as the user traces.

Our method can easily be applied to the problem posed in [Ger88] of extracting a

108 5. Magnetic Contour Tracing

smooth 8-connected boundary path given an initial estimation. If Gerbrands' resam­
pling step is replaced by a step to obtain a rough polygonalization of the boundary,
then we have the points U = { uk} required for our method. Using Wall and Danielsons
algorithm [WD84], this can be done in O(N) time where N is the number of pixels
in the initial estimation. Because the resampling step is the most computationally
intensive step in Gerbrands' method, this results in a substantial performance im­
provement. Furthermore, because our method produces an 8-connected path V C Z2

it can be efficiently stored, and the wealth of efficient analysis methods which have
been developed for this class of paths (see for example [GW92, Pra91, RK76]) may be
applied.

Path Planning

We have formulated the question of finding a boundary section ½ as a minimum cost
path problem. As such, it is closely related to path planning problems which arise in
the field of robotics. In particular, the dynamic programming algorithm developed in
Section 5.3.1 can be seen as a variation on the cost wave propagation method for path
planning proposed by Dorst and Trovato in [DT88].

The path planning problem is viewed in their work as one of finding the minimum
cost path through a configuration (parameter) space, by means of propagating waves
of minimum cost paths in that space. The location of a path element and the direction
of its preceding neighbor: C = {x('lj;i),y('lj;i),rp('lj;i,'lj;i-l)} may be seen as the points
of a parameter space, and the recursive function <p(x, y) defined in Equation 5.19 may
be seen as a wave propagation. We then propagate in a forward direction based on
Equation 5.16.

The cost of a path in their method requires a metric or cost function such as
that introduced in Equation 5.28. However, the algorithm proposed in [DT88], walks
through each wave of minimum cost points, generates the next wave, and stops at
the first goal point, under the assumption that the first hit will be a goal point with
minimum costs. This requires the cost function to contain a heuristic element which
assures this assumption holds, and thus, their method can be classified an A* algorithm
(see for example [Nil80]) rather than a dynamic programming method. Computing
the minimum costs to all goal points is simple and efficient for the path search we
perform, and allows the use of a substantially simpler cost function.

5.4 Experiments

In this section, we describe the experimental methods used in Section 5.5 to optimize
the parameters v and w used in Equations 5.28 and 5.24, which control the cost of
path elements and ultimately the selection of the optimal path. The same methods
are used in Section 5.6 to evaluate the magnetic contour tracing tool described in this
chapter.

The cost parameters v and w are tuned using artificial test images containing discs
of varying radii as may have been produced by a camera. We simulate the user by

5.4. Experiments 109

Figure 5.10: Test Images: A disc with object value Jo = 200, and background value
Ji = 100. The middle and right images have added Gaussian noise with anoise = 20,
(SNR = 5, SNRdB = 26) and anoise = 50, (SNR = 2, SNRdB = 6) respectively.

choosing random locations near the test image object boundary for the points uk. To
evaluate the performance of the method using these parameters for a range of image
objects, we used test images containing hexagons of various sizes and a range of ellipses
in addition to the discs used to tune the parameters.

The quality of the boundary produced is measured by a variation of Baddeley's 6 2

metric [Bad92b].

5.4.1 The Images

Disc images for a range of radii are used to tune v and w so the method will be
applicable for path sections of high and low curvature. Later we evaluate the method
for a range of radii to measure the influence of curvature on the method. In accordance
with our image model (Equation 5.23) we add independent Gaussian noise to evaluate
the influence of the signal to noise ratio (SN R).

We create a disc of radius r in a 256 x 256 image as follows. In a 2048 x 2048 image
we assign the object image value Jo to all points p which satisfy II c - p II< 8 * r where
c is the center point of the image: c = (1024, 1024). All other points are assigned the
background value Ji. After performing a Gaussian averaging using o- = 8, we sample
the image by extracting one point for each 8 x 8 neighborhood in the original image.
Using intensity Jo = 200 for the object, and Ji = 100 for the background, results in the
leftmost image in Figure 5.10. We experiment with discs of radii r E {10, 20, ... , 100}.
The hexagon and ellipse images used in the evaluation in Section 5.6 are created in an
analogous fashion.

If we add independent Gaussian noise to our test images, we have the signal to
noise ratio (SNR) defined by

SNR = IJo - iii
O'noise.

110 5. Magnetic Contour Tracing

where CT noise is the standard deviation of the Gaussian noise. Alternatively, the signal
to noise ratio may be expressed in decibels as defined in

SNRdB = 20log (lfo -_fil).
a noise

In our experiments, the object and background values are fixed to be 200 and 100 (not
necessarily in that order). We use values O"noise E {1, 5, 10, 15, ... , 50}, resulting in val­
ues for SNR E {100, 20, 10, ... 2}, or as measured in decibels SN RdB E { 40, 26, 20, ... 6}.
Examples of the resulting images are shown in the center and rightmost images in Fig­
ure 5.10.

5.4.2 User Simulation

Recall that the user is presented with a tool which records the position of the pointer
in the image as the pointing device (mouse) is moved. To simulate a user tracing a
boundary, we walk around the image object boundary in a test image, and at regular
intervals, extract a random point in the immediate neighborhood.

Let s denote the step size, which in practice depends on the speed of the user's
movement. Let B = {b1 , b2 , ... , bn(B)} be the best digital approximation to the image
object boundary, which consists of n(B) points. For discs and hexagons, this cor­
responds to the Bresenham point set [Bre65, Bre77]. For ellipses, we use the point
set produced by the algorithm in [FvDFH90, pages 88-91]. Beginning at b1 , we move
through the point set in steps of s, and at each point bi E { b1 , bl+s, bl+2s, ... } , we
choose random point on the line perpendicular to the path of the object boundary
which passes through the point bi. The point selected is forced to satisfy II bi -p IIS: E,

where E is the distance the user is allowed to stray from the true path of the image
object boundary.

In Figure 5.11, we illustrate the extraction of a user point p given a point bi E B
for a disc, and a point set extracted with this method is shown.

5.4.3 The Error Measure

In [Bad92b], Baddeley introduced the !':,_P error measure to quantify the difference
between two binary images A and B:

(5.29)

Here X is the raster image in which A and B are embedded. A binary image A ~ X
is simply a subset of the points x E X. n(X) denotes the size of the raster X, and
dc(x, Y) is the cutoff distance transform:

dc(x, Y) = { dc(x, Y) if d(x, Y) :S:; c
otherwise

(5.30)

5.4. Experiments 111

Figure 5.11: On the left, the random selection of a point p near the point b; generated
by the Bresenham algorithm. A simulated user point set for a disc of radius 50, with
s = 4, and c = 4.

An example of the cutoff distance transform is shown in Figure 5.12.
Baddeley shows that .6..2 (A, B), (p = 2 in Equation 5.29) has some key proper­

ties required of an error measure on binary images. Suppose the image A contains
the correct path of an object boundary, and the image B contains the boundary to
be evaluated. Due to the use of the cutoff distance transform, and the balance of
influence of A and B in Equation 5.29, .6..2 is sensitive to false positives (B\A), to
false negatives (A\B), and to the influence of an error on boundary shape, thereby
addressing previously noted shortcomings of FOM, Pratt's figure of merit [Pra77]. In
particular, if the boundary B is missing points in A (false negatives), this will not
effect the value of FOM(A, B). As a result, FOM is insensitive to some significant
differences in boundary shape, as noted in both [PM82] and [vVYB89].

A careful look at Equations 5.29 and 5.30, however, shows that if more pixels are
set in the images A and B, the number of pixels which contribute to the sum in
Equation 5.29 increases. Given A, the image of the true object boundary, suppose
we define the cutoff area of A as n(Ac), the number of pixels in the set Ac= {x :
d(x, A) <= c}. For a disc, the cutoff area depends on the radius rand is given by

n(Ar,c) = 7r(r + c) 2
- 7r(r - c) 2 = 411'rc. (5.31)

For a hexagon, the cutoff area depends on the side length l and is given by

n(A1,c) = 47rc2 + 12c (z - ~) , (5.32)

and for an ellipse defined by

(5.33)

we have
n(Aa,b,c) = 7r(b + c)(a + c) - 7r(b - c)(a - c) = 211'c(a + b). (5.34)

112 5. Magnetic Contour Tracing

Figure 5.12: The cutoff distance transform, with c = 4. On the left, dc(x, A), where A
is a circle of radius r = 16. In the middle, dc(x, B) where B is an ellipse with a = 18
and b = 14 (See Equation 5.33). On the right, Jdc(x, A) - dc(x, B) J. Note that only
the points near the boundaries A and B have a positive value (black= 0), and will
contribute to the summation in Equation 5.29.

To obtain the average distance to the true contour for each of the test images we
use the following variation on Baddeley's !::,.2 error measure:

(5.35)

where n(Ac) is defined according to Equation 5.31, 5.32 or 5.34 as appropriate for the
test image, and where X is the raster for which the distance to A and B is computed.
J~ will sometimes be denoted by J;,c, Jlc, and J~,b,c to indicate which measure of the
cutoff area was used to compute it. The error measure is now averaged based roughly
on the number of pixels contributing to the sum in Equation 5.29 rather than on the
image size. We thus obtain an error measure independent of both image size and
contour length.

In all experiments presented, we use c = 5 as the cutoff distance, as suggested in
[Bad92a].

5.4.4 Measuring the Error: Practical Considerations

In our experiments, the true distance to the boundary of the image object is computed
using a distance transform in the "true" image, which is then scaled to compute
the distance in the smaller raster. In this way, we obtain a measure which closely
approximates the distance to the object boundary in R 2 . We do this because the
boundary position is not well defined for the test image objects on a raster. So that
we can evaluate our results, we show the response of the J; JA, B) measure for the
Bresenham point set. Let B, be the Bresenham approximati~n to a circle of radius r,
and let A, be the true circle, the distance to which we obtain in the finer raster. For

5.5. Parameter Tuning 113

the test images described, we have

for r E {10, 20, ... , 100}. In general, 5:,c(Ar, Es) ~ Is - rl. Thus from 5:,c we can see
how far apart two boundaries are on the average. The same is true for the hexagon
and ellipse variations on the 5~ measure.

5.5 Parameter Tuning

In Section 5.3.2, the parameters in Equations 5.28 and 5.24 must be tuned to op­
timize the method. In this section, we consider the criteria used to optimize the
parameters, and describe a set of experiments used to obtain their optimal values for
images containing discs of varying radii, with added noise resulting in SN R = 10 and
SNRdB = 20. If the shape of the objects or the conditions related to the SNR in the
imaging process are known a priori, these experiments may be repeated to optimize
the parameters for a specific class of images, or by substituting user input for the
simulated user data, for a particular user.

5.5.1 Optimizing the Direction ak

Recall from Section 5.3.2 that the angle a used in Equation 5.28 is the primary factor
in selecting among the candidate paths for Vi. In this section, we seek the optimal
value for v used to define ak (from which a is derived) based on the weighted sum in
Equation 5.24. As mentioned in Section 5.3.2, v determines the ease with which the
user can change direction. A high value for v increases sensitivity to user jitteryness,
while a low value makes it difficult for the user to turn.

In the experiment to optimize v, we fix the following values:

1. s = 6 is the step size for generating the simulated user data, which we use in
practice as the minimum distance to be moved before we apply the algorithm.
We use the minimum in this experiment because smaller movements result in a
more jittery user path.

2. c = 4 is the minimum error allowed for the user, as is the case in practice for
s = 6.

3. w = 0.5 is the value of the parameter in Equation 5.28.

4. <7noise = 10 is the standard deviation of the Gaussian noise added to the images.

Now because we want to test the effect of reducing the user's ability to turn, we
evaluate paths obtained when tracing boundaries of varying curvature. In Figure 5.13,
we show the average value of the 52 error measure for discs of varying radii. For
both dark images on a bright background (!0 = 100) and vice versa (!0 = 200), we
performed the experiments including the simulation of user data on 100 images of each

114 5. Magnetic Contour Tracing

Average Distance - All Discs
0.9 ~---.--~--.----.--~--.----.---.--.-------,

0.85

0.8

0.75

8;,c(A,B) 0.7

0.65

0.6

0.55

0.5 ~-~-~--~-~-~--~-~-~--~
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

V---,

Jo= 100 ~
Jo= 200 +­
All Discs -B-

Figure 5.13: The effect on o;c(A,B) of varying v in.Equation 5.24. Results are shown
for 1000 discs with Jo = 100' and radii r E {10, 20, .'.., 100}, 1000 discs with Jo = 200,
and the average of both. O"noise = 10.

disc size, each with independent Gaussian noise. Based on the results averaged over
all disc sizes, we choose v = 0.6.

5.5.2 Optimizing the Cost Function c(x, y)

We now seek to find the optimal value for w which controls the relative influence of
the user input and image data in the cost function c(x, y) defined in Equation 5.28.
In this case, the criteria which we simultaneously want to satisfy are:

A) If the path of the user is near an image object boundary, the direction of which
is close to that of ak, the path we extract should lie on the object boundary.

B) If the path of the ussr is not close to aR image object boundary, the path we select
should be the user path (smoothed by the averaging due to using ak rather than

0k)-

It is clear that high values for w will result in the satisfaction of the second criteria,
while low values encourage the satisfaction of the first. To determine the best value
for w, we seek the value for which the average of the errors for criteria A and B is
minimal.

To control the experiment, we fix the values listed in the previous section, substi­
tuting the third with

3. v = 0.6, based on the experiments performed in the previous section.

Let Ar be a binary image which contains the optimal boundary path for a disc of
radius r (see Section 5.4.1). Given a randomly generated user data set, suppose we

5.6. Evaluation 115

extract a boundary path Br(w) from the disc image for some w. Criterion A states that
w should be chosen so that o; c (Ar, Br (w)) is as small as possible. To be sure this is true

, 2
in general, for r E {10, 20, ... , 100}, we measure the average value of or,c(Ar, Br(w)) for
N random user data sets. The average error is then given by

1 1 N

Td(w, N) = 10 L NL o;,c(Ar, Br(w)),
r i=l

where the 1/10 results in an averaging over the 10 different radii, and N is the number
of data sets for which Br is generated for each radius.

Now given a random user data set, suppose Cr is a binary image which contains
the path generated by applying our method to an image using the optimal value for
v obtained in the previous experiment, and with w = 1. Cr may be considered the
optimal user path for a specific random data set, as it is not influenced in any way
by the image data. Let Dr(w) be the path obtained if the same user data set is
applied to an empty image (with added noise). Then we want a value of w for which
o;,c(Cr,Dr(w)) is small. We again want this to hold in the general case, and therefore
define

Because we want the value of w for which our method performs well both m the
presence and absence of a contour, we want the value for which the mean

is minimal. We performed the experiments for N = 200, with 100 for dark on bright
(!0 = 100) and 100 for the reverse, and thus our results are averaged over 2000
experiments for each value of w. In Figure 5.14, we plot Td(w, N), Tu(w, N), and
Tm(w, N) as a function of w. Based on the results we choose w = 0.7, the value for
which Tm(w, N) is minimal as the optimal value.

5.6 Evaluation

Having optimized the parameters which influence the cost of a path, we are now in
a position to evaluate the performance of our method. We begin by performing our
experiments on images containing discs of varying radii and with various levels of
added noise. The results shown in Figure 5.15, are averaged over 100 trials for each
disc at each noise level. That is, given a disc image of radius r, we add randomly
generated Gaussian noise at level O"noise, 100 different times, and each time regenerate
the simulated user data for a disc of radius r.

The user step size was fixed to s = 6 and allowed error fixed to c: = 4. In practice
rk = s = 6 is the minimum move required before we apply the technique. Although
this is much smaller than that required theoretically (see Theorem 5.2) our results are

116

4

3.5

3

2.5

T(w,N) 2

1.5

1

0.5

0

5. Magnetic Contour Tracing

Average Distance: Disc versus User

0.1 0.2 0.3 0.4 0.5 0~ 0.7 0~ 0.9
w---+

Td(ev,'.,W0) ~
Tu(w, 200) +­
T,,,(w, 200) -a-

Figure 5.14: The result of varying w on the ability to locate the contour of a disc
Td(w, N), to follow a user Tu(w, N), and the average Tm(w, N). The results shown are
for N = 200, O"noise = 10, and r E {10, 20, ... , 100}.

3

2.5

2

8;,c(A,B) 1.5

1

0.5

0
01

Average Distance for Discs: s = 6, E = 4

5
O' noise ---t

User Error~
r=lO+­
r = 30 -B­
r = 50 ·X· ·

r = 70 -!':,
r = 90 ·* ··

Figure 5.15: The performance of the algorithm applied to disc images with added
Gaussian noise with O"noise E {0, 5, 10, ... , 50}. The average value of 8; c(A, B) is plotted
for a range of radii r. Here we have a user step size of 6 and the allowed error c = 4.
The average error of the input data is also plotted.

5.6. Evaluation

3

2.5

2

ol,c(A,B) 1.5

1

0.5

0
01 5

Average Distance for Hexagons: s = 6, c = 4

10 15 20 25 30 35 40 45
O' noise ---+

50

117

User Error ~
l = 20 -t­
l = 40 -a­
l = 60 X· ·

1=80 6
l=lO0*·

Figure 5.16: The performance of the algorithm applied to images of hexagons with
added Gaussian noise with O"noise E {0, 5, 10, ... , 50}. The average value of 81,c(A, B) is
plotted for a range of lengths l. The user step size is 6 and the allowed error c = 4.
The average error of the input data is also plotted.

very good. This is because in general, the extreme cases handled in Section 5.2.2 will
not all arise simultaneously. Smaller values for the step size are advantageous because
they allow the user more control, and feedback can be provided more quickly.

The experiments were performed both for dark objects (!0 = 100) on a bright
background (!1 = 200), and vice versa, with no significant difference in the results. The
average of both experiments is shown in Figure 5.15. The results show a linear decrease
in the performance of our algorithm in response to added noise. When the curvature
becomes very high K, = 1/10 (8 = 10), the performance starts to deteriorate, as was
predicted (Theorem 5.2). Up to a significant noise level (SNR > 5, SNRdB > 14),
the resulting boundary is within one pixel of the true object boundary, even when the
curvature is high.

In Figures 5.16 and 5.17, the results are shown for hexagons with a range of side
lengths and for a range of ellipses. The results show that although the parameters
were tuned for discs, the method works well for a variety of object shapes.

The actual boundaries obtained with our method in practice are far better than
the experiments here indicate. This is because the error in the user angle 0k, generated
by the random data used in our experiments is, in general, far worse than that made
by a user. Connecting the dots in Figure 5.11 will illustrate this point. In Figure 5.18,
we show boundaries obtained as a user traced some objects in medical images.

118

2.5

2
o~ b jA,B)

'' 1.5

1

5. Magnetic Contour Tracing

Average Distance for Ellipses: s = 6, E: = 4, a= 100

5 10 15 20 25
anoise ----+

30 35 40 45 50

User Error ~
b=lO-+­
b = 15 -B­
b = 20 'X· -

b = 25 -l's ·
b = 50 ·* ·
b= 75 -s-

b = 100 -e-

Figure 5.17: The performance of the algorithm applied to ellipse images with added
Gaussian noise. The average value of 8~ b c(A, B) is plotted for a = 100, and b E
{10, 15, ... 100}. The user step size is 6 a~d the allowed error is E = 4. The average
error of the input data is also plotted.

Figure 5.18: Tracing in practice: On the left, the left ventricle in the heart of a dog.
On the right the corpus callosum.

5. 7. Conclusions 119

5. 7 Conclusions

We have presented a methodology with which a path acquired from a user tracing an
image object boundary is interpreted and subsequently corrected to follow the correct
path of an image object boundary. We present a theoretical foundation for the method
developed and show it to work well in practice. Our method may be used both for
segmenting unknown images and for constructing image object models for a particular
problem domain. The technique is suitable for a specific, but widely applicable image
model, and the development of the cost function and the parameter tuning method
shows how this may be adjusted for other image models. The experimental methods
used may also be employed to optimize the method for a particular user, and thus
make the method suitable for incorporation in an adaptive interactive environment for
image segmentation.

The method is particularly suitable for the specification of image object boundaries
in the presence of various forms of disturbance which frequently interfere with the
segmentation process. It is robust in the presence of significant noise in the image,
or user jitteryness. This is due to the cost function which suppresses the response to
image transitions due to intersecting or nearby parallel object boundaries, and shows
a preference for smooth paths.

The dynamic programming method developed to extract the object boundary based
on the minimal cost path is substantially faster than similar methods, with no penalty
in accuracy. As we had hoped it is fast enough to correct the path of a user while it
is drawn, and thus provides the user with the sense of working with a magnetic pen.

120 5. Magnetic Contour Tracing

Chapter 6

Concluding Remarks

6.1 Conclusions

In this thesis, we introduced an approach to image segmentation called supervised
boundary formation. With this approach, an image is partitioned based in part on
user sketches of image object boundary paths. For two general input models for
path specification, namely connect-the-dots and free-hand drawing, we investigated
problems of user interpretation and correction. The investigation leads us to conclude
that issues arising in interactive segmentation can be addressed in a formal manner,
and that interactive techniques are an effective tool for obtaining a correct partitioning
of an unknown image.

User error model

To facilitate the task of user interpretation, we performed experiments to measure user
errors in the specification of corners on polygonally shaped objects, as described in
Chapter 2. For each corner, we measured the error in distance, corner angle, corner
orientation, and corner scale. For all users, the level of the first three errors were
uneffected by the tested image variations. We tested four variations, namely images
with and without added noise; dark objects on a bright background versus bright
objects on a dark background; ramp edge and corner model versus a roof model; and
two different shapes. It turned out that the distribution of the user error in corner
scale varied depending on the object shape, and somewhat depending on the presence
of noise. This was especially true for one user.

The polygonal objects were made up of line segments in the range {15, 30, 45, 60, 75},
and corners of angle in the set { 45, 90, 135} degrees. Both the mean and variation of
the distance error differed as a function of user but not as a function of line length.
The magnitude and the variation of both angle errors (corner angle and orientation)
decreased for all users as a function of line length. The corner scale error differed for
the various users, and per user for the different objects.

The bias of the corner angle and the bias of the corner scale both proved to fit a
Gaussian distribution for all users. Although we did not find a well known statistical

121

122 6. Concluding Remarks

distribution for the errors in distance and corner orientation, both were well behaved
for all users in the following sense. For each user, the meanµ and standard deviation
a- of the user error was calculated, and the user error was less than µ + 2o- in more
than 90% of the cases. This applies to all users for both the distance and orientation
measures.

These experiments lead us to conclude that the type and degree of errors made by
individual users in the specification of corner points, can be predicted. Based on the
results, we were able to develop a user dependent error model for corner specification.
This model consists of the maximum expected distance between a user defined point
and the corresponding point on the object boundary, the maximum difference in corner
orientation, and the distributions of the user corner angle and scale errors.

Limitations The performance on the four Brodatz texture images varied signifi­
cantly among the users. In some cases, numerous extra points were inserted, and in
other cases, a number of corner points were not specified. Because the users were
presented with the texture images before the other images, we may thus conclude that
if users do not possess a priori knowledge of the expected image contents, they do not
perform well for arbitrary texture differences.

Open Questions

Other geometric models - Suppose a user were to specify a sequence of image lo­
cations intended as part of a curve rather than as a set of polygonal corner
positions. Then a different corner model must be developed, which allows one to
define limits on the difference between the user defined curve and the boundary
curve. This requires the definition of an appropriate set of error measures for
curves.

Texture - The methods described for user modeling in Chapter 2, may prove useful
for modeling expert users, such as radiologists, working with known images.
Further, testing users with artificial textures may provide additional insight.

Inexact polygon matching

To match the user-defined polygons with the model polygons for the experiments in
Chapter 2, we developed an algorithm to perform inexact polygon matching, which
produces a best fit of two polygons. The key contribution which distinguishes our
approach from other polygonal object matching methods, is the separation of the node
pair match evaluation from the global matching decision. This allows us to guarantee
that with respect to a given cost function, the match of the polygons produced with
our algorithm is a global optimum match.

We provide a general framework for the development of cost functions for appli­
cations which tolerate any subset of affine transformations. In addition to the cost
function used to match the user and model polygons generated by the experiments in
Chapter 2, we develop a cost function suitable for robotics applications in which the

6.1. Conclusions 123

camera position is fixed. In [GAW93], this algorithm provides a reliable mechanism for
deciding whether an object in an imaged scene matches one extracted from a database.

The algorithm proved to find 96% of the point pairs for a polygon with a random
distortion of itself, when up to 4 (of the 17) points were removed from either or
both polygons. The A* matching algorithm is efficient in its exploitation of cyclic
characteristics of polygonal data sets. The complexity of the algorithm is comparable
with geometric hashing in the worst case [GG92], and two orders of magnitude faster
O(n4) on average. We have shown the basic scheme to be extendible for matching
polyhedra in three dimensions.

Model-based corner detection

To correct user errors made in the specification of corner points on polygonally shaped
objects, we developed the model-based corner detection method described in Chap­
ter 4 of this thesis. We derived a scheme which enables the evaluation of an image
region based on the geometry of a corner in a polygonal shape specified by a user. In
particular, we examined the geometry of an image corner in relation to the geometry
of a corner specified by a user. For a given user error model, and an image feature
measure A, we examine conditions under which we can extract an image corner model
with respect to the measure A. We show that if the window size required to measure A
and the user error in distance are both sufficiently small in relation to the corner angle
and scale, then we can establish the presence of a ramp or roof corner as measured
by >.. To illustrate the effectiveness of the method, we show that if A measures the
grey value intensity, we can distinguish four corner types, namely dark and bright
ramp and roof corners. Specifically, for corners with angle in the range [31r /8, 31r / 4],
we determine the correct model in more than 95% of the cases. We use the model to
localize the corner to pixel accuracy.

Limitations A key problem in the model-based corner detection method is the mod­
eling and subsequent localization of corners with small angles (a ::;; 1r / 4). Because the
size of the region used to investigate the image function in the cone of the corner
decreases as the corner angle decreases, reliable modeling of small corners is hindered.
This indicates a different approach to obtaining a segmentation model for small corners
must be developed.

Magnetic contour tracing

In Chapter 5, we developed a method for real time correction of a user specified
boundary path. The interactive model supported is free-hand drawing, but rather
than producing the path actually traced by the user, we extract a best approximation
to an object boundary path in the immediate region, with a dynamic programming
method. The set of candidate paths and the costs that determine which among them
is selected, are based on the location and geometry of the user input, and on an a
priori model of the image function near object boundaries. For the boundary model
we used, the gradient magnitude of the image function is required to be high along

124 6. Concluding Remarks

the resulting boundary path, which is also required to be connected and smooth. The
image boundary model must be known a priori to extract the path in real time.

In this chapter, we developed a set of conditions under which a boundary path can
be accurately extracted based on user input or any other point set. In particular, we
investigated the relationship between the image object boundary path and the user
defined path, and derived a formal set of conditions (Theorem 5.2), under which our
method is guaranteed to work, assuming our model of the image function on the object
and background regions is correct.

For interactive segmentation, the cost function to be minimized, is defined as a
weighted combination of a user term based on the direction of user movement and a
boundary (gradient) strength term. The influence of the weights was evaluated, and
the set which minimized the errors made over the length of a boundary was selected.
We used a random error generation method to simulate the user.

The magnetic ink method was shown to produce a good approximation of a bound­
ary path for a range of test images containing discs, ellipses and hexagons. Specifically,
for signal to noise ratios as low as 5SN R, the path produced was within one pixel of
the true boundary path, on average. This was true for a far wider combination of
input and boundary paths than satisfied the theoretical conditions, which makes the
method widely applicable in practice.

6.2 Discussion

Extensions For supervised boundary formation to become an effective tool in the
segmentation of unknown images, a variety of input/correction models are required.
Ideally, the path specification input tools found in standard drawing packages should
be available to the human expert setting out to segment an image. For each such input
method, a range of correction options should be supported.

In addition to correction of corner locations described in Chapter 4, modeling
of image boundary curves and subsequent localization of the boundaries, based on
connect-the-dots user input, must be addressed. Such modeling requires a user error
model be derived for curve specification. Meanwhile, if a model of the image function
near the object boundary can be determined, various forms of correcting the user de­
fined boundary path must be investigated. For freehand drawing, it may be useful to
derive a model of the image function in the object and background regions before cor­
rection can take place. The real time magnetic ink correction introduced in Chapter 5
might then be replaced with some form of post-specification correction.

Segmentation of Three Dimensional Images The approach to interactive seg­
mentation advocated in this thesis cannot be directly applied to the segmentation of
three dimensional images. This is because the direct manipulation paradigm is based
on a what-you-see-is-what-you-get interaction model. That is, the user is assumed to
perform manipulations in a fully representative view of the image.

Viewing of three dimensional images in two dimensions requires either a user be
presented with some two dimensional subset of the image or a two dimensional visu-

6.2. Discussion 125

alization of the three dimensional image. The latter is problematic because visual­
ization techniques are based on a predefined segmentation model, so that what the
user views is not the image data, but a manipulated view in which the certain char­
acteristics have been used to distinguish the object from its background in the view
(e.g. [LC87, DCH88, Lev88]). If the visualization is successful, then the image can be
segmented automatically, and if not, then it will not help in the segmentation because
it is based on the wrong model.

Views containing some subset of the image data, such as a single image plane or
the maximum or minimum value in some direction, are also problematic because the
user has an incomplete view of the image. In this case, the task of visualization is left
to the user.

Still, interactive techniques can sometimes play a useful role in the segmentation
process when sufficient a priori knowledge is available both of the segmentation model,
and the views which should be presented to the user for manipulation. Examples of
effective interaction techniques in the segmentation of specific sets of three dimensional
images can be found in [FLP89, LP90, HSvdV+77].

Finally, if a representative plane can be extracted from an image for viewing,
one might apply magnetic contour tracing or model-based corner detection to find
the significant boundaries in that plane. The results might then be propagated to
other planes using model-based deformable contour methods such as those described
in [SD89, WSSD93].

Real time image function modeling With respect to human computer interac­
tion principles, the method developed in Chapter 5 is extremely attractive because it
provides immediate feedback to the user. It requires, however, that the properties of
the image function in the region about the image object boundary be known a priori.
Though it can be employed to segment difficult images such as those in Figure 5.18
when an appropriate segmentation model is known, a model of the image function
which can be used to locate the boundary cannot be derived as the user draws. This
limitation is not only due to the complexity of the method required to model the image
function, but due to an insufficient geometric model (a short line segment). A hypoth­
esis of the shape and size of a boundary section, comparable to that used to model
the corners in Chapter 4 can only be extracted after larger sections of the boundary
have been specified.

Learning from an Expert Perhaps the most relevant question arising from the
work in this thesis is how much one can learn about a given image, based on a simple
user sketch. In Chapter 4, we presented a method for examination of an image region
about a section of a user sketch. If a sufficiently large region can be investigated near
a path section, then the segmentation parameters, including an image function model
can be obtained from the user input.

Human experts can be relied upon to provide an approximation of the geometry
of an object boundary. Asking an expert to specify the characteristics of the image
function in the object and background regions in a form which can be used to quantify

126 6. Concluding Remarks

the difference between the two is unrealistic, unless the model is trivial (for example,
dark object on bright background). If this information can be deduced from the
geometry of the user defined path, then supervised boundary formation will provide a
powerful tool in the development of segmentation models for new applications.

6.3 Concluding Remarks

In both Chapters 4 and 5, we developed a theoretical framework in which the relation­
ship between the user defined path and the true path of the image object boundary
can be inspected. For both input/correction models, we defined specific conditions,
for which we can guarantee the object boundary path could be found given the user
input path.

In both cases, the methods developed prove to work well for a far larger set of
user/boundary path pairs than was theoretically guaranteed. This is because to guar­

antee the boundary path would be extractable based on the user defined path, we had
to assume the worst case. In practice, of course the worst case is an exception to the
rule, and the boundary path can be found even when the theoretical conditions are
not met. Still for critical applications, it is essential to know under what conditions
correct results can be guaranteed, and the arguments presented in Chapters 4 and 5
can be used for this purpose.

In summary, the results in this thesis support the notion that supervised boundary
formation is an effective approach to the problem of segmenting unknown images. We
have shown the human interface issues involved with object boundary specification can
be dealt with in a systematic fashion. This removes much of the uncertainty involved
when a human expert plays a direct role in the segmentation process. The results
for the corner detection method introduced in Chapter 4 also suggest that substantial
knowledge about the object boundary, both in terms of its form and the behavior of
the image function in the immediate region, which a user is unable to express directly,
can be extracted from a user specified path. Ideally, this knowledge may be exploited
to construct object models for the automatic segmentation of similar images.

Appendix A

GRIP - A GRaphics library for
Image Processing

A.1 Introduction

Vision problems do not, in general, lend themselves to easy automation [BB82]. While
good model based systems have been developed for a variety of specific applications, no
general methods have been developed which can be applied to an arbitrary analysis
problem. Thus, in producing new applications, and in dealing with images which
cannot yet be analyzed with fully automatic methods, it is often useful to allow an
expert to direct some stages of the analysis interactively.

Direct manipulation has been shown to be a particularly effective interaction style
in a number of user interface studies [Shn87]. The key characteristic of a direct ma­
nipulation interaction tool is the feeling on the part of the user that she is operating
directly on the object of interest, rather than requesting via some form of dialog that
a desired operation be performed. A good example is the act of driving a car using a
steering wheel and gas pedal, as opposed to giving verbal directions in the role of a
passenger. Because image analysis is a highly visual application domain, direct ma­
nipulation is a particularly suitable style of interaction. Image objects to be evaluated
can be easily indicated with a pointing device rather by some means of verbal descrip­
tion. In practice, this concept has been shown to work well in Athena [vVYtK+89], a
Macintosh based interactive karyotyping system. In that system, an expert is offered
the opportunity to interactively indicate that two objects should be joined or that a
single object should be split in two, as part of the segmentation process.

To support interactive methods in image processing and analysis, a graphics library
is required which can cooperate with an image analysis system. For example, if one
wants to split an image object, a path must be specified which indicates how the object
should be divided. The user specified path must be superimposed on the image display
as it is drawn so that the user can decide whether the resulting division is the one
intended. If the user is satisfied, the path must be used in the segmentation process
to produce two image objects from the single one, upon which the user drawing was
superimposed. To achieve this functionality, communication between the interactive

127

128 A. GRIP - A GRaphics library for Image Processing

graphics and the image processing system components is essential. Cooperative use
of input devices such as a mouse and keyboard, and output display devices must
be supported. Further, information about the data sets produced by each system
component must be shared, so that a graphical system data component, such as a path
specified by the user can be used to manipulate a image analysis system component
such as the object to be split.

Image processing differs from other application domains in the sense that most
data that a user wants to manipulate is a subset of the displayed image, and while
visually available, it is not represented geometrically or textually. Thus, tools are
required which allow the user to describe and manipulate the image subset of interest.
Direct manipulation techniques for specification of an arbitrarily shaped image regions
may therefore play a key role in many image analysis applications.

Currently, no systems exist which support the development of direct manipulation
user interfaces for image analysis. The Athena system was built from scratch, and
cannot be extended in any way. The Image 1.52 package [oH93] on the Macintosh
provides direct manipulation tools for experimental purposes, however, it lacks sup­
port for application development. Many systems, which support experimental image
processing as well as application development exist [oAP88, tKvBS+9o], but do not
provide support for direct manipulation. A number of general purpose user interface
toolkits [You89, Com85], contain useful graphical components such as menus and slid­
ers which are useful for image processing applications. However, these systems do not
provide support for sharing a display space as required for the graphical manipulation
of visible image data.

To address these shortcomings, we designed GRIP, a graphics library which sup­
ports the construction of direct manipulation to.ols for image processing and analysis.
Such tools are useful in an image analysis system, and essential for developing inter­
active image analysis applications. By combining GRIP with a general purpose user
interface toolkit such as that described in [You89], a high level toolkit which supports
interactive image analysis applications can be constructed.

In the next section, we consider the role that direct manipulation tools can play in
the various components of an image analysis problem. Key design issues which must
be addressed if such tools are to be constructed, are considered in Section A.3. This
is followed by a functional overview of GRIP, which provides the necessary graphics
support to build such tools. Because GRIP provides functionality similar to that of
the standard graphics system GKS [HDGS83], we list the similarities and differences
of the two systems in Section A.5.

A.2 Direct Manipulation and Image Analysis

GRIP is intended to provide tools for solving image analysis problems which cannot
(yet) be solved with fully automatic methods. In particular, GRIP can be used to
construct direct manipulation tools, which cannot be built using general purpose in­
teractive toolkits such as [You89]. In this section, we outline the components of a

A.2. Direct Manipulation and Image Analysis

A. Image

Acquisition

: B. Image ,
I I

, Restoration ,

: C. Image
I I
, Enhancement ,

'------·s-~'~--------_-_-_-_-_-_-

: G. Scene
I I
, Interpretation ,
'--------✓

: F. Object ,

: Classification : , ________ /

: E. Object
I I

, Measurements '
J

129

Figure A.1: The components of a general image analysis system. Depending on the
application at hand, one or more steps with a striped outline may be skipped. Image
acquisition and segmentation are fundamental steps in nearly every image analysis
problem. Traditional data driven image analysis corresponds with clockwise movement
through the steps starting with image acquisition.

general image analysis scheme, and consider the role direct manipulation interactive
techniques can play in extracting information from a scene.

Figure A.l shows the major components of a general image analysis system. In
traditional bottom up or data driven image analysis, the steps are performed one for one
in a clockwise manner, starting with image acquisition and stopping when the intended
information has been acquired. More recently, the benefits of top down or model driven
analysis schemes have been recognized. In this case high level expectations about the
image contents may be used to direct the low level processing. In these systems the
steps need not be followed in a strictly clockwise or counterclockwise fashion. [GAW93]
contains a nice example of a model-based object recognition system.

Involving an expert user in the analysis process is similar to using a model-based
scheme. Presumably, the user knows what information is to be extracted from the
image, and what part of the image is relevant. There are two key roles a user can play
in the analysis process.

Decision making: A user can decide what steps should be taken when. For
example, if there is insufficient contrast in the image to visually separate an
object from its background, the user may select an enhancement procedure, or
request a recalibration of the camera and a fresh image acquisition. Selecting
parameters for a given operation also falls under the decisive powers of a user.

Analysis operations: A user can perform or help the system perform individual
steps in the analysis of an image. For example, the user may recalibrate the
camera prior to image acquisition, or trace the boundary of an image region in
which measurements should be performed.

130 A. GRIP - A GRaphics library for Image Processing

The menus, sliders, dialog boxes and other interactive components found in general
purpose toolkits provide sufficient support for the first set of operations, as can be seen
in systems such as SCIL-1mage [oA91] for image analysis. We are therefore concerned
with the tools required for the user to interactively aid the system in specific analysis
steps.

Now, consider the components of an image analysis system depicted in Figure A.l.
Both image acquisition and restoration are global operations in which the role of the
user, beyond decision making, is limited. Image processing systems such as Adobe
Photoshop [Ado90] in which the user can manipulate the image data using various
painting tools have become increasingly popular in recent years, and fall in the category
of image enhancement methods. Because these tools manipulate rather than evaluate
the image data, however, they are not suitable for image analysis systems. In fact,
application of such tools makes objective analysis of the image impossible due to a
loss of information in the enhancement process.

Segmentation of an image into meaningful parts is the most difficult task to auto­
mate in image analysis [Sme91]. Simultaneously, it is an essential element in almost all
image analysis applications.1 The precision of all subsequent measurements on image
objects depends directly on the accuracy of the segmentation procedure. Segmentation
techniques are, in general, geared toward identifying the region of an image associated
with an object, or by identifying the path of the object region's boundary. Given ei­
ther description, the other can be computed directly. Both approaches, when applied
without a priori knowledge of an object's characteristics are severely limited in their
applicability to new analysis problems. In general, a segmentation method must be
based on a model of how the image object differs from its background. Models which
have been developed to date (see for instance [RA77, HS85]) are only applicable to a
limited set of image analysis problems.

If an expert is provided with drawing tools such as those found in general purpose
drawing packages (cf [Cla92]), then many images for which no appropriate segmen­
tation models have been developed can be segmented interactively, allowing further
object analysis to take place. Optimally, the user sketches should be taken as rough
outlines and corrected (see for examples Chapters 4 and 5). Alternatively, results ob­
tained with automatic methods might be corrected. Splitting an object in two based
on a user defined path, as in [vVYtK+89], is a useful example. Similarly interactive
techniques can be used to connect or split edges to produce complete object boundaries
if automatic edge detection techniques fail to do so.

Some object measurements which are difficult to obtain even when segmentation
has been successfully completed, might be extracted interactively. For example if the
distance between two image objects is of interest, the user can indicate the objects
under consideration with simple pointing and clicking techniques. If an image object is
to be matched with a graphical database model for identification, the user may select
the appropriate model from a database. The actual fitting might be assisted if the

1 Analysis of images known to contain a single texture provide a rare example of when segmentation
is not one of the analysis steps.

A.3. Design Considerations 131

user can drag a copy of the model to the object region of the image and interactively
modify its geometry (scaling, rotation, etc) until it matches the object in the image.

Specifying a region of interest with the operations available in most image analysis
systems is awkward and inaccurate at best, requiring the user to estimate and type in
the coordinates of a rectangle surrounding the region. It is often an important step in
reducing the amount of superfluous data extracted in the analysis of an image. Direct
manipulation techniques such as those found in drawing packages, for specifying re­
gions can therefore be very useful in many image analysis problems. In image database
applications, the ability to specify arbitrary geometric patterns is essential for image
database searches [GS92].

A.3 Design Considerations

An environment which enables the development of the interaction techniques described
in the previous section must support data communication and shared control of devices
among the graphics and image processing system components. At the most basic
level, all applications which display both graphical output and an image require that
information be exchanged about modifications to the display contents so that screen
updates can be handled correctly. Tools for correction of user defined boundaries such
as those in Chapters 4 and 5, clearly require significant interchange of data. The user
defined graphical sketch is used to drive the image processing, and the results (a 2D
path) must in turn be presented to the user. Likewise, the tools provided in Athena
[vVYtK+sg], drive the low level image operations based on graphical user input.

The key elements in GRIP which support the necessary cooperation between the
graphical and image processing components are incorporated in the workstation struc­
ture. As in standard graphics systems, the term workstation is used to refer to the
data structure which describes the physical and abstract input and output devices.
The workstation keeps track of the required physical display details such as its dimen­
sions and depth, and input device characteristics such as the number of buttons on
the mouse. For updating and interactive manipulation, a list of displayed graphical
objects is also maintained on a workstation. This data structure can also be used to
support of printers and storage files, neither of which has input devices. The worksta­
tion concept described here is common to many graphics packages including the GKS
[HDGS83] and PRIGS [Gra88] standards.

Because our primary concern is the support of interactive image analysis, we intro­
duce the concept of a shared workstation. By shared, we mean the structure supports
cooperation with applications and user interface tools for output to and updates of a
shared display space. Mechanisms are provided in the system so an application can
update the display space before or after GRIP update operations are executed.

Another essential aspect of GRIP for cooperative work with other systems is the
external input model. In sharp contrast with systems such as GKS and PRIGS, GRIP
responds to notifications from another system that input has occurred. After handling
the input, control is returned. In standard graphics systems, full control of all input
and output devices is assumed. This is one of the key problems in using those systems

132 A. GRIP - A GRaphics library for Image Processing

in cooperation with a window system or an application which may assume the same
control.

In the remainder of this section, we consider the key aspects of GRIP which enable
cooperative use of the input and output mechanisms. We first define a number of
terms which arise in the discussion.

Terminology

Much of the terminology used in this appendix is common in computer graphics lit­
erature, and definitions can be found in standard graphics texts such as [FvDFH90].
Terminology which is essential for understanding the description of GRIP is briefly
defined here, and in more depth in Section A.4.

The appearance of graphical output on a workstation is controlled in part by a
set of geometric transformations. The transformation mechanism used in GRIP is
analogous to that used in GKS and PRIGS. A user specified rectangular area in a user
defined, world coordinate coordinate system (WC) is mapped to the display coordinate
system (DC). The mapping is done via the normalized device coordinate system (NDC)
defined by the square {(0,0),(l,l)}. See Section A.4.4.

Graphical objects are formed by assigning graphical primitives such as the polyline,
polymarker and text primitives to a graphical object or group. A group is similar to a
segment in GKS in the sense that primitives in a group can be identified, manipulated
and deleted as a set.

A primitive attribute set contains information which controls the appearance of
primitives which use it. Some examples of primitive attributes are color, line thickness,
line style (e.g dotted, dashed), marker style (e.g. circle, star), and text font.

A set of group attributes is associated with each graphical object. These define the
group transformation, priority, and primitive attribute set for the object. The group
transformation determines the size, location, and orientation of all primitives in the
group. The priority determines the visibility of primitives in the group in relation to
primitives in other groups. If the display area of primitives in two or more groups
overlap, the priority determines which primitives will be "on top" and thus selected
first in pick operations.

A full description of these system components is found in Section A.4.

A.3.1 The GRIP Input Model

In order to coordinate activities with underlying packages, and to work in coopera­
tion with a user interface toolkit or management system, GRIP uses an external input
model. By this we mean that the application programmer controls the input devices
using the capabilities and tools of the window system, or the user interface toolkit
(which might be part of an image analysis package). By means of a call-back mecha­
nism GRIP is notified when specific events occur. The programmer defines functions
for those events which should be handled if some event occurs, and informs the appli­
cation via a function naming mechanism. Presumably, the system which controls the
input will call the appropriate function under a generic name when the event occurs.

A.3. Design Considerations 133

GRIP supports the locator and pick input classes, and assumes the choice, keyboard,
stroke and valuator input classes are supported by the user interface toolkit used, or
by the application programmer. The locator input device returns the world coordinate
position of a device location, and the pick input device returns an object identifier for
the nearest object to a device position. Which object is "nearest" depends on the
position, the object priorities (see Section A.4.2, and on parameters which may be
set by the programmer. For example, a programmer can specify that a filled area be
detected only if a location is within its boundaries, and that a marker have a large
neighborhood in which it is detected. A marker may then be picked even if a filled
area is actually closer. The object priority determines the order in which objects of
the same distance will be inspected. For interactive applications, the device position
usually corresponds to user pointer location, but a programmer may of course pass
any position.

Whether input is handled in event, request or sample mode is up to the programmer
and the toolkit being used to create the user interface. This is in sharp contrast to
the nonextensible internal input model used in GKS and PRIGS. It is not possible
to make use of modern user interface tools in applications based on those packages,
or to extend the input model beyond its original design [HM91]. This is unfortunate
as increasingly sophisticated dialog tools with buttons, sliders and text manipulation
support become widely available [Com85, You89].

For the locator input class, echo functions are provided which allow the program­
mer to provide feedback to the user in a number of common ways. For indicating a
change in functionality, a variety of cursors are available, and to give feedback as a
path is interactively defined, the rubber-band line and rectangle functions are avail­
able. Mechanisms are available for the programmer to use externally defined echo
functions, so application related feedback can be supported. For the pick device class,
highlighting of a selected graphical primitive or group can be performed by changing
the primitive attribute set associated with the group (see Section A.4.3). This allows
the programmer full control over the feedback mechanism for pick related functional­
ity. For example, an object picked for deletion might be highlighted differently than
one picked for scaling.

The model described here is essential for a graphics package to work effectively
with other systems. Rather than providing a fully defined input model, mechanisms
are provided for cooperation with an arbitrary input model. Interactive tools have been
created using the GRIP input tools in cooperation with the X event model [SGN88],
the X Toolkit and the X Widget Set [You89], and with the SCIL_Image package [oA91].
In all cases, the external model used in GRIP has proven to work harmoniously with
the input model of the system used. A detailed description in terms of the input
related functions is provided in Section A.4.5.

A.3.2 The NDC Grid

Two operations which depend on the ability to identify the graphical objects which
are displayed in the immediate neighborhood of a screen location are required for an
interactive system. The first, hit detection, is used to identify the closest displayed

134 A. GRIP - A GRaphics library for Image Processing

object in the vicinity of a screen location. This is necessary for pointing and drag­
ging techniques, or any other form of interactive object manipulation. To support
these interactive techniques, the object to be manipulated must be identified. The
second operation, damage repair, is used to regenerate the contents of a display area,
when damage has occurred. This may be necessary when an object is drawn, moved,
or erased, or if the priority of an object is modified. This requires the immediate
identification of all displayed objects to which damage may have been inflicted. For
direct manipulation techniques, it is essential that hit detection and damage repair be
performed immediately, to maintain a sense of control on the part of the user.

For rectangular objects, the bitBlt procedure described by Pike in [Pik83], has
proven an effective means of damage repair. For arbitrarily shaped graphical objects,
however, the situation is far more complex. Many graphical systems, including GKS,
postpone damage inducing operations until a complete redraw of the screen contents
is requested. This makes the fast display of small changes such as those caused by
deleting a small object impossible, and is therefore not suitable for highly interactive
environments. Another approach introduced by Bramer in [BS81], is to erase an object
by redrawing it in exclusive OR mode. This causes parts of objects which intersect it
to be redrawn as well, and thus may do more damage than it repairs. Even if no other
objects are displayed, this operation will leave the display of the underlying image
modified, and can therefore not be used when the display area is to be shared.

Warner introduced another approach in which the smallest enclosing rectangle for
each graphical object displayed on the workstation is computed [WK79]. If an object
is erased, the entire rectangle is cleared, and any graphical objects whose enclosing
rectangles intersect that of the erased object are redrawn using it as a clipping region
to prevent further damage. This method, while attractive, has the disadvantage that
many objects which never intersect the erased object may have to be redrawn. In
the worst case, the erased object is a diagonal line which extends from one corner to
another of the display space. If it is erased, the entire picture must be redrawn. If
there is an image in the display area, this is a costly and visible operation.

In the tiling method introduced by Slater [SDS88], the display space is divided
into an N x N grid of tiles, each containing w x h display pixels. When a primitive
is drawn, some calculations are performed to determine the set of tiles it intersects.
This tile set is then used for the same purposes as the enclosing rectangle described
above. Although elegant, the tiling method is limited by the fact that the grid is
defined in display coordinates. Its major drawback in a windowing environment is
that a window resize requires the entire tile grid to be destroyed and rebuilt, which
includes recalculation of the tile intersections for all primitives.

To address this problem, we introduce a tiling grid on the normalized device coor­
dinate (NDC) space defined by the rectangle { (0, 0), (1, 1)}. This allows us to define
an N x M grid in terms of a world coordinate system, which for image analysis applica­
tions might be expressed in terms of image dimensions. To support both hit detection
and damage repair, we maintain a list of the graphical primitives which intersect each
grid element or tile. This requires that when a primitive is drawn, the tiles it intersects

A.3. Design Considerations 135

be computed. The primitive identifier must then be stored in each intersected tile.
When deleted or geometrically modified, it must be removed from each tile's list.

Hit Detection

When a request is made that the nearest graphical object to a given location be
determined, a list is made of all primitives that intersect the grid element to which the
device location maps, as well as those primitives which intersect the eight connected
neighboring grid elements. Selection among the list of primitives depends on a number
of factors including viewport and object priority as discussed in Section A.4.

Damage Repair

In GRIP, the contents of the display device are updated whenever viewed data is
modified. Immediate updates are imperative for direct manipulation tools, as the user
must have instant feedback on the consequences of interactive input. A number of
data modifications in GRIP might inflict damage, and thus require repair. Drawing,
erasing or moving a graphical object requires the area effected by the modification
be redrawn. Any modification to a primitive attribute set requires that all primitives
using that set be redrawn. Most modifications to a groups' attribute set require a
redisplay of the group. Finally, if changes are made to an underlying image, graphical
objects in the area modified must be redrawn.

A key problem for GRIP is that the display of an underlying image must be kept
intact when graphical display contents are updated. Because copying image data to
a display is a costly operation which depends on the dimensions of the region to be
copied, reducing the size of the update region is essential for efficient damage repair. To
achieve acceptable performance, we use the NDC grid to limit the area of modification
to the set of tiles effected by the damage inducing operation.

As an example, consider what happens when an object is erased. Associated with
each primitive in the group, is a list of tiles intersected by the primitive which is
calculated when it is first drawn. The list of tiles for the primitive group to be erased
is assembled. For each tile in the list, the object name is removed from the list of
graphical objects for that tile, and a list is made of all other objects intersecting that
tile. A mask is created for updating the underlying image based on the tiles through
which the object passed. This is similar to drawing in the background color to erase a
primitive. The objects which intersected the grid elements are then redrawn in order
of priority using the set of grid elements as a clip mask.

Corresponding grid based methods are used for other operations which require
display updates. Using the grid for these operations reduces the area to be modified
to that actually effected by the change, and therefore allows them to be executed at
an acceptable speed for interactive purposes. In the context of image analysis, we
define the grid in terms of image coordinates, and require the divisions to fall between
pixels. Calculation of the image region associated with a tile set is thus efficient and
unambiguous.

136 A. GRIP - A GRaphics library for Image Processing

A.4 GRIP - A Functional Overview

The graphics library GRIP supports the development of applications for which two
dimensional interactive graphics functionality must be combined with image analysis
functionality, or with some other application functionality which requires access to the
input and/or output devices. Because GRIP has been successfully implemented as
part of the SCIL_Image package for image analysis [oA91], we describe parts of the
system using its incorporation in SCIL_Image as an example. The library is, however,
designed to share input and output devices with an arbitrary application.

Graphical output appears in a window opened and controlled by GRIP or in a win­
dow opened by an application with which it shares its display space. In SCIL_Image, a
GRIP display structure is initialized with useful defaults in each window containing an
image. Therefore graphical output can be sent to any or all image windows with the
use of the GRIP functions. Update of the graphical output when window exposes and
resizes occur, is handled automatically (in the routine which updates the image display
SCILJ:mage calls a GRIP redraw function). Further, when a new image is generated
in a display window containing GRIP output, this output will appear automatically
"above" the new image contents. The image sharing display space with GRIP is not
modified, only thE: display is.

A.4.1 Workstations

GRIP display objects are made visible on a graphics workstation. For interactive
image analysis applications, GRIP supports both a simple window and a shared display
window as workstations. The input and output devices of a simple workstation are
completely controlled by GRIP. A shared workstation allows another application to
share control over the workstation contents.

Before output can appear on the display, a workstation must be opened with either
GrOpen Ws(), or GrOpenSh Ws(). These functions initiate the necessary data struc­
tures to manage graphical output on the workstation. For each image display window
created in SCIL_Image, a GRIP workstation identifier is reserved and GrOpenSh Ws()
is called to allow output to be superimposed on the display of the image.

GRIP determines which of the open workstations should display a graphical ob­
ject based on a workstation activation scheme. All workstations that are active when
a graphical object is initially created will display the object. Workstations are acti­
vated and deactivated with GrActWs() and GrDeActWs(). Further, GrDeActAllWs()
deactivates all workstations. These functions provide a mechanism for controlling
the direction of output for applications such as SCILJ:mage, which use several work­
stations simultaneously. For instance, to insure that output appears in exactly one
workstation, GrDeActAllWs() can be called just prior to Gr Act Ws().

In addition to whether a workstation is active, the visibility of a given graphical
object on a workstation depends both on the locations specified for the graphical prim­
itives which make up the object, and the various transformations that these locations
traverse before being displayed (see Section A.4.4).

A.4. GRIP - A Functional Overview 137

A.4.2 Graphical Output

A group (or graphical object) in GRIP is a collection of graphical output primitives
which can be identified as a set for manipulation, modification and deletion. A unique
group identifier can be obtained with the function GrGetGid() for associating a number
of output primitives and subsequently manipulating them as a set. A group can be
created implicitly by referring to it in a primitive drawing function, or with a call to
GrSetGroupAttr() which sets its attributes. Graphical primitives may be added to or
deleted from a group whenever some GRIP workstation is active. A group is deleted
with GrDelGroup().

There are three graphical output primitives supported in the current implementa­
tion of GRIP.

GrPolyline() defines n - 1 connected lines between n points in the order specified.

GrPolymark() defines n markers at n points specified.

GrText() defines a character string at the specified location with the specified height.

Graphical primitives are created in a group. Each of the above functions for cre­
ating primitives requires that a primitive and a group identifier be specified. These
identifiers can be used to modify the set of primitive attributes with GrModPrimAttr(),
or to delete the primitive from its group with GrDelPrim(). Alternatively, NONE can
be specified as the primitive identifier, in which case the primitive can no longer be
identified for individual modification or deletion. No two primitives in the same group
may have the same primitive identifier. Visual characteristics of a primitive, such as
line width and marker style, depend on the primitive attribute set with which it is
created (see Section A.4.3). If a group is deleted, all primitives in the group will be
deleted.

Each group of primitives (or graphical object) in GRIP has the following set of
attributes associated with it which control its visibility and its visual characteristics.

Transformation: This is a matrix of affine transformation parameters that are used
to translate, rotate and scale all primitives in a group prior to display. By default,
the transformation is described by the identity matrix, and all primitives are
drawn exactly as specified. A number of routines are available for manipulation of
the group transformation. It is easy to define any scaling, rotation or translation
for all primitives in a group (see Section A.4.4).

Priority: The value of the group priority as compared with that of other groups
which share the immediate display space (e.g. overlap) determines which group
is "on top", or visible to the user. By default, the priority of a newly created
group is higher than that of all existing groups to assure it is visible when
created. GrSetGroupAttr() can be used to set the priority of a group explicitly.
Alternatively, the function GrSwitchPri() can be used to exchange the priorities
of overlapping groups.

138 A. GRIP - A GRaphics library for Image Processing

Primitive attribute set: This is the set of attributes which control the appearance
of output primitives which use default attributes. By default, these attributes
are inherited from the output workstation. The default primitive attribute set
is NONE. This means the primitive attribute set associated with each output
workstation on which the group is drawn will be used to determine the visual
characteristics for those primitives in which NONE has been specified as the
primitive attribute set (see Section A.4.3).

A group is visible on those workstations which are active at the time of its creation.
This is at the time the group identifier is first used in a drawing or manipulation
function and not when the identifier is reserved for use. A group can be copied to other
workstations after its creation with GrCopyGroup Ws(). This is the only function in
GRIP which can be used to produce output on an inactive workstation.

A.4.3 Primitive Attributes

A primitive attribute set contains information which controls the appearance of prim­
itives which use it. Some examples of primitive attributes are color, line thickness,
line style (e.g. dotted, dashed), marker style (e.g. circle, star), and text font. An
attribute set can be assigned to a primitive explicitly, or a primitive can inherit the
attribute set from its group. If no primitive attribute set is associated with the group,
the primitive will inherit its attributes from the set on each workstation on which its
group resides. This is explained in more detail below.

An attribute set is created with GrGetAid(), which returns a unique identifier for
the set. It can be deleted with GrDelAid(). The following functions are provided to
modify the parameters in a primitive attribute set.

GrSetColor() sets the color in which to draw the primitive.

GrSetLineStyle() determines whether a line will be solid, dashed, or dotted.

GrSetLineAttr() can be used to set the line join and cap styles as well as the style
and width.

GrSetMarkAttr() is used to set the style and size of a marker.

GrSetTextAttr() is used to set the font and direction of the text string.

Each primitive drawing function in GRIP takes an attribute set identifier as one of
its arguments. If NONE is specified as the attribute set, then the primitive attribute
set associated with the group in which the primitive has been defined will be used. If
this in turn is NONE (the default), the attribute set for each workstation on which the
primitive appears will be used. A primitive will have the visual characteristics defined
in the attribute set at the most specific level. Accordingly, the visual characteristics
of a primitive are determined by the primitive attribute set hierarchy in Figure A.2.

Each workstation is created with a generic set of attributes with the same default
settings as a set created with GrGetAid(). This set exists for the life of the workstation,

A.4. GRIP - A Functional Overview

Primitive 1

Attr Set: 3

139

Group 2

Attr Set: NONE

1 Primitive 1 1
I I
I_AlJr_§eJ.:j ...J

Primitive 2

Attr Set: NONE

Figure A.2: The primitive attribute inheritance scheme. Primitive 1 in Group 1 and
Primitive 1 in Group 2 use private attribute sets 3 (bold font and fat lines) and 4 (italic
font and fat striped lines) respectively. Primitive 2 in Group 1 inherits attribute set 2
(italic font and dotted lines) from Group 1. Finally because no attribute set is specified
for Primitive 2 in Group 2, and none is set in Group 2, the attribute set 1 (roman font
and solid line) are used to draw that primitive.

and cannot be modified in any way. When a workstation is opened, this is the default
set for primitives drawn on the workstation. Another set can be specified to be the
default by calling GrSetWsDefAttr(). This set can be modified with the functions
listed above to modify the default visual characteristics of a workstation.

A.4.4 Transformations

Before a graphical primitive is displayed, the set of display coordinates which corre­
spond with the user defined coordinates in the primitive definition must be computed.
The coordinate sets are related by a set of transformations. First, the affine trans­
formation associated with the group of primitives must be performed resulting in a
possible rotation, translation and scaling of the primitive with respect to the coordi­
nates in the primitive definition. Second, the user or world coordinate system in which
the user defines the primitives must be transformed to a normalized coordinate system
which is independent of both the application and the selected output devices. Finally,
the primitive coordinates in the normalized coordinate system must be transformed
to the output devices being used. Thus, there are three independent transformations
each primitive undergoes between its specification and its display. The transforma­
tions, along with the functions related to manipulating them, are discussed below. The
model used in GRIP is similar to that used in standard graphics systems as described
in [FvDFH90].

140 A. GRIP - A GRaphics library for Image Processing

The Normalization Transformation

A normalization transformation maps a rectangular window of the world to a rectan­
gular region in a normalized coordinate system. By default, the square defined by the
coordinate pair { (0, 0), (1, 1)} is mapped to itself. The rectangle of the world coordi­
nate system is completely determined by the user. With the function GrSetWindow()
the user can define a window in application (world) coordinates. For a plotting ap­
plication, the coordinates of the window might depend on the domain and the range
of the function being plotted. For an image analysis application, it may depend on
the size and the section of the image being investigated. The world coordinate win­
dow is mapped to a rectangular subsection or viewport of the normalized coordinate
system {(0, 0), (1, 1)} with GrSetViewport{). A number of normalization transforma­
tions or window /viewport pairs can exist simultaneously. GrSelTrans() selects the
normalization transformation to be used for drawing.

SCIL-1mage and the Normalization Transformation When SCIL_Image cre­
ates an image window, a default transformation is defined in which the dimensions
of the window in the world coordinate system corresponds to the image dimensions,
and in which the viewport corresponds to some part of the NDC (normalized device
coordinate) square {(0, 0), (1, 1)}. By selecting this transformation whenever graphi­
cal output is to appear in the workstation in which the image is displayed, primitives
defined in terms of image coordinates are superimposed on the displayed image as
expected (assuming simple group and workstation transformations).

If the image size is changed, the transformation associated with the image is mod­
ified so the world coordinate window coincides with the new image size. This is
managed by creating a unique normalization transformation for each image being dis­
played. For easy manipulation, the workstation in which the image is displayed and
the normalization transformation associated with the image are assigned the same
identifier.

A convenience function, Drawln(), is provided with SCIL_Image to simplify the
management of transformations and the workstation activation scheme for the majority
of applications. Although a very simple function, it prevents users wanting to perform
simple drawing in images from having to be aware of the normalization transformation
the workstation activation scheme. The source of Drawln() is listed in Figure A.3.

For drawing in non-image windows or for using GRIP in other systems, similar
functions can be written in terms of the application context.

The Group Transformation

The group transformation allows the user of the library to scale, translate or rotate
a group of primitives in any way desired. Primitives are stored in groups in the
coordinates in which they are specified. Prior to being displayed, they are transformed
according to the affine transformation matrix in the group attribute set, and then
according to the normalization transformation associated with the group. This is the
last transformation selected with GrSelTrans() prior to creation of the group.

A.4. GRIP - A Functional Overview

#include "image.h"
#include "grip.h"

Drawln(ip)
IMAGE *ip;
{

}

int wsid;
if((wsid = GetWsid(ip)) >= 0) {

GrDeActAllWs();
GrActWs(wsid);
GrSelTrans(wsid);

}
return(wsid);

141

Figure A.3: The source of Drawln() which allows easy handling of transformations
when using GRIP with SCI1-lmage.

There are two ways to modify the affine transformation associated with a group.
Any of the functions GrRotateGroup(), GrTranslateGroup(), GrScaleGroup(), and Gr­
RefiectGroup(), which apply a simple transformation to a group can be used. Each
of these functions applies the transformation indicated by its name, to the transfor­
mation already associated with the group. For example, if GrRotateGroup() is twice
requested to rotate a group 45°, the group transformation will then include a rotation
of 90°. GrRefiectGroup() reflects all primitives in a group about a specified line.

The group transformation can also be modified with the function GrSetGroupAttr().
This function is used to apply a predefined combined transformation. This can be use­
ful if an object is to be translated and rotated without a display update between the
two transformations. Each of the transformation functions, GrRotate(), GrTrans­
late(), GrScale(), and GrRefiect() is used to define a simple transformation. The
results can be combined with the function GrCompose().

In some applications, it is necessary to maintain a set of group transformations.
This is particularly useful for animation applications, in which the same set of trans­
formations may be applied and reversed numerous times. For these purposes, the
group transformation is implemented as a stack which can be manipulated with the
functions GrPushTrans() and GrPopTrans().

The Workstation Transformation

Finally, the primitive location must be mapped to the display. This mapping is de­
termined by the size of the display space and by the workstation transformation. By
default, this transforms the NDC square { (0, 0), (1, 1)} to the entire device coordi­
nate (DC) space. The area or window in NDC to be mapped can be modified with
GrSet Ws Window(). The viewport of the display to which it will be mapped can be
modified with Gr Set Ws Viewport(). Although this function is used to specify a rect-

142 A. GRIP - A GRapbics library for Image Processing

angle in device coordinates, the coordinates are specified in NDC, and transformed
automatically, because the device coordinates may not be known to the programmer.

Transformations in Practice

For simple image overlays, and interactive image manipulations such as those described
in this thesis, the default transformations and those maintained for SCIL_.Image are
sufficient. Using the function Drawln(), one need only select the output image display
window. For other sorts of interaction, such as zooming tools, the added control of
the transformation parameters is essential.

A.4.5 Input

As discussed in Section A.3.1, the GRIP input model is external, which means input
events can be accessed and handled according to the needs of an application pro­
grammer. A call-back mechanism is provided for accessing events, and a number of
functions are provided for handling them. Mechanisms to access internal data, such
as the world coordinate position of a given device coordinate pair, or what object is
closest to a given location are supplied. A number of tools are also provided for ma­
nipulating feedback according to a programmer's wishes. The programmer is free to
handle input independently of or in combination with the GRIP functions. Because
GRIP does not control input, but only provides functions for handling it, it can be
used in combination with interactive systems which do control input, such as the X
Toolkit and the SCIL_Image package for image analysis.

In this section, we discuss the tools available in GRIP for input handling. We begin
with a discussion of how events are accessed within SCIL_Image, to indicate how direct
manipulation tools for image analysis might be developed. We then describe input
control functions, which determine which information internal to GRIP is extracted
with information retrieving functions. Finally, tools supplied for providing feedback
to the user are described.

Accessing Events in SCIL_lmage

GRIP receives all input events associated with image windows from SCIL_Image after
they have been handled. The call-back mechanism which allows applications to handle
events of interest, works as follows. A number of function pointers are available which
are initially set to NULL. If the programmer wants to handle a particular event, the
function pointer can be set to a function which should be called whenever the event
occurs.

The available call-back functions are GrB-n-Press(), GrB-n-Release(), GrKey­
Press(), and GrMotion(). The press and release functions are supplied for up to five
mouse buttons. The functions are by default dummies, implemented as NULL func­
tion pointers in the C programming language [KR78]. In SCIL_Image, the appropriate
GRIP function is called after the corresponding event has been handled. Using the
function pointer mechanism, the programmer can reassign the function for a partic-

A.4. GRIP - A Functional Overview 143

ular event to one which handles the event (e.g. mouse button press) in a desired
fashion. The input handling for a particular action is changed by reassigning the
function pointer, or it can be shut off by resetting the pointer to NULL. The source
code example in Figure A.4 indicates how this works in practice. The same event han­
dling mechanism can be used in applications outside of SCIL_Image, with the function
GrHandleEvent().

Input Control Functions

The input control functions in GRIP allow the application programmer to determine
which data is returned by the information retrieval functions Gr Locate() and GrPick().
Both functions request information based on a device location. Which information is
returned depends on the viewport input priorities of the normalization transforma­
tions. That with the highest viewport input priority will be used in conjunction with
the workstation transformation to translate device coordinates to world coordinates.
The groups created while this transformation was active, will be the first inspected by
the function GrPick().

Suppose, for example that in SCIL_Image, one wants the location in image coordi­
nates of a particular device location in the window associated with image A. The first
step is to set the normalization transformation associated with image A to have the
highest viewport input priority. In Section A.4.4, we explained that a normalization
transformation with the same identifier as the workstation, is associated with each im­
age window. We can access the identifier for image A with the function Get Wsid(). To
assure this will be the transformation used to translate the device coordinates to world
coordinates (in this case image coordinates), the value returned by Get Wsid() can be
passed to the input control function GrTop VplnputPri() The function Gr Locate() is
then used to perform the actual translation from device to world coordinates. If one
wants to pick an object in image A, the same steps would be taken prior to a call to
GrPick(). Thus for highly interactive applications, a function GetFrom() analogous
to Drawln() (see Figure A.3) would be useful in SCIL_Image.

Finally, the input control function Gr Set VplnputPri() can be used to set the view­
port input priority of a normalization transformation to be higher or lower than that
of another. This allows one to control the relative viewport input priorities of trans­
formations with overlapping viewports.

Information Functions

The function GrLocate() produces the world coordinate position of a device location.
The translation to world coordinates is based on the normalization transformation with
the highest viewport input priority. Gr Locate() is essential for interactive drawing. For
example, when the user points to a particular device location, the location of the mouse
pointer can be translated to world coordinates, and a primitive can then be defined in
terms of its location.

The function GrPick() is used to determine which, if any, primitive is close to
a particular device location. As described in Section A.3.2, those primitives drawn

144

#include <stdio.h>
#include <Xll/X.h>
#include <Xll/Xlib.h>

A. GRIP - A GRapbics library for Image Processing

#include "grip.h" /* where function pointers are known * /

int hello();
int bye();

my_func()

{

}

/* set up responses to user button presses * /

GrBlPress = hello;
GrB2Press = bye;

hello(event)
XEvent *event;

/* handle event * /

{
printf("Hello\ n");

}

bye(event) /* handle event - shut off event handling * /
XEvent *event;

{

}

printf("My lips are sealed!\n");
GrBlPress = NULL;
GrB2Press = NULL;

Figure A.4: An example of the event access mechanism in GRIP. After hello() is
called, pressing the first mouse button will generate the text "hello" on the standard
output. If the second mouse button is pressed, a different message is printed, and
further button presses will be ignored.

A.5. GRIP versus GKS 145

in the immediate neighborhood about the device location are considered potential
hits. These primitives are sorted, first according to the viewport input priority of the
normalization transformation active when the primitive's group was created, and then
according to the relative priority of the primitive's group. The sorted primitive list
is inspected, and the first to satisfy the hit criteria will be selected. The hit criteria
depend on the primitive type.

To inspect graphical primitives, GrGetPlineData(), GrGetPmarkData(), and Gr­
GetTextData(), are provided. Each of these functions returns a pointer to a data
structure containing the data used to draw the primitive, and the attribute identifier
which determines its visual characteristics. These functions must be called for the
correct primitive type, which an be obtained for a particular primitive identifier with
GrGetPrimType().

Feedback Functions

GrChange WsCur() can be used to modify the form of the mouse cursor. This helps in­
dicate that a particular action is being performed. GrEchoLoc() echos the user pointer
position in terms of a base location. Two types of echo are provided, RUBBER_LINE,
and RUBBER_RECT, which are useful for interactive drawing. This feedback mech­
anism can be used in combination with application specific feedback functions.

No generic functions are available for echoing a primitive or group obtained with
GrPick(). Rather, a different primitive attribute set can be assigned to the primi­
tive, or group. In this way the feedback mechanism is controlled by the application
programmer.

A.5 GRIP versus GKS

Given that GRIP is a two dimensional graphics package, it is useful to know how
it differs from a standard graphics package such as GKS. Programmers familiar with
GKS, PRIGS and other packages should find it easy to use GRIP, as it shares a number
of features found in these packages. The key similarities and differences in GKS and
GRIP are the following.

Similarities

• Both systems have a multiple workstation model in which output is directed to
the workstations which are active when it is generated.

• Primitive groups in GRIP are similar to segments in GKS in the sense that a
group contains a number of primitives which can together be manipulated and
deleted.

• The transformation model is identical in both systems.

146 A. GRIP - A GRaphics library for Image Processing

Differences

• GRIP can share its display space with another package such as SCI1-1mage. The
lack of this capability in other systems was the motivating factor in the decision
to develop GRIP.

• Primitive groups can be created in GRIP at any time simply by referring to
them in a function which creates a primitive. The identifier must, however, be
reserved prior to use. In GKS, a segment must be created explicitly.

• Primitives can be added to or deleted from a group at any time. In other words,
primitive groups can be edited. In GKS, a segment can only have primitives
added to it while it is open. It must be closed explicitly. More than one segment
may not be open simultaneously.

• The primitive attribute inheritance model described in Section A.4.3 for the
manipulation of primitive attributes differs strongly from the GKS model.

• In GRIP, modifications to primitive attributes and changes induced by transfor­
mations result in an immediate update of the display contents. GKS supports a
programmable model for manipulating screen updates.

• GRIP has an external input model, which means that the programmer can handle
input according to the context within which it is used, be it SCILJ:mage, an X
Windows widget set, or another system. The input model in GKS is internal,
meaning that input is handled according to a fixed input model, and cannot be
extended in any fashion.

A.6 Implementation

GRIP has been implemented under the X Window System [SGN88] in the C pro­
gramming language [KR78], and runs on a variety of UNIX workstations including the
Sun-3, the Sun Spare workstation series, the SGI workstation series, the IBM RS6000,
the Stardent 3000, the HP9000, and a variety of Apollo workstations. It has been in­
corporated in the SCIL_Image package [oA91], and is employed both for experimental
image analysis and for application development.

The communication between SCIL_Image and GRIP works as follows. When
SCILJ:mage opens a window for image display, it calls GRIP, and passes pointers
to image and display structures using a connection data structure provided for shared
applications. In particular, it passes the application name, the X window identifier
and X window display pointer, and pointers to the SciUmage image structure and
to the X Window System image data structure (XImage). The application name is
used for resource handling, the X window and display pointer for directing graphical
output, and the XImage pointer for performing selective update operations.

SCIL_Image performs X Window event handling. When an expose event is received,
or when the XImage is modified due to the execution of an image processing operation,

A. 7. Conclusions 147

SCILJ:mage calls the appropriate redrawing function in the GRIP library. Window
resize events also cause SCILJ:mage to call a special function to update the workstation
transformation. All other events are passed to GRIP or to the application.

Finally, GRIP has been designed to be portable. The system components which
are UNIX and X-Window dependent make up only 15% of the source code and are
separated from the remainder of the sources. Moreover, the shared workstation and
cooperative input models in GRIP, while designed to work well with SCILJ:mage have
no knowledge of the context in which they are used, and can be easily incorporated in
other systems which require cooperative use of the input and output devices.

A.1 Conclusions

GRIP provides the basic graphics functionality necessary to the development of direct
manipulation user interface tools for image analysis. It was used to construct the
polygonal drawing and correction tools described in Chapters 2 and 4 of this thesis,
and for the tracing tool described in Chapter 5. It has also been used in various
analysis applications to display object boundaries, medial axes, and other geometric
object entities (see for example [PRS+94]).

Because we designed GRIP with direct manipulation tools in mind, we support
an intentionally simple display-update model which is effective for this application
domain. For applications such as animation or robot simulation, however, in which
numerous modifications follow one another immediately, it is far more efficient to
update the display after a series of modifications rather than after each individual
modification. Extending GRIP to allow periodic updates under programmer control
would make it useful for other applications in which communication with an image
analysis package is required.

The default update scheme combined with the attribute inheritance scheme makes
GRIP far easier to program than standard packages such as GKS and PHI GS. Further,
the external input model and the shared workstation model make GRIP fit in well with
currently available user interface toolkits. This makes it possible to develop highly
interactive applications for image analysis and other domains which require access to
the display and input devices.

148 A. GRIP - A GRaphics library for Image Processing

Bibliography

[Ado90]

[Ant93]

[Att54]

[AWJ90]

[Bad92a]

[Bad92b]

[BB82]

[BD90]

[BD92]

E.M. Arkin, L.P. Chew, D.P. Huttenlocher, K. Kedem, and J.S.B.
Mitchell. An efficiently computable metric for comparing polygonal
shapes. IEEE Transactions on Pattern Analysis and Machine Intelli­
gence, 13(3):209-216, March 1991.

Adobe Systems Incorporated, 1585 Charleston Road, Mountain View,
California. Adobe Photoshop, 1990.

P.P.J. Antonissen. Model-gestuurde object-detectie(in Dutch). Master's
thesis, Faculty of Math and Computer Science, University of Amster­
dam, Amsterdam, The Netherlands, February 1993.

F. Attneave. Some informational aspects of visual perception. Psycolog­
ical Review, 61:183-193, 1954.

A.A. Amini, T.E. Weymouth, and R.C. Jain. Using Dynamic Program­
ming for Solving Variational Problems in Vision. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(9):855-867, September
1990.

A.J. Baddeley. An error metric for binary images. In W. Forstner and
S. Ruwiedel, editors, Robust Computer Vision, pages 59-78, Karlsruhe,
1992. Wichmann.

A.J. Baddeley. Errors in binary images and an I.l' version of the Haus­
dorff metric. Nieuw Ar-chief voor Wiskunde, 10:157-183, 1992.

D.H. Ballard and C.M. Brown. Computer Vision. Prentice Hall, Engle­
wood Cliffs, NJ, 1982.

J. Buurman and R.P.W. Duin. Object recognition using inexact match­
ing of 3d graphs. In Progress in Image Analysis and Processing, pages
415-419, Singapore, 1990. World Scientific.

B. Bascle and R. Deriche. Features extraction using parametric snakes.
In Proc. of the 11th !APR International Conference on Pattern Recog­
nition, volume 3, Image Speech and Signal Analysis, pages 659-662, Los
Alamitos, CA, 1992. IEEE Computer Society Press.

149

150

[Bie90]

[Bor81]

[Bor86]

[Bre65]

[Bre77]

[Bro66]

[BS81]

[BS86]

[Can86]

[Cla92]

[CLR90]

[Com85]

[Cor70]

[Cou92]

[DCH88]

BIBLIOGRAPHY

E.A. Bier. Snap-Dragging in Three Dimensions. In Symposium on In­
teractive 3D Graphics, ACM Computer Graphics, volume 24, 2, pages
193-204, Snowbird, Utah, March 1990.

A.H. Barning. The Programming Aspects of ThingLab, A Constraint­
Oriented Simulation Library. A CM Transactions on Programming Lan­
guages, 3(4):353-387, October 1981.

A.H. Barning. Defining Constraints Graphically. In ACM SIGCHI Pro­
ceedings, pages 137-143, April 1986.

J.E. Bresenham. Algorithm for computer control of a digital plotter.
IBM Systems Journal, 4(1):25-30, 1965.

J.E. Bresenham. A linear algorithm for incremental digital display of
circular arcs. Communications of the ACM, 20(2):100-106, February
1977.

P. Brodatz. Texture: A Photographic Album for Artists and Designers.
Dover, New York, 1966.

B. Bramer and D.C. Sutcliffe. Application of GINO-F to Use Display
File Techniques on Raster Scan Displays. In EuroGraphics-1981, pages
271-280. North Holland Publishing Company, 1981.

E.A. Bier and M.C. Stone. Snap-Dragging. In ACM Computer Graphics,
volume 20, 4, pages 233-240, Dallas, August 1986.

J.F. Canny. A computational approach to edge detection. IEEE Trans­
actions on Pattern Analysis and Machine Intellgence, 8:679-698, 1986.

Claris Corporation, Mountain View, CA. MacDraw Pro Manual, 1992.

T.H. Carmen, C.E. Leiserson, and R.L. Rivest. Introduction to Algo­
rithms. MIT Press, 1990.

Apple Computer. Inside Macintosh. Addison-Wesley, Reading, Mass,
1985.

T.N. Cornsweet. Visual Perception. Academic Press, New York, 1970.

J. Coutaz. Critical issues: User modelling. In J. Larson and C. Unger,
editors, Engineering for Human-Computer Interaction, pages 419-423.
Elsevier, 1992.

R.A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. In
ACM Computer Graphics, volume 22, pages 65-74. (Proceedings SIG­
GRAPH), 1988.

BIBLIOGRAPHY 151

[DT88] L. Dorst and K. Trovato. Optimal path planning by cost wave propaga­
tion in metric configuration space. In SPIE Mobile Robots III, volume
1007, pages 186-197, 1988.

[FC77] W. Frei and C.C. Chen. Fast boundary detection: A generalisation and
a new algorithm. IEEE Transactions on Computers, 26:988-998, 1977.

[FD77] H. Freeman and L.S. Davis. A corner finding algorithm for chain code
curves. IEEE Transactions on Computers, 26:297, 1977.

[FE73] M.A. Fischler and R.A. Elschlager. The representation and matching
of pictorial structures. IEEE Transactions on Computers, 22(1):67-92,
1973.

[FLP89] H. Fuchs, M. Levoy, and S.M. Pizer. Interactive visualization of 3d
medical data. IEEE Computer-, 22(8):46-51, August 1989.

[FvDFH90] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. The Fundamen­
tals of Computer- Graphics. Addison-Wesley, Reading, Mass, 1990.

[FW94] M.A. Fischler and H.C. Wolf. Locating perceptually salient points on
planar curves. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16(2):113-129, February 1994.

[GAW93] F.C.A. Groen, P.P.J. Antonissen, and G.A. Weller. Model based robot
vision. In Instrumentation and Measurement Technology, pages 584-588,
Irvine, California, 1993. IEEE.

[Ger88] J.J. Gerbrands. Segmentation of Noisy Images. PhD thesis, Delft
University of Technology, Faculty of Electrical Engineering, Delft, The
Netherlands, November 1988.

[GG92] D.M. Gavrila and F.C.A. Groen. 3d object recognition from 2d images
using geometric hashing. Pattern Recognition Letters, 13:263-278, 1992.

[Gra88] ANSI (Computer Graphics). Programmer's hierarchical interactive
graphics system (phigs) functional description. Technical Report ANSI
X3.144-1988, American National Standards Institute, 1988.

[GS66] D.M. Green and J.A. Swets. Signal Detection Theory and Phycophysics.
Peninsula Publishing, 1988 edition, 1966.

[GS92] T. Gevers and A.W.M. Smeulders. Enigma: An image retrieval system.
In Pr-oc. of the 11th !APR Inter-national Conference on Pattern Recog­
nition, volume 2, Pattern Recognition Methodology and Systems, pages
697-700, Los Alamitos, CA, 1992. IEEE Computer Society Press.

[GW92] R.C. Gonzalez and R.E. Woods. Digital Image Pr-ocessing. Addison
Wesley, Reading, Mass, 1992.

152 BIBLIOGRAPHY

[Har78] R.M. Haralick. Statistical and structural approaches to texture. In
Proceedings 4th IJCPR, pages 45-60, 1978.

[HDGS83] F.R.A. Hopgood, D.A. Duce, J.R. Gallop, and D.C. Sutcliffe. Introduc­
tion to the Graphical Kernel System. Academic Press, London, 1983.

[HHN86] E.L. Hutchins, J.D. Hollan, and D.A. Norman. Direct Manipulation
Interfaces. In D.A. Norman and S. W. Draper, editors, User Centered
System Design, pages 87-124. Laurence Erlbaum Associates, Hillsdale,
NJ, 1986.

[Hil69] C. J. Hilditch. Linear skeletons from square cupboards. In B. Meltzer
and D. Mitchie, editors, Machine Intelligence 4, volume 4, pages 404-
420, Edinburgh, 1969. University Press Edinburgh.

[HM91] J. Hardenbergh and J. Michener. Integrating PRIGS and User Interface
Systems. Computer Graphics Forum, 10(1), 1991.

[HS85] R.M. Haralick and L.G. Shapiro. Survey image segmentation techniques.
Computer Vision, Graphics, and Image Processing, 29: 100-132, 1985.

[HSvdV+77] A.B. Houtsmuller, A.W.M. Smeulders, H.T.M. van der Voort, J.L. Oud,
and N. Nanninga. The homing cursor: A tool for three-dimensional
chromosome analysis. Cytometry, 14:501-509, 1977.

[Hud90] S.E. Hudson. Adaptive Semantic Snapping - A Technique for Semantic
Feedback at the Lexical Level. In ACM SIGCHI Proceedings, pages
65-70, April 1990.

[KDMSH92] T. Ki.ihme, H. Dieterich, U. Malinowski, and M. Schneider-Hufschmidt.
Approaches to adaptivity in user interface technology: Survey and tax­
onomy. In J. Larson and C. Unger, editors, Engineering for Human­
Computer Interaction, pages 419-423. Elsevier, 1992.

[Kir71] R. Kirsh. Computer determination of the constituent structure of bio­
logical images. Comput. Biomed. Res., 4:315-328, 1971.

[KR78] B.W. Kernighan and D.M. Ritchie. The C Programming Language.
Prentice Hall, Englewood Cliffs, NJ, 1978.

[KR82] L. Kitchen and A. Rosenfeld. Gray-level corner detection. Pattern Recog­
nition Letters, 1 (2) :95-102, 1982.

[KWT88] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Mod­
els. International Journal of Computer Vision, pages 321-331, 1988.

[LC87] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm. IEEE Computer Graphics, 21(3):163-
169, July 1987.

BIBLIOGRAPHY 153

[Lev88] M. Levoy. Display of surfaces from volume data. IEEE Computer Graph­
ics and Applications, 8(3):27-33, May 1988.

[LP90] L.M. Lifshitz and S.M. Pizer. A multiresolution hierarchical approach to
image segmentation based on intensity extrema. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(6):529-540, June 1990.

[LSWM86] X. Li, C. Shanmugamani, T. Wu, and R. Madhavan. Correlation mea­
sures for corner detection. In IEEE CVPR, pages 643-646, 1986.

[LT90] S. Liu and W. Tsai. Moment preserving corner detection. Pattern Recog­
nition, 23(5):441-459, 1990.

[LW88] Y. Lamdan and H.J. Wolfson. Geometric Hashing: A general and effi­
cient model-based recognition scheme. In Second International Confer­
ence on Computer Vision, pages 238-249, Tampa, Florida, 1988. IEEE.

[MH80] D. Marr and E. Hildreth. Theory of edge detection. In Proceedings:
Royal Society London, pages 187-217, 1980.

[MNR90] R. Mehrotra, S. Nichani, and N. Ranganathan. Corner detection. Pat­
tern Recognition, 23(11):1223-1233, 1990.

[MT81] J.E. Marsden and A.J. Tromba. Vector Calculus. W.H. Freeman and
Company, New York, second edition, 1981.

[Nil80]

[oA91]

[oAP88]

[OG93]

[OG94]

[OGA94]

[oH93]

[Pik83]

N.J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufman,
1980.

University of Amsterdam. SCIL-1mage Manual, 1991.

TNO Institute of Applied Physics. TCL-IMAGE User's Manual, Novem­
ber, 1988.

C.M. Orange and F.C.A. Groen. Model based corner detection. In
Computer Vision and Pattern Recognition, pages 690-691, New York,
New York, 1993. IEEE.

C.M. Orange and F.C.A. Groen. Magnetic contour tracing. In Workshop
on Visualization and Machine Vision, pages 33-44, Seattle, WA, 1994.
IEEE.

C.M. Orange, F.C.A. Groen, and P.P.J. Antonissen. An A* algorithm
for inexact polygon matching. In E. Backer, editor, Computing Science
in the Netherlands, CSN'94, November 1994.

National Institute of Health. Image 1.52, 1993.

R. Pike. Graphics in Overlapping Bitmap Layers. ACM Transactions
on Graphics, 2:135-160, April 1983.

154

[PM82]

[Pra77]

[Pra91]

[Pre70]

[RA77]

[RJ73]

[RK76]

[Rob65]

[Rob76]

[RSB89]

[SD89]

[SDS88]

[Ser82]

[SGN88]

BIBLIOGRAPHY

T. Peli and D. Malah. A study of edge detection algorithms. Computer
Graphics and Image Processing, 20:1-21, 1982.

W.K. Pratt. Digital Image Processing. John Wiley and Sons, 1977.

W.K. Pratt. Digital Image Processing, 2nd Edition. Wiley, 1991.

J.M.S. Prewitt. Object enhancement and extraction. In B. S. Lipkin
and A. Rosenfeld, editors, Picture Processing and Psychopictorics, pages
75-149. Academic Press, New York, 1970.

J. Piper, D. Rutovitz, D. Sudar, A. Kallioniemi, 0. Kallioniemi, F.M.
Waldman, J.W. Gray, and D. Pinkel. Computer image analysis of com­
parative genomic hybridization. submitted, 1994.

E.M. Riseman and M.A. Arbib. Survey computational techniques in
the visual segmentation of static scenes. Computer Graphics and Image
Processing, 6:221-276, 1977.

A. Rosenfeld and E. Johnston. Angle detection on digital curves. IEEE
Transactions on Computers, 22:875-878, 1973.

A. Rosenfeld and A.C. Kak. Digital Picture Processing. Academic Press,
New York, 1976.

L.G. Roberts. Machine perception of three dimensional solids. In
J.T Tippet et al., editor, Optical and Electro-Optical Information Pro­
cessing, pages 159-197. MIT Press, Campbridge, Massachusetts, 1965.

G.S. Robinson. Detection and coding of edges using directional masks.
Technical Report 660, University of Southern California, Image Process­
ing Institute, 1976.

K. Rangarajan, M. Shah, and D. Van Brackle. Optimal corner detector.
Computer Vision, Graphics, and Image Processing, 48:230-245, 1989.

L.H. Staib and J.S. Duncan. Parametrically deformable contour models.
In Conference on Computer Vision and Pattern Recognition, pages 98-
103. IEEE, June 1989.

M. Slater, A.J. Davidson, and M.B. Smith. Liberation from Rectan­
gles: A Tiling Method for Dynamic Modification of Objects on Raster
Displays. In EuroGraphics-1988, pages 381-392, 1988.

J. Serra. Image Analysis and Mathematical Morphology. Academic Press,
London, 1982.

R.W. Scheifler, J. Gettys, and R. Newman. X Window System. Digital
Press, 1988.

BIBLIOGRAPHY 155

[Shn83]

[Shn87]

[Sme91]

[Smi39]

[SS90]

[Str50]

[Sut63]

[Sut85]

B. Shneiderman. Direct manipulation: A step beyond programming
languages. IEEE Computer, 16(8):57-69, August 1983.

B. Shneiderman. Designing the User Interface. Addison-Wesley, Read­
ing, Mass, 1987.

A.W.M. Smeulders. An Introduction to Image Processing and Computer
Vision. University of Amsterdam, Amsterdam, The Netherlands, 1991.

N.V. Smirnov. On the estimation of the discrepancy between empiri­
cal curves of distribution for two independent samples. Bulletin Math.
University of Moscow, 2:3-14, 1939.

A. Singh and M. Shneier. Grey Level Corner Detection: A General­
ization and a Robust Real Time Implementation. Computer Vision,
Graphics, and Image Processing, 51:54-69, 1990.

D.J. Struik. Lectures on Classical Differential Geometry. Addison­
Wesley, Reading, Mass, 1950.

I.E. Sutherland. Sketchpad: A man-machine graphical communication
system. In SJCC, Baltimore, MD, 1963. Spartan Books.

S. Sutanthavibul. Xfig - Facility for Interactive Generation of Figures
under X11. Massachusetts Institute of Technology, Cambridge, MA.,
1985.

[tHRFKV92] B.M. ter Haar Romeny, L.M.J. Florack, J.J. Koenderink, and M.A.
Viergever. Invariant third order properties of isophotes: T-junction de­
tection. In P. Johansen and S. Olsen, editors, Theory and Applications of
Image Analysis, volume 2 of Series in Machine Perception and Artificial
Intelligence, pages 30-37. World Scientific, Singapore, 1992.

[tKvBS+9o] T.K. ten Kate, R. van Balen, A.W.M. Smeulders, F.C.A. Groen, and
G.A. den Boer. SCILAIM: A Multi-Level Interactive Image Processing
Environment. Pattern Recognition Letters, 11:429-441, 1990.

[vBtKK+93J R. van Balen, T. ten Kate, D. Koelma, . Mosterd B, and A.W.M. Smeul­
ders. Scilimage: A multi-layered environment for use and development
of image processing software. In H.E. Christensen and J.L. Crowley, ed­
itors, Experimental Environments for Computer Vision and Image Pro­
cessing. World Scientific Press, Singapore, 1993.

[vM64] R. von Mises. Mathematical Theory of Probability and Statistics. Aca­
demic Press, New York, 1964.

[vVYB89] L.J. van Vliet, LT. Young, and A.L.D. Bekkers. A nonlinear Laplace
operator as edge detector in noisy images. Computer Vision, Graphics
and Image Processing, 45:167-195, 1989.

156 BIBLIOGRAPHY

[vVYtK+89] L.J. van Vliet, LT. Young, T.K. ten Kate, B.H. Mayall, F.C.A. Groen,
and R. Roos. Athena, A Macintosh Based Interactive Karyotyping Sys­
tem. In C. Lundsteen and J. Piper, editors, Automation of Cytogenetics,
pages 47-66. Springer Verlag, Berlin, 1989.

[Wat87] R.J. Watt. An outline of the primal sketch in human vision. Pattern
Recognition Letters, 5(2):139-150, February 1987.

[WD84] K. Wall and P. Danielsson. A Fast Sequential Method for Polygonal
Approximation of Digitized Curves. Computer Vision, Graphics, and
Image Processing, 28:220-227, 1984.

[WK79] J. Warner and N. Keifhaber. The DIGRAF Implementation of the Pro­
posed GSPC Standard. In EuroGraphics-1979, Balogna, Italy, 1979.

[WS92] D.J. Williams and M. Shah. A Fast Algorithm for Active Contours
and Curvature Estimation. CVGIP: Image Understanding, 55(1):14-26,
January 1992.

[WSSD93] M. Worring, A.W.M. Smeulders, L.H. Staib, and J.S. Duncan. Parame­
terized feasable boundaries in gradient vector fields. In H.H. Barrett and
A.F. Gmitro, editors, Proceedings of Information Processing in Medical
Imaging, volume 687 of Lecture notes in computer science, pages 48 -
61, 1993.

[You89] D.A. Young. X Window Systems Programming and Applications with
Xt. Prentice Hall, Engelwood Cliffs, NJ, 1989.

[ZH83] A. Zuniga and R. Haralick. Corner detection using the facet model. In
Computer Vision and Pattern Recognition, pages 30-37. IEEE, 1983.

Summary

The segmentation of an image into meaningful parts is a key step in nearly every im­
age analysis problem. Accurate segmentation is crucial for object identification and
feature analysis. In spite of the apparent ease with which approximate segmentation
is performed with the human eye, it remains a central problem in computer vision.
In general, successful segmentation requires a good model of the image function, par­
ticularly in the neighborhood of object boundaries. In this thesis, we introduce an
approach to segmentation called supervised boundary formation for the segmentation
of images for which we have insufficient models. With this approach, an image is
partitioned based in part on user sketches of image object boundary paths. Problems
which arise in the effort to segment images with this approach are investigated for two
interactive path specification models, namely connect-the-dots and freehand drawing.
These two models were selected because they have been effective for interactive path
specification in drawing packages. Because a user path cannot be assumed to be an
accurate description of an object boundary path, supervised boundary formation is
an effective method of segmentation only if it provides a means for correcting a user
input path. Such correction, of course, requires user input be correctly interpreted.

Aspects of user interpretation which are critical for image object boundary for­
mation are formally addressed for both the connect-the-dots and freehand drawing
input models. Based on numerous experiments, we show supervised boundary forma­
tion to be an effective approach to the segmentation of images for which a sufficient
segmentation model is unavailable.

User error model To correct a user sketch of an image object boundary, it is es­
sential to understand the type and degree of error a user makes in producing it. In
Chapter 2, we describe experiments used to measure user errors in the specification
of corners on polygonally shaped objects. A number of users were presented with
images containing arbitrary polygonal objects and asked to specify points correspond­
ing to corners on the object boundaries. Lines were drawn automatically between
the subsequent points specified by the user ("connect-the-dots"). For each corner on
the resulting polygonal path, we measured the error in distance, corner angle, corner
orientation, and corner scale. These experiments lead us to conclude that the type
and degree of errors made by individual users in the specification of corner points, can
be predicted. Among the tested users, however, performance differed significantly. A
user dependent error model for corner specification is therefore derived based on the
results. This model consists of the maximum expected distance between a user defined

157

158 Summary

point and the corresponding point on the object boundary, and the bias and deviation
of the user corner angle, orientation and scale in comparison with the model corner in
the image. In Chapter 4, this model is employed to develop a user adaptable technique
for corner correction.

Inexact polygon matching To perform the corner error measurements described
in Chapter 2, points in a user defined polygon must be matched with those in a model
polygon. An isomorphic relationship between the user defined polygon and the object
model polygon cannot be assumed, as users do not always specify all corner points
on the test object, and sometimes specify extra ones. To address this problem, we
introduce an algorithm for inexact polygon matching of nonisomorphic polygons. A
goodness-of-fit measure for comparing polygon components (points or line segments)
is quantified in a cost function which is applied to every component pair derived from
two polygons. Subsequently, we determine an optimal fit of the polygons with an A*
algorithm that exploits the cyclic characteristics of polygons and allows points to be
skipped in either polygon.

A general framework for the development of a cost function used to compare pos­
sible matches is described. Within this framework, we developed a cost function used
to match the user and model polygons generated by the experiments in Chapter 2,
and a cost function suitable for robotics applications in which the camera position is
fixed. The algorithm was used to correctly match each of the user input polygons
in the experiments in Chapter 2 with the associated model polygon. In a robotics
application, it has been successfully applied to decide whether an object in an imaged
scene matches one extracted from a database. A complexity analysis shows it to be
two orders of magnitude faster than existing methods for object matching. The key
contribution which distinguishes our approach from other polygonal object matching
methods, however, is the separation of the node pair match evaluation from the global
matching decision. This allows us to guarantee that, with respect to a given cost
function, the match of the polygons produced with our algorithm is a global optimum
match.

Model-based corner detection In Chapter 4, we turn our attention to the cor­
rection of polygonal object boundary paths, specified by a user using a "connect-the­
dots" drawing tool. To correct user errors made in the specification of corner points on
polygonally shaped objects, we develop a model-based corner detection method. Our
scheme enables the evaluation of an image region based on the geometry of a corner
in a polygonal shape specified by a user. Based on the user error model derived in
Chapter 2, we examine constraints on the geometry of corner on the image object in
relation to the geometry of a corner specified by a user. For a given user error model
and an image feature measure ,\ we examine conditions under which we can extract
an image corner model with respect to the measure >... We show that if the window
size required to measure >.. and the user error in distance are both sufficiently small in
relation to the corner angle and scale, then we can establish the presence of a ramp
or roof corner as measured by >... In our experiments, we show that if >.. measures the

Summary 159

grey value intensity, we determine the correct corner model in 95% of the cases. We
use the model to localize the corner in the object boundary.

Magnetic contour tracing In Chapter 5, we develop a method for real time correc­
tion of a user specified boundary path. The interactive model supported is "free-hand
drawing", but rather than producing the path actually traced by the user, we extract
a best approximation to an object boundary path in the immediate region. Under the
assumption that the user path satisfies specific conditions in relation to the path of
the object boundary, we derive a set of candidate digital paths guaranteed to contain
a best digital approximation to the image object boundary. If our model of the image
function along the image object boundary is correct, the dynamic programming algo­
rithm described in Chapter 5 will produce a best approximation to the path of the
object boundary.

The definition of a cost function determines which among a set of candidate paths
is selected. For interactive segmentation, the cost function is defined as a weighted
combination of a user term based on the direction of user movement and a boundary
(gradient) strength term. The influence of the weights is evaluated experimentally,
and the set which minimizes the errors made over the length of a boundary is used.
The magnetic ink method produces a good approximation of a boundary path for a
range of test images containing discs, ellipses and hexagons. Moreover, it works very
well for a far wider combination of input and boundary paths than the theoretical
arguments would lead us to believe.

Conclusion The results in this thesis show that the uncertainty about the segmen­
tation results involved when a human expert plays a direct role in the segmentation
process, can be eliminated based on user modeling and formal analysis. By approach­
ing the human interface issues involved with image object boundary specification in a
systematic fashion, we have shown supervised boundary formation to be an effective
approach to segmentation.

160 Summary

Samenvatting

Het opdelen van een beeld in zinvolle gebieden is een essentiele stap bij beeldanalyse.
Nauwkeurige segmentatie is cruciaal voor het identificeren van objecten in een beeld
en voor het meten van gegevens als omtrek en vorm van objecten. Hoewel het voor
een mens vaak eenvoudig is om een beeld te segmenteren, blijft het automatiseren van
dit proces een van de moeilijkste problemen in de beeldanalyse. Om een beeld auto­
matisch te kunnen segmenteren, is een goed model van de beeldfunctie in de omgeving
van objectgrenzen vereist. Voor een willekeurig beeld is echter in het algemeen geen
geschikt segmentatiemodel voorhanden. In dit proefschrift introduceren we een nieuwe
aanpak, "supervised boundary formation", voor het segmenteren van beelden waar­
voor onvoldoende modellen beschikbaar zijn. Bij deze aanpak gebruiken we een door
een mens gemaakte schets van de objectgrenzen in een beeld om een segmentatiemodel
te bouwen.

De problemen die zich bij onze methode voordoen hebben we voor twee interac­
tieve tekenmodellen onderzocht, namelijk "connect-the-dots" en "freehand drawing".
Deze twee modellen zijn gekozen omdat ze in tekenpakketten handig zijn gebleken bij
het schetsen van paden. Omdat niet zonder meer mag worden aangenomen dat een
gebruikersschets de werkelijke objectgrens precies weergeeft, is "supervised boundary
formation" alleen doeltreffend als het automatisch verbeteren van een gebruikersschets
dee! van de methode uitmaakt. Het aanpassen van zo'n schets vereist uiteraard een
correcte interpretatie van de gebruikersinvoer.

Voor beide tekenmodellen onderzoeken we daarom op formele wijze aspecten van
de gebruikersinvoer die van belang zijn voor beeldsegmentatie. Aan de hand van
talrijke experimenten tonen we aan dat "supervised boundary formation" een effec­
tieve methode is voor het segmenteren van die beelden waarover te weinig informatie
beschikbaar is om de segmentatie volledig automatisch te verrichten.

Een gebruikers-foutenmodel Om een door de gebruiker gegeven schets van de
grens van een object in een beeld te kunnen corrigeren, moeten we weten wat voor
soort fouten een gebruiker maakt bij het tekenen en hoe groot die fouten kunnen
zijn. In Hoofdstuk 2 van dit proefschrift beschrijven we experimenten om de fouten te
meten die iemand maakt bij het aangeven van hoekpunten van polygonale objecten.
Een aantal personen is gevraagd om de hoekpunten van polygonale objecten in test­
beelden aan te geven. Opeenvolgende punten in de tekening worden automatisch door
lijnstukken verbonden ("connect-the-dots"). Voor iedere hoek in de aid us verkregen
schets hebben we vervolgens de geometrische eigenschappen positie, aantal graden,

161

162 Sam en vatting

orientatie en schaal vergeleken met de eigenschappen van de corresponderende hoek
van het testobject. Uit deze experimenten bleek dat de fouten die gemaakt worden
bij het aangeven van hoekpunten per persoon voorspelbaar zijn. Derhalve hebben we
een gebruikersspecifiek foutenmodel kunnen afleiden. In dit model wordt de maximaal
verwachte afstand tussen een punt dat een gebruiker aangeeft en het overeenkomstige
punt op de feitelijke objectgrens beschreven, en zijn de bias en de standaarddevi­
atie voor de afwijkingen in het aantal graden van de hoek, de orientatie en de schaal
opgenomen. In Hoofdstuk 4 maken we van dit model gebruik om een aan een gebruiker
aan te passen methode voor hoekcorrectie te ontwikkelen.

Polygoon matchen Om bovengenoemde hoekafwijkingen te kunnen meten moet
eerst iedere hoek die een gebruiker in een polygoon aangeeft met een hoek van het
testobject gei:dentificeerd worden. Tijdens het tekenen zou een gebruiker per ongeluk
een of meerdere hoekpunten van het object kunnen overslaan of extra punten kunnen
aangeven. Men mag dus niet aannemen dat de gebruikerspolygoon isomorf is met
de polygoon in het testbeeld. Om dit probleem aan te pakken introduceren we in
Hoofdstuk 3 een methode voor het matchen van twee polygonen. Eerst wordt een
kostenfunktie beschreven die een waarde toekent aan de mate van verschil tussen
componenten (punten of lijnstukken) van polygonen. Met deze kostenfunktie wordt
iedere component in de ene polygoon vergeleken met iedere component in de andere.
Een A* algoritme berekent uit de resulterende matrix de reeks van componentparen
die een match van de twee polygonen specificeert en optimaal is met betrekking tot de
gegeven kostenfunctie. Dit algoritme benut de cyclische kenmerken van een polygoon
en is daardoor zeer efficient.

Een algemeen raamwerk voor het ontwikkelen van kostenfuncties voor willekeurige
applicaties wordt beschreven. Binnen dit raamwerk hebben we een kostenfunctie ont­
worpen om de door gebruikers geschetste polygonen en de testpolygonen uit Hoofd­
stuk 2 met elkaar te vergelijken. We zijn er vervolgens in geslaagd om met ons A* algo­
ritme iedere geschetste polygoon correct te matchen met het bijbehorende testobject.
Verder hebben we binnen hetzelfde raamwerk een kostenfunctie voor lijnstukken ont­
worpen voor een robotica toepassing. Het is gelukt om met onze methode objecten
die in de ruimte voorkomen te matchen met objecten uit een databestand.

Een complexiteitsanalyse toont aan dat onze methode twee orden van grootte
sneller is dan bestaande methoden. Belangrijker is echter dat onze methode, in tegen­
stelling tot andere, het met een kostenfunctie vergelijken van componenten scheidt van
het berekenen van een geschikte reeks componentparen. Door deze scheiding kunnen
we garanderen dat de gevonden reeks optimaal is met betrekking tot de gebruikte
kostenfunctie.

Model gebaseerde hoekdetectie In Hoofdstuk 4 houden we ons bezig met het
corrigeren van een door een gebruiker aangegeven hoekpunt in een polygonale schets
die met de "connect-the-dots" methode is gemaakt. Hiertoe proberen we eerst een
model van het beeld in het gebied van het aangegeven punt te bouwen. Aan de
hand van de geschetste hoek in de omgeving van het punt wordt een geometrisch

Sam en vatting 163

model van de hoek in het beeldobject gebouwd. Voor een gegeven functie .\ die een
bepaald kenmerk, bijvoorbeeld grijswaarde of textuur, van een punt in een beeld meet,
onderzoeken we onder welke voorwaarden we een model van de hoek kunnen afleiden.
We tonen aan <lat het mogelijk is om een op .\ gebaseerd hoekmodel te bouwen als
zowel het gebied <lat nodig is om .\ te meten als de te verwachten gebruikersfout
klein is in verhouding tot het aantal graden en de schaal van de door de gebruiker
aangegeven hoek. Het door de gebruiker geschetste polygonale pad deelt het gebied
rondom het aangegeven hoekpunt in tweeen. Als de waarden van de functie .\ voor
de twee gebieden duidelijk verschillend zijn, zijn we in staat het soort hoek (ramp of
roof) te bepalen en vervolgens de positie van het eigenlijke hoekpunt te lokaliseren.

Het magnetisch schetsen van contouren In Hoofdstuk 5 van <lit proefschrift
wordt een methode ontwikkeld voor dynamische correctie van een gebruikersschets. In
<lit geval maken we gebruik van het "freehand drawing" tekenmodel, maar in plaats
van het door de gebruiker geschetste pad weer te geven, wordt de schets aangepast aan
de nabijgelegen beeldgrens. Het lijkt also£ de pen van de gebruiker door een magneet
naar de grens van het object wordt getrokken. Indien de verhouding tussen de schets
van de gebruiker en het pad van de objectgrens aan bepaalde eisen voldoet, kunnen
we een verzameling digitale paden afleiden die gegarandeerd de beste benadering van
de objectgrens bevat. Het algoritme <lat we in Hoofdstuk 5 beschrijven kan een opti­
male digitale benadering van een objectgrens vinden als we een correct model van de
beeldfunctie voor de omgeving van die grens hebben.

We selecteren de optimale benadering van een grens uit de verzameling van mo­
gelijke digitale paden met behulp van een kostenfunctie. De kostenfunctie voor inter­
actieve beeldsegmentatie wordt bepaald door de tekenrichting en de verwachte_eigen­
schappen van de beeldfunctie in de omgeving van de objectgrens. Hoe zwaar elk van
deze factoren mee moet wegen hebben we experimenteel vastgesteld. De magnetische
schetsmethode leidt tot een goede digitale benadering van objectgrenzen van cirkels,
ellipsen en hexagonen in testbeelden. Bovendien levert de methode ook uitstekende
resultaten bij een groot aantal beelden die niet voldoen aan de theoretische eisen.

Conclusie In <lit proefschrift tonen we aan <lat het nemen van gebruikersinvoer als
uitgangspunt voor beeldsegmentatie tot goede resultaten leidt, mits men zich baseert
op een formele analyse van gebruikersschetsen. Als gebruikerskarakteristieken syste­
matisch warden gemodelleerd kan "supervised boundary formation" een doeltreffende
aanpak voor beeldsegmentatie zijn.

164 Sam en vatting

Acknowledgements

First and foremost, I want to thank my research advisor Frans Groen for his consistent
and excellent guidance. His interest and enthusiasm were always stimulating. His
careful reading and constructive criticism of numerous drafts of this thesis resulted in
a much clearer text. Most of all, his patient questions ("snap ik niet") required me to
develop and present my work in an increasingly formal manner. It is a great honor to
have worked with him.

I am grateful to Ted Young for providing me with the opportunity to perform this
work and a stimulating atmosphere in which to do so. Not only was I able to benefit
from the excellent atmosphere in the Pattern Recognition Group at the TU Delft, but
was given the chance to spend time in the Computer Systems Group at the University
of Amsterdam. This was ideal given the nature of my research and the location of my
advisors. Ted's useful comments and suggestions on experimental methods allowed me
to reach stronger conclusions about the practical applicability of my techniques. Due
to his careful review of this thesis, I was able to remove almost all of the modifiers
that were dangling.

What a treat to have Leo Dorst appear one April. He always seemed happy to
answer simple and complicated questions, and was even kind enough to act as if all were
the latter. His willingness to review my work, and his art for identifying interesting
issues were most beneficial. His great sense of humor cheered many a day. Finally,
Leo's careful reading of this thesis allowed me to remove many many double words.

Arnold Smeulders made room for me in the image processing group at the UvA,
then known as the breiclub. The informal group discussions provided an excellent
forum for the exchange of ideas. I am especially indebted to Arnold for his encourage­
ment and constructive interest in early phases of this research.

I am honored that in addition to those mentioned above, dr. ir. J.J. Gerbrands,
prof. dr. ir. F.W. Jansen, and prof. dr. ir. M.A. Viergever were willing to review my
thesis as members of the reading committee.

As a master's student at the UvA, Rene Vreeswijk worked on a contour tracing
technique, which helped me solidify ideas on the material in Chapter 5.

Patrick Antonissen is thanked for sacrificing some weekends to explain a predecessor
to the polygon matching method, which he developed as a masters student.

I'm grateful to the following people who, on short notice, willingly participated in
the experiments described in Chapter 2: Richard van Balen, Kai Compagner, Casper
Dik, Patricia Griffin, Bianca Jongkind, Marijke Kaat, Dennis Koelma, Frank van der
Linden, Benno Mosterd, Patrick van der Smagt, Susan Uskiidarh, and Frans Vos.

165

166 Acknowledgements

Secretaries are often forgotten, but if they forgot us, just what would we do? At
the UvA, Laura Lotty, Ina van der Velde, Monique Kleinendorst, and Virginie Meijer
saw to it that my articles raced away in the nick of time, and that lots of now forgotten
details were seen to. Annelies Frijters called me regularly from the TU Delft in the final
stages of preparing my thesis and the arrangements that go with it. Her thoughtful
reminders allowed me to sleep peacefully.

Without a good system, work of this nature cannot take place. At the UvA, I'd
especially like to thank Gert Poletiek for his immediate help with anything I asked,
and Casper Dik for happily handling all kinds of problems at odd hours. In Delft, I
enjoyed working with Wouter Smaal in our efforts to keep the network running there.
I'm particularly grateful for his effort, especially in the last two years, to relieve me of
system tasks so I could work on my thesis.

The Pattern Recognition Group at the TU Delft was an especially stimulating
atmosphere due to the quality of its scientific staff. It was a pleasure and an honor to
work with Erik Bouts, Hans Buurman, Bob Duin, Pieter Jonker, Martin Kraaiveld, Jim
Mullikin, Hans Netten, Wouter Schmidt, Karel Strasters, Fons Verbeek, Piet Verbeek,
Ben Verwer, Lucas van Vliet, Albert Vossepoel, and Henri Vrooman. I particularly
want to thank Lucas for helping me many times in both scientific and practical ways.

The less formal atmosphere at the UvA, with discussions in the hallway carried
out by Richard van Balen, Rein van den Boomgaard, Leo Dorst, Theo Gevers, Dennis
Koelma, Benno Mosterd, and Marcel Worring, was stimulating and enjoyable.

Without Rein's ready advice on the proper use of latex, gnuplot, postscript, etc.,
this thesis would look a lot different. Discussions with Richard on software issues
related to image analysis were always lively and fun. Dennis ("I don't write bugs, I
read 'em") and Benno helped me remove annoying little features from my programs.

Benno and I shared an office for several years in great harmony. He always knew
when to let me work and when to make a joke. He put up with my intermittent messes
and dirty dishes, cheered me up and gave me peppermints when I needed them most.

In the development of this thesis, it has been beneficial to have had contact with
a number of scientists in neighboring research institutes. Most especially, I want to
thank Adrian Baddeley, for discussions on error metrics, Ton ten Kate, for cooperative
efforts on user interfaces for image analysis, and Peter Nacken, for helping me notice
the applicability of some techniques in different contexts.

The Department of Pure Juggling at the Circus voor Wiskunde & Informatica has
been an entertaining distraction. The theoretical sessions, with the pinball machine
used for demonstrations were often even more enlightening than the laboratories.

Many friends have been encouraging, understanding and fun. In particular, Yvette
Oomen, Adrian Baddeley, Marijke Kaat, Susan Uskiidarh, Julie Hewitt (albeit re­
mote), Leo Dorst and Phyllis Crabill have brightened my days.

Last, but most certainly not least, Emma ("zal ik even voor je bell en?") van der
Meulen has been helpful in every way. If I mention that she cooked me tasty meals,
helped with page layout and figures, and rewrote my Dutch summary so Dutch people
could read it too, then at least I made a small start. Emma is a friend of the finest
kind. To say more would be to say less.

Curriculum Vitae

Carol Orange was born on December 7, 1958 in Salem, Oregon. She acquired her
Washington High School diploma in June, 1976 based on her work at Clinton Street
School and Willamette Learning Center in Portland, Oregon. In 1980, after gaining
some work experience, she began her university studies at Reed College. She concluded
her thesis entitled "The Schnirelmann Result and the a+/3 Theorem" in 1984 at Reed,
and obtained the Bachelor of Arts degree in Mathematics accompanied by a letter of
commendation for academic excellence.

From 1984 to 1989, she worked as a UNIX systems programmer first at Lucas­
film, Ltd. in San Rafeal, California, and later at the Center for Mathematics and
Computer Science in Amsterdam (CWI). In 1989, she began her PhD work in the
Pattern Recognition Group of the Applied Physics Department at the Delft Univer­
sity of Technology. From 1989 to 1994, part of her research was performed in the
Computer Systems Group of the Department of Mathematics and Computer Science
at the University of Amsterdam.

167

Stellingen

behorende bij het proefschrift

Supervised Boundary Formation

Carol Orange

31 oktober 1994

1. Zowel het soort fouten als de grootte van de fouten die een gebruiker zal maken bij het
interactief schetsen van de grens van een object in een beeld kan worden voorspeld.

2. Een door een gebruiker gemaakte schets van de grens van een object, kan als basis
dienen voor het ontwikkelen van een model van de beeldfunctie in de omgeving van
de grens. Dit model kan vervolgens voor beeldsegmentatie worden gebruikt.

3. Als de eigenschappen van een gebruiker met betrekking tot het schetsen van object­
grenzen systematisch worden gemodelleerd, kan de onzekerheid over de resultaten
van interactieve beeldsegmentatie worden weggenomen.

4. "Supervised boundary formation" zoals in dit proefschift wordt voorgesteld kan niet
veralgemeniseerd worden tot "supervised surface formation" voor drie dimensionale
beeldsegmentatie, omdat een drie dimensionale dataset niet nauwkeurig. kan worden
weergegeven in twee dimensies. "Supervised boundary formation" kan echter als
uitgangspunt dienen voor segmentatie van een driedimensionaal beeld als het op een
of meerdere beelvlakken toegepast wordt.

5. Zonder a priori kennis van de beeldfunctie in het overgangsgebied tussen object en
achtergrond, kan een schets van een gebruiker niet tijdens het tekenen worden gecor­
rigeerd.

6. Als een punt gerepresenteerd wordt door a= {x(a) = racos0a,y(a) = rasin0a}, dan
definieert

een metriek, en als het Centraal Station als de oorsprong wordt genomen, benadert
deze functie de "city block distance" in het centrum van Amsterdam veel beter dan
de functie

d(a, b) = lx(a) - x(b)I + ly(a) - y(b)I,

die geschikt is om de "city block distance" in Portland, Oregon te benaderen.

7. Jongleren vereist maar een zeer beperkte hand-oog coordinatie, noch draagt het bij
aan een significante verbetering daarvan.

8. Als een reiziger onderweg niet slaapt:

• neemt bij een reis naar het westen de sterkte van de jetlag logaritmisch toe als
functie van het tijdverschil.

• neemt bij een reis naar het oosten de sterkte van de jetlag exponentieel toe als
functie van het tijdverschil.

9. lemand die kan leren schaatsen kan ook leren fietsen op een eenwieler.

10. Het generaliseren over mensen in andere landen dat af en toe opduikt in de Ned­
erlandse Journalistiek en in Nederlands conversatie, is in strijd met het beeld van
ruimdenkendheid en wereldwijsheid wat diegenen die zo generaliseren vaak van zich
zelf hebben.

1. The type and extent of errors that a user will make in the interactive specification of
an image object boundary path can be predicted.

2. A user defined sketch of an image object boundary can be used to extract a model
of the image function in the neighborhood of the boundary which is sufficient for
subsequent segmentation.

3. By approaching the user modeling issues in image object boundary formation in a
systematic fashion, the uncertainty about the results of interactive segmentation can
be eliminated.

4. Supervised boundary formation as presented in this thesis cannot be generalized
to supervised surface formation for the segmentation of three dimensional images
because a three dimensional data set cannot be accurately represented in two dimen­
sions. However, if applied to one or more image slices, supervised boundary formation
can serve as a basis for the segmentation of a three dimensional image.

5. Without a priori knowledge of the image function in the object to background transi­
tion region, dynamic correction of a user sketch of an object boundary as it is drawn
is not possible.

6. If a point is denoted by a= {x(a) = ra cos 0a, y(a) = ra sin 0a}, then

defines a metric, and if Central Station is defined as the origin, it provides a much
better approximation to the city block distance in the Amsterdam city center than
the well known

d(a, b) = jx(a) - x(b)I + jy(a) - y(b)I,

which is suited to approximate the city block distance in Portland, Oregon.

7. Juggling neither requires a significant level of hand-eye coordination, nor does it
improve one's coordination significantly.

8. If an air traveler does not sleep enroute, then:

• when traveling west, the severity of jet lag increases logarithmically as a function
of the number of hours in the time change.

• when traveling east, the severity of jet lag increases exponentially as a function
of the number of hours in the time change.

9. Anyone who can learn to ice skate can learn to ride a unicycle.

10. The generalizations about people from other countries which sometimes creep into
Dutch journalism and conversation are in conflict with the open-minded and worldly
view those who formulate the generalizations often have of themselves.

	scan-21-03-2022-113327
	scan-21-03-2022-113418

