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The camera is an instrument of detection. We photograph not only what we know, but 
also what we don't know. 

Lisette Model 
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Chapter 1 

Introduction 

1.1 Image Segmentation 

The segmentation of an image into meaningful parts is a key step in nearly every image 
analysis problem. It is crucial to the successful identification of image objects, and 
to the accuracy of object analysis such as shape and area. In general, a successful 
partitioning results in either a description of one or more regions associated with each 
object of interest, or a description of the boundary between each image object region 
and the remainder of the image. In most cases, either representation can be directly 
computed from the other. It is the manner in which the partitioning is extracted that 
distinguishes the two. 

In region formation, a similarity measure is used to establish which parts of the 
image should be associated. Based on that measure, the image is separated into 
connected regions determined to be similar. One or more such regions may be identified 
as a segment of the image corresponding to a specific object. A simple example is when 
each image object is associated with a single connected region, and all objects are either 
darker or lighter than the background region which separates the objects. Such an 
image is shown in Figure 1.la. In this case, the grey value intensity can be used as 
a similarity measure, and the object and background regions can be distinguished by 
selecting an appropriate intensity threshold, producing an image such as that shown 
in Figure l.lb. 

Alternatively, one might seek paths along which the image function changes sig­
nificantly, thus indicating a boundary between an image object and its background. 
In boundary formation, one generally makes use of a difference measure which should 
have a strong response between the object and background regions and a low value 
in uniform regions. For the example in Figure 1.la, this results in a figure like that 
in Figure 1.lc, which was obtained with the Prewitt difference operator [Pre70]. The 
boundary paths are then extracted based on the strength of the change in grey value 
intensity. Figure 1.ld, for example, shows the results obtained with the Hilditch skele­
ton [Hil69] applied after thresholding Figure 1.lc. 

In spite of the apparent ease with which segmentation is accomplished with the 
human eye, it remains a central problem in computer vision [BB82, Pra91, GW92]. For 

1 



2 1. Introduction 

c) a grey level difference operator d) image object boundaries 

Figure 1.1: Segmentation of a grey value image (a). In (b), image object regions are 
determined based on grey value intensity as a similarity measure. In ( c), the response 
to an intensity difference measure is shown, and in ( d) we show the paths of the image 
object boundaries as determined by thresholding (c) and thinning the resulting paths 
with a skeleton operator. 
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a limited set of applications in medical and industrial image analysis, a model-based 
approach to segmentation has proven effective. In [SD89] and [GAW93], for example, 
appropriate models for the expected objects are incorporated in the segmentation 
process. 

Implicitly or explicitly, all region formation methods are based on some model 
of similarity which determines what parts of an image should be associated, and all 
boundary formation techniques are based on some difference model which determines 
where the boundary is. The effectiveness of the segmentation technique depends on 
how well the underlying segmentation model fits the image and problem at hand. For 
example, to obtain the results both in Figure l.lb and in Figure l.ld, we used the 
knowledge that the objects in the image in Figure l.la have a lower grey value intensity 
than the background. 

A model used for image segmentation may also contain knowledge of the geometri­
cal attributes of the object boundary, such as shape ( e.g. circular) and size ( e.g. radius 
r). This information may be used to direct and verify the partitioning of the image, 
and to adjust parameters (such as the threshold value), in the course of segmentation. 
It can also be used to correct the initial segmentation results. For example, the ex­
pected size of image objects may be used to eliminate small objects in Figure 1.1 b, and 
short boundary paths in Figure l.ld. Further, if image object boundaries are known 
to be smooth (curvature ,,,, > 1/r) and connected, most of the object boundaries in 
Figure l.ld can be corrected. 

For the majority of images, sufficient models of the objects contained in the image 
have not been developed. Segmentation then requires some form of input from an 
expert. Traditionally, the role of the human expert in the segmentation process is 
limited to the selection of algorithms for detecting object boundaries or for defining 
object regions. In general, these operations do not result in the object boundaries 
or regions perceived by the expert. Much effort is thus spent trying to find the best 
combination of operations, and to correct unsatisfactory results. 

In this thesis, we investigate techniques with which an expert can facilitate the 
segmentation process in a more direct and less frustrating manner. Because the human 
vision system is particularly sensitive to discontinuities in an image which may be 
due to object boundaries [Wat87], we want to develop interactive techniques for two 
dimensional path specification. Direct manipulation drawing tools have proven to be 
effective for path specification in packages such as MacDraw [Cla92], and Xfig [Sut85]. 
Similar techniques for object boundary specification, would allow a user to draw the 
path of an object boundary, rather than requiring a user to understand how the object 
differs from its background, and how this information can be translated to determine 
an effective segmentation technique. 

Because the motor control capabilities of users vary and because hardware devices 
(such as mice) for screen location specification [HHN86] are indirect, a sketch acquired 
from a user cannot be considered more than a rough approximation to the image object 
boundary. Thus, simple tools for graphical interaction will not produce results from 
which we can reliably measure object features, such as area, average grey level, and 
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shape. Furthermore, interactive specification of boundaries is tedious at best, and the 
effort required of the user should be minimized. 

Rather than expecting a human expert to provide an accurate description of an 
object boundary, we therefore aim to use the information obtained from the expert to 
develop a model of the boundary, based on the geometry of the sketch and an associated 
evaluation of the image function in the immediate region. This model is used in turn 
to produce the correct path of the object boundary. We thus introduce a collaborative 
approach to the segmentation problem, which we call supervised boundary formation. 

1.2 Related Work 

Assisting users in precision drawing has been a topic of interest to human computer in­
terface (HCI) specialists since the origins of interactive drawing environments1 [Sut63]. 
The grid technique available in most interactive drawing packages gives intersection 
points in a rectangular grid gravity, thereby moving any point specified by the user 
to the nearest grid point (see for example [Cla92]). This allows users to specify and 
line up rectangular objects in a precise way, but not to define geometrical shapes, 
such as equilateral triangles with arbitrary orientations, because these geometrical 
constraints cannot be specified in terms of a rectangular grid. Constraint based meth­
ods [Bor81, Bor86, Sut63], allow users to specify geometrical and other relationships 
among graphical objects in a scene with a large degree of freedom. Specification of 
such constraints is, however, awkward and time consuming. Snap-dragging, introduced 
by Bier in [BS86], allows users to control drawing with a compass and ruler. These 
techniques are easier to use because of the direct manipulation of the compass and 
ruler in the display of the drawing. Snap-dragging provides a compromise between 
grid-based and constraint-based techniques, by providing more geometric flexibility 
than grid based techniques, without the complexity of constraint based techniques. 
This technique has also proven useful in three dimensional drawing editors [Bie90]. 

Hudson introduced the concept of semantic snapping to make particular screen 
locations attractive based on semantics of an application which are unrelated to ge­
ometry [Hud90]. For example, within the context of visual programming, an icon 
representing a function may have connection points for input parameters and return 
values. If a connection is initiated from some function A, which returns a valid type 
for input to function B, the input connection on B's icon will be made attractive when 
the connection is initiated. If, on the other hand, B requires input of another type, 
the input connection will be made repellent when a connection is initiated at A. 

If the concept of semantic snapping is applied to the problem of image segmen­
tation, and in particular to the problem of image object boundary formation, then 
locations between image objects should be made more attractive as boundary points 
than those in the object and background regions. An example is found in [KWT88], 
where Kass, Witkin and Terzopoulos introduce an approach to boundary formation 

1 In fact, long before computers were used for drawing, rulers and compasses were used to solve 
the same problems for draftsmen using paper and pencil. 
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which they called active contours. They define an energy functional in terms of a set of 
constraints evaluated over the length of the object boundary. The optimal boundary 
is that for which the functional 

is optimized. Contributing to the functional are the gradient magnitude (Eimage), 
which has a high value along object boundaries in images such as Figure l.la, and 
measures of continuity and smoothness (Eint) over the length of the path. To support 
interactive tools for pulling a contour toward the user pointer, and pushing it away, 
they incorporate a set of external constraints (Econ) in the functional. This allows the 
user to influence the energy or cost of a path, and in so doing to easily select a path 
which satisfies the semantics of an object boundary, and which agrees with the path 
the user perceives as the object boundary. 

1.3 Automatic Boundary Formation 

The detection of discontinuities in a grey level image has been the traditional focus 
of research in boundary formation. If one views an image as a continuous intensity 
landscape, those areas corresponding to hills in the landscape may correspond to edges 
between light and dark regions, and local extrema may correspond to lines or points 
in the image. Traditionally, edges have been sought by inspecting the gradient 

VJ( ) = (EJJ(x, y) EJJ(x, y)) 
x,y ox ' By 

of the image function f(x, y). In the continuous domain, the magnitude of the gradient 
is high in hilly regions, and the direction of the gradient is perpendicular to the path 
of the edge and pointing towards the hill top. Likewise, the Laplacian 

V2f( ) = 82 f (x, y) 82 f (x, y) 
x, y EJ2x + EJ2y ' 

has a strong positive or negative response at extrema of the image function f(x, y). 
Viewed in this fashion, it is logical that initial attempts at edge detection centered 
on the design of convolution kernels to approximate the gradient [FC77, Kir71, Pre70, 
Rob65, Rob76]. Likewise, detection of lines and dots was attempted using kernels 
which approximate the Laplacian (cf. [GW92, Pra91, RK76]). 

The ideal result of a convolution with one of these kernels is a new image function 
which has high values at positions of edges, lines, or spots, and in smooth regions has 
the value zero. The determination of a path corresponding to an image object bound­
ary based on the images resulting from these operations, however, remains problematic 
for a number of reasons. 
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1. Localization error Edges and lines are somewhat blurred in digital images 
due to the image formation process. Depending on the degree of blur, there may 
be multiple high responses perpendicular to a single edge or line. 

2. Noise sensitivity Both the gradient and the Laplacian, being differentiation 
operators are very sensitive to noise. This may result in some boundary points 
having a weak response, while some nonboundary points have a strong response. 

3. Smoothness constraints The detection of boundary points based on differ­
entiation requires the path of the edge to be locally linear [MH80]. Key points 
such as corners and junctions, at which the path of the boundary is not smooth, 
will not be detected. If the image is blurred sufficiently, these points may be 
detected as edge points, but be poorly localized. 

4. Homogeneity assumptions The measure with which an object may be distin­
guished from its background is restricted to differences in intensity. Not only will 
the boundaries between textured objects be missed because of this assumption, 
but many nonboundary points within textured regions will have a significant re­
sponse to derivative based image operations. Detecting the discontinuities of the 
image function may be neither a useful nor a sufficient approach to extracting 
object boundaries in an unknown image. 

5. Data selection In the vast majority of image segmentation problems, only a 
subset of the detected boundary points will be of interest. Given an image of 
a house and garden, one may be interested in deriving the dimensions of the 
house, or in identifying the plants in the garden. If the former, the boundaries 
of the plants are superfluous, and if the latter, the boundaries of the house are 
irrelevant. 

6. Interference Depending on the spatial extent of the convolution filter, other 
image objects, shadows and reflections may interfere with the detection of sec­
tions of an object boundary. 

In the field of edge detection, significant progress has been made towards solving 
the first two problems [GW92, Pra91]. In particular, the work of Canny [Can86] was 
central in its formalization of edge and line models upon which detection can be based, 
and in formalizing the goal of edge detection to be that of minimizing the localiza­
tion error and sensitivity to noise simultaneously. For a limited set of homogeneity 
models, progress has also been made towards the detection of key boundary points 
such as corners and junctions at which the boundary does not satisfy the smoothness 
requirements assumed by the gradient model [MNR90, tHRFKV92]. 

The final three problems listed above, have only been solved for specific applica­
tions in which models have been developed containing the required information about 
the geometrical and homogeneity properties of the image objects of interest. For un­
known images and new applications, these problems remain significant obstacles in 
the segmentation process. 
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Without a priori information, there is no basis for deciding which image features a 
detection operation should be modeled upon. Inherent to every boundary and region 
formation method is an assumption of the image feature measure which can be used 
to distinguish an object from its background. A given method is only applicable when 
the assumptions are well suited to the application and image at hand. 

Even when appropriate boundary extraction techniques have been applied, given 
the set of resulting contour segments,2 there is no way to automatically evaluate the 
data as to whether it is necessary and sufficient to describe the boundary of an image 
object. Many of the contour segments may be due to shadows and reflections caused 
by lighting conditions and object surface properties. In two dimensional images of 
three dimensional scenes, some objects may be partially occluded by others due to the 
position of the camera. In both two and three dimensional images of biological spec­
imens, the grey value behavior associated with object boundaries may be extremely 
subtle. Mist in a natural scene, inconsistent lighting conditions, or significant noise in 
the imaging process may be impediments to identification of the proper set of contour 
segments to describe an object boundary. Fully automatic segmentation techniques 
which perform consistently and satisfactorily under the above mentioned conditions 
when no formal knowledge of image content is available have yet to be developed. 

1.4 Human Boundary Formation 

In general, a human observing an image will immediately segment it into meaningful 
parts. Reflections and shadows not only do not prevent the human eye from identifying 
an object, but play an important role in the recognition process. Object boundaries are 
immediately identified [Cor70, Wat87], often in spite of poor lighting conditions and 
significant noise. Further, the human vision system is robust to boundary sections 
being occluded by other image objects. In most cases, this will not result in an 
increased difficulty in recognition of the object in the scene. A classic example is the 
ability to instantly recognize a house when it is partially occluded by trees. Although 
the exact position of an image object boundary may be difficult to identify for some 
homogeneity criteria, a rough outline can generally be specified. For example, most 
people will correctly identify a bush in a field of grass, even if the grass and the bush 
are the same shade of green. 

It is difficult, however, for a human observer to describe what change in an image 
lead her to perceive the presence of a boundary. Even when a person is able to describe 
the change, a question arises as to how this information can be communicated to the 
computer, and subsequently transformed to a set of homogeneity criteria which may be 
used to locate the boundary. Consider the problems involved in translating a human 
description of a texture pattern such as "small leaves in the wind" to homogeneity 
criteria which may be used to distinguish the bush from the grass in a digital image. 

In summary, we may assume a user is able to provide information regarding the 

2We use the term contour segment to refer to a geometrical representation of a section of an image 
object boundary. 
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approximate form and location of object contours in an image. However, one should 
not expect a user to specify the contour of an object to a satisfactory degree of precision 
for object analysis [HHN86]. A human expert can often indicate significant rather than 
negligible transitions between homogeneous regions,3 and is able to associate a set of 
contour segments, whether connected or not with the boundary of a particular object. 
A human expert should not, however, be expected to specify the properties of the 
image function which can be used to separate an object of interest from the remainder 
of the image. 

1.5 Supervised Boundary Formation 

Claim: While neither humans nor machines possess capabilities sufficient for the 
accurate segmentation of unknown images, their combined capabilities are sufficient 
for the accurate segmentation of a significant set of images which cannot be segmented 
by either independently. 

In terms of the problems listed in Section 1.3, the progress in automated and 
model-based boundary formation shows that the first two problems, localization error 
and sensitivity to noise, can be solved automatically, for images with dark objects on 
a bright background (and vice versa). If a good model for the boundary geometry is 
also available, the third problem, namely the detection of points at which a boundary 
is not smooth, can be solved automatically. This geometrical model can easily be 
furnished by a user if it is unavailable. Further, humans are able to identify the object 
boundaries for a wider set of homogeneity criteria, and can provide information on 
significant versus superfluous changes in an image, even if interference occurs along 
parts of the image object boundary. 

The work in [KWT88] provides an example of interactive boundary editing tools in 
which the user provides this information when an object of interest is partially occluded 
by another image object. The interactive model presented there, while elegant, is 
limited to techniques for correcting previously extracted image object boundaries. 

In this thesis, we investigate interactive models for boundary specification, assum­
ing no estimation of the boundary has been computed. Because a human expert can 
be expected to indicate the approximate form and location of a transition between an 
object and its background, using tools similar to those provided in interactive drawing 
packages, we must address the following question. 

Problem: Based on an approximate location and geometry of an image object bound­
ary, can the difference model which may be used to localize it be deduced? 

In practice, this would mean data gathered from the user would be used to construct 
a model for a section of the object contour, which would be used to develop and/or 

3 Any image phenomena which is not of interest for a particular segmentation task, be it due to a 
shadow, or a boundary of an object which is not of interest, is considered negligible. 
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select an appropriate detector to locate the object boundary. In the segmentation 
process, such a scheme would simultaneously exploit the image understanding inherent 
to the human vision system and the precision which can be obtained with a machine. 

Input/Correction Models A common input model for path specification which 
has proven successful in interactive drawing packages is connect-the-dots model. Using 
a pointer tool (usually a mouse) the user specifies a series of (x, y) positions in a two 
dimensional plane. In most packages, a polygonal or smooth (spline) path can be 
generated based on the user input positions. 

For image object boundary formation, a series of (x, y) locations can be used to 
generate a variety of paths. If the object boundary is smooth, the user may intend 
to specify a spline like path which follows the boundary, and interpolates some point 
in the neighborhood of each position specified. For polygonal objects, one may seek a 
corner near each point specified by the user similar to that defined by the user point 
set. Some correction of the boundary between the corner points may also be desired. 
Thus if the input is an ordered sequence of points, a variety of corrections may be 
applied to acquire the required image object boundary. 

Another generally supported input model is free-hand drawing. In this case a path 
is traced as the user draws, which results in a sense of drawing with a pen on paper. 
The actual path generated is usually different than the set of points the user traces. 
Historically, computers have been too slow to store all points through which the user 
pointer passes, so some form of interpolation is used to produce a connected path. Even 
when this is no longer the case, however, some form of smoothing may be desirable. 

In forming object boundaries, one wants the resulting path to be well connected, 
and fall between an object and its background. This might be approached by first 
deriving a path using traditional interpolation techniques, and subsequently correcting 
the result. Alternatively, one may want to produce a correct boundary as it is drawn. 
Other alternatives, such as a best polygonal approximation to the boundary based 
on some previously defined criteria, might be among the set of required boundary 
corrections. 

Input tools which allow one to specify circles, ellipses and rectangles are available 
in most packages. In general, however, these geometric models are too strict to specify 
the boundary of an arbitrary object in an unknown image. Model-based approaches 
which incorporate an approximate geometric model in addition to an appropriate 
difference model have proven effective for extracting the boundary of objects with a 
simple geometrical form in [BD92]. 

User Interpretation Perhaps the biggest obstacle in the development of tools for 
supervised boundary formation is the question of user interpretation. Suppose a tool­
box of input/correction techniques are at the user's disposal, and the user has selected 
one of them, how close, geometrically, can we assume the user sketch is to the ob­
ject boundary? In a direct manner, this influences the error which the user should 
be permitted. More importantly, however, it determines whether we can model the 
properties of the image function near the boundary. Suppose we investigate a neigh-
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borhood about the user sketch to model the image function in the object, boundary 
and background regions, and suppose the size of the neighborhood is determined by 
the permitted user error. If the permitted error is too small, the neighborhood about 
the user sketch defined may be too small to extract a model of all three regions, as 
one or more may not be present. If the neighborhood is too large, our image region 
evaluation may be disturbed by other objects in the region. 

1.6 Scope of this Thesis 

In Chapter 2, we perform experiments in which the user error near corner points on 
polygonally shaped objects, specified with a connect-the-dots input tool, is evaluated. 
This allows us to construct a user error model for the specification of points on similar 
objects. The evaluation of errors made at each corner of a user input polygon, however, 
requires the user polygon to be matched with the model polygon used in the user 
experiments. Because various users make a variety of errors in the specification of 
such polygons, the matching problem turns out to be nontrivial, and is addressed in 
Chapter 3. The user error model for corner specification which we derive in Chapter 2 
is employed in Chapter 4 to derive corner models from user specified polygonal paths. 
Each corner model is used to localize the corner on the image object which corresponds 
to that specified by the user. 

In Chapter 5, we turn our attention to a technique called magnetic contour tracing. 
In this case, a user traces a contour with a free-hand drawing tool, and the correct path 
of the boundary is produced as the user draws. To produce a path which follows the 
image object boundary, we develop a dynamic programming algorithm to attract the 
ink of the pen, as it were, to locations near the user with a high gradient magnitude. 
Using dynamic programming guarantees we produce a well behaved path in terms of 
connectivity and smoothness. By allowing the user to influence the boundary path 
definition while relying on gradient based techniques, we obtain a well localized bound­
ary path, and overcome the problems of data selection and interference described in 
Section 1.3. 

The methods described in this thesis were implemented using the Scil.Jmage pack­
age for image analysis [vBtKK+93, oA91]. Because software which supports the de­
velopment of highly interactive methods for image analysis is not publicly available, 
we designed the GRIP library for image processing, which is described in Appendix A. 
All interactive methods described in this thesis were implemented with GRIP. 



Chapter 2 

Errors in Corner Specification 

2.1 Introduction 

For deriving the correct path of an object boundary from a user sketch, we first need 
to estimate the type and degree of errors a user makes in task of polygonal boundary 
specification. To sketch boundaries in our system, users are provided with a connect­
the-dots tool, which is similar to those available in general purpose drawing packages 
like MacDraw [Cla92]. 

In light of Attneave's work [Att54], which showed that human perception is par­
ticularly sensitive to corners and local peaks in curvature, the geometry of the user 
sketch at each dot specified is likely to provide a good model for the geometry of a 
corner near the point. Likewise the boundary is likely to be relatively smooth between 
the dots. In this chapter, we thus aim to extract a model for errors made by users at 
corner points in the specification of polygonal object boundaries. 

The error model is derived based on a set of experiments in which users are asked 
to sketch the (known) boundaries of objects in test images. In the terminology of 
user modeling (see [Cou92]), the user error model we extract is called an explanatory 
user model because it predicts the type and degree of user error based on actual user 
performance, rather than on a theoretical hypothesis (which corresponds to a predictive 
user model). Because the error model we derive turns out to differ for individual 
users, it should be viewed as a user dependent model which may be incorporated in an 
adaptive user interface (see [KDMSH92]), for boundary specification. More specifically, 
based on the user error model derived in this chapter, the method to extract corner 
points described in Chapter 4 can be adapted for individual users, increasing the 
likelihood of a correct corner model being extracted from the image. 

In the following section, we state the questions which must be addressed to develop 
a user error model for polygonal boundary corner specification. In Section 2.3, we 
describe the experiments performed to measure user errors. The results are presented 
in Section 2.4, and in Section 2.5, we derive a user error model for corner specification. 

11 
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2.2 Problem Statement 

Suppose a user specifies an image object contour with a polygonal shape defined by the 
point set P = {Pi}i=I · In practice, we treat the points p1 and Pn as a single point if they 
are sufficiently close (thus a closed polygon) and as two distinct end points otherwise. 
Because we are interested in corner points, we simplify the discussion by assuming 
Pn = PI, which means P describes a closed polygonal path. Now, for 1 ::; i < n, each 
point Pi in the user sketch may be seen as an approximation of a corner on the object 
boundary. The geometric characteristics of the corner on P at the point Pi can be 
expressed in terms of the corner triplet Pi= {Pi-I,Pi,Pi+i}. 1 

We assume in the ideal world that the user has an interactive toolkit at hand for 
object contour specification which allows the user input to be interpreted and corrected 
in a variety of ways, just as with interactive drawing package one may sketch using a 
variety of tools. In this case, however, the user can choose both the input tool and the 
correction model. In this chapter, we assume the nature of the correction requested 
is an adjustment of the location of each point specified in the sketch. We therefore 
expect there to be an object in the image, the boundary of which can be described by 
a polygonal shape Q = {qj}J=l> such that for each corner Pi E P, there is a corner 
Qj E Q which is close to Pi. By close, we mean the differences between the key 
geometric characteristics of Pi and Qj should be small. 

2.2.1 Geometrical Characteristics of a Corner 

Given a corner Pi = {Pi-I,Pi,Pi+1}, geometric characteristics which are relevant to 
the corner model are the position Pi, the corner angle o:(Pi), and its orientation (3(Pi). 
The latter can be expressed in terms of the two vectors which define geometry of the 
corner on the sketch at Pi· Let 

ai = Pi-I - Pi and bi =p;+i -pi, (2.1) 

and consider Figure 2.1. The angle of the corner on the path defined by P at the point 
Pi is given by 

(2.2) 

We use corner orientation to measure the direction of the cone section of the corner, 
and so we define it as the average direction of the vectors ai and bi, which determine 
the cone geometry. As can be seen in Figure 2.1, this is simply the direction of the 
vector which bisects the corner defined by ai and bi, defined by 

(2.3) 

1 Due to the cyclic nature of polygonal point sets, if i ;:o: n, Pi should be interpreted as Pimod(n-l), 

and if i ~ 0, Pi should be read Pi+n-lmod(n) . 
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Figure 2.1: The geometric characteristics of a corner on a polygonal shape defined by 
(a) the triplet Pi= {Pi-l,Pi,Pi-i} which determines the corner geometry of the path 
Pat the point Pi, and (b) the vectors a; and bi derived from the triplet Pi. 

Finally, the size or scale of the corner is significant for proper construction of a 
corner model. The following definition for corner scale provides a measure of the 
boundary detail near the corner. 

Definition 2.1 The scale of a corner Pi in a polygonal shape P is given by the length 
of the shorter of the two line segments which meet at the corner point p;. If ai and bi 
are defined as in Equation 2.1, the scale is given by 

S(Pi) = min{llaill, llb;II}. (2.4) 

If Qj is a corner triplet on an object boundary, and there are no disturbances in 
the boundary model due to nearby or occluding sources of interference, then the scale 
S(Qj) tells us at what distance from the corner point qi the image function should 
look like a corner transition. This assumes other sections of the path of Q do not 
intersect the immediate neighborhood of%· 

2.2.2 Corner Specification Errors 

When a user produces a point set P = {p;}i=l in specifying an object boundary defined 
by a polygonal shape Q = { qi }J'=1 , we are concerned with the errors made at each 
corner P;. In particular, if the user point Pi E P corresponds to an object boundary 
point qj E Q, we are interested in user performance with respect to the following 
errors. 

1. Positional Error - the Euclidean distance between the user specified point Pi, 
and the position qj of the corner on the boundary, given by 

(2.5) 
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2. Corner Angle Error - the difference between a(Pi), the angle of the corner in the 
user sketch at Pi, and a(Qj), the angle of the corner in the image object at qj. 
This is defined by 

(2.6) 

3. Orientation Error - the difference in corner orientation between Pi and Qj- This 
can be measured with the corner angle between the bisecting vectors B(Pi) and 
B(Qj) defined in Equation 2.3, which is given by 

(2.7) 

4. Scale Error - the difference between the scale S(Pi) of the user defined corner, 
and the scale S(Qj) of the corresponding corner on the object boundary. The 
error is defined by 

(2.8) 

The second and third errors depend on the error a user makes in the angle of 
each of the lines which meet at the corner. Thus, we might have examined errors in 
line angle rather than in corner angle and orientation. The geometry of the corner, 
however, depends on both lines which meet there. The corner angle and orientation 
capture the full corner geometry, and are therefore the relevant measures for study of 
errors at corner points. 

2.2.3 Questions 

Suppose a user specifies a corner triplet Pi= {Pi-i,Pi,Pi+1} as part of an object bound­
ary, the path of which is correctly described by Q = {qJT=i· If Qi= {qj-l, % qH1} is 
the corner triplet which corresponds to that specified by the user, we want to know if 
the user behavior with respect to the four errors defined above depends on the geom­
etry of the object corner defined by Qj- We also want to know if the error level varies 
among users or if it is influenced by the characteristics of the image function near the 
boundary. Specifically, we are concerned with the following. 

For each of the four corner measures defined in Section 2.2.2, does the difference 
between the user defined corner triplet Pi and the image object corner triplet Qj 
depend on one or more of the following factors? 

A) The scale S(Qj) of the corner on the image object boundary; 

B) The characteristics of the image function in the object, background and transition 
regions in the neighborhood of the corner point qj; 

C) Whether there is disturbance to the image function, such as noise and shading in 
the neighborhood of the point qi; 

D) Which user specified the sketch P of the image object boundary; and 
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E) The object shape. 

Both O;j and 8(3;j are nonnegative entities, which by definition, produce an error 
magnitude. The definitions of Oa;j and 8S;j allow inspection to the bias of the user 
error. This will be used to form a model for user errors in Section 2.5. 

2.3 The User Experiments 

The experiments described in this section were designed to collect data on user errors 
made in corner specification. They are used to address the questions posed above. 

2.3.1 The Session 

The six subjects who produced the object boundary sketches were computer science 
graduate students and programmers, each of whom had substantial experience using a 
mouse. Prior to the session, all subjects were unaware of the questions to be addressed 
in the experiment. Each subject was presented a series of 20 images containing a 
polygonally shaped object, and asked to specify the object boundary. 

A connect-the-dots tool was provided for the specification of polygonal boundaries. 
It should be familiar to those who have used interactive drawing packages to draw 
polygonal or curved paths by indicating a number of points, which are to be connected 
in the order specified. After the first point is specified, the movement of the cursor is 
tracked, and a line is drawn from the specified point to the current cursor location. 
The line is constantly updated as the user moves about. When a new point is specified, 
the line is made a permanent part of the polygonal shape. The process then continues 
with the new point as the starting point for the moving or rubber-band line. When the 
last point is specified, the object is complete. 

Each subject was presented with the written instructions in Appendix 2.A. In 
addition to directions on the use of the tool for boundary specification, the instructions 
encourage the subjects not to specify the points with too much care. The session 
required approximately 15 minutes including time to read the instructions and practice 
with the tool. 

2.3.2 The Stimuli 

Each image in the series presented to the users contains an object with a boundary 
defined by one of the two polygonal shapes in Figure 2.2. Each shape was used to create 
a variety of ten 256 x 256 images. The ten images differ in the grey level functions 
f0(x,y), fi(x,y) and fb(x,y) in the object, background and boundary regions. 
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Figure 2.2: The shapes poll (left) and pol2 (right) used in the experiments. 

Object Shapes 

The two polygonal shapes used to define the images for this study share the following 
properties. Each contains corners of scale S(Qj) EL, where 

L= {15,30,45,60,75}, 

with the length fi.. E L expressed in image pixels. Further the angle of each corner 
satisfies a(Qj) EA, where 

A= {45, 90,135}, 

with the angle a E A expressed in degrees. 
We defined each shape Q, so that for each corner angle a E A, and each corner 

scale fi.. EL, there would be at least one corner Qj E Q with a(Qj) = a and S(Qj) = fi... 
Because the number of angles is n(A) = 3 and the number of corner scales is n(L) = 5, 
this requires the number of points on test shape Q = { qj }:f=1 to satisfy m ~ 15. 
Meanwhile, the number of points on each object shape must be kept at a minimum 
to prevent intrasession fatigue [GS66]. To satisfy both criteria, we defined each of the 
shapes in Figure 2.2. 

Test Images 

We created a variety of images for each shape in Figure 2.2. Specifically, 20 images were 
created in which the object, background, and boundary were characterized according 
to Table 2.1. The images have been categorized in one of four groups, namely ramp, 

roof, disturbed, and texture, depending on the object and physical imaging models used 
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(a) (b) 

(c) (d) 

Figure 2.3: Image Models: a) ramp, b) roof, c) disturbed ramp, d) texture 

to create them. Each of these groups are described in detail below, and models are 
shown in Figure 2.3. To prevent learning effects, the images were presented to the 
users in the order: a) texture, b) disturbed, and c) ramp and roof. 

Let fo denote the value of the image function in the object region, Ji the value 
in the background region, and fb the value in the boundary region. In describing the 
image functions, we make use of the signal magnitude, as defined by 

s(f) = I max{< fo >,<Ji>,< fb >}-min{< fo >,<Ji>,< fb >}I- (2.9) 

Thus, the signal is the difference in the average value of the image function in the object 
and background regions. For some images (namely roofs), it will be the difference in 
average value in the boundary and background regions. 

Ramp Images An X x Y image, in which the image function is similar to that 
which would have occurred had the object been imaged with a camera, is generated 
as follows. We create the shape in an 8X x SY image, the resulting image is smoothed 
with a two dimensional Gaussian filter, with standard deviation a-= 8. The test image 
is then obtained by subsampling the smoothed image to obtain an X x Y image with 
realistic edges. The resulting images are those displayed in Figure 2.2. For each shape, 
we created both a bright object (!0 = 150) on a dark background (!1 = 50) as well as a 
dark object on a bright background, resulting in the four images in the ramp category 
in Table 2.1. The signal level for these images is s(f) = Iii - fol = 100. Simple objects 
obtained with a perfect noise free camera would fall in this category, and would have 
boundary functions fb similar to those depicted in Figure 2.3a. 

Roof Images The roof images are created as the ramp images, but in this case, we 
have fo = Ji and fb, the boundary function is a roof like peak, with its maximum 
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Figure 2.4: On the left, a bright roof boundary disturbed by noise and shading. On the 
right, an image with different Brodatz textures in the object and background regions. 

(or minimum) between the object and background regions. The one dimensional roof 
boundary model is depicted in Figure 2.3b, and an example of a roof boundary ( dis­
turbed by noise and shading) is shown in Figure 2.4. For each shape the background 
function f1 E {50,150}, was used to create the roof images. The average value along 
the peak of the boundary is < ]b >= 90 for a dark roof on a bright background, and 
< ]b >= 107 for a bright roof on a dark background. We thus compute the signal 
for the roof images as the difference between the average background value and the 
average roof value s(f) = I < Ji > - < ]b > I ;::;; 58.5. The values are close to this for 
all four roof images which make up the roof image category in Table 2.1. 

Disturbed Images The third group of images was generated by adding shading and 
noise to each of the images in the roof and ramp groups. Before sampling the image, 
we added a linear shading function is to each of the images. The function increased 
linearly as a function of x starting on the left with J.(o, y) = 0, and ending on the 
right with the signal value J.(X, y) = s(f). Independent Gaussian noise resulting in a 
signal to noise ratio SNR = 2 was then added to each of the images, where 

SNR = s(f) 

and O"noise is the standard deviation of the Gaussian noise. The eight images resulting 
from these modifications make up the disturbed category of images in Table 2.1, an 
example of which is shown in Figure 2.4. 
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Test Images 

Image 
Shape 

Object Background Boundary Signal 
Category Function Function Function s(f) 

Ramp 1,2 Bright: f o=l50 Dark: fi=50 Blurred 100 
(4 images) 1,2 Dark: fo=50 Bright: Ji =150 Blurred 100 

Roof 1,2 Dark: fo=50 Dark: fi=50 Bright: k:~107 57 
(4 images) 1,2 Bright: fo=l50 Bright: fi=l50 Dark: fb~go 60 
Disturbed Ramp and roof images disturbed with additive linear shading in 

' (8 images) the range [O, s(f)] and additive Gaussian noise giving SNR = 2. 
Texture 1 D28 D6 Blurred 0 

(4 images) 1 D36 D93 Blurred 0 
2 D105 D57 Blurred 0 
2 D19 D38 Blurred 0 

Table 2.1: The object, background and boundary functions which characterize the 20 
test images. The Dn labels are the identifiers for the Brodatz textures in [Bro66]. 

Texture Images To create the texture images we made use of images2 of the tex­
tures in the Brodatz album [Bro66]. Th~ size of the images used was 512 x 512. To 
assure the difference between the foreground texture function f O and the background 
Ji was strictly due to a difference in texture and not due to a difference in average 
grey value, we normalized the images used so that < fo >=< Ji >= 128, where the 
average was taken over a large region encompassing the object3 . In order to simulate 
the camera model along the boundary without averaging out the texture pattern, we 
created the texture images by filling the object region in a 2X x 2Y image. Sub­
sequently we blurred with a two dimensional Gaussian (er = 2), and subsampled to 
obtain the X x Y image presented to the user. We made two images in this fashion 
for each of the two shapes resulting in the images in the texture category in Table 2.1, 
an example of which is shown in Figure 2.4. The textures selected for the experiment 
were required to have small texture elements in relation to the smallest corner so that 
all corners would in principle be visible. 

2.4 Results 

In this section, we examine the data collected from the user experiments with respect 
to the issues posed in Section 2.2.3. Our analysis is geared toward the development 
of a user error model for the task of corner specification. Before the errors can be 
measured, the points in each polygon obtained from a user must be matched with the 
points in the polygon used to generate the test image. Because users sometimes skip 

2We used images from the set scanned at MIT 
3 There are some artifacts near the edges of the images we used which we did not want to include 

in our computations, as they did not effect the region in which the user was to draw. 



20 2. Errors in Corner Specification 

corner points on the polygon, and insert points between two corners on the object, this 
turns out to be a nontrivial step in the user error evaluation. To address this problem, 
we developed the matching algorithm in Chapter 3. In the remainder of this chapter, 
we assume the user and polygon point pairs evaluated, are correctly matched. 

The four errors {O;j,OCT;j,o,B;j,OS;j}, defined in Section 2.2.2, were measured for 
each of the user/model corner point pairs. Before evaluating the degree and type of 
errors made in defining the corners, we must determine whether the data collected for 
different types of images should be evaluated as a set. By grouping the data appropri­
ately we can address the influence of variation in B (image function), C (disturbance), 
and E (shape) on user behavior (see Section 2.2.3). In Section 2.4.1, the errors made on 
various groups of images will be compared using the Kolmogorov-Smirnov test [vM64]. 

In Section 2.4.2, for each of the four errors, we summarize each data set in terms 
of its mean value and standard deviation, for the four errors. The results are used to 
model the user error distributions in Section 2.4.3. Because user performance on the 
texture images differed dramatically from the performance on the remainder of the 
images, the results for these images are considered separately in Section 2.4.4. 

Outlyers In specifying the polygonal boundary paths, each of the users B, D, and 
F twice inserted an extra point. These points were not matched with points on the 
true polygons, and do not contribute to the error measures. However, they introduce 
a severe error in corner scale c5 S;j, as the length of the line to the neighboring corner is 
much shorter than it should be. Unless these points are removed prior to evaluation, 
the error scale data, and sometimes angle data, cannot be correctly evaluated, as these 
points have a strong influence both on the mean and standard deviation. The outlyers, 
seven in total, were removed prior to the evaluation presented in the following sections. 

Note that in practice, the presence of such outlyers indicates the necessity of good 
correction facilities for this form of boundary specification. They not only introduce 
errors in the neighborhood of the extra point, but introduce errors in the modeling of 
the immediate neighboring points on the polygon. 

2.4.1 Comparison of Error Distributions 

Before examining the errors made in corner specification, we first need to establish 
which of the data can be grouped and viewed as a consistent set to be evaluated. Be­
cause the variation in the distance and scale error distribution parameters among users 
is significant, the error levels for each user must be examined separately. Moreover, 
angle errors show a clear dependence on corner scale, which means the errors made 
at each scale should be viewed separately. Both of these points will be established in 
Section 2.4.2, but first we must establish which errors can be viewed as a group for 
individual users at each scale. 

Data Groups 

For each user, we want to know if the distance errors made on ramp and roof images 
are drawn from the same distribution. In the experiments, there were eight ramp and 



2.4. Results 21 

Number of corners 

Corner Scale 
Shape 15 30 45 60 75 all 

poll 5 3 3 3 3 17 
pol2 4 4 3 3 3 17 
both 9 7 6 6 6 34 

Table 2.2: The number of corners in each polygon at the given scale. 

eight roof images used. Of the eight ramp images, four were of one shape shown in 
Figure 2.2, and four of the other. Four contained added disturbance, and four did 
not. Four were of a bright object on a dark object, and four contained the reverse. 
The same variations held for the roof images. To see if the error levels are effected by 
whether an image contains a ramp or roof boundary, we pool the eight distinct ramp 
images and compare each error set with that for the group of eight roof images to see 
if this aspect (ramp versus roof) of the image function is a significant factor in the 
user error level. 

Likewise, to compare the influence of disturbance on user error levels, we pool 
the user errors at each scale for all eight images with added noise and shading, and 
compare them to the errors made for the group of eight images without disturbance. 
Each of these groups contain eight distinct images, namely, ramp and roof images with 
dark and bright objects of each form. The error sets for dark and bright images are 
similarly pooled and compared, and finally the error sets for all images containing one 
shape is compared with those for all images containing the other. 

The left polygon in Figure 2.2 is referred to as "poll" and the right polygon is 
referred to as "pol2". Table 2.2 shows the number of points of a given scale (see 
Definition 2.1) present in each polygon. Because there are four ramp images in the 
"poll" shape and four in the "pol2" shape, and four of each shape in the eight roof 
images, we compare 4 x 5 + 4 x 4 = 36 errors made at corner scale 15 on the ramp 
images with the 36 errors made on roof images at corners of the same scale. All error 
sets compared below are constructed similarly. 

Kolmogorov-Smirnov Statistics 

For a given user specifying points on a set of images, we can view the errors mea­
sured with each of the functions in Section 2.2.2, at each corner scale, as a set 
E = { e1 , e2 , ... , eN }. If we define the subset 

E(x) = {y EE: y::; x}, 
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then the distribution function of the error set E is given by 

S ( ) = n(E(x)) 
Ex n(E) ' (2.10) 

where n(X) denotes the number of elements in a set X. To compare the performance 
of a user on two nonintersecting error sets E1 and E2 , we can compute the Kolmogorov­
Smirnov statistic [Smi39], defined by 

(2.11) 

For significantly large values of D, we can assume the two error sets are from distinct 
distributions. In comparing two data sets, the significance of D is given by 

>..= N1N2 D 
N1 +N2 ' 

(2.12) 

where Ni= n(Ei)- As shown in [vM64], the probability that the null hypothesis "E1 

and E 2 are drawn from the same distribution" is not false, is given by 

p(>..) = 2 f (-1/-1e2k2>-2' (2.13) 
k=l 

where >.. is defined in Equation 2.12. 
Each of the errors Jij, 5aij, 5f3ij and 5Sij, for a given user were grouped according 

to corner scale. For each of the error set groupings described above, we computed the 
Kolmogorov-Smirnov statistic D as well as the probability defined in Equation 2.13 
for the pair of error distributions. For example, we compare errors in E1 and E2 

where E 1 = { user A, scale = 15, Jij, ramp images } and E2 = { user A, scale 
= 15, Jij, roof images }. The Kolmogorov-Smirnov D statistic for this comparison is 
shown in the 6ij column in the row marked 15 in Table 2.3. Lower in the table, the 
probability of the significance of D is given. We present the statistic D along with its 
associated probability for user "A" for the four image groupings to be compared in 
Tables 2.3, 2.4, 2.5 and 2.6 below, to illustrate the set of statistics gathered for each 
user. 

Note that for nearly all error measures, at all scales, the difference in error dis­
tributions on the groups compared is not significant. That is, in almost all cases, 
p(>..) » 0.05. This is, however, not always the case. We therefore summarize the 
results for all users, to see if there are patterns which should influence the data groups 
examined. 

Consider the set of error set pairs evaluated for ramp versus roof images (Table 2.3). 
Suppose we call it 3. There are four error set pairs (1 for each error type), for each of 
the five corner scales, and there are six users. So there are n(3) = 120 error set pairs 
compared in the ramp versus roof evaluation. Likewise there are 120 error set pairs 
compared in the disturbed versus clean, dark versus bright, and "poll" versus "pol2" 
evaluations. Let 2x denote the number of pairs in a given group 3 of error set pairs 
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K-S statistics for E1 = ramp versus E2 = roof 

Corner Error Sets for user "A" Size 
Scale 5ii 5aii 5/3ij 5Sii N1 N2 

D(E1, E2) 
15 0.1389 0.3056 0.2778 0.2778 36 36 
30 0.2857 0.2143 0.3214 0.2143 28 28 
45 0.1667 0.2500 0.2917 0.3333 24 24 
60 0.2917 0.3333 0.2083 0.2500 24 24 
75 0.2083 0.2083 0.0833 0.1667 24 24 

p(>.) 
15 0.8782 0.0694 0.1243 0.1243 36 36 
30 0.2032 0.5412 0.1108 0.5412 28 28 
45 0.8928 0.4413 0.2591 0.1389 24 24 
60 0.2591 0.1389 0.6749 0.4413 24 24 
75 0.6749 0.6749 1.0000 0.8928 24 24 

Table 2.3: The Kolmogorov-Smirnov statistics for comparing error sets on ramp and 
roof images. There were eight ramp and eight roof images used in the experiments. 

II K-S statistics for E 1 = disturbed versus E2 = clean II 
Corner Error Sets for user "A" Size 
Scale 5ij 5aii 5f3ij 5Sij N1 N2 

D(E1, E2) 
15 0.1944 0.1389 0.1389 0.3056 36 36 
30 0.1786 0.2143 0.1429 0.2500 28 28 
45 0.1667 0.2083 0.1250 0.2917 24 24 
60 0.0833 0.1250 0.2083 0.0833 24 24 
75 0.2500 0.2500 0.2500 0.4167 24 24 

p(>.) 
15 0.5041 0.8782 0.8782 0.0694 36 36 
30 0.7634 0.5412 0.9375 0.3457 28 28 
45 0.8928 0.6749 0.9920 0.2591 24 24 
60 1.0000 0.9920 0.6749 1.0000 24 24 
75 0.4413 0.4413 0.4413 0.0310 24 24 

Table 2.4: The Kolmogorov-Smirnov statistics for comparing error sets on disturbed 
and clean images. The disturbed images are the eight with added noise and shading, 
and the clean images are those without added disturbance. 
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K-S statistics for E1 = dark versus E 2 = bright 

Corner Error Sets for user "A" Size 
Scale 6;j 60'.;j 8/3;j 8S;i N1 N2 

D(E1, E2) 
15 0.1944 0.1667 0.2778 0.2500 36 36 
30 0.1429 0.2143 0.1786 0.4286 28 28 
45 0.1250 0.2500 0.2917 0.1667 24 24 
60 0.2917 0.1250 0.2083 0.2500 24 24 
75 0.2500 0.2083 0.1667 0.1667 24 24 

p(>.) 
15 0.5041 0.6994 0.1243 0.2106 36 36 
30 0.9375 0.5412 0.7634 0.0117 28 28 
45 0.9920 0.4413 0.2591 0.8928 24 24 
60 0.2591 0.9920 0.6749 0.4413 24 24 
75 0.4413 0.6749 0.8928 0.8928 24 24 

Table 2.5: The Kolmogorov-Smirnov statistics for sets from dark and bright images. 
The four ramp images with a dark object, and the four roof images with a dark border 
are the dark images. The bright images are the eight for which the reverse holds. 

K-S statistics for E1 = poll versus E2 = pol2 

Corner Error Sets for user "A" Size 
Scale 6;j 60'.;j 8/3;j 8S;i N1 N2 

D(E1, E2) 
15 0.3438 0.2188 0.1938 0.2125 40 32 
30 0.2500 0.2188 0.2396 0.2083 24 32 
45 0.3750 0.3333 0.2500 0.3750 24 24 
60 0.1667 0.2500 0.2917 0.3333 24 24 
75 0.2917 0.2500 0.2500 0.4167 24 24 

p(>.) 
15 0.0299 0.3626 0.5169 0.3983 40 32 
30 0.3581 0.5278 0.4106 0.5911 24 32 
45 0.0684 0.1389 0.4413 0.0684 24 24 
60 0.8928 0.4413 0.2591 0.1389 24 24 
75 0.2591 0.4413 0.4413 0.0310 24 24 

Table 2.6: The Kolmogorov-Smirnov statistics for error sets from poll and pol2 images. 
The eight ramp and roof images of the first shape (Figure 2.2 left) make up poll, and 
the eight of the second shape make up pol2 (Figure 2.2 right). 
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Summary of K-S statistics for all users 

Image Sets (3) n(3) n(2o.o5) %(20.05) n(So.01) %(2o.oi) 
ramp/roof 120 7 5.83 3 2.50 

disturbed/ clean 120 11 9.16 2 1.67 
dark/bright 120 4 3.33 0 0.00 
poll/pol2 120 13 10.83 5 4.17 

Measure (3) n(3) n(2o.o5) %(20.05) n(So.01) %(20.01) 
O;j 120 6 5.00 1 0.83 

OCX;j 120 5 4.17 1 0.83 
of3ij 120 8 6.67 2 1.67 

oS;i 120 16 13.33 6 5.00 

all 480 35 1.29 1 10 2.08 11 

Table 2.7: A summary of the significant Kolmogorov-Smirnov probabilities on various 
groupings (3) of the error set pairs. For each set 3 of error set pairs, the number and 
percentage of error set pairs in 3 for which p(>.) < x is given, for both x = 0.05 and 
x = 0.01. See Equations 2.14 and 2.15. 

which are significant in the sense that p(>.) ::; x, so 

(2.14) 

where >. is defined in Equation 2.12. The number of error set pairs in 3 for which 
p(>.) ::; x is given by n(2x), and the percentage of 3 with p(>.) ::; x is given by 

(2.15) 

In Table 2.7, we show the number and percentage of pairs for which p(>.) < 0.05, 
and for which p(>.) < 0.01 when the statistics are grouped in various manners. 

Evaluation 

Suppose we require p(>.) < x before we reject the null hypothesis that two error sets 
come from the same distribution. Consider the first three error measure sets { O;j}, 
{ OCX;j }, and { 0/3;j} in Table 2. 7. We see the percentage of error set pairs in 3 for which 
p(>.) < 0.01 is very low (%(20.01) « 5%), and the percentage %(20.05) ~ 5%, for which 
p(>.) < 0.05 is insufficient to reject the null hypothesis. 

In contrast, we see that the set 3 = { oS;j} of error set pairs, contains a significant 
number of pairs which, based on the Kolmogorov-Smirnov test, appear to come from 
different distributions. At the x = 0.05 significance level, we have %(20.0.5) = 13.33% 
and at the x = 0.01 significance level, we have %(20.oi) = 5%. We therefore inspect 
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Summary of K-S statistics for 8Sij - all users 

Image Sets (2) n(2) n(20.05) %(20.05) n(20.01) %(20.01) 
ramp/roof 30 2 6.67 1 3.33 

disturbed/ clean 30 7 23.33 1 3.33 
dark/bright 30 1 3.33 0 0.00 
poll/pol2 30 6 20.00 4 13.33 

all 1 120 1 16 13.33 1 6 5.00 

Table 2.8: A summary of the Kolmogorov-Smirnov probabilities for comparing corner 
scale error sets { 8 Sij}. For each set 2 of error set pairs, the number and percentage 
of error set pairs in 2 for which p(,\) < x is given, for both x = 0.05 and x = 0.01. 

the contributions to the set 20.01, and 20.05 for 2 = 8Sij in Table 2.8, to see which 
image function comparisons, contribute to the error set pairs in 3 0_05 and 2 0.01 . 

Inspection of Table 2.8 shows that the majority of the error set pairs which are 
significantly different at the x = 0.05 are found when comparing the sets with and 
without disturbance, and when comparing the error sets on the two polygons. Note 
that the former (disturbed/clean) does not contribute significantly to 2 0_01 . When 
comparing the scale error set pairs on the two polygons (poll/pol2), however, we find 
13.33% of the comparisons fall in 2 0_01 . We therefore reject the hypothesis that the 
corner scale error sets are drawn from the same distributions for the two polygons. 
In the following section, the corner scale errors on each polygon will be evaluated 
separately. 

Because the error set pairs on corner scale 2 = {8Sij}, account for the majority 
of error sets which appear to be significantly different in Table 2.7, we evaluate the 
performance on all other error measures as a single set. 

Information With respect to the questions posed in Section 2.2.3, from the above 
analysis, we can conclude the following. 

B) User performance in corner specification is not influenced by whether the image 
function which determines the nature of the object boundary is best described 
in terms of a ramp or a roof model. For ramp model images, it does not matter 
if the object is bright or dark, in comparison with the background. Likewise, 
whether a roof is dark or bright as compared with the background does not 
influence the errors in corner specification. 

C) With the possible exception of the corner scale error, there is no significant change 
in user error levels when noise and shading are added to an image. 

E) The degree of corner scale error depends on object shape. Other errors are unin­
fluenced by shape. 
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2.4.2 User Error Summary 

In this section, we present statistics on user errors as a function of the corner scale 
S(Q1), defined in Definition 2.1. The mean and standard deviation of each of the 
measures defined in Section 2.2.2 are presented for each user. In Figures 2.5, 2.6, 
and 2.7, the summary of the statistics for distance, angle, and orientation errors for 
the sixteen nontexture images in our experiments is shown. Due to the results in the 
previous section, the corner scale error statistics are evaluated separately for the two 
polygons in Figures 2.8 and 2.9. 

Note that for the measures of distance error 6;j and orientation error 6/3;1 , the mean 
corresponds with the average user error magnitude, whereas for corner angle 6CY.;j and 
scale 5S;1, the mean gives the bias. 

Evaluation From Figure 2.5, we see that user errors in distance are fairly consistent 
for various scales, and the deviations are small. Further, with the exception of users 
E and F, the error magnitude for the various users is distinct. 

In Figure 2.6, the average difference in corner angle (5a;j = a(P;) - a(Qj)), for 
each of the users is shown. With the exception of A and C, the users tend to slightly 
overestimate the corner angle. Both in Figure 2.6 and in Figure 2.7, we see the 
magnitude and variation of corner angle errors decrease as a function of corner scale 
for all users. This is logical, considering the error in distance does not depend on 
corner scale, and can be understood as follows. 

Let v be a vector in R 2 , and let v = av for some a E (0, 1). Let e E R 2 be a 
constant vector. Consider the angles of v and v + e given by 

-1 (V · (1, 0)) 0 = cos llvll and _ _ 1 ((v+e) · (1,0)) 
'Y - cos llv + ell 

If we denote the angles of v and v + e with 0 and i respectively, then 

with equality holding only when e = cv for some c E R. This is easy to prove using 
arguments in [MT81]. Because both corner angle and orientation depend on the angles 
of the lines which define the corners, the errors decrease for increasing corner scales, 
as shown in Figure 2.10. 

In Figures 2.8 and 2.9, we show the bias and standard deviations of the corner 
scale error for the two polygons used in the experiments. As was expected from the 
conclusions of the evaluation in the previous section, the user patterns for scale error 
differ. For corners with scale S(Qj) > 15, however, all users other than "A" share 
the tendency to underestimate the corner scale. Interestingly, the scale error patterns 
for all users are quite similar on the second polygon (Figure 2.2 right), and somewhat 
similar on the first polygon (Figure 2.2 left). Finally, the magnitude of the corner scale 
error is small for very small corners S(Qj) = 15. 
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Figure 2.5: Above: the average magnitude of the error in Euclidean distance 8;j = 
IIP; - qill made by each of six different users as a function of corner scale. Below: the 
standard deviation c,( 8;j) of the distance errors for each of the users. 
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Figure 2.6: Above: for each of the six users, the average difference in corner angle size 
8aij = a(Pi) - a(Qj) is plotted as a function of corner scale. Below: the standard 
deviation cr(8a;j) of the angle difference for each of the users. 
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Figure 2. 7: Above: the average error in corner orientation 8 /3ij ( defined in Equation 2. 7) 
made by each of the six users, plotted as a function of corner scale. Below: the standard 
deviation 0"(8/3ij) for each of the users. 
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Figure 2.8: Above: for each of the users, the average difference in corner scale oSij = 
S(Pi) - S(Qj), plotted as a function of the true corner scale S(Qi) for the left shape 
(poll) in Figure 2.2. Below: the standard deviation a-(oSij) of the scale difference on 
this polygon (poll) for each of the users. 
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Figure 2.9: Above: for each of the users, the average difference in corner scale 8Sij = 
S(P;) -S( Qi), plotted as a function of the true corner scale S( Qj) for the shape (pol2) 
on the right in Figure 2.2. Below: the standard deviation u(liS;j) of the scale difference 
on this polygon (pol2) for each of the users. 
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Figure 2.10: The same distance error results in larger angle errors for a corner of 
smaller scale. 

Information With respect to the issues raised in Section 2.2.3, we can conclude the 
following based on the data presented in Figures 2.5, 2.6, 2.7, 2.8, and 2.9. 

A) Errors in distance are unrelated to corner scale. The magnitude of the corner scale 
error, however, are smaller for corners of small scale (S(Qj) = 15). Meanwhile, 
angle related errors increase in magnitude for corners of very small scale. 

D) For all the errors measured, the performance of the users as measured by the 
magnitude of the means depends on the individual user. The error patterns for 
the users are, however, very similar. 

2.4.3 Modeling User Error Sets 

Suppose for each of the users, and each error measured, we investigate the error set at 
each scale. Then we can extract some set of parameters which describe the error set, 
and may help us to find a statistical model which it fits. 

In considering the corner angle error ( cfo;j), at each scale, we may expect the user 
error to behave as a Gaussian distribution, centered aboutµ=< 8a;j >, with standard 
deviation a = a( 8a;j). Given the parameter pair {µ,a}, the Gaussian distribution is 
defined by 

1 lx 1 '(=)2 F(x) = F(x;µ,a) = - -e2 a dt. 
y2'ff -oo a 

(2.16) 

We might also suppose the corner scale error (8S;j) sets to fit a Gaussian distribution, 
withµ=< 8S;j > and a= a(8S;j)-

We can evaluate the validity of these hypotheses, using the Kolmogorov statistic 
for comparing a single data set with a known distribution. Suppose F(x) describes the 
distribution we expect the data to fit. And suppose SE(x) is the distribution function 
of the error set, as defined in Equation 2.10. Let 

D = max ISE(x) - F(x)l-
-oo<x<oo 

(2.17) 

For comparing a single data set with a known distribution, the significance of D is 
given by 

(2.18) 
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where N = n(E). The probability that the null hypothesis "E is drawn from the 
distribution described by F(x)" is not false is given by p(>.), as defined in Equation 2.13 
[vM64]. 

Corner Angle 00'.;j: For each of the six users, there were five scales for which the 
corner angle error sets were generated. For each set, we computed D and p(>.) for 
comparing the error set E with the Gaussian distribution, using the parameter pair 
{µ,CJ} drawn from the error set. In every case, p(>.) > 0.05. We may therefore assume 
that user errors in corner angle are well modeled with a Gaussian distribution. 

Corner Scale 8S;j: The corner scale error sets were handled in the same fashion, 
but in this case, there were three different sets of errors generated for each user, one for 
all images, and one for each of the two polygons. In each case, there were 30 error sets 
compared with the Gaussian distribution. In each case, there was exactly one set for 
which p(>.) < 0.05. Since this is insufficient to be considered statistically significant, 
we may assume the sets are well modeled by a Gaussian distribution for which the 
parameter pair {µ,CJ} corresponds with the mean and standard deviation of the set 
at hand. In light of the results in Section 2.4.1, it is interesting (and useful), that this 
holds even when the data for both polygons is pooled. 

Distance O;j and Orientation 8/J;j Although we were unable to find distributions 
for the errors in distance and orientation, both data sets were well behaved. 

In particular, ifµ and CJ represent the mean and standard deviation for the distance 
error made by a given user at a given scale, then the actual error made by that user 
at that scale satisfies O;j :::; µ + 2CJ for at least 93% of the distance errors O;j made by 
the same user at that scale. This was true for every user at every scale. Moreover, in 
many cases, the distribution of the distance squared error fit that of a x2 distribution. 

Likewise, if µ and CJ represent the parameters of the orientation distribution for a 
given user at a given scale, then 8/J;j :::; µ + 2CJ, for more than 91% of the errors 8/3;j, 
made by the same user at that scale. This held for every user tested. 

Although we did not find a mathematical model which could be used to describe 
the distributions of these errors in all cases, the above findings allow us to derive a 
model for the expected worst case for these two errors. 

2.4.4 Performance on Texture 

The polygons traced by users in texture images have been excluded from the analysis to 
this point. Users showed large variation in the specification of the object boundaries 
in these images. These were the first images presented to the users, so the object 
shapes were not yet familiar. In some cases, a user specified the boundary with far 
more points than in Q, while others skipped many points in Q. Even after the points 
in the user polygon P were matched with those in Q, the missing and extra points in 
P introduced spurious large errors for the angle and scale for other corners. Because 
each of the texture images was created from a different pair of Brodatz textures, the 
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performance on the different images varied widely for each user. Unlike the other 
images used in the experiments, the differences in the Brodatz texture images is not 
easily quantified [Har78]. Based on the experiments performed here, it is therefore not 
possible to quantify a user model for performance on texture images. 

2.5 The User Error Model 

Based on the results in the previous section, we are now able to extract a user error 
model for the specification of polygonal objects in grey level images. Given a point set 
P = {p;}f=1 specified by a user, the user error model is characterized by the following 
properties. 

Maximum Euclidean Distance Let µ(8ij, S, U) be the mean of the distance errors 
made by the user U for corners of scale S, and let a-( 8;j, S, U) be the standard deviation 
of the same set. Inspection of the user error sets shows that for every user U and every 
scale S, the distance error 8ij satisfies 

for more than 93% of the measurements 8;j made for the user U at scale S. Therefore, 
given a user point p; specified by user U, there should be a corner point qj on the 
image object boundary which satisfies IIPi - qill :::; c, for 

(2.19) 

when the scale of the triplet P; is close to S. Because the distance error did not show 
any dependence on scale, for each user U we can simply use the worst case value (for 
all scales S for user U) for the maximum user error c. 

Corner Angle Let µ(8a;j, S, U) be the mean bias of the corner angle for user U at 
scale S, and let a-(8aij, S, U) be the standard deviation of this angle error set. The 
corner angle errors for a given user a given scale were shown to fit a Gaussian distri­
bution in Section 2.4.3, if the parameter pair{µ= µ(8aij, S, U), a-= a-(8a;j, S, U)}, is 
used in Equation 2.16. Therefore, if we have a user defined triplet Pi which defines a 
corner at the point p;, the probability is at least p = 0.92 that there is a corner in the 
image object defined by Qj such that 

µ(fo;j, S, U) - 2a-(fo;j, S, U) :::; fo;j:::; µ(fo;j, S, U) + 2a-(fo;j, S, U), (2.20) 

for the error 8aij = a(Pi) - a(Qj) generated by the user U of scale S(P;) 2: S. The 
inequality is because the error level for all users decreases as a function of corner 
scale, and because users underestimate corner scale almost uniformly (see Figures 2.8 
and 2.9). Therefore if the user U defines a corner Pi of scale S(P;) in a boundary 
sketch, there is a high probability (p 2: 0.92) of a corner Qj on the object boundary 
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which satisfies 

a(Pi)- µ(foij, S, U)- 2<J"(foij, S, U) :S a(Qi) :S a(Pi)- µ(foij, S, U) + 2<J"(foij, S, U). 
(2.21) 

Corner Orientation Let µ(8/3ij, S, U) be the mean error in orientation produced 
by the user U at scale S, and let 0"(8/3ij, S, U) be the standard deviation of the set. 
For the user error in orientation, the errors 8/3ij for each user at each scale satisfy 

for more than 91% of the errors 8/3ij generated for the user U at scale S. Thus, given 
a user defined corner Pi, with orientation fJ(Pi), and scale S(Pi), there should be a 
corner Qj on the object boundary, the orientation fJ(Qi) of which satisfies 

fJ(Pi) - µ(8/Jii, S, U) - 20"(8/3ii, S, U) :S fJ(Qi) :S fJ(Pi) + µ(8/Jii, S, U) + 20"(8/3ij, S, U), 
(2.22) 

for S :S S(Pi)- Again, the inequality holds because the orientation scale decreases as 
a function of scale, and because users underestimate corner scale. 

Corner Scale Finally, let µ(8Sij, S, U) be the mean bias of the corner scale error 
for the user U at the scale S, and let 0"(8Sij, S, U) be the standard deviation of the 
set. Because 8Sij was shown to fit a Gaussian distribution in Section 2.4.3, if a user 
defines a corner Pi with scale S(Pi), then p = 0.92 is the probability that the user 
error in scale satisfies 

(2.23) 

where 8Sij = S(Pi) - S(Qj), where Qj is a corner on the image object at some point 
qj near Pi· Given a corner Pi, there is likely to be a corner on the image object defined 
by Qj such that 

S(Pi) - µ(8Sii, S, U) - 20"(8Sii, S, U) :S S(Qj) :S S(Pi) - µ(8Sii, S, U) + 20"(8Sii, S, U). 
(2.24) 

Additionally, in light of the variation in the error distributions for corner scale on the 
two objects tested, the user errors in scale can be predicted more closely if the user 
data is gathered on objects which are representative for a particular application. If 
this is not possible due to a lack of a priori object models, the user data should be 
gathered for a variety of objects, and if critical, the error should be based on the worst 
case performance. 

2.6 Conclusions 

Based on a simple set of user experiments, we have been able to extract a wealth of 
information about the degree and nature of the errors users make in the specification 
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of polygonal object boundaries. With respect to the questions posed in Section 2.2.3, 
we have shown 

A) 1. User errors in distance and scale do not show any clear relationship to the 
scale of the corner on the object being specified. 
2. Both the error in corner orientation and the absolute value of the corner angle 
bias decrease as a function of corner scale. 

B) The user ability to specify the boundary of an unknown object is severely hindered 
if the object and background functions are arbitrary unknown textures with the 
same average grey value. 

C) User errors in boundary specification are not significantly affected by the presence 
or absence of noise and shading in an image. 

D) All errors depend on which user specifies the boundary. The differences among 
users are accentuated for the distance and scale error measures. 

E) The user errors on corner scale depend on the shape of the object being sketched. 

In addition to addressing these questions, we were able to develop the user error 
model described in Section 2.5, which predicts a bound for each of the corner errors 
defined in Section 2.2.2. For errors in corner angle and scale, the predictions were 
based on the result that the error sets for each user at each scale behave as a Gaussian 
distribution. 

2.A Instructions 

Please outline the object in each of the images presented with the tool for polygonal 
shape specification which works as follows: 

Mouse: 

Left Button Press 
Specify start and corner points 

Middle Button Press 
Last point in polygon ( connect to first) 

Keyboard: 

n - Request next image 

r - Redo drawing for this image 

q - Quit run 
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Practice Run 

You may practice using the tool by outlining the objects in the practice images. Each 
of the objects should be outlined by specifying exactly one point for each of the corners 
on the image objects. 

1. Press I Practice I in dialog box using Left mouse button. 

2. Repeat until comfortable: 

• Specify object boundaries in image (Mouse - Left and Middle). 

• Request next image (n) or repeat drawing (r). 

3. Quit practice run ( q). 

Experiment 

In each of the 20 images used in the experiment, a single object is present. Please 
outline the object by specifying a point with the left mouse button for each corner in 
the image object, and close the polygon with the middle mouse button. 

Important: 

• You have 10 minutes to outline the objects in all 20 images. 

• A point must be specified for each corner in the object, however the location of 
each point needn't be perfect. Please refrain from using a lot of care and time 
in specifying each point. 

• Please refrain from using the redo facility (r) unless corners have not been spec­
ified, or a mouse button is accidentally pressed causing a seriously erroneous 
drawing. 

• Please stop only when finished with all images. 

If the instructions are unclear, please request clarification now. The practice run can 
also be repeated with these instructions in mind by choosing I Practice I in the dialog 
box. 

1. Press I Start I in dialog box using Left mouse button. 

2. Specify object boundaries in image (Mouse - Left and Middle). 

3. Request next image (n). 



Chapter 3 

An A* Algorithm for Inexact 
Polygon Matching 

3.1 Introduction 1 

In Chapter 2, we compared the geometric properties of two polygons near correspond­
ing points. This allowed us to evaluate the type and extent of user error in the perfor­
mance of polygonal sketching tasks. Prior to the comparison of corresponding points 
in the user and reference polygons, each point in the user polygon must be matched 
with some (at most one) point in the reference or model polygon. The matching task 
is problematic because users sometimes skip points in a reference polygon and insert 
some which are not. 

Matching polygons, either of which may contain points missing in the other is 
a common problem in computer vision applications. In particular, in model based 
vision, matching a polygon extracted from a database with one extracted from an 
image can be difficult due to noise in an image, and due to occluding objects in an 
imaged scene. Even when a polygonal boundary is compared with a correct object 
model, an isomorphic match may not exist because the boundary obtained from an 
image may include points not present in the model and miss some that are. It is 
therefore often useful to seek a best fit or an inexact match of two polygons, such as 
that in Figure 3.1, rather than an isomorphism. If a polygon is viewed as a cyclic 
graph of nodes, this can be approached by introducing a similarity measure between 
nodes in two polygons. 

As suggested by Ballard and Brown in [BB82], such a measure can be used to gen­
erate an association graph in which a maximal clique is sought using graph theoretical 
methods. A binary decision is made for each pair of nodes which can be generated 
from the polygonal graphs, to determine whether it may be part of a match and thus 
should be incorporated in the association graph. A match is then selected by seeking 
a maximal clique in the association graph. 

To match 3D wire-frames in the stereo system described by Buurman and Duin 

1 A shortened version of this chapter will appear in [OGA94]. 
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Figure 3.1: Polygons P and Q and the best fit. 

in [BD90], for each node2 extracted from a scene, a best match is sought in a model. 
If there is sufficient support, a vote is added for support of the model. If the model 
receives sufficient support as a whole, verification is sought. This is similar to the 
decision process in the association graph method, but stops when there is sufficient 
support for some hypothesis. 

Geometric hashing, introduced by Lamdan and Wolfson in [LW88] and analized by 
Gavrila and Groen in [GG92], can be used to match polygons as follows. A polygon is 
viewed as a set of m interest points, which might correspond to the points p = (x, y) 
which define it. For each of the the m(m - 1) ordered point pairs in a model polygon, 
a basis for a coordinate system is defined and the (model, basis) is stored at the 
coordinates of each of the remaining m - 2 interest points in the hash table. When a 
polygon made up of n interest points is extracted from an image, a basis pair is selected, 
and for each of the n - 2 remaining interest points, a vote is given to every (model, 
basis) pair stored at its coordinates in the hash table. If some (model, basis) pair has 
received sufficient support, the process halts, and verification is sought. Otherwise, 
a new basis is selected from the object interest points. Geometric hashing has been 
successfully applied to several 2D and 3D vision problems. It is particularly suitable 
when an object and its transformation (location and orientation) are to be identified 
among numerous alternatives. 

For inexact matching, there are two primary drawbacks shared by these meth­
ods. First, because node pairs are eliminated prior to the matching step, global 
considerations cannot influence the selection of node pairs to be included in a so­
lution match. Second, a best fit of the polygons is neither defined nor guaranteed. 
The maximal clique finding favors matching as many nodes as possible which can 
easily result in matching nodes which should have been skipped [BB82]. Both the 
3D wire-frame matching and the geometric hashing methods generate a hypothesis 
based on a voting mechanism, and decide upon a match based on a verification step 
[BD90, LW88, GG92]. Whereas a maximal clique fully describes the match in terms of 
node pairs, some extra effort either in terms of storage or computation, is required to 
obtain the match with geometric hashing or 3D wire-frame matching. In the method 
proposed here, we separate the node pair evaluation step from the matching step. 

2The nodes correspond to edges in the wire-frame. 
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This allows us to quantify the characteristics of a best fit, and to develop an algorithm 
guaranteed to produce one. 

Because we are concerned with identifying which parts of two polygons should 
be paired up in addition to whether the polygons are well matched, the L2 metric for 
comparing polygonal shapes, introduced by Arkin, et al in [ACH+91] is not applicable. 
There are two additional drawbacks in using the L2 metric for matching problems. 
First, although it performs well in the presence of noise, points missing due to occluding 
objects may severely effect the shape, and therefore result in a very high value for the 
metric for an otherwise good match. Secondly, because it is invariant with respect 
to affine transformations (rotation, translation, and scale) it is inapplicable for some 
matching problems. For example, for model based vision systems in which the camera 
position is known a priori, it should be possible to distinguish a large object from a 
much smaller one of a similar shape. In matching a user specified polygon with one 
in an image, no form of affine transform should be tolerated, because the absolute 
position of the points is relevant. 

In our method, each pair of nodes which can be generated from the two polygons is 
evaluated using a "templates and spring" cost function. The cost function is designed 
to be adaptable with respect to its sensitivity to affine transformations, and to decrease 
as a function of similarity between the nodes. As shown in Section 3.2, it incorporates 
aspects of the geometrical relationship of a node with its neighbors, and thus acts 
much like the voting mechanism used in geometric hashing. It is used to produce a 
cost matrix containing an entry for every node pair generated by the two polygons. In 
Section 3.3, an A* algorithm is described to find an optimal path through the matrix, 
which corresponds to a permissible match between cyclic graphs. Our algorithm is 
particularly efficient in its exploitation of the cyclic characteristics of the graphs. 

Because the node evaluation/voting procedure is completely separate from the 
matching procedure, every possible match of the two polygons can be obtained. Meth­
ods which eliminate some pairs in the evaluation stage [BB82], or generate a hypothesis 
about the best fit without evaluating all node pairs [BD90, LW88], cannot guarantee 
an optimal fit of the polygons. 

The algorithm is designed to allow paths which result in a match with skipped 
nodes such as that shown in Figure 3.1. A node may be skipped at an added jump 
cost J, if this will result in a reduction of the total match cost. The jump cost J 
thus determines whether matches with skipped nodes can be obtained. We describe 
an empirical method for finding an optimal value for the jump cost J in Section 3.5. 
Results are described in Section 3.6. In Section 3.7, we analyze the complexity of 
the algorithm, and in Section 3.8, minor modifications are discussed which make the 
method applicable for matching 3D polyhedra. 

3.2 The Cost Function 

Let P = {p;}i=I be a polygon defined by n points Pi E R 2
. The key properties of a 

polygon can be described either in terms of the points Pi E P, or in terms of the line 
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segments L; between them: 

{ (1 - v )Pi + VPi+l : 0 :S v :S 1} for 1 :S i < n, and 

{(1-v)pn +vp1: 0 :S V '.S l}. 

(3.1) 
(3.2) 

We can view a polygon as a directed cyclic graph of nodes, Gp = {µ;};'=1 , each 
with a predecessor µ[ 1 and a successor µ4 1 . Whether a polygonal graph Gp should 
be defined with nodes represented by points µ; = Pi or by line segments µ; = L; 
depends on the application. For example, the position of the points is significant in 
the matching problem in Chapter 2, and µ; = Pi is a suitable node representation 
for comparing the polygons. In model based vision systems (cf [GAW93]), however, 
position is irrelevant, as the object may be transformed in relation to the model. In 
this case the representation µ; = L; is convenient, because a number of position 
independent properties can easily be derived with it. 

3.2.1 General Form of the Cost Function 

We apply the "template and spring" paradigm [FE73], to design the cost functions 
used to evaluate node pairs in polygonal graphs. If Gp= {µ;}i=l and GQ = {µJ}7'= 1 

are polygonal graphs, then we compare a nodeµ; E Gp with a node µJ E GQ based 

on the similarity ofµ; and µJ (templates). We can also evaluate the relationship of 
a nodeµ; E Gp with its neighbors in Gp, in comparison with the relationship of a 
node µJ E GQ to its neighbors in GQ (spring). 

Templates A template function t(µ;, µJ) measures the similarity of µ; E Gp and 

µJ E GQ. For example, if µf = Pi, then t(µf, µJ) can be defined in terms of the 
distance II Pi - qi II between two points Pi E P and qi E Q. 

Springs A spring function measures the difference between the relationship r(µf, µf) 
of µf to µf E Gp, for some k-/- i with the relationship r(µJ,µf) of µJ to µf E GQ, 
for some R. -/- j. For example, if k = i ± 1 and R. = j ± 1, the a spring function compares 
the relationship of the two nodes to their immediate neighbors. 

If the node representation is µ; = Pi, then a spring function might compare the 
length and direction of the vectors Pi - Pk and qj - q£, as in geometric hashing [LW88, 
GG92]. If there is an isomorphism between Gp and GQ, and ifµ; and µJ should 

be matched, then r(µ;, µf) should be close to r(µJ, µf) when k = i + o mod n and 
R. = j + o mod m, for 1 :S o '.S n. 

Voting Let t(µf, µJ) be a template function which compares a node µf E Gp with 

a node µJ E GQ. Further let s{r(µ;, µf), r(µJ, µi)} be a spring function which 

compares the relationship of µf to µf with the relationship of µJ to µi. Suppose that 
both t( ·) and s( ·) are bounded functions which increase as a function of similarity, and 
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that their sum 

satisfies 
0 ~ rt{r(µf, µf), r(µJ, µf)} ~ B. 

For some range of owe want to add a vote for the pair (µf, µf) if the response 

to rt{r(µf, µf), r(µf, µf)} measure is strong, where k = i + o mod n and .f.. = j + 
o mod m. To obtain a voting mechanism based on the response to rt(·), we can define 
a threshold value T, and add a vote for the pair (µf, µf) for every o resulting in 

rt{r(µf, µf), r(µf, µf)} > T. Alternatively, we can define a function which increases 
rapidly, so that small differences in the response to n ( ·) are accentuated. Choosing 
the latter is advantageous because it makes the estimation of a threshold parameter 
unnecessary. In the voting function described below, we use the exponential function 
to translate the response to rt(•) to a vote for or against a given pair (µf, µf). For 
the exponential to have the desired effect, we require the bound B » 1. 

If Gp and GQ were known to be isomorphic, we could define a voting function as 

t /l{(µf ,µrJ,(µJ ,µ~)}' 

a=l 

where k = i + o mod n and .f.. = j + o mod n. If t(·) ands(·) are appropriately defined, 
then the pairs with the most votes should be members of the correct match. If, 
however, a pointµ;, has no match in GQ, then the contribution to the above sum will 
be negligible for o ?: u - i. For o > u - i, the relationship r(µf, µf+a) is comparable 

with that of r(µJ,µJ+a+i). To be sure we get a vote for 15 when µf and µJ are well 
matched and Gp and GQ are not isomorphic, we thus want to summarize votes for 
neighboring elements of µf and µf. 

If we let !::,.s denote the maximum number of nodes which may be missed in Gp 
or GQ, then we can evaluate the support for pairing µf E Gp with µf E GQ with the 
voting function 

(3.4) 

where k = i + o + a mod n and .f.. = j + o + b mod m. 
The inner sum allows votes from node pairs that would be missed if either or 

both polygons were missing up to !::,.s consecutive points. The outer sum is used to 
summarize support over both polygonal graphs for the node pair. 

A Normalized Cost Function Given a voting function V(µf, µf) which increases 

as a function of similarity ofµ; E Gp and µf E GQ, the maximum value for all pairs 
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is given by 

and the function 

max 
l<i<n 
li;j::;m 

F( p 9) = Vmax(Gp,GQ) -V(µf,µJ) 
µ,,µ; T7 (G G) ' 

Ymax P, Q 
(3.5) 

is a normalized cost function, with O :S F(µf, µJ) :S 1 for all µf E Gp and all 

µJ E GQ. The cost function F(µf, µJ) decreases as a function of node similarity. 

The Global Cost Function Given two polygonal graphs Gp= {µf}:'= 1 and GQ = 
{µJ}Tc'=1 we can define a match M = {(air, a2r)}~=l of Gp and GQ in terms of R pairs 

of indices of the nodes µr and µ~ to be matched. Given a cost function F(µf, µ
1
Q) 

lr 2r 

for comparing nodes µf E Gp and µJ E GQ, the cost of a match Mis defined as 

R 

C(M) = J(m + n - 2R) + L F(µ~1r, µ~J (3.6) 
r=l 

where J is the cost of a missing node in either Gp or GQ and m + n - 2R is the total 
number of nodes in Gp and GQ unaccounted for in M. Because F(µf ,µJ) decreases 

as a function of similarity of µf and µJ, an optimal match of the polygonal graphs is 
one for which C(M) is minimal. The definition of a best fit therefore depends on the 
template and spring functions with which F(µf, µJ) is defined, and on the value of 
the jump cost J. 

3.2.2 Line Based Templates and Springs 

Representation of a polygonal graph Gp in terms of line segments µf = Lf, as defined 
in Equation 3.1, lends itself to the definition of template and spring functions which 
are invariant under various affine transformations. In this section, we define measures 
which are invariant under translations and rotations but sensitive to changes in scale. 
They are particularly suitable when the camera position relative to the imaged plane 
is known a priori, but the exact location of the object is not. 

Template Because the polygons being compared should not differ in scale, but may 
differ in position and orientation, length is the significant attribute of a line segment 
to be compared in a template function. Let R(Lf) = IIPi+l - Pill- The ratio of the 
lengths of line segments L1 and L2 defined by 

(3.7) 
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satisfies O :=; >.(L1 , L2 ) :=; 1. It provides a measure of similarity for line segments 
Lf E Gp and Lf E Gq, which increases as the difference in line length decreases, and 
is therefore a suitable template function. It is later exploited in the spring function as 
well. 

Springs Because we aim to define a spring function s{r(µf,µf),r(µf,µr)}, which 
is sensitive to changes in scale, but not to translations and rotations, the relationship 
r(L;, Lf) should express the distance and relative difference in angle between two line 
segments in a graph Gp. 

In defining these aspects of the geometric relationship between line segments, it is 
clear that the two points which determine each of the line segments should be given 
equal weight. We thus employ the midpoint 

(3.8) . 

of a line segment Lf E Gp in examining the relationship between two line segments, 
as geometric comparisons based on this point are equally influenced by the two points 
which define the line segment. 

The distance d(L;, Lf) between two line segments in Gp is now defined as [[mi -
mk[[. Given a line segment Lf E Gp with k #- i, we can define a connecting line from 
the midpoint mi of L; to the midpoint mk of Lf with 

Now >.(Lile, Li), as defined in Equation 3.7, provides a bounded measure which com­
pares the distance between line segments L[ and Lf, with the distance between line 
segments Lf and Lf 

Consider the size of the corner angles aik = a(L;, Lile) and aki = a(Lile, L;) shown 
in Figure 3.2.2. The two angles express the rotational and positional relationship of the 
line segments Lf and Lf. The angle a(Lf, Lile) can be compared with a corresponding 
angle derived from a pair (Lf, L<j) if we define 

(3.9) 

If the direction of the midpoint of L<j from the midpoint of Lf as defined by the 

vector L% differs from the direction from mi to mk defined by Lt, then [a(Lf, Lf) -
a(Lf, L<j) [ will be nonzero, and will increase as the difference increases. Meanwhile, 

if the angle a(Lf, Lf) differs from a(Lf, L<j), then Ja(Lf, Lf) - a(Lf, L<j)J will be 
nonzero, and will increase as the difference does. 

Thus O::; .6.a[(Lf, Lf), (Lf, Lr)]::; 1 for all pairs (Lf, Lf) E P and (Lf, Lr) E Q, 
and .6.a( ·) increases as the difference in the corner angles decreases . .6.a( ·) is invariant 
under affine transformations, and can thus be used in any cost function which tolerates 
one or more such transformations. 
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Figure 3.2: A polygonal graph Gp represented as a set of line segment nodes {Lft'=i· 
Relationships between line segments Lf E Gp and Lf E Gp can be evaluated in terms 
of the line L{:, connecting their midpoints. Here CXik = cx(Lf, L{:,) and cxki = cx(Lf, Lfi) 

A spring measure for line based polygonal graphs, which is sensitive to changes in 
scale, but invariant under translations and rotations, can now be expressed in terms 
of the relative distance and angles between line segments. Let 

s{r(Lf, Lf), r(LJ, Lf)} = >.(Lf, Lf) + >.(L{:,, Li)+ .6.cx[(Lf, Lf), (LJ, Lf)] 
+.6.cx[(Lf, Lf), (Lf, LJ)], 

(3.10) 
Note that we incorporate a term >.(Lf, Lf) which measures the relative of the two 
segments being evaluated. If the Lf and Lf are the relative neighbors of Lf and LJ, 
and the latter match, then the lengths of Lf and Lf should be the same. 

Template and Springs If we define 

(3.11) 

using Equations 3.7 and 3.10, then we have template and spring measure for line based 
polygonal graphs, which satisfies the requirements outlined in Section 3.2.1. Because 
D is defined in terms of the functions >. and .6.cx, we have 

for all pairs (Lf, Lf) and (LJ, Lf), and D{(Lf, Lf), (LJ, Lf)} increasing as a function 
of the similarity of line segment pairs. It can therefore be incorporated in the voting 
function V(µf, µJ) in Equation 3.4. 
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3.2.3 Point Based Templates and Springs 

If the location of the points in both polygons being compared is relevant, then a 
point based representation P = {Pi}i=i of a polygonal graph Gp = {µf}i=i is useful 
for making local comparisons. In this case, a template and spring function must be 
sensitive to any affine transformation of one polygon with respect to to the other. 

Template A template measure t(µf, µf), intolerant of affine transformations can 
be defined in terms of the distance between the points Pi E P and qi E Q. Given 
P = {Pi}i=i and Q = { qi }f=i, the maximum distance between any pair of points on 
the two polygons is 

The normalized measure of distance 

i<i<n 
i~j;:m 

(3.12) 

increases as a function of closeness of the points Pi and qi and satisfies O ::; d(pi, qi) ::; 1 
for all Pi E P and % E Q, and thus provides an appropriate template measure for 
polygonal graphs with point based nodes. 

Springs The geometrical relationships between a point Pi E P and its neighbors, to 
be compared in the spring function should reflect the required constraints on transfor­
mations between the polygons to be compared. By incorporating measures of angle 
and orientation, we penalize rotations between the two polygons. Measures of length 
are incorporated to restrain scaling. 

We can express the geometrical properties of the relationship between a point Pi 
and its neighbors on a polygon in terms of a triplet C = {ci, c2, c3 }, with c2 = Pi 
and ci, c3 E P, which defines a corner at Pi if ci -f. c2 -f. c3 . Likewise, if d2 = qi and 
di, d3 E Q, then a triplet D = { di, d2, d3 } defines a corner at qj. 

If P and Q are isomorphic, and Pi and qi should be matched, then the corners 
C = {ci,c2,ca} = {Pi-a,Pi,Pi+b} and D = {di,d2,da} = {qj-a,qi,%+b} should be 
similar in terms of angle, orientation and scale for nonzero pairs ( a, b). Comparing 
corners C and D at Pi and qi respectively for a set of pairs { ( a, b)} is similar to 
comparing node relationships for varying ,5 in the general spring function. 

We denote the angle of a corner C with a(C) = a(c2 - ci, c2 - c3). This is the 
angle a in Figure 3.3. Clearly if P and Q match and Pi and qi should be paired, 
a(C):::::: a(D) when C and Dare generated with the same pair (a,b). The angles of 
C and D can be compared by applying ,::,.a(·) to a(C) and a(D). For corners, we 
therefore use 

L:..a(C, D) = 1r - la(C) - a(D)l 1 

7r 
(3.13) 

as the spring component for corner angle. 
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_________ ,,,.. x-axis 

Figure 3.3: Significant properties of a corner C = { c1 , c2, ca}: the corner location, c2, 
the small corner angle a= a(C), the orientation /3 = f3(C), and l1 = llc2 - c1 II and 
l2 = llc2 - call, the length of the lines which meet at the point c2. 

Let /3( C) be the orientation of a corner C, defined by the angle the bisecting vector 
B(C), makes with the x-axis (Figure 3.3). This definition of corner orientation is used 
because it gives equal weight to both line segments which define a corner C. Let 
/3diff(C, D) denote the difference in orientation of corners C and D. Then 

_ 1 ( B(C) · B(D) ) 
/3diff(C,D) = cos IIB(C)IIIIB(D)II , 

and 
1::,.f3(C, D) = 1r - f3<liff(C, D) 

7r 
(3.14) 

provides a measure of the closeness of orientation. Since O ::; f3<liff( C, D) ::; 7r, for any 
corners C and D, we have O::; 1::,.f3(C, D) ::; 1. Note that !::,.f3(C, D) penalizes rotations, 
but is invariant to translation and scale. It can therefore be used for comparing corners 
in applications where an object's orientation is known a priori, as may be the case in 
a model based vision system in which the stable positions of an object are known. 

We can now define a spring function to compare the relationships of points in two 
polygons with their respective neighbors. Let 

where !::,.a(·) and 1::,.f3(·) are defined in Equations 3.13 and 3.14. The function >.(-) 
defined in Equation 3. 7 will penalize a difference in scale. 

Template and Springs We define 

(3.16) 

as a template and spring function to compare corners C and D derived from two 
polygons, where d(·) and s(-) are defined in Equations 3.12 and 3.15. Together, the 
components of A(C, D) assure its sensitivity to any form of affine transformation. 
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For any corner triplet C defined by three distinct points in the polygon P, and any 
corner D defined by three distinct points in Q, we have 

0 ::; A( C, D) ::; 5 

and A(C, D) increasing as a function of similarity of the corners C and D. 

Voting Because the spring contribution is measured in terms of three points in 
each of the polygons, we introduce the following variation on the voting function in 
Equation 3.4. To evaluate the similarity of a point Pi E P and a point qj E Q we want 
to compare the corners Pi= {Pi-1,Pi,Pi+1} and Qj = {qj-1, qj, qj+I} generated by the 
immediate neighbors in P and Q. To obtain a good measure when up to l:,.s consecutive 
points may be missed in either P or Q, we also evaluate A(C, D) for a range of corners 
about Pi and qi. Let P(k1,i,k2) = {Pk,,Pi,Pkz} and Q(/\,j,£2) = {q£"qj,%}- To 
evaluate the similarity of a point Pi E P and a point qj E Q, we define: 

t.s+l t.s+l t.s+l t.s+l 
V(µf' µf) = L L L L eA{P(k1,i,k2),Q(£,,j,£2)} 

a, =1 a2=l b1 =1 b2=l 

k1 = i - a1 mod n 

£1 = j - bi mod m 

and k2 = i + a2 mod n 

and £2 = j + b2 mod m 

(3.17) 

If lmax is the maximum number of jumps allowed in P or Q, to prevent the evalu­
ation of collapsing corners ( C = { c1 , c2 , c3 = c1}), we evaluate Equation 3.17 with 

. { lmin{m, n}J } l:,.s ::; mm lmax, 
2 

- 1 . 

3.3 An A* Algorithm to Find an Optimal Match 

Given polygonal graphs Gp = {µf}i=l and GQ = {µf}7'=1, and a cost function 

F(µf, µf) as defined in Equation 3.5 to compare nodes, we can use it to compute 
the cost of all n x m node pairs which can be generated form Gp and GQ, and store 
the results in a cost matrix C. An example is shown in Figure 3.4. Given such a 
matrix, the matching problem can now be approached by finding a minimum cost 
path through the matrix C which satisfies the following constraints specific to polygon 
matching. 

Because each node µf E Gp can be matched with at most one node µf E GQ, at 
most one element in a row or column can contribute to a path. The cyclic nature of 
polygons implies that a path through C for an acceptable match of Gp and GQ must 
have a diagonal form. To be precise, any path through the ( i, j) matrix element must 
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--Gp----- --Gp----s,,-
p ........ 

I 2 3 4 5 I 2 3 4 5 

1 
0.7 0.8 0.9 0.7 0.1 

1 2 0.1 0.8 0.9 0.6 0.8 2 

r 3 0.7 0.4 0.6 0.9 0.7 r 3 

4 0.8 0.2 0.8 0.7 0.7 4 

5 0.7 0.6 0.5 0.2 0.5 5 

Figure 3.4: A sample matching problem. On the left, two polygons to be matched, in 
the middle the cost matrix C computed with a function F(µf, µJ), and on the right, 
the minimum cost permissible path in the matrix. 

have a preceding neighbor ( ip, jp) with ip :s; i - 1 and jP :s; j - l, and the next node in 
the path (in,jn) must satisfy in;:::: i + 1 and jn;:::: j + 1.3 

If an isomorphism between Gp and GQ could be assumed, then a minimum cost 
path could be found by simply summing the costs for the n pairs in each of the n 
diagonal paths in the cost matrix and choosing that with the minimum total, an 
O(n2 ) operation. However, if up to k nodes may be missed in P and .f.. may be missed 
in Q, then there are k.f.. · mkne paths to be inspected in C. Assuming m ,::;; n, an 
exhaustive search has run time O(k4n4k+I), including the selection of the minimum 
cost path. To avoid this expense, we perform a heuristic search of the cost matrix to 
find a minimum cost diagonal path which represents a permissible match between the 
polygonal graphs Gp and GQ, 

Consider the cost matrix illustrated in Figure 3.5 containing the cost cij of pairing 

each element in Gp = {µft'= 1 with each element in GQ = {µJ}T=i· A permissible 

match of Gp and GQ should account for all nodes µf E Gp and µJ E GQ, either in 
a match pair, or by explicitly being skipped and adding a jump cost J to the total 
cost of the match. Thus, a diagonal path which represents a permissible match, must 
cover the entire length and breadth of the cost matrix. 

To facilitate the search, we maintain a list of path nodes 'T/, to store relevant data 
about a path from its start position to its current position. If up to SQ nodes may 
be skipped in GQ, then we don't know in which of the first SQ rows of C an optimal 
path will start, nor on which of the m - SQ rows it will end. To address this issue, we 
introduce a set of virtual start nodes S = { 'T/s}~=l with corresponding positions (s, 0) 
at the top of the matrix C, and a set of virtual goal nodes G = { 'T/g};=l with positions 
(g, m + I) at the bottom of C. A diagonal path which accounts for every node in Gp 
and GQ starting at 'T/s must end at 'T/g with g = s + I mod n. Mentally inserting a start 
and goal row for the example in Figure 3.4 helps clarify this. 

3 These statements should of course be interpreted in terms of the nodes in each polygon and thus 
modulo n and m should be understood where applicable. 
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Figure 3.5: The cost matrix for matching Gp and Gq starting with a set of virtual 
start nodes and ending with virtual goal nodes. On the right, the expansion of a node 
7J in a path is illustrated. 

To find an optimal path through the matrix we apply the general purpose heuristic 
search algorithm described in [Nil80], and listed in Figure 3.6. Beginning with the 
first start node, we expand it by generating a node for each of its candidate neighbors 
and place the new nodes on the OPEN list to be expanded, ordered according to how 
promising they appear. This process is repeated for each node on the list starting with 
the most promising, and halts when a goal node has been reached. 

The position of a node 7J in the OPEN list depends on its estimated cost /(71). 
Every node 7/ on the OPEN list has two cost functions associated with it: g(71) is the 
cost of the path from the start node 7/s to 7/, and h( 7J) is the cost to reach the goal node 
719 associated with 7/s· The cost of a path starting at 7/s constrained to pass through 7/ 
is given by 

f(TJ) = g(71) + h(71). (3.18) 

When a node 7/ is created, the cost g( 7J) is given by the sum of the costs including the 
jump costs, of the path from 7/s to 7/, and is maintained cumulatively as the nodes are 
expanded. The cost h(71) to reach the goal node is unknown. h(71) might however be 
estimated with a heuristic function h(71), and the estimated cost of a path from 7/s to 
719 constrained to pass through 7J can be defined as 

(3.19) 

If 
h(71) ~ h(71), (3.20) 

then the algorithm in Figure 3.6 is called A* and is guaranteed to produce an optimal 
path through C [Nil80]. 

Thus, to assure the path we find is optimal, there are two key points which must 
be considered. First, when expanding a node, all neighbors which might be part 
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l. For 1 :::; s :::; n, create a start node T/s and add it to the OPEN list. 

2. While OPEN is nonempty 

Remove first node TJ from OPEN. 
If T/ E G (goal node reached) 

Else 

Stop. Retrace path or evaluate match. 

(a) Expand T/· , 
(b) Place each successor T/J in OPEN list positioned according to f(TJJ)­
(c) Place TJ on CLOSED list. 

3. Destroy all items on OPEN and CLOSED lists. 

Figure 3.6: The best first search algorithm. 

of a permissible path, as determined by how many nodes may be skipped in Gp 
and GQ must be inspected. Second, we need a heuristic function h which satisfies 
Equation 3.20. 

3.3.1 Node Expansion 

If the number of nodes in the polygonal graphs differ (n =f m), then at least Jn - mJ 
nodes must be skipped in the larger of the two graphs for any permissible match. 
Without loss of generality, assume Gp = {µft'=1 is mapped horizontally, and GQ = 

{µJ }f=1 is mapped vertically in the cost matrix, as in Figure 3.5. Skipping k nodes in 
Gp results in a path with k horizontal jumps over columns in the match matrix. For 
each path node 7/, we maintain Hmin(rJ), the number of nodes µf E Gp which must 
be skipped between 7/ and its goal node 7/g, if the path corresponds with a permissible 
match. This value is initiated for each start node as Hmin(rJs) = max{n - m, O}, 
because at least that many will have to be skipped in Gp to match it with GQ. 
Additionally, to find matches such as those depicted in Figures 3.1 and 3.4, we allow up 
to lmax additional jumps in Gp and GQ· Suppose we denote the number of additional 
horizontal jumps permitted between a node 7) and its goal node 7/g with Hmax(rJ). Then 
every path starts with Hmax(TJs) = lmax· 

Analogously, we maintain Vmin(rJ), the number of nodes µf E GQ which must be 
skipped between 7) and its goal node 7/g, which is initiated for each start node with 
Vmin(rJs) = max{m - n, O}, and of course Vmax(TJs) = Hmax(rJs)-

When a node 7) positioned at (i,j) is expanded, the values of Hmin(rJ), Vmin(rJ), 
Hmax(rJ), and Vmax(rJ) determine the nodes to be generated in the expansion as follows. 
The candidate nodes for the next path element 7/J will be positioned at (if, JJ) with 

i + 1 _::; if _:; i + 1 + Hmin(rJ) + min{Hmax(rJ), m + 1 - j, g - i mod n} (3.21) 

j + 1 _::; ]f _:; j + 1 + Vmin(rJ) + min{Vmax(rJ), m + 1 - j, g - i mod n}. (3.22) 
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The minimum prevents the expansion of invalid or nonexistent nodes near the bottom 
of the matrix. 

For a newly generated node T/J, Hmin(TJ1),Hmax(TJ1), Vmin(TJJ) and Vmax(TJJ), depend 
on the number of jumps in the horizontal and vertical directions between the expanded 
node T/ and the new node T/f, and the values for the node T). They are computed 
using the formulas in Equations 3.30, 3.31, 3.32, and 3.33, based on the arguments in 
Appendix 3.A. 

Using the above formulas to compute the expansion regions, if all nodes T)J are 
expanded when (if, )f) satisfy Equations 3.21 and 3.22, then every permissible path 
will be investigated, and no impermissible paths will be generated. 

3.3.2 The Heuristic Function 

To be sure the path we obtain is optimal, we must guarantee satisfaction of Equa­
tion 3.20. The smaller the difference h(TJ) - h(TJ), the greater the heuristic power of h, 
and in turn the more efficient the search process. We thus consider the knowledge we 
have about the path from T/ to its goal node T/g· We know there must be a minimum 
of lmin(TJ) = max{Hmin(TJ), Vmin(TJ)} jumps made, each with a cost of J. J · lmin(TJ) is 
therefore a lower bound on the cost of the path from T/ to its goal node T/g· Further, 
the path must reach the bottom of the matrix, either by adding a node for the kth 
row in the matrix or by jumping over it. Another lower bound on the cost of a path 
from a node T/ to its goal T/g is thus 

m 

T/min(TJ) = ~ min{J, m_in F(µf,µf)}. 
k=j+l 1:,:,:,:n 

(3.23) 

Because T/min(TJ) depends only on the row position j for the node TJ, it can be computed 
once for all rows prior to starting the search. If we now define 

(3.24) 

then Equation 3.20 is satisfied, and using Equation 3.19 to order the OPEN list will 
result in the first path found being an optimal path. 

When there is a good match between the two polygons, the cost of the pairs 
(µ;, µJ) in the match will correspond to the elements which contribute to T/min ( T/) in 

Equation 3.23, and the heuristic power of his very high, making the algorithm quite 
efficient. If it is unknown whether the two polygons match, or a match may be poorly 
behaved (as in the experiments in Sections 3.5 and 3.6), then variations on h(TJ) which 
reduce the evaluation of the minimum to the elements of C which can be reached 
from TJ in moving to T/g may have substantially higher heuristic power, preventing 
extensive (costly) node expansion. Unless a good match is known to exist (as in the 
application in Chapter 2), there is a direct trade off between the heuristic power of h 
and the computational requirements to compute it. This will be considered further in 
Section 3.7. 

Further, if the method is used to decide whether Gp and GQ match, then a decision 
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threshold T, appropriate for the application, will be necessary to decide whether the 
cost of a match is low enough. Because f (TJJ) is a lower bound on the cost of the path 
constrained to pass through T/f in reaching its goal node, T/f needn't be added to the 

OPEN list for expansion if f(TJJ) > T. This modification is clearly useful for reducing 
the number of nodes maintained and expanded in the decision process. 

3.4 Experimental Methods and Error Measures 

Depending on the application, the best match of two graphs will be that for which the 
number of one or both of the following errors is minimized: 

false positive - the presence of an incorrect node pair; and 

false negative - the absence of a node pair which should have been in the match. 

In this section, we describe the experimental methods and error measures used 
to tune the parameter J, and evaluate the algorithm for a specific application. The 
general scheme is to create a pair of polygons, one of which is a controlled random 
distortion of the other, so that the polygons are well matched and we know the correct 
pairing of nodes. After running our algorithm on the polygon pair, we compare the 
resulting match with the correct match, and measure the number of false positives and 
negatives. 

The polygon distortion mechanism described here is designed to simulate a worst 
case user for the experiments in Chapter 2. Clearly for other applications, permitted 
affine transformations should be incorporated in the distortion scheme. 

Random Polygon Distortions Suppose, given a polygon P = {Pi}i=l' and some 
integer c 2: 0, we have a polygon Q = { qj }j=l where for 1 ::; i ::; n, 

llqj - Pill ::; ci if j = i + c mod n (3.25) 

If ci = 0, Q is simply a cyclic permutation of P. Let cmax be the maximum error a user 
is permitted in specifying a corner on a polygon. Further, let df denote the minimum 
distance from a point Pi E P to any other point Pk E P: 

df = mm IIPi - Pkll-
l<k<n 
k#i 

If, for 1 ::; i ::; n, we choose 

. {df } Ci= m1n 2 , cmax , (3.26) 

then given a polygon P = {p;}i=l and some c 2: 0, for every polygon Q = { qj };'=1 for 
which each qj E Q satisfies Equation 3.25, there is a one to one mapping between the 
points in P and those in Q, which can be expressed in terms of distance. For cmax > 0, 
such a polygon Q might be thought of as a disturbed permutation of P. 
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Figure 3. 7: The polygon P used for tuning the jump cost J for the user experiments, 
and the selection of a point qj E Q from Pi E P. 

Given a polygon P = {Pi}i=l and some integer c ~ 0, we can produce a worst case 
polygon Q which satisfies Equation 3.25 as follows. For each i E [1, n], we generate 
a point qj E Q, where j = i + c mod n, by selecting a random point from those on a 
digital approximation (generated with [Bre77]) to the circle of radius L c;J centered at 
Pi (Figure 3. 7). 

Error Measures Suppose now that we create X such polygons Q = Q(x), using a 
randomly chosen c = c(x) for each x E [1, X]. For each polygon, we can apply our al­
gorithm to obtain a match M[P, Q(x ), J] using J as the jump cost in Equation 3.6. Let 

Et
150

(M[P, Q(x), J]) denote the number of false positives(µ;, µf(x)) in M[P, Q(x), J]. 

In this case, any pair (µ;, µJ(x)) for which j =/- i + c(x) mod n is a false positive. We 
define the percentage of false positives in X experiments as 

(3.27) 

where n(M[P, Q(x)]) is the number of pairs found in a correct match of P and Q(x). 
Likewise, let Efulse(M[P, Q(x), J]) be the number of false negatives in a match. 

These are the points found in the correct match of P and Q(x), but not in found in 
M[P, Q(x), J]. We can define the percent of false negatives in X experiments as 

E-(P,X, J) = 100. I:;'=1 ffulse(M[P, Q(x), J]) 
I:~=l n(M[P, Q(x)]) 

(3.28) 

If M[P, Q(x), J] is a match of P and Q(x) to be evaluated, and C[P, Q(x), J] is the 
subset of all pairs in M[P, Q(x), J] also found in the correct match M[P, Q(x)], then 

n(C[P, Q(x), J]) = n(M[P, Q(x), J]) - Et1s0
(M[P, Q(x), J]). 
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The percentage of pairs correctly found for a series of X experiments is thus given by 

(3.29) 

Depending on the application at hand, we may want to minimize E+(P, X, J), 
E-(P, X, J), or both, thereby maximizing F(P, X, J). 

Missing Points Because the algorithm is designed to match polygons each of which 
may be missing points found in the other, we want to examine the errors when points 
are eliminated from either P or Q, or both. Given a reference polygon P = {p;}i=I as 
above and a polygon Q = { qi }J=1 generated from it, we can generate two new polygons 
Pcut = {pk}f=l and Qcut = {q£}f=1 by deleting cut = 2n - K - L randomly selected 
points from either P or Q or both. 

To evaluate the behavior for a set of X randomly generated polygon pairs Pcut, Qcut, 
we can apply defined Equations 3.27, 3.28 and 3.29. To indicate that cut points have 
been randomly eliminated from the polygon pair, the measures are then referred to as 

respectively. 

3.5 The Optimal Jump Cost J 

In Equation 3.5, we defined the cost of matching nodes from two polygonal graphs. 
An equally relevant question is when two nodes should not be matched. As used in 
Equation 3.6, the jump cost J is the value for which it should be cheaper to skip a point 
pair in matching Gp and GQ, than to include it. Combined with the cost function 
F(·), the value of J determines whether a fit such as that depicted in Figure 3.4 can 
be found. 

The criteria used to determine the optimal jump cost for a particular application, 
are application dependent, and closely related to the criteria used to design the cost 
function. We determine the jump cost empirically, by varying its value, and choosing 
a value for which specific criteria are met. 

Given a representative reference polygon P = {p;}:"=1 for a specific application, 
we might seek a value for J, for which the number of false positives, the number of 
false negatives or the total number of errors is minimized. If T(n) nodes might be 
missing in either polygonal graph for a specific application, then the number of errors 
should be minimal for matches between two polygons with up to T(n) missing points. 
For most applications, the tolerated number of missing points will increase with the 
number of points on the polygons to which it is applied. 

To find the optimal value of J for matching the user defined polygons in Chapter 2, 
we use the polygon P = {p;};=1 in Figure 3.7, and set T(n) = Ln/4J = 2. The polygon 
is similar to, but simpler than those in the user tests. T(n) = Ln/4j is more than the 
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Figure 3.8: The result of varying Jon E+(P, X, J), the percent of false positives, and 
on E-(P, X, J), the percent of false negatives, when Q is a distorted version of P, and 
P = {p;}f=o is the polygon depicted in Figure 3.7. The results are summarized for 
X = 500 experiments for each value of cut E {0, 1, 2}. 

number of misses than occurred in practice, and therefore sufficient for tuning the 
jump cost for this application. 

For each value of J tested, we performed X = 500 experiments for each of the 
permissible cut values {0, 1, 2}. The results are pooled for all three cut values in 
Figure 3.8, where we show E+(P, X, J) and E-(P, X, J), the percent of false positives 
and negatives found the 1500 experiments for each value of J. For the evaluation of 
user corner errors, we choose the jump cost J = 0.38 as this is the point where the 
false positives and negatives are nearly equal. 

3.6 Results 

Having obtained an optimal value J = 0.38 for the jump cost, we proceeded to apply 
the method to the polygons depicted in Figure 2.2 to which the user experiments 
were applied. Both polygons are made up of points with connecting line lengths 
i!(Pi+I - p;) E {15, 30, 45, 60, 75}, as measured in screen pixels. In the experiments, 
we allowed a maximum distance between generated point pairs to be cmax = 7 (see 
also Equation 3.26). Each of the polygons contains n = 17 points, and we allow 
T(n) = ln(P)/4J points to be missed in either polygon. We therefore tested the 
method for cut E {0, 1, ... 4}. The percentage of false positives for each value of cut, 
is given in Table 3.1. The tests were performed on X = 100 polygon pairs per cut 
value for each of the polygons. 

As expected, the performance deteriorated slightly as the number of points deleted 
from the polygons increased. Note that in all cases tested, less than 8% of the matches 
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% False Positives - E;};_,_t(P, X, J) 
Points cut 0 1 2 3 4 All 
% Polygon 1 0.18 2.00 3.78 6.31 7.36 3.69 
% Polygon 2 0.00 0.62 2.13 4.27 6.51 2.50 
% Both 0.09 1.31 2.95 5.29 6.94 3.09 

Table 3.1: The percentage of false positives, as defined in Equation 3.27, found in 
matching a set of polygon pairs. For each of the polygons in Figure 2.2, there were 
X = 100 polygon pairs Pcut, Qcut(x) matched for each value of cut E {0, 1, ... , 4}. The 
individual and combined results are presented for all cut values and for both polygons 
tested. 

% Correct Pairs Found - Fcut(P, X, J) 
Points cut 0 1 2 3 4 All 
% Polygon 1 99.35 97.62 95.62 93.12 93.47 96.05 
% Polygon 2 97.52 96.69 96.28 94.59 93.26 95.80 
% Both 98.44 97.16 95.95 93.85 93.37 95.92 

Table 3.2: The percentage of node pairs correctly identified with our algorithm. For 
each of the polygons in Figure 2.2, there were X = 100 polygon pairs Pcut, Qcut(x) 
matched for each value of cut E {O, 1, ... , 4}. The individual and combined results are 
presented for all cut values and for both polygons tested. 

were bad, and that on average only 3% were. This means that 97% of the matched 
pairs were correct. 

In Table 3.2, we show the percentage of point pairs in a correct match that were 
identified with our algorithm. On average we find 96% of the point pairs in a correct 
match. 

Given the random nature of the input data, this is quite good. Recall that corner 
angle and line length both weigh heavily in the voting function (see Equation 3.16). 
These factors can be badly influenced by the local differences in shape between P 
and Q. This problem is accentuated when points are eliminated from either polygon, 
which accounts for the deterioration for increasing cut values. In practice, users are 
far less random in the geometric deformations of the input polygon in relation to the 
reference polygon, and the percentage of points correctly matched is close to 100%. 
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3. 7 Complexity Analysis 

The algorithm for inexact matching described in this chapter is a two step procedure. 
In the first step, a matrix of costs is computed with an element for each pair of 
nodes which can be generated from the two polygons, and in the second, a best fit 
is determined by finding a minimum cost path through the matrix. We consider the 
complexity of each step separately and conclude with a comparison with geometric 
hashing. 

3.7.1 Cost Computations 

The computations required to compute the cost of matching a node in Gp with one 
in Gq depend primarily on the number of consecutive nodes which may be missed 
in either of the polygonal graphs. Based on the voting function in Equation 3.4, 
voting requires n • (26.s + 1)2 steps. Since this is required for all node pairs in the two 
polygons, the cost computation is of order 0( n3 6.s2

). Likewise, the variant introduced 
in Equation 3.17 and used in our tests is of order O(n26.s4

). 

3. 7.2 Matching Computations 

The complexity of the matching step can be evaluated in terms of the total number of 
nodes expanded, and in terms of the number of nodes generated in the process. The 
number of nodes expanded depends on how well the polygons fit with respect to the 
cost function. For every node 7) expanded, there are (Hmin(7J) + Hmax(7J))(Vmin(7J) + 
Vmax(rJ)) ~ J':riax nodes generated, each of which must be inserted in the ordered list 
OPEN. 

The run time performance of the best first search algorithm shown in Figure 3.6 
is clearly dominated by the sorted insertion of the newly generated nodes 7/J· The 
insertion is accomplished with a merge sort (cf. [CLR90]). We first sort the J;,ax 
newly generated nodes 7/J using an insert sort with worst case run time 8(J!aJ, and 
then merge the two sorted node lists. 

Best Case When there is a clear match between the nodes in the two polygons, 
then after the n start nodes, the only nodes expanded are the roughly n nodes on a 
best match. In the best case, there are roughly 2n · J;,ax nodes generated, and each 
must be inserted at the appropriate position in the OPEN list. Since the size of the 
0 PEN list is of order O ( n · J;,ax) ( for the best case), the merge step has worst case 
run time e ( n . J':riax) 

So we may conclude that algorithm has run time n( n 2 J':riax) in the best case, that 
is when the number of nodes expanded is of order O(n). The best case for the number 
of nodes expanded is examined because it does arise in practice (e.g. Chapter 2), and 
its run time is therefore of interest. However, there is no reason to believe that it is 
coupled with best case sorting, which is why we use worst case run time for sorting 
when evaluating the best case run time. 
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Worst Case When no good match exists, the number of expanded nodes can in­
crease dramatically. In practice, this case arises when a decision must be made as to 
whether two polygons match. To reach a conclusion, there must be a decision thresh­
old T, which determines whether the cost of a path as defined in Equation 3.5 is low 
enough to to infer a match, as in [Ant93]. 

In the worst case, we expand every node generated until we reach a goal. For the 
start nodes, we generate n · J!ax nodes. Expanding all of those, generates at most 
n • J;,_ax · J;,_ax nodes. Continuing this process until a goal node is reached will result 
in the generation and expansion of at most n · J;.:X nodes . The algorithm therefore 
has worst case run time 8(n2 1,;,':,_x)-

Preventing the Worst Case Given T, an application dependent threshold (which 
can be selected in much the same fashions as was jump cost in Section 3.5), it can be 
used to reduce the run time costs of the matching procedure significantly. Suppose 
we know a no match conclusion should be reached, if the minimum cost path has cost 
f(ri) > T. Since f(ri) :::; f(ri), it is unnecessary to insert a freshly generated node 7/J 

in the OPEN list if f (ri1) > T. The length of the OPEN list can thus be reduced 
significantly if T is small. In the most extreme case, if T :::; 7/min(O) as defined in 
Equation 3.23, then a no match decision will be made before the first start node is 
generated. On the other hand, if T?: L-j=0 max1-5,i-5,nF(µf,µJ), then until a goal 
node is reached, all nodes generated will be expanded. 

When the presence of a good match is in question, and no small threshold T has 
been defined, we can prevent unnecessary growth of the OPEN list if we modify the 
heuristic function h(ri) to provide a better estimate of h(71). From Equation 3.23, it 
is easy to see that 7/min(ri), and therefore h(ri), increases as the as number of elements 
contributing to the minimum for each row is decreased. However, the minimum must 
be evaluated for all row members which the path from 7/ to its goal 7/g can pass through 

or it may not satisfy h(ri):::; h(ri), as required. 
For every start node 7/s, the set of elements in each row which can contribute to a 

permissible path from 7)5 to its goal node 7/g can be determined at a cost of 0(nlmax), 
Computing 7/min(ri) as a function of the start position as well as the row position can be 
done with 0( n3 lmax) operations, rather than the 0( n2 ) operations required to compute 
7/min(ri) solely as a function of row position as in Equation 3.23. This additional cost 
is clearly worthwhile if worst case behavior may occur. If however, best case behavior 
is expected, then the additional computations are superfluous, and the formula used 
to compute 7/min(ri) in Equation 3.23 is more efficient. 

3.7.3 Evaluation 

In Table 3.3, we summarize the best (fl(•)), the average (O(·)), and the worst (8(·)) 
case run time for the experiments performed in Section 3.6 on the polygons in Fig­
ure 2.2. Note first that the best case behavior is fl(n2 J;,_ax) as predicted in the dis­
cussion above. Secondly, the worst case performance 8( n6 J!ax) is much better than 
predicted, in spite of the random nature of the data. The worst case prediction is 
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Run time complexity: # expanded x # generated 
r2(n) r2(n, lmax) O(n) O(n, lmax) 8(n) 8(n, lmax) 

n n n 

Table 3.3: The runtime behavior of the algorithm for the 500 matches performed in 
Section 3.6 on each of the two polygons in Figure 2.2. The values r2(n) and r2(n, lmax) 
show the best case behavior, O(n) and O(n, lmax), the average behavior, and 8(n) and 
8(n, lmax) the worst case. The variations due to the value of cut were small enough 
not to influence the above values. Each of the polygons contain n = 17 points and 
the maximum number of points allowed to be skipped in a match was lmax = 4. The 
combined results are presented for all cut values and for both polygons tested. 

based on a breadth first search (h(77) = 0), where in fact we perform a depth first 
search, which, depending on the definition of h( 77), is far more efficient. 

In the experiments here, using h( 17) defined in terms of 7'/min ( 77) as defined in Equa­
tion 3.23, the worst case runtime is far better than O(n4Jmax+1 J!ax), the computation 
time required for a brute force decision. 

Based on the complexity analysis performed by Gavrila and Groen in [GG92], 
the voting procedure required by geometric hashing for matching two polygons as 
considered in this chapter has worst case run time 8(n6), assuming a point pair in 
each polygon is used to define a basis set. Given that our method produces a match 
if it is present, and quantifies its quality, in addition to performing a decision task, 
the run time behavior as summarized in Table 3.3 compares very well with that of 
geometric hashing. 

3.8 Inexact Polyhedra Matching 

It is interesting to note that with minor modifications, the method described in this 
chapter can be applied to the problem of matching polyhedra in three dimensions. 
Suppose we have a polyhedron Lp = {L~}:1=1 represented in terms of n line segments 
L~ between points p;.,p;2 E R 3

: 

Lf = {(1 - v)p;, + vp;2 : 0 :S v :S 1} 

The major difference between a polyhedron and a polygon is that it is not cyclic, and 
thus no ordering or connectivity of the set Lp can be assumed. A vertex vi at position 
Pi = (xi, Yi, zi) is connected to its neighbors by some unknown number of line segments 
Lf and thus the position alone is insufficient to evaluate and compare vertices from 
two polyhedra. If a vertex is defined in terms of its position Pi and the position of 
each vertex to which it is connected by a line segment, then a set of templates and 
spring might be defined to compare it with a vertex from another polygon. 

It is of course possible to represent a polyhedron as a set of connected faces, each of 
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which can be described in terms of a polygonal graph. The template contribution to a 
cost function might then be computed with one of the functions defined in Section 3.2. 
Because the run time of the algorithm depends on the size of the node sets, both of 
these alternatives can be used to reduce the run time considerably, as they can be used 
to represent a polyhedron with substantially fewer nodes than required if line segment 
representation is used. 

For the sake of discussion, suppose we view a polyhedron as a graph Gp = {µ~ }f=1 

made up of nodes µt = Lt. Given a second polyhedron represented by Gq = {µb}~ 1 , 

we can define a template and spring cost function F(µ~, µb) to compare each pair of 
nodes which can be generated from the two graphs Gp and Gq. Depending on the 
transformations tolerated for a specific application, template and spring functions can 
be defined which are minor variations on those defined in Section 3.2.2 for line based 
polygonal graphs. 

We may thus produce an n x m cost matrix containing the value of the metric 
F(µt, µb) for comparing the ith and jth members of Gp and Gq respectively. To find 
an optimal match using the cost matrix, we again note that every node in Gp and 
Gq should be accounted for, either by being explicitly skipped or by being included in 
a match. This means that any match will cover the entire width and breadth of the 
matrix. We can thus start and end with virtual start and goal nodes as in Section 3.3 
forcing the polyhedron which is vertically mapped to be fully accounted for. Since no 
row or column can be included more than once in a match, the columns considered in 
the expansion should be those not yet accounted for in the path up to node T/· Skips 
can be permitted, by allowing jumps over rows. 

The restriction that the path through the cost matrix be diagonal was necessary 
for polygons due to the cyclic nature of the data sets being matched. Dropping the 
restriction has two consequences for the search algorithm. First, h( T/) resulting from 
the definition of T/min(T/) in Equation 3.23 is the best estimation which can be obtained 
prior to the actual search procedure. Second, the run time behavior is somewhat 
worse, as any two nodes might be neighbors. This means in the estimations presented 
in Section 3.7, lma:x should be replaced by n. 

3.9 Conclusions 

We have described a technique for inexact matching of polygons in which the evalua­
tion of node pairs is separated from the optimal fit algorithm. The characteristics of 
a cyclic graph representing a polygon in terms of either points or line segments are 
incorporated in a "template and spring" cost function used to measure the similar­
ity of nodes from different graphs. Further, we presented an efficient A* algorithm 
guaranteed to produce an optimal match with respect to the cost function. A method 
for selecting an optimal jump value is described, and the method is shown to work 
successfully in the user experiment application described here as well as for the model 
based vision system described in [GAW93]. Finally, we analized the run time complex­
ity of the algorithm, and showed that unnecessary growth can be prevented in various 
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application contexts. Our algorithm can easily be extended to match 3D polyhedra as 
illustrated in Section 3.8. 

In addition to matching the user input sketches with polygonal object boundaries 
in Chapter 2, in the model based robot vision system described in [GAW93], our 
matching algorithm provides a reliable and efficient mechanism for deciding whether 
a polygonal object boundary detected with the sensor system should be identified as 
the boundary of an object expected in the scene, the description of which is obtained 
from a database. 

3.A Node Expansion 

In the A* algorithm described in Section 3.3, the set of nodes generated when a 
node is expanded determine which paths through the cost matrix, and therefor which 
matches of two polygonal graphs, can be obtained. When a node 7J positioned at 
(i,j) is expanded, the values of Hmin(T/), Vmin(T/), Hma:x(T/), and Vma:x(T/) determine the 
positions of the nodes to be generated, based on Equations 3.21 and 3.22. These values 
are determined when a node is first generated as follows. 

The values of Vmin ( T/J), Hmin ( 7/J) Vma:x( T/J), and Hma:x( T/J) associated with each newly 
generated node T/J, depend on its position in the cost matrix with respect to T/, and on 
the values of Vmin(T/), Hmin(TJ) Vma:x(TJ), and Hma:x.(T/) for its predecessor. A candidate 
node 7/J created to follow T/ involves Jh = if - ( i + 1) horizontal and Ju = j f - (j + 1) 
vertical jumps in the matrix. This corresponds to skipping Jh nodes in the polygonal 
graph Gp and lv nodes in Gq. 

To simplify the discussion, suppose Jh ~ 0 and lv = 0. Then if Hmin(T/) ~ 0, 
at least some of the Jh horizontal jumps were required, and the number of required 
horizontal jumps in the new node will be 

If Jh ~ Hmin(T/), then Jh - Hmin(T/) permitted, but not strictly required, horizontal 
jumps were made to reach (i1 ,)f), and the number of permitted horizontal jumps in 
the remainder of the path through T/J is 

Note, however, if jumps not strictly required, as maintained in Hmin('TJ), are made 
in the horizontal direction, then in the remainder of the path, the same number of 
vertical jumps must be made to guarantee a permissible matching of the polygonal 
graphs. This restriction can be enforced if 

Vmin(T/1) 

Vmax(T/J) 

Vmin(T/) + (Jh - Hmin('T!)) 

Vmax(T/) - (Jh - Hmin(T/)) 

Extending the above arguments, we can define formulas for Hmin(T/1), Hmax(TJ1), 
Vmin(T/J ), VmaAT/J) for the general case (Jh ~ 0 and Jv ~ 0). First, in moving from 7J to 
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T/t, the number of not strictly required jumps in the horizontal and vertical directions 
is given by 

It is easy to see that 
Hreq = max{Vt - Ht, O} 

steps must later be made in the horizontal direction. Likewise 

must be made in the vertical direction. The minimum jumps required and the maxi­
mum jumps allowed to get from T/t to its goal T/g is given by: 

Hmin(TJt) 

Hmax(TJt) 

Vmin(TJt) 

Vmax(TJt) 

max{(Hmin(TJ) - Jh + Hreq), O} 

Hmax(TJ) - max{Jh - Hmin(TJ), O} - Hreq 

max{(Vmin(TJ) - lv + V,.eq), O} 

Vmax(TJ) - max{Jv - Vmin(TJ), O} - V,.eq 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

If these formulas are used to compute the expansion regions, then expanding all nodes 
T/t when (it, ]f) satisfy Equations 3.21 and 3.22 prevents investigation of impermissible 
paths, while it guarantees that every admissible match can be obtained with the 
algorithm. 



Chapter ·4 

Model Based Corner Detection 

4.1 Introduction 1 

If an object boundary can be described by a set of line segments connected at points, 
then the connection or corner points are sufficient to fully reconstruct the object 
boundary. In [FW94], Fischler and Wolf show that corners and points of high curvature 
form the best point set for recovering more general curves. They also show that users 
select these points when asked to specify the most significant points on a curve. 

A sketch derived from a user-defined point set which is specified with a connect­
the-dots interaction tool as described in Section 2.3.1, cannot be considered more than 
an approximation to an object boundary, and is thus not suitable for analysis of object 
features, such as shape, grey level moments and area. This is due to the indirection of 
hardware devices for screen location specification, and the variation in human motor 
capabilities described in [HHN86]. For the task of polygonal boundary specification, 
variation in user errors is illustrated in Chapter 2 of this thesis. We thus seek a user 
adaptable method for correcting a user defined polygonal sketch of an image object 
boundary. Even if users could specify boundaries to a satisfactory degree of accuracy, 
correction mechanisms reduce the tedium inherent to this task by allowing users to 
sketch less carefully. 

In this chapter, we address issues involved with correcting the corner points on 
a user sketch of a polygonal image object boundary. Because the corner points fully 
determine the boundary path for polygonal objects, the accuracy of all object measure­
ments depend on the accuracy of these boundary points. When a polygonal boundary 
path is specified by a user, we therefore view the user sketch as a set of straight lines 
connected at corners, and concentrate our attention on correcting the corner locations. 
This approach is particularly suitable for images in which the object shapes are close 
to polygonal, as is frequently the case in industrial applications. 

Initial attempts to detect and locate corners on image object boundaries were based 
on inspection of boundary paths already extracted from the image ( see for instance 
[RJ73, FD77]). Because of the local nature of the inspection performed, these methods 

1 Portions of this chapter are reprinted, with permission, from [OG93] @1993 IEEE. 
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often fail to detect corners with wide angles. Moreover, because in general, the path 
on which corners are detected has been extracted using edge detection methods or 
region based segmentation techniques, those corners which are detected will be poorly 
localized. By definition, edge detectors are intended to detect points on a smooth 
boundary path [MH80]. Because the smoothness condition is violated at corners on 
the object boundary, edge detectors perform poorly at these points. Meanwhile, most 
region based segmentation methods classify pixels after some form of local averaging. 
Depending on the size of the region which influences the decision, a pixel near an acute 
corner will often be misclassified due to the heavy influence of background pixels in 
the decision process. An object boundary extracted from the partitioning will thus be 
rounded near corners, and if the corners are detected, they will necessarily be poorly 
localized. 

To address these issues, more recent approaches are geared towards detection of 
corners in the original grey value image, as opposed to on a geometric path already 
derived from it [KR82, ZH83, LSWM86, RSB89, MNR90, LT90, SS90]. While the 
proposed methods vary, they share two basic assumptions: 

1. The corner is located between two relatively smooth regions which differ signifi­
cantly in average grey value. That is, a priori knowledge is assumed about the 
behavior of the image function on the object and background regions, which can 
be used to distinguish the two. 

2. No a priori knowledge is available regarding the geometrical aspects of the corner. 
Thus corners of arbitrary angle, orientation, and location must be identified with 
the corner detector. 

The role of interactive segmentation in image analysis is most important when the 
validity of the first assumption is unknown. In new applications, there is generally no 
a priori knowledge of the image function on the images being analyzed. 

Meanwhile, in interactive segmentation, a user can provide an approximation of 
the contour in terms of location and form. Detection of corners for which there is 
a good estimate of the angle, orientation, and location has been neglected in the 
literature, although this information is frequently available. This is not only the case 
in interactive segmentation, but also in model based segmentation techniques, and in 
variations of the active contour method [KWT88], such as that described in [WS92]. 

Given an approximate geometric model for a corner on an image object contour, 
we want to extract a model of the image function in the immediate region. The 
two models can then be combined and exploited to localize the corner on the object 
boundary as follows. We design a template which should look like the corner in the 
image based on the geometric and image function models. This is used to locate the 
corner in the image, using a variation of the cross correlation technique described in 
[RK76]. We demonstrate our method by employing it to model and locate a variety 
of corners in a grey value image. 
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Figure 4.1: Ramp and roof corner models for an image feature measure >... 

Our method provides a context in which a variety of segmentation models can 
be evaluated for their capacity to locate a corner. With very little effort, it can be 
extended to other geometrical forms. With this approach, a segmentation model for a 
new application can be derived far more easily than with traditional methods ( often 
trial and error), and the need for human intervention quickly eliminated. 

4.2 From User to Corner Model: an Overview 

Suppose we have an image which contains an object, the boundary of which can be 
described by the set of line segments which connect neighboring points in the ordered 
set Q = {qj}J=l> with qj E R 2 for all qj E Q. Suppose a user, in the process of 
specifying the object boundary generates the point set p = {Pi}r=l> where for each 
Pi E P, we have Pi E Z2 corresponding to the position of a pixel in a digital image. 

For every Pi E P, the user implicitly specifies a corner in the object boundary, 
the geometrical properties of which are determined by the triplet P; = {Pi-l,Pi,Pi+1}­
From the results presented in Chapter 2, we can expect there to be a corresponding 
corner in the image object boundary defined by a triplet Qj = { qj-l, qj, qj+1} of neigh­
boring points in the point set which defines the boundary. Unless the user specifies 
superfluous points near the corner Qj, or neglects to specify one of the points which 
define Qj, then we may assume the relationship between P; and Qj satisfies the con­
straints on position, angle, orientation and scale described by the user error model in 
Chapter 2. 

If there is a corner Qj in the image object boundary, not occluded by another 
object, or disturbed by other sources, then based on some image feature measure >.., 
the image data in a region near the point qj should be well modeled as a ramp or roof 
corner as shown in Figure 4.1. For example, >.. may measure the grey value intensity, 
but more complex feature measures (e.g. graininess) may be appropriate to model the 
image function near the corner. 
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Figure 4.2: Division of a subimage R in three regions of interest, based on a corner Pi 
in a user input sketch. 

In an ideal image, this means that there is some neighborhood S centered at the 
point qj, which can be divided in three sections depending on the response to the 
image feature measure .A. If the object boundary follows the path defined by Qj in the 
neighborhood S, then there should be two regions in S separated by the path of Qj. We 
call the region which corresponds to the cone of the corner Sin, and its counterpart Bout· 
These regions are labeled in Figure 4.1, and are separated by a central or transition 
region Sc along the path Qj, in which the image function changes. If .A is an image 
feature measure which can be used to described the change in the image function near 
the point qj, then one of the following must hold. 

A) The constant value Ain of the function >.(x, y) on Sin is distinct from the constant 
value >-out of >.(x, y) on Bout· In the central region Sc, the value varies between 
Ain and >-out· This criterion corresponds with the ideal ramp corner model in 
Figure 4.1. 

B) >.(x, y) has the same value in Sin and Bout· The average value of >.(x, y) in the 
transition region Sc is higher or lower than Ain = >-out• A corner which satisfies 
these conditions is described by the roof corner model in Figure 4.1. 

C) One of the above two statements holds when some portion of S is measured, but 
not for the entire region. This may be due to an occluding object near the corner, 
such as a pen lying near or across the corner of a piece of paper, or to changes in 
the object itself, such as that in the house near the corner outlined in Figure 4.2. 
Further, nearby objects and lighting conditions such as shadows and reflections 
may result in interference with the corner model. 
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D) The section of the contour associated with the corner Qj is subjective. There is 
no measurable change in the image data in the three regions, but Qj would be 
part of the boundary were it fully visible. A subjective corner may be due to low 
contrast in the image region or due to the presence of an occluding object. Often 
a human or a high level process (e.g. [GAW93]) can hypothesize the presence of 
a corner which would be nondetectable based only on the behavior of .\(x, y) in 
the region S. 

Based on the results in Chapter 2, given a triplet Pi= {Pi-l,Pi,Pi+i} produced by 
a user as part of an object boundary specification, we can assume there is a similar 
corner Qj on the boundary for which one of the above holds for some image feature 
measure .\. Based on the corner defined by the triplet Pi, and the user error model in 
Section 2.5, we can define three regions R;n, Re, and Rout which should correspond to 
the regions Sin, Sc, and Sout about the corner point qj on the image object boundary. 
(See Figure 4.2.) The regions R;n, Re, and Rout, can then be used to estimate param­
eters for a given image feature measure .\ in the corresponding image corner regions 
Sin, Sc, and Sout· 

The results can be used to evaluate the likelihood of a ramp or roof corner Qj 
which is similar to Pi, in terms of angle, orientation and location. A model of the 
image corner can then be constructed based on the likelihood of a ramp or roof model 
for a measure .\, and the region parameters. The model might be incorporated in a 
simple template and subsequently used to locate the corner in the image, as illustrated 
in Sections 4.4 and 4.5. However, more complete corner models which take into account 
the user error models for in corner angle and orientation derived in Section 2.5 may 
be constructed. 

4.3 The Segmentation Model 

Suppose we have an image I(x, y) containing an object, the boundary of which can be 
expressed as a polygonal path defined by Q = { qj }~1 . Suppose that for some image 
feature measure .\, the difference in the response on the object and background regions 
is significant. Then, for each point qj E Q, there will be a small region centered about 
qj, for which the image function when measured with .\ will fit a ramp corner model. 
Alternatively, the response to .\ along the path defined by Q may be measurably 
different from the response to .\ in the object and background regions. The image 
data will then fit a roof corner model in the regions about the points % E Q. 

In both cases there will be a transition region along the path of Q near q1, in which. 
the value of the image feature measure .\ changes. The geometry of the transition 
region depends on the size of the neighborhood over which .\ is measured, the width 
of the point spread function of the optical system used for image formation, and 
the geometry of the boundary near the point qj as determined by the triplet Q1 = 
{ qj-l, qj, qj+1}. For roof corners, line thickness also contributes to the geometry of the 
transition region. 

Given a corner triplet Pi= {Pi-l,Pi,Pi+1} in a user sketch of the object boundary, 
let R be an N x N subimage centered at the point Pi· Based on the user error model 
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derived in Chapter 2, we can expect there to be a corner on the object boundary 
described by a triplet Qi = {qj-l, qj, qj+i} which satisfies a number of constraints 
with respect to the user defined corner triplet Pi. We can therefore extract a region 
Re C R centered about the two lines which meet at Pi which is known to contain the 
path section Qi n R of the object boundary in the subimage R. Given the size of 
the neighborhood required to measure A, the region Re can be defined to contain the 
entire subset Sc n R in which the object to background transition takes place. 

If the size N of the subimage R satisfies certain conditions (defined below) with 
respect to the length of the lines which define the corner at qj, and the corner angle is 
not too small, then the remainder R\Rc of the region R will be made up of two disjoint 
regions Rin and Rout, separated by Re. See Figure 4.2. If R;n and Rout are sufficiently 
large, then measurements on the image data in the respective regions can be used to 
estimate the parameters of an image function model in the object and background 
regions. 

Based on the user error model and the image corner model, we therefore aim to 
construct a region Re for a postulated corner Pi = {Pi-i,Pi,Pi+i} in the user sketch. 
We then estimate the image function parameters based on the resulting division of R 
(R = Rin U Re U Rout), 

4.3.1 The Image Corner Model 

Given a corner on an image object boundary defined by a triplet Qj = { qj-l, qj, qj+1}, 
the following geometrical properties are of interest. Let a and b be the vectors defined 
by 

a = qj-l - qi and b = qi+1 - qj. 

The triplet Qj can then be expressed as Qj = {qj + a, qj, qi+ b}, and we can derive: 

S ( Q j) - the corner scale, which we define as the length of the shorter of the two line 
segments which meet at the corner, 

(4.1) 

a(Qj) - the angle of the corner defined by Qj, 

(4.2) 

/3( Qj) - the corner orientation, as given by the angle of the line which bisects the 
corner in the cone direction. 2 

The set of points p E R 2 on the two line segments which meet at the corner is 
given by 

(4.3) 

2We choose this definition of orientation because it gives equal weight to the direction of both 
vectors which define the corner. 
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where 
(4.4) 

Let S be an M x M region of the image centered about the point qj. Suppose that 
disturbances such as those due to lighting or occluding objects do not occur in the 
region S. If other sections on the path of the polygonal boundary do not intersect S, 
then there should be three distinguishable regions Sin, Sc and Sout in which a ramp or 
roof corner model describes the image data based on some image feature measure >... 
This condition can be stated more formally as follows. 

Let UC R 2 , and let d(v, U) denote the minimum distance from the point v E R 2 

to any point u E U, so 
d(v, U) = min llv - ull-

uEU 

Given a polygonal image object boundary path Q = {qj}J=l> if for each qj E Q, 
there is an M x M region S centered at qj for which 

for lk - JI> 1, (4.5) 

then in the region S, the image data should behave as a simple corner model with the 
geometry defined by Qj. 

Corner Geometry 

Locally, the nonintersection assumption imposes restrictions on the geometry of the 
neighboring corners Qj-l and Qj+l· Intuitively stated, the positions qj-l and qj+1 of 
these corners must be outside S, and the path of Q cannot turn so sharply at these 
points, that it passes through S on the segment between qj-l and qj_2 or on the 
segment between qH1 and qH2 . This means the corner angles a(Qj_1 ) and a(Qj+1) 

must be wide enough so the line segments Lf_2 and Lf+l will not intersect S. See 
Figure 4.3. 

To guarantee qj-l and qj+l are outside an M x M neighborhood S centered at qj, 
we need only require 

(4.6) 

because M /-/2 is the distance from qj to the corner points on S, and we need only 
assure this is smaller than S(Qj}, the distance to the closer point. 

Without loss of generality, let llall ::::; llbll, so qj-l is the closer point, and the corner 
scale S(Qi) = llall, based on Equation 4.1. Influence from the corner in the image 
defined by the triplet Qj-l in an M x M region S centered at qj, can only occur if 
Lf_2 intersects the region S. 3 

Given the point % if the nearest neighbor qj-l E Q is positioned outside the region 
S, then Lf_2 will not intersect the region S if a(Qj_1 ) ~ a, where a is the angle shown 
for the two extreme cases in Figures 4.4a and 4.4b. The lower bound a on a(Qj_1) 

3This condition is weak in that it neglects the width of the strip influenced by the transition along 

£7-2· 
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Figure 4.3: To prevent intervention in the region S with the corner model defined l 
Qj = {%-I, qj, qj+i}, the points qj-I and qH1 must be outside the region S, and tl 
corner angles o:(Qj-I) and o:(QH1) must be large enough to prevent Lf_2 and Li 
from intersecting the region S. 

/ 5-1 
/ ' ' / ' / a ' / 

s s 
--- M----sa--

(a) (b) 

Figure 4.4: To prevent intervention in the region S with the corner model defined by 
Qj = {qj-I, qj, %+1}, the angle o:(Qj_1) of the corner at qj-l cannot be smaller than 
the angle o: shown in the two figures. It is clear that if the line segment from qj-I to qi 

is vertical (or horizontal), the lower bound o: on the corner angle o:(QJ-i) is maximal. 
Further as the distance d(qj-I, S) decreases, the lower bound increases. 



4.3. The Segmentation Model 73 

depends on the distance d(qj-I, S) from the point qj-l to the region S and on the 
direction of the vector a= qj-1 - qj. In Figure 4.4, it is easy to see that if the llall is 
fixed, the lower bound a increases as the vector a becomes vertical ( or horizontal). 

Assuming a = qj-I - qj is vertical (worst case), given the distance llall from qj-l 
to qj, we can express the lower bound on a as a function of the width M of the region 
S. 

_ 1 ( M/2 ) 
a(M) = tan S(Qj) _ M/2 

(4.7) 

Note that the restriction in Equation 4.6 guarantees that the denominator is nonzero. 
This condition can be met for all corners Qj E Q if we use 

(4.8) 

and if for all Qj E Q, 
(4.9) 

where S(Qi) is the corner scale as defined in Equation 4.1, and a(Qj) is the corner 
angle defined in Equation 4.2. 

Regions in S 

Given an M x M region S centered at a point qj, let Sc C S be the set of points 
influenced by the transition along the path of Qin Sas measured by>... The geometry 
of the region Sc depends on the geometry of the corner defined by the line segments 
Lj_1 and Lj and on the point spread function. If the image boundary fits a roof model, 
then the width of the line or roof will also influence the geometry of Sc. Finally, for any 
given image feature measure >.., the geometry of Sc depends on the radius of influence 
of the measure >... For example, if the value of >.. at a point p is defined as a function 
of the image data in a k x l window centered at p, then the radius of influence is 
r(>..) = ✓k2 + l2 /2. 

Given a point q E cf n S on the object boundary in S (Equation 4.3), let W(q) 
be the minimum distance to any point p E S which is not influenced by the presence 
of the boundary on S. Then if we let 

W = max{W(q) : q E Cf n S}, (4.10) 

all points p E S which satisfy d(p, Cf) ~ W are not influenced by the image function 

along the path cf of the object boundary in S. 
We thus define the transition region Sc as the set of points p E S within distance 

W of cf. Formally, 

Sc = {p E R 2 
: p E S and d(p, Cf) :::; W}. ( 4.11) 

If Equations 4.9 and 4.8 are satisfied, and if W < M/4, the remaining members 
p E S\Sc of the set S fall in two disconnected regions S;n and Bout on either side of 
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Figure 4.5: The behavior of the measure A in the immediate region about the path 
of Q is different for those p E Sc within distance r of the corner point qj, from those 
further away (IIP - qill > r) where the transition should be well modeled by either a 
ramp or roof edge model. 

the region Sc, and we have 

(4.12) 

In both the ramp and roof corner model, there exist constants cin, Cout and cL, such 
that: 

{ 

C£ if XE Cf 
A(X) = Cin if X E S;n ( 4.13) 

Cout if X E Sout 

The behavior of A on Sc\ cf, the region influenced by the boundary between the 
object and its background, but not on the boundary itself, will differ for two regions 
on Sc. In the region immediately about the point qj (see Figure 4.5), the value of 
A will be influenced both by the transition along the path from qj to qj-l and from 
the transition along the path from qj to qi+I· This is because many of the points in 
that region are within distance W from both of these edges. Outside the immediate 
neighborhood of the corner, it will only be influenced by the transition along one of 
these line segments, and the behavior of A in these regions will fit a simple ramp or 
roof model described below. 

Consider Figure 4.5. Given the width 2W of Sc, the region influenced by the object 
to background transition, points in the set 

may be influenced both by the transition in the image function on Lj-l and in the 
transition on Lf. 

Then the set of points not in Scorn will be influenced by the transition along only 
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one of the line segments which meet at qi. We can define this set simply as 

(4.14) 

The image function in the Sedge region should behave as a simple edge or roof model, 
and be uninfluenced by the presence of the corner point. We can thus define ramp 
and roof image corner models as follows. 

The ramp model A corner is described by a ramp corner model, when in addition 
to Equation 4.13, one of the following two criteria is met: 

l. C0 ut > cin, CL = ( Cout +c;n) /2, and in the region Sedge, A is a strictly monotonically 
decreasing function of the distance to the set Bout· More precisely stated, for all 
p,q E Sedge, Cin:::; A(p),>.(q):::; Cout, and 

(4.15) 

2. C0 ut < Cin, CL= (cout+C;n)/2, and in the region Sedge, A is a strictly monotonically 
increasing function of the distance to the set Bout, or formally, for all p, q E Sedge, 

Cin ~ A(p), >.(q) ~ Cout, and 

d(p, Bout) > d(q, Bout) ===} A(p) > A(q) (4.16) 

The roof model A corner is described by a roof corner model, when in addition to 
Equation 4.13, one of the following two criteria is met: 

3. C;n = Cout, CL > Cout, and for all p E Sedge, A is a monotonically decreasing 
function of the distance to the set Cf Formally, for all p, q E Sedge, 

d(p, cf) > d(q, cf)===} >-(p) :::; >-(q) ( 4.17) 

4. Cin = C0 ut, CL < C0 ut, and for all p E Sedge, A is a monotonically increasing 
function of the distance to the set Cf. Formally, for all p, q E Sedge, 

d(p,Cf) > d(q,Cf) ===} >.(p) ~ >.(q) (4.18) 

Note that the use of:::; and ~ in Equations 4.17 and 4.18, allows a wide line or roof 
corner to be modeled with a roof corner model. 

4.3.2 The User Corner Model 

Suppose a user produces a polygonal point set P = {p;}i=l in the course of sketching 
an image object boundary defined by Q = { qj }J::=1 . In particular, suppose the corner 
triplet Pi = {Pi-i, p;, Pi+1} corresponds to the corner defined by the triplet Qi = 
{qj-1, qj, qi+i} on the object boundary. Let R be an N x N region centered about the 
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point Pi· Based on the user error model obtained in Chapter 2, we can define a region 
Re C R which contains all points on the boundary path Q in the region R. Given the 
image corner model derived above, we caµ in fact define the regions R and Re so that 
Sc n R C Re, where Sc is the region influenced by the change in the image function in 
the transition from object to background. 

This results in a division of the region R, much like that shown in Figure 4.2. R\Rc, 
the remainder of R, is made up of two disjoint regions Rin and Rout which correspond 
to the image regions Sin and Sout described above. In fact, if 

R c S and Sc n R c Re, (4.19) 

then Rinn SC Sin and Rout n SC Sout· 
If Rand Re are so defined, then the regions R;n, Re and Rout can be used to estimate 

the behavior of the image feature measure ,\ in the object, transition, and background 
regions4 Sin, Sc and Sout respectively. Our task is therefore to define the region Re in 
terms of the user error model and the image corner model so that Equation 4.19 holds. 
To model the image boundary corner defined by Qj, however, we must be sure the 
regions Rin and Rout are large enough to estimate the behavior of ,\ in that region. 

The Region Re 

Given a triplet Pi= {Pi-I,Pi,Pi+1}, let R be an N x N subimage centered about the 
point Pi· Let c be the maximum likely error in distance between a point Pi E P and its 
corresponding point qj E Q. Based on Equation 2.19 derived in Chapter 2, we know 
that for each individual user, an appropriate value of c can be determined. We use 
this value as the maximum permitted error in distance for a given user. 

Let oS denote the maximum amount the user may overestimate the corner scale. 
Then the scale of the corner Qj on the image object boundary satisfies 

( 4.20) 

A user dependent upper bound on oS was derived in Section 2.5 (Equation 2.23). 
Suppose S is an M X M region centered at the corner point qj on the image object 

boundary. If M = S(Qj), then Sis the largest square region guaranteed to contain a 
nondisturbed model of the corner defined by the triplet Qj, assuming Equations 4.5 
and 4.9 hold. 

Since IIPi - qill ::; c, if the size N of the region R centered at Pi satisfies 

then we have RCS. Therefore, given S(P;), based on Equation 4.20, we define R to 

4This labeling of the regions in S has been chosen arbitrarily to simplify the discussion. Of course 
Sin might correspond to the background region, Saut to the object region, etc. 
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be an N x N region centered at Pi with 

N = S(P;) - oS - 2 · c . (4.21) 

. Given W, as defined in Equation 4.10, we define 

Re= {p ER: d(p,Ci) :Sc:+ W}, ( 4.22) 

where er is defined analogously to cf in Equation 4.3. If the user error model and 
the image corner model are valid, then with this definition of Re, we have Sc n R C Re-

The Region R;n 

Having defined Re as the minimum neighborhood of the path P in R known to contain 
Sc, consider the remainder of the region R, 

( 4.23) 

If the size N of R is sufficiently large, then there will be two nonempty disjoint regions 
Rin and Rout such that R\Rc = Rin U Rout• 

Suppose there is an M x M region S centered about the corner point qj, in which 
the image object boundary fits a ramp or roof corner model, as defined in the previous 
section. If the size M of S is the largest for which we know there can be a clear corner 
model, then from Equation 4.8, M = S(Qj)- If N satisfies Equation 4.21, but is large 
enough so that R;n is nonempty, then 

If Rin is sufficiently large, then R;,n and Rout can be used to model the behavior of A 
on the object and background regions in the image. 

We thus turn our attention to the area of the smaller region R;,n. We want to 
specify a set of conditions under which we can be sure the area A(R;,n) of the smaller 
region will be greater than some lower bound B(>-), where B(>-) is the smallest region 
in which we can hope to model the behavior of A. 

Consider Figure 4.6a. The area of R;n, decreases with a(P;), the angle of the corner 
at p;. We thus limit our attention to corners P; with angle a(P;) < 7r /2. Further, it 
is clear that the area of R;,n is minimal for corners which are horizontally or vertically 
oriented. So the horizontal case is sufficient to determine the lower bound of the area 
A(R;n) for a given angle a. 

To simplify the discussion, suppose p; = (0, 0), then from Figure 4.6b, it is easy to 
see that 

A(R;n) = (N/2 - l:,.x)(y(pb) - l:,.y) 

where y(pb) is they coordinate of the point on Lf with x = N/2, and 

l:,.x = W +c 
· sin[a(P;)/2] 

and 
W+c 

£:;.y=------­
sin[(1r - a(P;))/2]" 

( 4.24) 

(4.25) 
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Figure 4.6: For a given corner angle a < 1r /2, the area of the inner region Rin is smallest 
for a horizontally (or vertically) oriented corner Pi. The area can be computed in terms 
of the user point Pi, the position Pb of the boundary intersection on the line segment 
L;, and l:,.x and l:,.y. These in turn are determined by a= a(Pi) and W + c. 

For a given user and image measure >.., W + c is fixed. If a lower bound B(>..) 
on the area necessary to measure >.. is known, then we can specify the set of corners 
which can be modeled by defining and splitting a region R in terms of the minimum 
corner scale S(Qj), and the minimum corner angle a(Qj). The latter can be predicted 
(a(Qj) 2': a(Pi) - Ja) based on Equation 2.20 of the user error model in Section 2.5. 

4.3.3 Evaluating A 

Suppose given a user-defined corner Pi, we want to evaluate the likelihood of a ramp 
or roof corner Qi on the image object boundary based on some image feature measure 
>... If we construct and divide an image region R as suggested in the previous section, 
we can estimate parameters for the measure >.. in the three regions of R. Because 
the region R is divided so that Rin C Sin and Rout C Sout, parameters estimated in 
Rin and Rout are representative of the image feature measure >.. in the corresponding 
regions Sin and Sout in the neighborhood S, which is centered at the true location qj 
of the corner on the image object boundary. Because Sc C Re, however, only part of 
the data which contributes to parameters estimated in the central region is known to 
come from the boundary region of S. Still, if there is a corner Qj near Pi which can 
be detected with >.., the data in Re should satisfy certain conditions associated with 
the ramp and roof corner models described in Section 4.3.1. 

The actual parameters to be estimated for a given image feature measure >.. depend 
on the statistical model associated with it. As an example, suppose >.. is a simple 
measure of image intensity, and that the image is known to contain added Gaussian 
noise with a maximum deviation of O'noise· The image function in Rin and Rout should 
fit the model fN(p; µin, O'in) and fN(p; µ0 ut, 0'0 ut), respectively, where fN(P; µ, rY) denotes 
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a Gaussian density function with mean value µ and standard deviation a-. If image 
intensity is a good measure for a ramp or roof corner, then the triplet {µin, µc, µout} 
should satisfy one of the four conditions outlined in Section 4.3.1. Further, unless 
there is disturbance to the model from another image object in the region, or there is 
a poor fit, then we should have 

Higher deviations cannot be attributed simply to the presence of noise. 
For more complex functions >., the expected distribution may not be so easily 

evaluated. In this case, various parameter estimation methods may be applied, or 
the Kolmogorov-Smirnov test [vM64] may be applied to examine the significance of 
difference between the data sets in R;n and Rout when measured by,\ (see Section 2.5). 

4.3.4 The Corner Detection Model 

Given a corner Pi on a user defined polygonal sketch P of an image object boundary, 
suppose we have an image feature measure ,\ which, based on measurements in an 
N x N region R centered at P, appears to fit either a ramp or roof model as described 
in Section 4.3.1. Then, based on Equation 4.13, there will be three constants Ain, 
Ac, and >-out, which may be associated with the image corner regions Sin, Sc, and 
Sout respectively. If for a given user, the user error model is expressed in a set U = 
{1::,8a,8,B,8S}, then the set 

D ={Pi,,\, U} (4.26) 

determines a detection model for the corner Qj on the image object boundary. As 
is illustrated in the following section, the detection model can be used to locate the 
corner position qi in the image. 

4.4 Example: Constructing a Corner Template 

Suppose we have identified a detection model D for a particular corner Pi in a user 
sketch P. One method to localize the true corner point qj in the image is to construct a 
template from the derived corner model, and match it in the neighborhood of Pi using 
standard matching techniques. The geometry of Pi combined with the characteristic 
values Ain, Ac, and Aout can be used to define a template which should match the image 
data near qj when measured by ,\. In the example in Section 4.3.3, where ,\ simply 
measured grey value intensity, µin, µc and µout are the characteristic values for ,\. 

Let 
( 4.27) 

be the vectors defined by the line segments which meet at the point Pi in the user 
sketch. We can localize the corner point qj if we define a K x K digital template T 
centered at the origin. 

Let Tc be all points in T which fall on a Bresenham approximation to aP or bP. In 
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Figure 4.7: Designing a template based on a detection model 

the template T, we assign the value Ac to these points. Tc, like its counterparts Re 
and Sc splits the remainder of the template T into two disjoint regions 

To these regions we assign the constants Ain and Aout respectively. See Figure 4. 7. 
Given c, the maximum error in distance allowed for this user in the specification 

of the point Pi, we define E'max = r cl - The point qj is then sought in the n2 region 
centered at Pi with n = 2 · E'max + 1. In practice, this allows a user to make a slightly 
larger error in the specification of any single point than was determined likely in the 
user experiments. For all pixels in this n2 neighborhood centered at Pi, we measure 
the value of the normalized cross correlation C(m, n) between the template T and the 
image data >..(x, y), as defined by Rosenfeld and Kak[RK76, p. 302]. We select the 
pixel with the maximum response as the corner location. 

Note that the actual values of the parameters in the template is not essential for 
this matching method. As long as we have been able to identify one of the four image 
corner models described in Section 4.3.1, the parameters can be replaced with members 
of { -1, 0, + 1} for the template matching procedure. 

4.5 Results 

To evaluate the effectiveness of our method, we performed a number of experiments 
designed to evaluate: 

• The accuracy of the image evaluation method in identifying the presence of ramp 
and roof corners. 

• The effectiveness of the template matching to localize the corner when the ap­
propriate corner model (roof or ramp) has been identified. 
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Figure 4.8: Examples of the test images, without noise and with SNR = 5. 

Test Images 
We performed our evaluation on a set of test images containing ramp corners and roof 
corners. These were created by quantizing filled triangles for ramp corners and two 
lines which meet at a known point for roof corners. The edges of the filled triangle are 
assigned the value half way between the object and boundary values to improve our 
estimation of the true corner location. We did this for corner angles ranging from 1r /8 
to 31r /8, and performed our experiments both for dark objects on a bright background 
and vice versa. In order to simulate a ramp or roof edge which may be formed by a 
camera, we applied a Gaussian smoothing with O" = 1.5 to the images. 

Finally, for each of the images, we tested our method with added white Gaussian 
noise, with signal to noise ratios ranging from 5 to 20. We use 

SNR = {(min - max)/2}2 
a;oise 

to compute the signal to noise ratio. Some example images are shown in Figure 5. 

Experiments Our experiments are intended to simulate a user specifying a corner 
in an image. Given three points which define the corner in the test image, we select 
a random point in an n 2 neighborhood about each, where n = 2 · €max + l, with 
€max= fcl. 

The length of the lines used to define the corners in our experiments is 80. There 
was no significant variation in the results as the length was varied until it became quite 
short with respect to c:, as predicted in Equations 4.24 and 4.25. In the experiments 
presented here, we use €max = 8 which is far larger than necessary in practice (see 
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Figure 4.9: Percent of time correct segmentation model is selected, SNR = 10. 

Chapter 2). The size of the region in which the corner point will be selected is therefore 
17 x 17. Because this is the degree of error the user may make in specifying each of 
the points which define the contour, the random points in our experiment are selected 
from a 17 x 17 neighborhood around each of the three points which correctly define the 
corner. Note that using random points introduces an error not only in the position of 
the points, but a significant error in the angle and orientation of the corner. Therefore, 
the geometrical errors allowed in our experiments are far worse than users make in 
practice (see Chapter 2). 

For each of the test images, we select 1000 sets of three random points to which 
our algorithm is applied. We consider all points in the n 2 neighborhood of the random 
point near the corner point, to be candidate points. The template used to model the 
corner is 11 x 11. 

In Figure 4.9, we show the percentage of cases we correctly select the detection 
model with SNR = 10. Note that both dark and bright ramp corners are correctly 
identified in 100% of the cases at all but the smallest corner scale ( 1r / 4). Roof corners 
are correctly identified in the majority of the cases (more than 90%), but performance 
deteriorates severely for very small corners. 

In Figure 4.10, we present the average distance to the true corner location selected 
by our method when the correct model has been selected. Of course the true corner 
location is not well defined on a discrete grid. To simplify our experiments, we consider 
it to be the corner location in the filled triangle which is always set to the object value, 
or for ramp corners to the value halfway between the object and background values. A 
number of points in the 8-connected neighborhood are however also good candidates. 
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3n: /4 

For this reason, in Figure 4.11, we present the percentage of the points selected that 
lie in this neighborhood. 

Finally, in Figure 4.12, we show the adjustment of some contours specified by a 
user in two images. 

Evaluation The results in Figure 4.9 show that we detect the appropriate model 
consistently both for dark and bright objects, with corner angles 0 > n: / 4 used in 
these experiments. The method is particularly effective for correct identification of 
both bright and dark ramp corners. 

Because we allowed a substantial error in distance (€max = 8), roof corners were 
harder to identify than ramps. This is because of the substantial influence of the 
background regions in the transition region. The data along the path of the roof in 
the image gets averaged out. 

In these experiments, identifying the corner model for small corners is more difficult 
due to the increased effect of the angle variation in the random point selection, resulting 
in the collapse of the region Rin C R. 

When the corner model is correctly identified, the difference in line angles in the 
template and the image is severe, resulting in poorer localization for small angle cor­
ners. Localization mechanisms which incorporate the user angle errors derived in 
Chapter 2 are more suitable in this case. These effects are less significant for larger 
corners due to the increased influence from the inner corner region. 

Figures 4.10 and 4.11 show the precision of the template we build from our detection 
model to be quite satisfactory in the range (3n: /8, 3n: / 4). There was little variation in 
the results for the ramp and roof corners. 
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Figure 4.11: Percent of locations selected in the 8-connected neighborhood of the 
correct location. 

In further experiments not displayed in the graphs, we discovered the segmentation 
model can be determined for larger corners, but the corner is not well localized due 
to the response of nearby edge points. This implies that for larger corners, template 
matching is not an appropriate localization technique. 

4.6 Conclusions & Further Research 

We have presented a context in which the segmentation model appropriate to an image 
region can be determined, given a geometrical model of a corner on a polygonal object 
boundary. For corner angles in the range (31r /8, 31r / 4), the method identifies 100% of 
both dark and bright ramp corners, and more than 90% of the roof corn~rs. The simple 
template design and matching procedure used to localize a corners is effective at pixel 
accuracy for the same range of angles, but other mechanisms should be employed to 
localize very small and very wide angled corners. 

The approach to corner modeling developed in this chapter can be applied to any 
image feature measure >-. with a limited radius of influence. The results suggest we 
may extract significant information about a segmentation model from a simple user 
sketch. The results for wide angle corners also indicate that the method can be used 
to determine the appropriate segmentation model for edges and curves. 
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Figure 4.12: Examples: On the left, user input. On the right, the corrected contour. 
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Chapter 5 

Magnetic Contour Tracing 

5.1 Introduction 1 

Because the segmentation of unknown images remains a critical unsolved problem in 
image analysis, it is often useful to allow a human expert to influence the segmentation 
process interactively. Discontinuities in an image due to significant object boundaries 
can be distinguished by a human expert from those due, for instance, to lighting 
conditions such as shadows and reflections, or to boundaries of image objects which 
are not of interest for the application at hand. Further, a human is often able to 
continue an object boundary through areas where it is not visible, and therefore not 
detectable using solely automatic means. Such areas will occur, for example, whenever 
an object of interest is partially occluded by another image object, such as a house 
behind a tree. To date, no machine vision system has been developed which matches 
the human capability to perform virtually unlimited image segmentation. 

Due to limitations in human motor control and the indirect methods available 
for screen location specification (see for example [HHN86]), the data obtained from 
a human expert cannot be considered accurate. Thus, while the user may provide 
information suggesting the location and geometrical properties of an image object 
boundary, measurements based on this data are subject to an unknown error. Before 
object analysis which depends on the boundary can be performed, the user data must 
somehow be corrected to provide accurate object boundary descriptions. 

In the area of graphical user interfaces, much progress has been made in the devel­
opment of techniques to aid the user in the specification of precise screen locations, or 
to correct a screen location specified by a user according to some predefined rules. By 
far the best known is the gr-id technique used in packages such as MacDraw[Cla92], 
which allows a user to precisely line up objects along horizontal or vertical lines. 
Constraint-based methods [Bor81, Sut63] were introduced to assist in the precise def­
inition of a broader range of geometric forms and relationships. For example, con­
straints can be used for specifying an equilateral triangle, or to line up objects along 
the path of an arbitrary curve. Recent efforts such as the snap-dragging techniques 

1 Portions of this chapter are reprinted, with permission, from [OG94] @1994 IEEE. 
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introduced in [BS86, Bie90], and the techniques for interactive constraint specification 
discussed in [Bor86] have aimed to reduce the effort required of the user to specify a 
broad range of geometrical forms and relationships between objects. 

The central goal of grid and constraint based methods is to make certain screen 
locations attract the mouse pointer, while others repel it. The result is that attractive 
locations act as gravitational masses for screen location specification. Hudson[Hud90] 
introduced the concept of semantic snapping techniques to make particular screen lo­
cations attractive based on nongeometric application semantics. For example, within 
the context of visual programming, an icon representing a function may have connec­
tion points for input parameters and return values. If a connection is initiated from 
some function A, which returns a valid type for input to function B, the input con­
nection on B's icon will be made attractive when the connection is initiated. If, on 
the other hand, B requires input of another type, the input connection will be made 
repellent when a connection is initiated at A. 

If the concept of semantic snapping is applied to the problem of image segmen­
tation, and in particular to the problem of image object boundary formation, then 
locations along the boundary of an object should be made more attractive than those 
"inside" it. For a significant body of images, the magnitude of the gradient of the 
image intensity function can be used as a measure for boundary strength. In general, 
if the region corresponding to an image object differs from neighboring regions in grey 
value intensity, then the gradient magnitude will be high along the boundary of the 
object, and low on either side of it. The gradient magnitude can then be used as a 
measure for the strength of the boundary, and therefore to determine how attractive 
an image location is. 

In the context of active contours, Kass, Witkin and Terzopoulos [KWT88] incor­
porate user input in their method for obtaining an optimal object boundary based 
on a number of criteria. Criteria designed to embody the characteristics of an image 
object boundary are expressed as components of an energy functional and simulta­
neously minimized using calculus of variations. Their criteria are as follows: a) the 
distance between points along the path must be minimal to encourage continuity; b) 
the curvature at each point must be minimal to encourage smoothness; and c) the 
average gradient magnitude along the path should be maximal so it will tend to follow 
the image object boundary. 

The user can make use of tools for pulling and pushing the contour, resulting in 
it jumping between local minima in the functional. In this sense it is similar to a 
tool which jumps to the nearest point on a grid. This is achieved by incorporating a 
term in the functional which either minimizes or maximizes the distance to the user 
location, thereby resulting in a pulling or pushing of the boundary. The method may be 
considered a semantic snapping technique in which the semantics are a combination of 
the expected geometrical (continuity and smoothness) and nongeometrical (magnitude 
of the image intensity gradient) properties of an object boundary. 

The method introduced in [KWT88] can play an important role in correcting an 
object boundary. Some form of pre-segmentation, which produces an initial estimate 
of the object boundary is necessary, however, before the method can be applied. The 
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tools for pulling and pushing a boundary may therefore be seen as editing tools for an 
already existent boundary path. 

As illustrated by Amini, Weymouth and Jain in [AWJ90], the continuity criterion 
(a) above) as posed in [KWT88] makes shorter paths more attractive and results in 
large variations in the distance between the points which define the contour. Further 
they show calculus of variations to be an instable optimization technique, because the 
solution produced often corresponds to a local rather than a global minimum of the 
functional. They suggest dynamic programming be applied to optimize the functional, 
and show that it addresses both problems. This is because it allows the incorporation 
of hard constraints which can be used to regulate the distance between path points, 
and because dynamic programming always produces a global minimum (or maximum), 
and thus provides a stable solution given the criteria used to define the problem. In 
[Ger88], Gerbrands also used a dynamic programming algorithm to extract the path 
of an object boundary given an initial estimation (see also Section 5.3.3). 

In this chapter, we introduce a method for tracing an object boundary when no 
a priori estimate of its path is available. Rather than correcting or editing an initial 
estimate of a boundary path, we produce a path from scratch based on user input. We 
allow a user to trace a contour by means of freehand-drawing. As supported in most 
graphical drawing packages, freehand drawing is very similar to drawing with a pen on 
paper, and thus is an intuitively attractive input model for the task of image object 
boundary specification. Depending on the underlying interaction model supported in 
the system, the user's screen location may be known at regular or irregular intervals in 
terms of either space or time. To simulate a pen on paper, if the user's location is not 
known frequently enough to define a connected path, straight lines are interpolated 
between points. 

If we incorporate the concept of semantic snapping in the free-hand drawing model, 
then we may envision a pen containing magnetic ink. As the user traces a path in the 
image, the ink is attracted to those locations near the tip of the pen which are most 
attractive. For image object boundary specification, we want locations along image 
object boundaries to be highly attractive, and those away from the boundary to be 
somehow repellent. As with active contours [KWT88], the contour must remain both 
connected and smooth unless otherwise indicated by the user. We present a method 
called magnetic contour tracing which feels like a freehand drawing tool, but satisfies 
constraints based on the semantics of image object boundary formation. 

Our method generates the correct path of the object boundary in real time as the 
user traces. To do so, we examine the relationship of the user path with the correct 
boundary path. The boundary path is then produced by incorporating this relation­
ship and the semantics of image object boundary formation in a particularly efficient 
variation on Gerbrands' dynamic programming method [Ger88], which is guaranteed 
to produce an optimal path with respect to these criteria. 

Extracting the correct path of the object boundary as it is traced rather than as a 
postprocessing correction is well justified from the viewpoint of human computer in­
teraction, because it results in an interactive method which satisfies the requirements 
of direct manipulation as outlined in [Shn83]. The feeling of direct control over the ob-
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ject of interest[HHN86] (in this case an object contour), which results from immediate 
feedback on the effects of a user's action, is of particular importance in this regard. 

The magnetic ink paradigm supported in the contour tracing tool is achieved by 
interpreting the path traced by the user as an estimation of the position and direction 
of the image object boundary. Based on the user input, in Section 5.2, we determine the· 
set of 8-connected paths through the region which may be part of the object boundary. 
These criteria are balanced with those related to the magnitude of the gradient in a 
cost function (Section 5.3.2), and the path selected is that with the minimum total 
costs as determined with a dynamic programming algorithm (Section 5.3.1). 

Our method produces a smooth path which follows the user closely in regions with 
little or no contrast and the object boundary closely in areas where the magnitude of 
the gradient is significant. Achieving this in the presence of noise requires an optimal 
balance in the weighting parameters used in the cost function. Experiments used to 
tune these parameters for specific conditions are described in Sections 5.4 and 5.5. The 
tuning method may easily be applied to user data, making the method suitable for 
incorporation in an adaptive user interface (see for example [KDMSH92]), for image 
segmentation. 

Quantitative results obtained for a simulated user using random data are presented 
in Section 5.6 as are qualitative results for an actual user tracing boundaries in actual 
images. 

5.2 Theory 

We describe a method with which we extract a digital approximation to an image 
object boundary while it is traced by the user. The path is extracted in a piecewise 
fashion, by repeatedly finding a minimum cost path segment from the last known point 
in the approximation to some point near the most recent user location. 

Before describing our algorithm in depth, we provide a theoretical argument for 
our approach. In particular, we focus on the class of paths p: [a, b] --+ R2 for which 
the method is applicable, and the constraints which must be satisfied by the user input 
data if it is to lead to a digital approximation of the boundary path p. 

5.2.1 Background 

Definition 5.1 A path p: [a, b] --+ R 2 is called en if it is continuous on [a, b], and 
the nth partial derivatives of p exist and are continuous on ( a, b). 

Definition 5.2 A path p: [a, b] --+ R 2 is non-intersecting if for all t 0 , t1 E (a, b), 
p(to) = p(t1 ) implies t 0 = t1 . 

A non-intersecting path is one which does not cross itself. The path of the digit 
2 is non-intersecting whereas the path of the digit 8 is not. The path of the digits 0 
and 6 are both non-intersecting, because Definition 5.2 does not restrict the path at 
its endpoints p(a) and p(b). 
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Definition 5.3 A C2 path p: [a, b] -+ R 2 is closed if its endpoints p(a) and p(b) 
satisfy the following conditions: 

p(a) p(b) 

p'(a) p'(b) 

p"(a) p"(b), 

A C2 path p: [a, b] -+ R 2 which is not closed is open. 

Because pis defined only on [a, b], the derivatives in the above definition should of 
course be understood as one sided limits. For example, p'(a) = limq.a p'(t). 

Definition 5.4 A non-intersecting open C2 path p: [a, b] -+ R 2 is non-interfering 
with respect to distance 8 if for all to E ( a, b), the two points p0 on the principal 
normal vector to the path p at the point p(t0 ) which satisfy 

II Po - p(to) II= 8 (5.1) 

also satisfy 
II Po - p(t) II> 8 for all t E [a, b], t =/- to. 

A non-intersecting closed C2 path p: [a, b] -+ R 2 is non-interfering with respect 
to distance 8 if the above conditions are also satisfied for t 0 = a and t 0 = b. 

For all t 0 E (a, b), the existence of the principle normal vector top at p(t0 ) is guar­
anteed by the existence (p is C 2 ) and uniqueness (p is non-intersecting) of the tangent 
vector top at p(t0 ). Thus, for all t 0 E (a, b), there exist exactly two points p0 on the 
principle normal vector to p at p(to) which satisfy Equation 5.1. By Definition 5.3, 
the same holds for all t0 E [a, b] if p is closed. 

Intuitively, a path p which is noninterfering with respect to 8 is one which may be 
traced with a pen of width w _.::::: 28, without effecting its shape. A straight line between 
any two points is noninterfering with respect to 8 for all J > 0. For all J E (0, r), an 
arc of a circle of radius r is noninterfering with respect to 8. A path p: [a, b] -+ R2 

which is noninterfering with respect to J has curvature K,(t) :S: 1/8 for all t E (a, b) (see 
Struik [Str50, pp 14-15]). 

Definition 5.4 could also have been expressed in terms of mathematical morphology 
(see [Ser82]). Let B0 = {p E R 2 :II p 11:S: 8/2} be a disc of diameter 8 centered at the 
origin. The dilation of a set P C R 2 with B0 is given by 

P EB Bo= {p E R 2 :II p - x 11:S: J for some x EX} 

Its complement, the erosion of a set X C R 2 with B0 is given by 

Pe Bo= {p E R 2 :II p - x 112: J for some x {/. X} 

Now, if P is the set of points on a path p: [a, b] -+ R 2 which is noninterfering with 
respect to 8 

P={p(t):a:S:t:S:b}, 
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then 

Therefore the medial axis of P E& B0 which can be obtained with an erosion with B0 

is simply P. In morphological terminology, P is said to be closed with respect to B0 

(not to be confused with Definition 5.3 above). 
We choose distance from the path on the principal normal axis to express the 

concept of noninterference in Definition 5.4, however, because it allows us to express 
the requirements an object boundary path must meet, if we are to approximate it 
based on a point set obtained from a user. (This assumes the latter satisfies the 
requirements of an ordered approximation to p as defined in Definitions 5.5 and 5.6 
below.) 

Lemma 5.1 Let p: [a, b] --+ R 2 be a C2 path which is non-interfering with respect to 
o. Then for all E > 0, if E < o, p is noninterfering with respect to E on [ a, b]. 

Proof Suppose false. Then there is a t0 E ( a, b) such that for one of the two points 
Pe on the principal normal vector to p at t0 , with [[ p, - p(to) [[= E there exists a 
t1 E [a, b], t1 -/- t0 , such that 

II Pe - p(t1) 11::; E 

Then we have 
II Pe - Po II+ II Pe - p(t1) [l:s;[[ Po - p(t1) II 

which violates the triangle inequality. □ 

Definition 5.5 Let p: [a, b] --+ R 2 be a C2 path which is non-interfering with respect 
to o. Given E :s; o, we call Q = {q1 , q2 , ... , qM} an approximation to p with 
respect to E if the fallowing conditions hold: 
1) Q is close top: [[ q; - p(t) [[:s; E for all q; E Q. 
2) q1 and qM approximate the end points p(a) and p(b) respectively: 

[[ q1 - p(a) [[ < [[ q1 - p(t) [[ for all t E (a, b) 

[[ qM - p(b) [[ < [[ qM - p(t) [[ for all t E (a, b). 

3} For l :s; i < M, let l;(s) = (1 - s)q; + sqi+l· The points p E {l;(s) : 0 :s; s :s; 1}, 
on the line segment between neighboring points of Q satisfy [Ip - p(t) I[::; E for some 
t E [a, b]. 

Lemma 5.2 Let p: [a, b] --+ R 2 be a C2 path which is non-interfering with respect to 
o. If for some E :s; o, Q = { q1 , q2, ... , qM} is an approximation to p with respect to E, 

then for all q; E Q there exists a ti E [a, b] such that fort E [a, b], if t-/- ti, then 

II q; - p(t;) 11<11 q; - p(t) II. (5.2) 

Proof For q1 and qM, the above is guaranteed by the second condition in Defini­
tion 5.5. For 1 < i < M, Since II q; - p(t) [[::::>: 0 for all t, there is a t0 E [a, b] such 
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that 
II qi - p(to) 11:::;JJ qi - p(t) II for all t E [a, b]. 

It is easy to show qi is on the principal normal vector top at to. (Let f(t) =II qi-p(t) II, 
differentiate f(t) and inspect the derivative of p at the minimum points.) Because 
II qi - p(t0 ) 11:::; 8, by Lemma 5.1, pis noninterfering with respect to 11 qi - p(to) 11, 
and therefore, by Definition 5.4, for all t E [a, b], if t -1- to, 

11 qi - µ(to) 11<11 qi - p(t) 11. 

If for each qi E Q, we take t; = t 0 , this completes the proof. □ 

Definition 5.6 Let Q = {q1, q2 , .•. , qM} be an approximation with respect to E to a 
path p: [a, b] -+ R 2 which is noninterfering with respect to 8. For each i E [1, M], let 
p( ti) be the point on p to which qi is closest. Q is ordered if i < j implies ti < tj. 

Note that if Q is an ordered approximation with respect to E to a path p: [a, b] -+ R 2 

which is noninterfering with respect to 8, then q; = qj implies i = j. 

Lemma 5.3 An ordered approximation Q = {q1 , q2 , ... , qM} with respect to E:::; 8 to 
a path p: [a, b] -+ R 2 which is noninterfering with respect to 8 introduces a partition 

of the interval [a, b]. 

Proof The second condition in Definition 5.5 guarantees the existence of two points 
q1 and qM which are uniquely associated with the end points of the path p on [a, b] and 
therefore with a and b. For 1 :::; i :::; M, by Lemma 5.2 there exists a unique ti E [a, b] 
for which Equation 5.2 holds. Definition 5.6 guarantees ti < tj if i < j for an ordered 
approximation Q. It can therefore be used to generate a partition of [a, b]. □ 

Definition 5.7 Let Q = {q1,q2,••·,qM},q; E Z2 be a point set. If II q; - q;+i IIE 
{1, -v'2} for 1 :::; i < M, then Q is an 8-connected digital path. 

Definition 5.8 Let Q = { q1 , q2 , ... , qM} be an ordered approximation with respect to 
E = -v'2/2 to a path p: [a, b] -+ R 2 which is noninterfering with respect to some 
8 ~ -v'2/2. If Q is an 8-connected digital path, we call Q a discrete or digital 
approximation to p. 

5.2.2 Interpreting User Data 

Suppose now that a user traces the boundary of an object in an image, that can be 
described by a C 2 path p: [a, b] -+ R 2 which is noninterfering with respect to some 
8 ~ -v'2/2. Assume that as the user moves the pointer about in the image, the user 
position is recorded in the point set U = { uk}f=i · We want to show that if U is an 
ordered approximation to p with respect to some c :::; 8, it can be used to extract 
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a digital approximation to the path p. To provide immediate feedback and simulate 
magnetic ink, we want to extract and display a digital approximation to the boundary 
path p as the user is tracing. 

By Lemma 5.3, there is a partition T = { t 1 = a < t 2 < · · · < tK = b} on [a, b] 
defined by the user approximation U. Imagine that when the user point Uk E U 
is acquired, a digital approximation V = { v1 , v2, ... , vn} to p: [a, tk-I] --+ R 2 has 
already been extracted based on the first k-1 points in U. In this section, we want to 
show that based on the last known position vn E V and the most recently obtained user 
position uk E U, we can describe a region known to contain a digital approximation 
to the kth boundary section p: [tk-I, tk] --+ R2

. Further, we will derive additional 
properties of a digital approximation Vi top: [tk-I, tk] --+ R2 , which can be used to 
restrict the number of solutions. 

Goal Set We begin by considering the candidate end points for the kth path segment 
Vi- We assume the user point Uk is roughly the same distance from p(tk-I) as the 
boundary point p(tk) it approximates. Thus p(tk) should fall on or near the path of 
a circle centered at p(tk-1) with radius II p(tk-i) - Uk 11- Given points q1 , q2 E R 2

, let 
O(q1, q2 ) denote the set of points on a circle of radius II q1 - q2 II centered at q1. So 

Since, by assumption, II uk - p(tk) II::; c, every candidate goal point should also satisfy 
IIP - ukll ::; c. Let 

(5.3) 

then p(tk) E C(p(tk-I),uk,c). Because we seek a digital path segment Vi, we define 
the goal set Gk as the Bresenham approximation [Bre77] to the arc C(vn,uk,c). An 
example is shown in Figure 5.1. 

The Half-plane Containing p: [tk-I, tk] --+ R 2 The assumption that the set 
U is an ordered approximation to the path of the boundary is intuitively equivalent 
to saying the user moves along a strip centered about the object boundary, without 
making u-turns, just as one might drive on a multilane highway, occasionally changing 
lanes. Meanwhile, one can see a path p which is non-interfering with respect to some 
distance 5, as a highway containing 25 + I lanes of traffic in the direction of movement. 
The following theorem states this formally. 

Theorem 5.1 Let U = { u1 , u2, ... , UK} be an ordered approximation with respect to 
c ::; 5 to a path p: [a, b] --+ R 2 which is noninterfering with respect to some 5 ~ -/2/2. 
Let T = { t1 = a < t2 < · · · < tK = b} be the partition on [a, b] introduced by U. All 
points p: [tk-1, tk] --+ R 2 are in the half-plane starting from p(tk-I) and moving 
towards uk E U, where the half-plane is defined as all points on the lines normal to 
£( s) = (1- s) p( tk_1) + suk which contain a point in L = { .e( s) : s 2'. 0}. See Figure 5. 2. 



5.2. Theory 95 

Figure 5.1: The region R about the vector Lk from Vn to uk in which we seek the digital 
approximation Vi to the path p: [tk-l, tk] -----+ R 2 of the image object boundary. The 
shaded points are the goal points g E Gk, the Bresenham approximation to the circular 
arc C(vn,uk,c) defined in Equation 5.3. 

Figure 5.2: The planar region, or half-plane known to contain the kth section of the 
boundary path p: [tk-I, tk]-----+ R2

. 
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Proof The theorem is true for p(tk-I) by the definition of the half-plane. Let £( s) = 
(1- s )p(tk_1) + suk be the line defined by p(tk-1) and uk E U, the point most recently 
obtained from the user. The third condition in Definition 5.5 assures that all points 
on the line segment 

L = {£(s): 0 s:; s s; l} 

satisfy 11£(s) - p(t)II s:; c for some t E [tk-l,tk]- Therefore any partition of the unit 
interval can be used to generate an ordered approximation top: [tk-l, tk] --t R2 with 
respect to E:, made up of the points £(s) EL. Let S = {O = s1 < s2 < · · · < SJ= l} 
be an arbitrary partition of the unit interval [O, 1]. For some j with 1 < j s; J, let 
£(sj) be a point on L corresponding to the jth member of S. By Lemma 5.2, there is 
some t0 E [tk-l, tk] such that 

If the point p(t0 ) is not in the half-plane defined by p(tk-i) and uk, then 

This contradicts Lemma 5.2, and therefore completes the proof. □ 

Given a digital approximation V = { v1, v2, ... , vn} to p: [a, tk-1] --t R2
, The­

orem 5.1 implies that in the search for a digital approximation Vi to the kth path 
section p: [tk-l, tk] --t R 2

, we can restrict our attention to the half plane starting at 
the last known point Vn and moving towards the user point uk. 

Path Direction Let 
£k(s) = (1 - s)vn + suk 

be the line determined by the points Vn and uk. Then 

(5.4) 

is the set of points on the segment of £k ( s) between Vn and uk. Let rk denote the 
length of Lk, given by 

(5.5) 

and let 0k denote the angle the directed line segment Lk makes with the x-axis, so 

(5.6) 

Because U is an ordered approximation top with respect to c, from Theorem 5.1 
we know that for all t E [tk-l, tk], p(t) E R, where R is the region centered about 
Lk depicted in Figure 5.1. Now, because p is noninterfering with respect to o on 
[a, b], we can derive limitations on the direction of the tangent p'(t) to p at p(t) for 
all t E [tk-l, tk]- Clearly any limitations on the direction of the tangent vector p'(t) 
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a 

Figure 5.3: The angle 00 the vector a makes with the x-axis is the same as the corner 
angle at the vertex Vn of the triangle T = { Vn, uk, p0 }. 

introduce corresponding restrictions on the local direction of a digital approximation 
Vi= { Vn, Vn+i, ... , Vm} top: [tk-1, tk] ---+ R 2

. 

Limitations on p'(t) can be expressed in terms of e, the maximum distance be­
tween the user point uk and p(tk), the point it approximates, o, which determines the 
maximum curvature of p on [a, b], and rk, the distance covered in the kth path section. 

In the remainder of this section, we derive a set of conditions which allow the 
set of candidate paths for a digital approximation Vi to be reduced. When these 
conditions are met, we can guarantee a digital approximation to p: [tk-l, tk] ---+ R 2 

is among the reduced set of candidates for Vi- This allows us to exploit a particularly 
efficient dynamic programming algorithm ( described in Section 5.3) to extract a digital 
approximation Vi top: [tk-I, tk] ---+ R 2

. 

The Direction of p Let p: [a, b] ---+ R 2 be a path which is noninterfering with 
respect to o and let U = { uk}f=1 be an ordered approximation to p with respect to 
e :s; o. Let 0(t) be the direction of the tangent vector p'(t) of pat p(t). Let !:,0 denote 
the maximum difference in the direction 0(t) of the path p on [tk-l, tk], and 0k, the 
direction of the line segment Lk. From the argument in the proof to Theorem 5.1, we 
know that for all t E [tk-l, tk], if !:,0 = 1r /2, then 

(5.7) 

We now derive conditions on p and U, with which the value of !:,0 in Equation 5.7 
can be reduced. 

Let Bave denote the direction of the cord from p(tk-I) to p(tk)- Let Pc be one of 
the points which satisfies 

So Pc is an extreme point on the arc shown in Figure 5.3. 
Clearly, if 0" is the corner angle at the vertex Vn of the triangle T = { Vn, uk, p,:}, 
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p( t k-1) 

p( t k) 

Figure 5.4: The extent to which 0(t) can differ from 0ave depends on rk and 8. In this 
example, 0ave = 0. 

then 
0k - 0e ::; 0ave ::; 0k + 0e. (5.8) 

Consider Figure 5.3. By the law of similar triangles, we have 

(5.9) 

Let 0dev be the maximum difference between the angle 0(t) of the tangent vector 
p'(t) on [tk-l, tk], and 0ave, the average direction of the tangent vector on [tk-l, tk]. 
Then 

0dev = max {l0(t) - 0avel} 
tE[tk-1,tk] 

Because p is noninterfering with respect to 8, the maximum curvature of the path p 
on [tk-l, tk] is 8. Therefore, 0dev can be expressed in terms of the relationship of rk 
to 8. From Figure 5.4, it is clear that the maximum deviation in angle on [tk-l, tk] is 
given by 

0 
. -1 rk 

dev = sm 
28

. (5.10) 

Theorem 5.2 Let p: [a, b] --+ R 2 be a C2 path which is non-interfering with respect 
to 8. Let U = { u 1 , u2 , •.• , UK} be an approximation to p with respect to c ::; 8. Let 
T = { t 1 = a < t 2 < · · · < tK = b} be the partition of [a, b] introduced by U. Further, 
suppose V = { v1 , v2 , •.. , vn} is a digital approximation to p: [a, tk_1] --+ R 2 . Let /::,.0 
denote the maximum absolute difference between the angle 0k defined in Equation 5. 6, 
and the angle 0( t) of a vector p' ( t) tangent to p on [tk-l, tk]. If rk ::; 28, then 

1::,.0 ::; cos-
1 

( 1 - ;:i) + sin-
1 
(;;) , (5.11) 

where rk is defined in Equation 5. 5. 



5.2. Theory 99 

2 
3 

4 -E--------Jli,---➔ 0 

5 7 
6 

Figure 5.5: The Freeman codes for the 8 possible directions between two neighbors on 
an 8-connected digital path. 

Proof Clearly the absolute difference between the path direction and the direction 0k 
is bounded above by the sum of the maximum difference 0, between the average angle 
of the path 0ave and 0k, and the maximum deviation (0dev) from the average angle on 
[tk-l, tk]- The theorem thus follows from the arguments leading to Equations 5.8, 5.9 
and 5.10 above. D 

As is clear from the arguments leading to Theorem 5.2, there are two key factors 
which contribute to the upper bound on 60. 

l. 0, increases as a function of s/rk. 

2. 0dev increases as a function of rk/ o. 

If rk is fixed, then 60 decreases a function of 8 / E. 

What about Vi? The upper bound on 1:,,0 derived in Theorem 5.2 introduces cor­
responding restrictions on a digital approximation Vi top: [tk-l, tk] --+ R 2 . We now 
examine the effect on Vk of Equations 5.7 and 5.11, and show how the results can be 
exploited to restrict the set of 8-connected paths which may be seen as candidates for 
Vi- In the next section, an efficient algorithm is described to find an optimal path 
among the reduced set of candidates. 

Given two points p, q E Z2
, let </J(p, q) be the Freeman chain code for the direction 

from p to q if p and q are 8-connected neighbors, and be undefined otherwise. In Z2 , the 
direction of movement from p to an 8-connected neighbor q is limited to 'Yi E K · -rr / 4 
for K E {O, 1, ... , 7}, where the value of K is the Freeman code for the path movement 
from p to q as shown in Figure 5.5. 

Let V = { v1, v2, ... , vn} be a digital approximation to a segment L E R2 of a line 
R(s) = (1 - s)p1 + sp2 (with P1,P2 E R 2

). From Bresenham [Bre65], we know two 
Freeman codes are sufficient to express the direction between neighboring elements of 
a straight line segment. An example is shown in Figure 5.6. 
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L = (1-s)p / sp2 

V = {v
1
, v2' ... , v1) 

Figure 5.6: A line segment L E R 2 with a digital (Bresenham) approximation V 
superimposed on it, and the path direction ¢( Vj, Vj+1) between neighbors in Vindicated 
with arrows. Two Freeman codes are sufficient to encode the direction from one 
member to the next for all members Vj E V. 

Clearly the set of Freeman codes required to express the direction between neigh­
bors of a digital approximation Vi to the kth section of a path p: [tk-l, tk] --+ R 2

, is 
limited to those required for the tangent vectors p'(t) to p on [tk-l, tk]. 

Assume the direction from Vn to Uk given by 0k in Equation 5.6 satisfies3 

(5.12) 

We can transform any region in a digital image defined about a vector v, with angle 
0k (/. [31r /2, 71f / 4] to a region defined about a vector Vt with angle 0t E [31r /2, 71r / 4] 
with a rotation of m · 1r /2 form E {1, 2, 3}, and/or a reflection about the x or y axis. 
Since neither of these transformations require a resampling of the image data, we may 
restrict our attention to 0k E [31r /2, 71r / 4] without loss of generality. 

Suppose 1:::,.0 :s; 1r / 4. From Equation 5. 7, we have 

(5.13) 

This means the direction from a point Vj to its neighbor Vj+l in a best approximation 
(in the Bresenham sense) top: [tk-l, tk] --+ R 2 can be coded by some member of the 
set F = {5, 6, 7, O}, as is the case for every vector p'(t) tangent to p on [tk-l, tk]-

In the following section, we describe an algorithm with which we can extract any 
8-connected path from Vn to some g E Gk (see Figure 5.1) with the Freeman code for 
the path direction between neighboring points satisfying 

(5.14) 

If c: is the error permitted the user in specifying the set U = { uk}:=1, then from 
Theorem 5.2, we can specify conditions on rk and o, for which we can be certain 

3 The preference for this octant is because it is used to express the path direction in our algorithm 
in the next section. 
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that an approximation to p: [tk-l, tk] ---+ R 2 is among the set of digital paths which 
can be obtained with our algorithm. Clearly a lower bound on r5 limits the set of 
paths for which an approximation to the boundary path is guaranteed to be among 
the candidates. On modern workstations, we can manipulate rk to be as small as 
required. It may therefore be seen as the sampling frequency on the user input, and 
can be manipulated freely. 

From Equations 5.9 and 5.10, we can be certain that if 

then by Theorem 5.2, we then have l:,.0 ::::; 1r / 4 as desired. 
In Section 5.6, the method is shown to work well even when these conditions are 

not met. In particular, we use c = 4 and rk = 4c/3 = 6, and the method works even 
for r5 = 5rk/3 = 10. The results in this section should be interpreted as describing the 
combination of boundary path and user input conditions for which we can guarantee 
a good digital approximation is within the set of candidates. As such, they express 
limitations ( r5 2: 4c) which must be met if we are to find a path in the worst case. Our 
results show the method to work quite effectively for a far wider range of conditions 
in practice. 

5.3 Dynamic Programming to Find Vk 

In the previous section, we showed that given an approximation U to a boundary 
path p: [a, b] ---+ R 2 , characteristics of a digital approximation to the kth section of 
the boundary path are known when the conditions in Theorem 5.2 are met. We now 
look for an digital approximation Vi to the kth boundary section p: [tk-l, tk] ---+ R2 

starting from vn, the last point on a digital approximation V to p: [a, tk_1] ---+ R 2 . 

Vi should end at some point g E Gk, as described in Figure 5.1. Further, assuming 
Equation 5.12, the Freeman code of the direction between neighboring elements in the 
path must satisfy Equation 5.14. Assuming we have a cost function c(x, y) which is 
low on boundary points and high elsewhere, we now develop a dynamic programming 
algorithm with which we can extract a minimum cost path among the candidates. 

5.3.1 The Cost of a Path 

Given the point Vn and the goal set Gk, consider the region R in Figure 5.1 made up of 
the points in the minimum rectangle oriented about Lk containing Gk. Let Rw be the 
vertically oriented rectangle shown in Figure 5. 7 defined so that based on the points in 
Rw, the cost function c(x, y) can be computed for all points (x, y) E R. To illustrate the 
algorithm, we compute the cost of each point (x, y) E R using a diagonal directional 
difference operator to estimate the gradient magnitude c(x, y) = Q - lg'(x, y)I, and 
choose Q 2: lg'(x,y)I for all (x,y) E Rw to assure c(x,y) 2: 0 for all (x,y) E Rw (see 
Section 5.3.2 for the real cost function). 

To eliminate paths not fully contained in R, we redefine the cost of each element 
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18 18 17 18 18 24 31 35 33 36 37 35 
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1 

16 ~.,....,..-...,34 
14, 

I 
16• 33 

I 

16~1 __ , 26 

16 1 14 19 

g(x, y) Q - lg'(x,y)I 

Figure 5.7: The image function g(x, y) in the image matrix Rw, and the cost matrix 
c(x, y) = Q- lg'(x, y)I with Q = 17. To compute lg'(x, y) I with the diagonal difference 
operator for all points (x, y) E R, extra columns and rows of image data are used. In 
the matrix on the left, the circled point is the start point vn; the line from Vn leads 
to the point Uk proposed by the user, and the boxed points which are those on the 
Bresenham approximation to the circular arc, make up the goal set G. 

in the image matrix Rw to be: 

C(x, y) = { ~x, y) if (x, y) E R 
otherwise 

(5.15) 

Let \Ji denote the set of candidate paths for Vi- From Equation 5.14, for every path 
1/; E \Ji, we have the Freeman code for the direction of movement from 1Pi to 1Pi+l limited 
to those in the set F = {5, 6, 7, O}. Therefore, the valid forward neighbors 1Pi+1 for a 
path element 1Pi E 1/; are those points 1Pi+I E Z2 for which¢( 1Pi, 1Pi+1) E F, and the valid 
backward neighbors 1Pi-l are those for which ¢(1/;i, 1Pi-i) EB, where B = {I, 2, 3, 4}. 
See Figure 5.8. To enforce connectivity and path direction requirements, we now define 

(x, y) 

B 

Figure 5.8: Given 1/;; = (x('l/;i),y(('!j;i)), the candidate preceding path neighbors 'lj;i-l 
(left), and subsequent neighbors 1Pi+1 (right). 
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the cost of a path element 'l/Ji given 'l/Ji-l as 

if ef;('lf;i, 'l/Ji-1) EB 
otherwise 
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(5.16) 

Note that we could also have expressed the conditional statement in terms of the set 
of permitted forward movements F. If we now define the cost of a path 'lj; as 

n(,p) 

<I>.('l/J) = L <I>('l/Ji-1, 'l/Ji) 
i=l 

we know that every path 'lj; for which <I>.('lf;) is finite, is 8-connected, satisfies 'lj; CR, 
and for all 'lj;i E 'lj;, rp('l/Ji, 'l/Ji+1) E Fas required. 
To assure the path begins at Vn, we use4 

<I>('l/Jo,'l/Ji) = { ~(x('l/;1),y('l/;1)) if 'l/Jo = Vn and ef;( 'l/Jo, 'l/J1) E F 
otherwise 

(5.17) 

With the use of the following recursive functions, for all points (x, y) E Rw, we can 
compute the cumulative cost of the minimum cost subpath leading from the start point 
Vn to (x('lf;i), y('l/Ji)), as follows. We start with cp(x, y) = oo for all (x, y) E Rw-

cp(x( Vn), y( Vn)) 

cp(x( 'l/Ji), y( 'l/Ji)) 

0 

min[cp('l/Ji-1) + <I>('lj;i-1, 'l/Ji)] 

(5.18) 

(5.19) 

where Equation 5.19 is computed for all (x, y) E Rw with y 2: y(vn)- Note that 
because <I>('l/Ji-i,'l/Ji) is finite only for path neighbors which satisfy rp('lf;i,'l/Ji-i) EB, 
for each point (x, y) E Rw, we need only compute the values for the four preceding 
neighbors (Figure 5.8). This means that the cumulative costs cp(x('lf;;),y('lf;;)) can be 
computed with a single pass through the cost matrix C(x, y). 

As the cumulative cost matrix cp(x('l/Ji), y('lf;i)) is computed, we maintain a matrix of 
pointers containing the backward direction ¢( 'lf;;, 'lf;;_1) to the neighbor which resulted 
in the minimum value. 

(5.20) 

We have ef;(x, y) EB for all (x, y) E Rw, which are valid candidate path elements for 
Vi. 

The effect of applying these computations to our example is shown in Figure 5.9, 
along with the optimal path found by scanning the matrix of pointers by means of the 
recurs10n: 

arg min cp(p), 
pEG 

4 See paragraph on join points in Section 5.3.1. 

(5.21) 
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I IX 
\ IX \ 
\ X \ 
I X \ 

X 
I -1--

\ ---
cp(x, y) <j>(x, y) 

Figure 5.9: Each element cp(x, y) in the leftmost matrix contains the minimum cumu­
lative cost for a path from Vn to (x, y). The boxed elements make up the goal set G. 
A dash indicates cp(x, y) = =· The elements cp(x, y) in the central matrix contain the 
pointers (stored while computing cp(x, y)) necessary to retrieve the path. On the right 
is the path 'I/; C R from vn to the point p E G with the minimum costs, retrieved by 
following the pointers in ef>(x, y) from p to Vn-

'lpi-1 = cp(x( '1/;i), y( '1/;i)) (5.22) 

where m = n( 'I/;) is the number of points in the minimum cost path 'I/; from the point 
Vn leading to some point p E G, the goal set. 

Combined with the recursive cost computations, it is the maintenance of cp(x, y), 
later used to retrieve the minimum cost path, which characterizes the algorithm pre­
sented here as a dynamic programming algorithm [CLR90]. 

Notes 

End Points The begin point for the path extracted is fixed to Vn in Equations 5.17 
and 5.18. The algorithm can easily be adjusted to permit a set S of start points with 
a slight modification to the if statement in Equation 5.17 (if '1/;0 E S), and by applying 
Equation 5.18 to all points s E S. Of course, it could also be made to end at a specific 
point (x, y) E Rw if we replace Equation 5.21 with '1/;m = p, which is equivalent to 
reducing the goal set G to a single point. 

We draw attention to these alternatives because they are used to determine the end 
points of the path V. Further, they are minor modifications to the algorithm which 
can be used to make it applicable to a wide range of "one-way" path search problems 
other than that considered here. 

Join Points Each point Vn for n > 1, from which we seek a kth path segment is 
also an end point for the (k - l)st path segment. To assure the behavior of the path 
is consistent with respect to the restrictions on both path segments at the join point, 
the set of permitted points for '1/;1 in the kth segment must satisfy the restrictions on 
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the (k - l)st segment as well as those on the kth. Denote the set of permitted forward 
movements on the kth path section in its initial orientation as Fk, and define 

Unless the user turns 180°, F0 i= 0. If we rotate F0 along with Fk, the path at each 
joint point vn will satisfy both sets of restrictions, if the set F0 replaces the set F in 
Equation 5.17. 

5.3.2 The Cost of a Path Element 

In the dynamic programming algorithm described in Section 5.3, it is the cost function 
that determines which of the candidate paths will be extracted from the region of 
interest R. Thus, the cost function must embody the properties of the object boundary 
to the best of our knowledge. In this section, we develop a cost function based on the 
following image model known to be appropriate for a variety of imaging methods 
[GW92, Pra91]. The cost function can be adapted to extract object boundaries when 
a priori knowledge supports the presence of a different model. 

The Image Model 

Let g(x, y) denote the image intensity function, defined on an XX Y image I. Assume 
g(x, y) is be corrupted with independent Gaussian noise n(x, y): 

g(x, y) = J (x, y) + n(x, y) (5.23) 

where J (x, y) denotes the noise free image function, with constant value Jo in the 
object region and Ji in the background region. The object and background regions 
are assumed to be separated by a connected transition region, with values between 
Jo and Ji, corresponding to the image object boundary. (The image data in Rw C I 
used in the example in Figure 5.7 follows this model with Jo = 36, Ji = 16 and the 
standard deviation of the Gaussian noise, O"noise = 2). 

Because the transition region is earmarked by a change in image values, we aim 
to define a cost function which will have a high value in smooth areas of the image 
and a low value in transition areas. We further assume that the noise free image 
function may consist of additional values h, h, ... which correspond with the intensity 
of objects which are not of interest for the segmentation task at hand. These objects 
may intersect or be near the transition region we seek to detect, thereby interfering 
with its detectability based solely on the model in Equation 5.23. We therefore aim to 
suppress sensitivity to both the noise function n(x, y) and the presence of other image 
objects. 

The Hypothesized Direction ak 

When a point uk is obtained from the user, the direction 0k, defined in Equation 5.6 
from Vn to uk, is also obtained. This provides an indication of the boundary direction 
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on the kth path section. Full reliance on 0k, however, results in sensitivity to jitteryness 
on the part of a user. To estimate the boundary direction, we therefore want to average 
it with the mean direction of the last contour segment, to obtain the hypothesized 
direction a.k. To this end, we define 

(5.24) 

where fJk denotes the average direction of movement in the kth extracted path section. 
Note that as v increases, the user is followed more closely, whereas small values of 
v make it hard to change direction. To encourage a smooth path which follows the 
user when the boundary is weak, a.k is incorporated in the cost of a path element as 
described below. These values are optimized for our rather jittery user simulations in 
Section 5.5.1. One may argue that in practice, these values should be adapted for a 
particular user. Our optimization method could be applied to user data to achieve 
this. 

The Cost Function 

We now design a cost function with which an optimal path will follow the object 
boundary when the image gradient is high, and the user otherwise. This is accom­
plished by defining the cost of a path element in terms of a weighted combination of 
factors depending on the strength of the image gradient and the hypothesized bound­
ary direction a.k, described in Equation 5.24 above. 

Consider the following function defined in terms of O'.k (see Section 5.3.2), 

e(x,y) = la.k - 0(x,y)I (mod 1r) 

where 0(x, y) is the direction from vn to the point (x, y). By definition 

0 :s; e(x, y) :s; 1r (5.25) 

and 0(x, y) decreases as the direction to the point (x, y) from Vn gets close to O'.k. 

If a.k is the direction of the contour, then the directional derivative defined by 

Dga(x,y) = "vg(x,y) · (cosa.,sina.) 

will be high along areas of the contour either for a.= O'.k + 1r /2, or for a. = O'.k - 1r /2. It 
will be low for transitions in the image function in other directions. Let Q be a large 
positive number which satisfies 

Q 2 l"vg(x,y)I for all (x,y) EI. (5.26) 

Then, 
0 :s; Q - Dga(x, y) :s; 2 · Q (5.27) 
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for all a and for all (x, y) E Rw. If we choose 

Q = max g(x, y) - min g(x, y)) 
(x,y)El (x,y)EI 

then Equation 5.26 is satisfied and we have a positive bounded function Q- Dga(x, y) · 
which decreases as the magnitude of the gradient increases and its direction approaches 
that expected. Figure 5. 7 contains an example of this function with Q = 17, and 
a = 51r / 4. The use of the directional derivative rather than the gradient magnitude, 
results in large values of Q - Dga(x, y), if the gradient direction differs significantly 
from a, even when the gradient magnitude is large. This results in a suppression of 
interference from points on (nearly) perpendicular object boundaries. If incorporated 
in the cost function, it will therefore make transitions which agree in direction with 
the hypothesized boundary direction ak have low costs. By selecting 

depending on which results in a positive value for Dgo:(x, y) at the point Vn (which we 
assume is correct), disturbance from nearby parallel boundaries is also suppressed. 

If we multiply Equation 5.27 by 1r /2Q, then, given Equation 5.25, we have both 
cost functions restricted to the range [O, 1r]. Because we want to balance the influence 
of the user input and the image data, assuming the actual direction of the contour is 
close to ak, we define the cost of a point (x, y) E Rw as the weighted sum 

c(x,y) = wG(x,y) + (1-w) (
2
~[Q-Dgo:(x,y)]) (5.28) 

The parameter w determines the balance of user influence and the influence of 
image data in the cost function. Increasing w will reduce sensitivity to noise in the 
image, but increase sensitivity to user error. In Section 5.5.2, criteria to optimize w 

are defined and experiments are described with which we obtain its optimal value. If 
a priori knowledge of the image objects or a specific user is available, the experiments 
may be repeated to tune w for the specific problem. 

5.3.3 Related Work 

Dynamic Programming 

The method developed in Section 5.3 to extract a path 1/; E R based on user input is 
similar to that described by Gerbrands in [Ger88] to extract the path of a boundary 
given an initial estimation. A key benefit of our method as compared to Gerbrands' 
is that ours does not require a resampling of the image data. Permitting movement 
in the four Freeman directions of a half-plane and using the directional derivative in 
the cost function makes the resampling required in Gerbrands' method superfluous. 
Elimination of the resampling step produces a sufficient performance improvement to 
allow extraction of the boundary path in real time as the user traces. 

Our method can easily be applied to the problem posed in [Ger88] of extracting a 



108 5. Magnetic Contour Tracing 

smooth 8-connected boundary path given an initial estimation. If Gerbrands' resam­
pling step is replaced by a step to obtain a rough polygonalization of the boundary, 
then we have the points U = { uk} required for our method. Using Wall and Danielsons 
algorithm [WD84], this can be done in O(N) time where N is the number of pixels 
in the initial estimation. Because the resampling step is the most computationally 
intensive step in Gerbrands' method, this results in a substantial performance im­
provement. Furthermore, because our method produces an 8-connected path V C Z2 

it can be efficiently stored, and the wealth of efficient analysis methods which have 
been developed for this class of paths (see for example [GW92, Pra91, RK76]) may be 
applied. 

Path Planning 

We have formulated the question of finding a boundary section ½ as a minimum cost 
path problem. As such, it is closely related to path planning problems which arise in 
the field of robotics. In particular, the dynamic programming algorithm developed in 
Section 5.3.1 can be seen as a variation on the cost wave propagation method for path 
planning proposed by Dorst and Trovato in [DT88]. 

The path planning problem is viewed in their work as one of finding the minimum 
cost path through a configuration (parameter) space, by means of propagating waves 
of minimum cost paths in that space. The location of a path element and the direction 
of its preceding neighbor: C = {x('lj;i),y('lj;i),rp('lj;i,'lj;i-l)} may be seen as the points 
of a parameter space, and the recursive function <p(x, y) defined in Equation 5.19 may 
be seen as a wave propagation. We then propagate in a forward direction based on 
Equation 5.16. 

The cost of a path in their method requires a metric or cost function such as 
that introduced in Equation 5.28. However, the algorithm proposed in [DT88], walks 
through each wave of minimum cost points, generates the next wave, and stops at 
the first goal point, under the assumption that the first hit will be a goal point with 
minimum costs. This requires the cost function to contain a heuristic element which 
assures this assumption holds, and thus, their method can be classified an A* algorithm 
(see for example [Nil80]) rather than a dynamic programming method. Computing 
the minimum costs to all goal points is simple and efficient for the path search we 
perform, and allows the use of a substantially simpler cost function. 

5.4 Experiments 

In this section, we describe the experimental methods used in Section 5.5 to optimize 
the parameters v and w used in Equations 5.28 and 5.24, which control the cost of 
path elements and ultimately the selection of the optimal path. The same methods 
are used in Section 5.6 to evaluate the magnetic contour tracing tool described in this 
chapter. 

The cost parameters v and w are tuned using artificial test images containing discs 
of varying radii as may have been produced by a camera. We simulate the user by 
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Figure 5.10: Test Images: A disc with object value Jo = 200, and background value 
Ji = 100. The middle and right images have added Gaussian noise with anoise = 20, 
(SNR = 5, SNRdB = 26) and anoise = 50, (SNR = 2, SNRdB = 6) respectively. 

choosing random locations near the test image object boundary for the points uk. To 
evaluate the performance of the method using these parameters for a range of image 
objects, we used test images containing hexagons of various sizes and a range of ellipses 
in addition to the discs used to tune the parameters. 

The quality of the boundary produced is measured by a variation of Baddeley's 6 2 

metric [Bad92b]. 

5.4.1 The Images 

Disc images for a range of radii are used to tune v and w so the method will be 
applicable for path sections of high and low curvature. Later we evaluate the method 
for a range of radii to measure the influence of curvature on the method. In accordance 
with our image model (Equation 5.23) we add independent Gaussian noise to evaluate 
the influence of the signal to noise ratio (SN R). 

We create a disc of radius r in a 256 x 256 image as follows. In a 2048 x 2048 image 
we assign the object image value Jo to all points p which satisfy II c - p II< 8 * r where 
c is the center point of the image: c = (1024, 1024). All other points are assigned the 
background value Ji. After performing a Gaussian averaging using o- = 8, we sample 
the image by extracting one point for each 8 x 8 neighborhood in the original image. 
Using intensity Jo = 200 for the object, and Ji = 100 for the background, results in the 
leftmost image in Figure 5.10. We experiment with discs of radii r E {10, 20, ... , 100}. 
The hexagon and ellipse images used in the evaluation in Section 5.6 are created in an 
analogous fashion. 

If we add independent Gaussian noise to our test images, we have the signal to 
noise ratio (SNR) defined by 

SNR = IJo - iii 
O'noise. 
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where CT noise is the standard deviation of the Gaussian noise. Alternatively, the signal 
to noise ratio may be expressed in decibels as defined in 

SNRdB = 20log (lfo -_fil). 
a noise 

In our experiments, the object and background values are fixed to be 200 and 100 (not 
necessarily in that order). We use values O"noise E {1, 5, 10, 15, ... , 50}, resulting in val­
ues for SNR E {100, 20, 10, ... 2}, or as measured in decibels SN RdB E { 40, 26, 20, ... 6}. 
Examples of the resulting images are shown in the center and rightmost images in Fig­
ure 5.10. 

5.4.2 User Simulation 

Recall that the user is presented with a tool which records the position of the pointer 
in the image as the pointing device (mouse) is moved. To simulate a user tracing a 
boundary, we walk around the image object boundary in a test image, and at regular 
intervals, extract a random point in the immediate neighborhood. 

Let s denote the step size, which in practice depends on the speed of the user's 
movement. Let B = {b1 , b2 , ... , bn(B)} be the best digital approximation to the image 
object boundary, which consists of n(B) points. For discs and hexagons, this cor­
responds to the Bresenham point set [Bre65, Bre77]. For ellipses, we use the point 
set produced by the algorithm in [FvDFH90, pages 88-91]. Beginning at b1 , we move 
through the point set in steps of s, and at each point bi E { b1 , bl+s, bl+2s, ... } , we 
choose random point on the line perpendicular to the path of the object boundary 
which passes through the point bi. The point selected is forced to satisfy II bi -p IIS: E, 

where E is the distance the user is allowed to stray from the true path of the image 
object boundary. 

In Figure 5.11, we illustrate the extraction of a user point p given a point bi E B 
for a disc, and a point set extracted with this method is shown. 

5.4.3 The Error Measure 

In [Bad92b], Baddeley introduced the !':,_P error measure to quantify the difference 
between two binary images A and B: 

(5.29) 

Here X is the raster image in which A and B are embedded. A binary image A ~ X 
is simply a subset of the points x E X. n(X) denotes the size of the raster X, and 
dc(x, Y) is the cutoff distance transform: 

dc(x, Y) = { dc(x, Y) if d(x, Y) :S:; c 
otherwise 

(5.30) 
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Figure 5.11: On the left, the random selection of a point p near the point b; generated 
by the Bresenham algorithm. A simulated user point set for a disc of radius 50, with 
s = 4, and c = 4. 

An example of the cutoff distance transform is shown in Figure 5.12. 
Baddeley shows that .6..2 (A, B), (p = 2 in Equation 5.29) has some key proper­

ties required of an error measure on binary images. Suppose the image A contains 
the correct path of an object boundary, and the image B contains the boundary to 
be evaluated. Due to the use of the cutoff distance transform, and the balance of 
influence of A and B in Equation 5.29, .6..2 is sensitive to false positives (B\A), to 
false negatives (A\B), and to the influence of an error on boundary shape, thereby 
addressing previously noted shortcomings of FOM, Pratt's figure of merit [Pra77]. In 
particular, if the boundary B is missing points in A (false negatives), this will not 
effect the value of FOM(A, B). As a result, FOM is insensitive to some significant 
differences in boundary shape, as noted in both [PM82] and [vVYB89]. 

A careful look at Equations 5.29 and 5.30, however, shows that if more pixels are 
set in the images A and B, the number of pixels which contribute to the sum in 
Equation 5.29 increases. Given A, the image of the true object boundary, suppose 
we define the cutoff area of A as n(Ac), the number of pixels in the set Ac= {x : 
d(x, A) <= c}. For a disc, the cutoff area depends on the radius rand is given by 

n(Ar,c) = 7r(r + c) 2 
- 7r(r - c) 2 = 411'rc. (5.31) 

For a hexagon, the cutoff area depends on the side length l and is given by 

n(A1,c) = 47rc2 + 12c (z - ~) , (5.32) 

and for an ellipse defined by 

(5.33) 

we have 
n(Aa,b,c) = 7r(b + c)(a + c) - 7r(b - c)(a - c) = 211'c(a + b). (5.34) 
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Figure 5.12: The cutoff distance transform, with c = 4. On the left, dc(x, A), where A 
is a circle of radius r = 16. In the middle, dc(x, B) where B is an ellipse with a = 18 
and b = 14 (See Equation 5.33). On the right, Jdc(x, A) - dc(x, B) J. Note that only 
the points near the boundaries A and B have a positive value (black= 0), and will 
contribute to the summation in Equation 5.29. 

To obtain the average distance to the true contour for each of the test images we 
use the following variation on Baddeley's !::,.2 error measure: 

(5.35) 

where n(Ac) is defined according to Equation 5.31, 5.32 or 5.34 as appropriate for the 
test image, and where X is the raster for which the distance to A and B is computed. 
J~ will sometimes be denoted by J;,c, Jlc, and J~,b,c to indicate which measure of the 
cutoff area was used to compute it. The error measure is now averaged based roughly 
on the number of pixels contributing to the sum in Equation 5.29 rather than on the 
image size. We thus obtain an error measure independent of both image size and 
contour length. 

In all experiments presented, we use c = 5 as the cutoff distance, as suggested in 
[Bad92a]. 

5.4.4 Measuring the Error: Practical Considerations 

In our experiments, the true distance to the boundary of the image object is computed 
using a distance transform in the "true" image, which is then scaled to compute 
the distance in the smaller raster. In this way, we obtain a measure which closely 
approximates the distance to the object boundary in R 2 . We do this because the 
boundary position is not well defined for the test image objects on a raster. So that 
we can evaluate our results, we show the response of the J; JA, B) measure for the 
Bresenham point set. Let B, be the Bresenham approximati~n to a circle of radius r, 
and let A, be the true circle, the distance to which we obtain in the finer raster. For 
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the test images described, we have 

for r E {10, 20, ... , 100}. In general, 5:,c(Ar, Es) ~ Is - rl. Thus from 5:,c we can see 
how far apart two boundaries are on the average. The same is true for the hexagon 
and ellipse variations on the 5~ measure. 

5.5 Parameter Tuning 

In Section 5.3.2, the parameters in Equations 5.28 and 5.24 must be tuned to op­
timize the method. In this section, we consider the criteria used to optimize the 
parameters, and describe a set of experiments used to obtain their optimal values for 
images containing discs of varying radii, with added noise resulting in SN R = 10 and 
SNRdB = 20. If the shape of the objects or the conditions related to the SNR in the 
imaging process are known a priori, these experiments may be repeated to optimize 
the parameters for a specific class of images, or by substituting user input for the 
simulated user data, for a particular user. 

5.5.1 Optimizing the Direction ak 

Recall from Section 5.3.2 that the angle a used in Equation 5.28 is the primary factor 
in selecting among the candidate paths for Vi. In this section, we seek the optimal 
value for v used to define ak (from which a is derived) based on the weighted sum in 
Equation 5.24. As mentioned in Section 5.3.2, v determines the ease with which the 
user can change direction. A high value for v increases sensitivity to user jitteryness, 
while a low value makes it difficult for the user to turn. 

In the experiment to optimize v, we fix the following values: 

1. s = 6 is the step size for generating the simulated user data, which we use in 
practice as the minimum distance to be moved before we apply the algorithm. 
We use the minimum in this experiment because smaller movements result in a 
more jittery user path. 

2. c = 4 is the minimum error allowed for the user, as is the case in practice for 
s = 6. 

3. w = 0.5 is the value of the parameter in Equation 5.28. 

4. <7noise = 10 is the standard deviation of the Gaussian noise added to the images. 

Now because we want to test the effect of reducing the user's ability to turn, we 
evaluate paths obtained when tracing boundaries of varying curvature. In Figure 5.13, 
we show the average value of the 52 error measure for discs of varying radii. For 
both dark images on a bright background (!0 = 100) and vice versa (!0 = 200), we 
performed the experiments including the simulation of user data on 100 images of each 
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Average Distance - All Discs 
0.9 ~---.--~--.----.--~--.----.---.--.-------, 

0.85 

0.8 

0.75 

8;,c(A,B) 0.7 

0.65 

0.6 

0.55 

0.5 ~-~-~--~-~-~--~-~-~--~ 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

V---, 

Jo= 100 ~ 
Jo= 200 +­
All Discs -B-

Figure 5.13: The effect on o;c(A,B) of varying v in.Equation 5.24. Results are shown 
for 1000 discs with Jo = 100' and radii r E {10, 20, .'.., 100}, 1000 discs with Jo = 200, 
and the average of both. O"noise = 10. 

disc size, each with independent Gaussian noise. Based on the results averaged over 
all disc sizes, we choose v = 0.6. 

5.5.2 Optimizing the Cost Function c(x, y) 

We now seek to find the optimal value for w which controls the relative influence of 
the user input and image data in the cost function c(x, y) defined in Equation 5.28. 
In this case, the criteria which we simultaneously want to satisfy are: 

A) If the path of the user is near an image object boundary, the direction of which 
is close to that of ak, the path we extract should lie on the object boundary. 

B) If the path of the ussr is not close to aR image object boundary, the path we select 
should be the user path (smoothed by the averaging due to using ak rather than 

0k)-

It is clear that high values for w will result in the satisfaction of the second criteria, 
while low values encourage the satisfaction of the first. To determine the best value 
for w, we seek the value for which the average of the errors for criteria A and B is 
minimal. 

To control the experiment, we fix the values listed in the previous section, substi­
tuting the third with 

3. v = 0.6, based on the experiments performed in the previous section. 

Let Ar be a binary image which contains the optimal boundary path for a disc of 
radius r (see Section 5.4.1). Given a randomly generated user data set, suppose we 
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extract a boundary path Br(w) from the disc image for some w. Criterion A states that 
w should be chosen so that o; c (Ar, Br ( w)) is as small as possible. To be sure this is true 

, 2 
in general, for r E {10, 20, ... , 100}, we measure the average value of or,c(Ar, Br(w)) for 
N random user data sets. The average error is then given by 

1 1 N 

Td(w, N) = 10 L NL o;,c(Ar, Br(w)), 
r i=l 

where the 1/10 results in an averaging over the 10 different radii, and N is the number 
of data sets for which Br is generated for each radius. 

Now given a random user data set, suppose Cr is a binary image which contains 
the path generated by applying our method to an image using the optimal value for 
v obtained in the previous experiment, and with w = 1. Cr may be considered the 
optimal user path for a specific random data set, as it is not influenced in any way 
by the image data. Let Dr(w) be the path obtained if the same user data set is 
applied to an empty image (with added noise). Then we want a value of w for which 
o;,c(Cr,Dr(w)) is small. We again want this to hold in the general case, and therefore 
define 

Because we want the value of w for which our method performs well both m the 
presence and absence of a contour, we want the value for which the mean 

is minimal. We performed the experiments for N = 200, with 100 for dark on bright 
(!0 = 100) and 100 for the reverse, and thus our results are averaged over 2000 
experiments for each value of w. In Figure 5.14, we plot Td(w, N), Tu(w, N), and 
Tm(w, N) as a function of w. Based on the results we choose w = 0.7, the value for 
which Tm(w, N) is minimal as the optimal value. 

5.6 Evaluation 

Having optimized the parameters which influence the cost of a path, we are now in 
a position to evaluate the performance of our method. We begin by performing our 
experiments on images containing discs of varying radii and with various levels of 
added noise. The results shown in Figure 5.15, are averaged over 100 trials for each 
disc at each noise level. That is, given a disc image of radius r, we add randomly 
generated Gaussian noise at level O"noise, 100 different times, and each time regenerate 
the simulated user data for a disc of radius r. 

The user step size was fixed to s = 6 and allowed error fixed to c: = 4. In practice 
rk = s = 6 is the minimum move required before we apply the technique. Although 
this is much smaller than that required theoretically (see Theorem 5.2) our results are 
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Figure 5.14: The result of varying w on the ability to locate the contour of a disc 
Td(w, N), to follow a user Tu(w, N), and the average Tm(w, N). The results shown are 
for N = 200, O"noise = 10, and r E {10, 20, ... , 100}. 
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Figure 5.15: The performance of the algorithm applied to disc images with added 
Gaussian noise with O"noise E {0, 5, 10, ... , 50}. The average value of 8; c(A, B) is plotted 
for a range of radii r. Here we have a user step size of 6 and the allowed error c = 4. 
The average error of the input data is also plotted. 
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Figure 5.16: The performance of the algorithm applied to images of hexagons with 
added Gaussian noise with O"noise E {0, 5, 10, ... , 50}. The average value of 81,c(A, B) is 
plotted for a range of lengths l. The user step size is 6 and the allowed error c = 4. 
The average error of the input data is also plotted. 

very good. This is because in general, the extreme cases handled in Section 5.2.2 will 
not all arise simultaneously. Smaller values for the step size are advantageous because 
they allow the user more control, and feedback can be provided more quickly. 

The experiments were performed both for dark objects (!0 = 100) on a bright 
background (!1 = 200), and vice versa, with no significant difference in the results. The 
average of both experiments is shown in Figure 5.15. The results show a linear decrease 
in the performance of our algorithm in response to added noise. When the curvature 
becomes very high K, = 1/10 (8 = 10), the performance starts to deteriorate, as was 
predicted (Theorem 5.2). Up to a significant noise level (SNR > 5, SNRdB > 14), 
the resulting boundary is within one pixel of the true object boundary, even when the 
curvature is high. 

In Figures 5.16 and 5.17, the results are shown for hexagons with a range of side 
lengths and for a range of ellipses. The results show that although the parameters 
were tuned for discs, the method works well for a variety of object shapes. 

The actual boundaries obtained with our method in practice are far better than 
the experiments here indicate. This is because the error in the user angle 0k, generated 
by the random data used in our experiments is, in general, far worse than that made 
by a user. Connecting the dots in Figure 5.11 will illustrate this point. In Figure 5.18, 
we show boundaries obtained as a user traced some objects in medical images. 
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Figure 5.17: The performance of the algorithm applied to ellipse images with added 
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{10, 15, ... 100}. The user step size is 6 a~d the allowed error is E = 4. The average 
error of the input data is also plotted. 

Figure 5.18: Tracing in practice: On the left, the left ventricle in the heart of a dog. 
On the right the corpus callosum. 
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5. 7 Conclusions 

We have presented a methodology with which a path acquired from a user tracing an 
image object boundary is interpreted and subsequently corrected to follow the correct 
path of an image object boundary. We present a theoretical foundation for the method 
developed and show it to work well in practice. Our method may be used both for 
segmenting unknown images and for constructing image object models for a particular 
problem domain. The technique is suitable for a specific, but widely applicable image 
model, and the development of the cost function and the parameter tuning method 
shows how this may be adjusted for other image models. The experimental methods 
used may also be employed to optimize the method for a particular user, and thus 
make the method suitable for incorporation in an adaptive interactive environment for 
image segmentation. 

The method is particularly suitable for the specification of image object boundaries 
in the presence of various forms of disturbance which frequently interfere with the 
segmentation process. It is robust in the presence of significant noise in the image, 
or user jitteryness. This is due to the cost function which suppresses the response to 
image transitions due to intersecting or nearby parallel object boundaries, and shows 
a preference for smooth paths. 

The dynamic programming method developed to extract the object boundary based 
on the minimal cost path is substantially faster than similar methods, with no penalty 
in accuracy. As we had hoped it is fast enough to correct the path of a user while it 
is drawn, and thus provides the user with the sense of working with a magnetic pen. 
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Chapter 6 

Concluding Remarks 

6.1 Conclusions 

In this thesis, we introduced an approach to image segmentation called supervised 
boundary formation. With this approach, an image is partitioned based in part on 
user sketches of image object boundary paths. For two general input models for 
path specification, namely connect-the-dots and free-hand drawing, we investigated 
problems of user interpretation and correction. The investigation leads us to conclude 
that issues arising in interactive segmentation can be addressed in a formal manner, 
and that interactive techniques are an effective tool for obtaining a correct partitioning 
of an unknown image. 

User error model 

To facilitate the task of user interpretation, we performed experiments to measure user 
errors in the specification of corners on polygonally shaped objects, as described in 
Chapter 2. For each corner, we measured the error in distance, corner angle, corner 
orientation, and corner scale. For all users, the level of the first three errors were 
uneffected by the tested image variations. We tested four variations, namely images 
with and without added noise; dark objects on a bright background versus bright 
objects on a dark background; ramp edge and corner model versus a roof model; and 
two different shapes. It turned out that the distribution of the user error in corner 
scale varied depending on the object shape, and somewhat depending on the presence 
of noise. This was especially true for one user. 

The polygonal objects were made up of line segments in the range {15, 30, 45, 60, 75}, 
and corners of angle in the set { 45, 90, 135} degrees. Both the mean and variation of 
the distance error differed as a function of user but not as a function of line length. 
The magnitude and the variation of both angle errors ( corner angle and orientation) 
decreased for all users as a function of line length. The corner scale error differed for 
the various users, and per user for the different objects. 

The bias of the corner angle and the bias of the corner scale both proved to fit a 
Gaussian distribution for all users. Although we did not find a well known statistical 
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distribution for the errors in distance and corner orientation, both were well behaved 
for all users in the following sense. For each user, the meanµ and standard deviation 
a- of the user error was calculated, and the user error was less than µ + 2o- in more 
than 90% of the cases. This applies to all users for both the distance and orientation 
measures. 

These experiments lead us to conclude that the type and degree of errors made by 
individual users in the specification of corner points, can be predicted. Based on the 
results, we were able to develop a user dependent error model for corner specification. 
This model consists of the maximum expected distance between a user defined point 
and the corresponding point on the object boundary, the maximum difference in corner 
orientation, and the distributions of the user corner angle and scale errors. 

Limitations The performance on the four Brodatz texture images varied signifi­
cantly among the users. In some cases, numerous extra points were inserted, and in 
other cases, a number of corner points were not specified. Because the users were 
presented with the texture images before the other images, we may thus conclude that 
if users do not possess a priori knowledge of the expected image contents, they do not 
perform well for arbitrary texture differences. 

Open Questions 

Other geometric models - Suppose a user were to specify a sequence of image lo­
cations intended as part of a curve rather than as a set of polygonal corner 
positions. Then a different corner model must be developed, which allows one to 
define limits on the difference between the user defined curve and the boundary 
curve. This requires the definition of an appropriate set of error measures for 
curves. 

Texture - The methods described for user modeling in Chapter 2, may prove useful 
for modeling expert users, such as radiologists, working with known images. 
Further, testing users with artificial textures may provide additional insight. 

Inexact polygon matching 

To match the user-defined polygons with the model polygons for the experiments in 
Chapter 2, we developed an algorithm to perform inexact polygon matching, which 
produces a best fit of two polygons. The key contribution which distinguishes our 
approach from other polygonal object matching methods, is the separation of the node 
pair match evaluation from the global matching decision. This allows us to guarantee 
that with respect to a given cost function, the match of the polygons produced with 
our algorithm is a global optimum match. 

We provide a general framework for the development of cost functions for appli­
cations which tolerate any subset of affine transformations. In addition to the cost 
function used to match the user and model polygons generated by the experiments in 
Chapter 2, we develop a cost function suitable for robotics applications in which the 



6.1. Conclusions 123 

camera position is fixed. In [GAW93], this algorithm provides a reliable mechanism for 
deciding whether an object in an imaged scene matches one extracted from a database. 

The algorithm proved to find 96% of the point pairs for a polygon with a random 
distortion of itself, when up to 4 (of the 17) points were removed from either or 
both polygons. The A* matching algorithm is efficient in its exploitation of cyclic 
characteristics of polygonal data sets. The complexity of the algorithm is comparable 
with geometric hashing in the worst case [GG92], and two orders of magnitude faster 
O(n4) on average. We have shown the basic scheme to be extendible for matching 
polyhedra in three dimensions. 

Model-based corner detection 

To correct user errors made in the specification of corner points on polygonally shaped 
objects, we developed the model-based corner detection method described in Chap­
ter 4 of this thesis. We derived a scheme which enables the evaluation of an image 
region based on the geometry of a corner in a polygonal shape specified by a user. In 
particular, we examined the geometry of an image corner in relation to the geometry 
of a corner specified by a user. For a given user error model, and an image feature 
measure A, we examine conditions under which we can extract an image corner model 
with respect to the measure A. We show that if the window size required to measure A 
and the user error in distance are both sufficiently small in relation to the corner angle 
and scale, then we can establish the presence of a ramp or roof corner as measured 
by >.. To illustrate the effectiveness of the method, we show that if A measures the 
grey value intensity, we can distinguish four corner types, namely dark and bright 
ramp and roof corners. Specifically, for corners with angle in the range [31r /8, 31r / 4], 
we determine the correct model in more than 95% of the cases. We use the model to 
localize the corner to pixel accuracy. 

Limitations A key problem in the model-based corner detection method is the mod­
eling and subsequent localization of corners with small angles ( a ::;; 1r / 4). Because the 
size of the region used to investigate the image function in the cone of the corner 
decreases as the corner angle decreases, reliable modeling of small corners is hindered. 
This indicates a different approach to obtaining a segmentation model for small corners 
must be developed. 

Magnetic contour tracing 

In Chapter 5, we developed a method for real time correction of a user specified 
boundary path. The interactive model supported is free-hand drawing, but rather 
than producing the path actually traced by the user, we extract a best approximation 
to an object boundary path in the immediate region, with a dynamic programming 
method. The set of candidate paths and the costs that determine which among them 
is selected, are based on the location and geometry of the user input, and on an a 
priori model of the image function near object boundaries. For the boundary model 
we used, the gradient magnitude of the image function is required to be high along 
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the resulting boundary path, which is also required to be connected and smooth. The 
image boundary model must be known a priori to extract the path in real time. 

In this chapter, we developed a set of conditions under which a boundary path can 
be accurately extracted based on user input or any other point set. In particular, we 
investigated the relationship between the image object boundary path and the user 
defined path, and derived a formal set of conditions (Theorem 5.2), under which our 
method is guaranteed to work, assuming our model of the image function on the object 
and background regions is correct. 

For interactive segmentation, the cost function to be minimized, is defined as a 
weighted combination of a user term based on the direction of user movement and a 
boundary (gradient) strength term. The influence of the weights was evaluated, and 
the set which minimized the errors made over the length of a boundary was selected. 
We used a random error generation method to simulate the user. 

The magnetic ink method was shown to produce a good approximation of a bound­
ary path for a range of test images containing discs, ellipses and hexagons. Specifically, 
for signal to noise ratios as low as 5SN R, the path produced was within one pixel of 
the true boundary path, on average. This was true for a far wider combination of 
input and boundary paths than satisfied the theoretical conditions, which makes the 
method widely applicable in practice. 

6.2 Discussion 

Extensions For supervised boundary formation to become an effective tool in the 
segmentation of unknown images, a variety of input/correction models are required. 
Ideally, the path specification input tools found in standard drawing packages should 
be available to the human expert setting out to segment an image. For each such input 
method, a range of correction options should be supported. 

In addition to correction of corner locations described in Chapter 4, modeling 
of image boundary curves and subsequent localization of the boundaries, based on 
connect-the-dots user input, must be addressed. Such modeling requires a user error 
model be derived for curve specification. Meanwhile, if a model of the image function 
near the object boundary can be determined, various forms of correcting the user de­
fined boundary path must be investigated. For freehand drawing, it may be useful to 
derive a model of the image function in the object and background regions before cor­
rection can take place. The real time magnetic ink correction introduced in Chapter 5 
might then be replaced with some form of post-specification correction. 

Segmentation of Three Dimensional Images The approach to interactive seg­
mentation advocated in this thesis cannot be directly applied to the segmentation of 
three dimensional images. This is because the direct manipulation paradigm is based 
on a what-you-see-is-what-you-get interaction model. That is, the user is assumed to 
perform manipulations in a fully representative view of the image. 

Viewing of three dimensional images in two dimensions requires either a user be 
presented with some two dimensional subset of the image or a two dimensional visu-
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alization of the three dimensional image. The latter is problematic because visual­
ization techniques are based on a predefined segmentation model, so that what the 
user views is not the image data, but a manipulated view in which the certain char­
acteristics have been used to distinguish the object from its background in the view 
( e.g. [LC87, DCH88, Lev88]). If the visualization is successful, then the image can be 
segmented automatically, and if not, then it will not help in the segmentation because 
it is based on the wrong model. 

Views containing some subset of the image data, such as a single image plane or 
the maximum or minimum value in some direction, are also problematic because the 
user has an incomplete view of the image. In this case, the task of visualization is left 
to the user. 

Still, interactive techniques can sometimes play a useful role in the segmentation 
process when sufficient a priori knowledge is available both of the segmentation model, 
and the views which should be presented to the user for manipulation. Examples of 
effective interaction techniques in the segmentation of specific sets of three dimensional 
images can be found in [FLP89, LP90, HSvdV+77]. 

Finally, if a representative plane can be extracted from an image for viewing, 
one might apply magnetic contour tracing or model-based corner detection to find 
the significant boundaries in that plane. The results might then be propagated to 
other planes using model-based deformable contour methods such as those described 
in [SD89, WSSD93]. 

Real time image function modeling With respect to human computer interac­
tion principles, the method developed in Chapter 5 is extremely attractive because it 
provides immediate feedback to the user. It requires, however, that the properties of 
the image function in the region about the image object boundary be known a priori. 
Though it can be employed to segment difficult images such as those in Figure 5.18 
when an appropriate segmentation model is known, a model of the image function 
which can be used to locate the boundary cannot be derived as the user draws. This 
limitation is not only due to the complexity of the method required to model the image 
function, but due to an insufficient geometric model (a short line segment). A hypoth­
esis of the shape and size of a boundary section, comparable to that used to model 
the corners in Chapter 4 can only be extracted after larger sections of the boundary 
have been specified. 

Learning from an Expert Perhaps the most relevant question arising from the 
work in this thesis is how much one can learn about a given image, based on a simple 
user sketch. In Chapter 4, we presented a method for examination of an image region 
about a section of a user sketch. If a sufficiently large region can be investigated near 
a path section, then the segmentation parameters, including an image function model 
can be obtained from the user input. 

Human experts can be relied upon to provide an approximation of the geometry 
of an object boundary. Asking an expert to specify the characteristics of the image 
function in the object and background regions in a form which can be used to quantify 



126 6. Concluding Remarks 

the difference between the two is unrealistic, unless the model is trivial (for example, 
dark object on bright background). If this information can be deduced from the 
geometry of the user defined path, then supervised boundary formation will provide a 
powerful tool in the development of segmentation models for new applications. 

6.3 Concluding Remarks 

In both Chapters 4 and 5, we developed a theoretical framework in which the relation­
ship between the user defined path and the true path of the image object boundary 
can be inspected. For both input/correction models, we defined specific conditions, 
for which we can guarantee the object boundary path could be found given the user 
input path. 

In both cases, the methods developed prove to work well for a far larger set of 
user/boundary path pairs than was theoretically guaranteed. This is because to guar­

antee the boundary path would be extractable based on the user defined path, we had 
to assume the worst case. In practice, of course the worst case is an exception to the 
rule, and the boundary path can be found even when the theoretical conditions are 
not met. Still for critical applications, it is essential to know under what conditions 
correct results can be guaranteed, and the arguments presented in Chapters 4 and 5 
can be used for this purpose. 

In summary, the results in this thesis support the notion that supervised boundary 
formation is an effective approach to the problem of segmenting unknown images. We 
have shown the human interface issues involved with object boundary specification can 
be dealt with in a systematic fashion. This removes much of the uncertainty involved 
when a human expert plays a direct role in the segmentation process. The results 
for the corner detection method introduced in Chapter 4 also suggest that substantial 
knowledge about the object boundary, both in terms of its form and the behavior of 
the image function in the immediate region, which a user is unable to express directly, 
can be extracted from a user specified path. Ideally, this knowledge may be exploited 
to construct object models for the automatic segmentation of similar images. 



Appendix A 

GRIP - A GRaphics library for 
Image Processing 

A.1 Introduction 

Vision problems do not, in general, lend themselves to easy automation [BB82]. While 
good model based systems have been developed for a variety of specific applications, no 
general methods have been developed which can be applied to an arbitrary analysis 
problem. Thus, in producing new applications, and in dealing with images which 
cannot yet be analyzed with fully automatic methods, it is often useful to allow an 
expert to direct some stages of the analysis interactively. 

Direct manipulation has been shown to be a particularly effective interaction style 
in a number of user interface studies [Shn87]. The key characteristic of a direct ma­
nipulation interaction tool is the feeling on the part of the user that she is operating 
directly on the object of interest, rather than requesting via some form of dialog that 
a desired operation be performed. A good example is the act of driving a car using a 
steering wheel and gas pedal, as opposed to giving verbal directions in the role of a 
passenger. Because image analysis is a highly visual application domain, direct ma­
nipulation is a particularly suitable style of interaction. Image objects to be evaluated 
can be easily indicated with a pointing device rather by some means of verbal descrip­
tion. In practice, this concept has been shown to work well in Athena [vVYtK+89], a 
Macintosh based interactive karyotyping system. In that system, an expert is offered 
the opportunity to interactively indicate that two objects should be joined or that a 
single object should be split in two, as part of the segmentation process. 

To support interactive methods in image processing and analysis, a graphics library 
is required which can cooperate with an image analysis system. For example, if one 
wants to split an image object, a path must be specified which indicates how the object 
should be divided. The user specified path must be superimposed on the image display 
as it is drawn so that the user can decide whether the resulting division is the one 
intended. If the user is satisfied, the path must be used in the segmentation process 
to produce two image objects from the single one, upon which the user drawing was 
superimposed. To achieve this functionality, communication between the interactive 
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graphics and the image processing system components is essential. Cooperative use 
of input devices such as a mouse and keyboard, and output display devices must 
be supported. Further, information about the data sets produced by each system 
component must be shared, so that a graphical system data component, such as a path 
specified by the user can be used to manipulate a image analysis system component 
such as the object to be split. 

Image processing differs from other application domains in the sense that most 
data that a user wants to manipulate is a subset of the displayed image, and while 
visually available, it is not represented geometrically or textually. Thus, tools are 
required which allow the user to describe and manipulate the image subset of interest. 
Direct manipulation techniques for specification of an arbitrarily shaped image regions 
may therefore play a key role in many image analysis applications. 

Currently, no systems exist which support the development of direct manipulation 
user interfaces for image analysis. The Athena system was built from scratch, and 
cannot be extended in any way. The Image 1.52 package [oH93] on the Macintosh 
provides direct manipulation tools for experimental purposes, however, it lacks sup­
port for application development. Many systems, which support experimental image 
processing as well as application development exist [oAP88, tKvBS+9o], but do not 
provide support for direct manipulation. A number of general purpose user interface 
toolkits [You89, Com85], contain useful graphical components such as menus and slid­
ers which are useful for image processing applications. However, these systems do not 
provide support for sharing a display space as required for the graphical manipulation 
of visible image data. 

To address these shortcomings, we designed GRIP, a graphics library which sup­
ports the construction of direct manipulation to.ols for image processing and analysis. 
Such tools are useful in an image analysis system, and essential for developing inter­
active image analysis applications. By combining GRIP with a general purpose user 
interface toolkit such as that described in [You89], a high level toolkit which supports 
interactive image analysis applications can be constructed. 

In the next section, we consider the role that direct manipulation tools can play in 
the various components of an image analysis problem. Key design issues which must 
be addressed if such tools are to be constructed, are considered in Section A.3. This 
is followed by a functional overview of GRIP, which provides the necessary graphics 
support to build such tools. Because GRIP provides functionality similar to that of 
the standard graphics system GKS [HDGS83], we list the similarities and differences 
of the two systems in Section A.5. 

A.2 Direct Manipulation and Image Analysis 

GRIP is intended to provide tools for solving image analysis problems which cannot 
(yet) be solved with fully automatic methods. In particular, GRIP can be used to 
construct direct manipulation tools, which cannot be built using general purpose in­
teractive toolkits such as [You89]. In this section, we outline the components of a 
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Figure A.1: The components of a general image analysis system. Depending on the 
application at hand, one or more steps with a striped outline may be skipped. Image 
acquisition and segmentation are fundamental steps in nearly every image analysis 
problem. Traditional data driven image analysis corresponds with clockwise movement 
through the steps starting with image acquisition. 

general image analysis scheme, and consider the role direct manipulation interactive 
techniques can play in extracting information from a scene. 

Figure A.l shows the major components of a general image analysis system. In 
traditional bottom up or data driven image analysis, the steps are performed one for one 
in a clockwise manner, starting with image acquisition and stopping when the intended 
information has been acquired. More recently, the benefits of top down or model driven 
analysis schemes have been recognized. In this case high level expectations about the 
image contents may be used to direct the low level processing. In these systems the 
steps need not be followed in a strictly clockwise or counterclockwise fashion. [GAW93] 
contains a nice example of a model-based object recognition system. 

Involving an expert user in the analysis process is similar to using a model-based 
scheme. Presumably, the user knows what information is to be extracted from the 
image, and what part of the image is relevant. There are two key roles a user can play 
in the analysis process. 

Decision making: A user can decide what steps should be taken when. For 
example, if there is insufficient contrast in the image to visually separate an 
object from its background, the user may select an enhancement procedure, or 
request a recalibration of the camera and a fresh image acquisition. Selecting 
parameters for a given operation also falls under the decisive powers of a user. 

Analysis operations: A user can perform or help the system perform individual 
steps in the analysis of an image. For example, the user may recalibrate the 
camera prior to image acquisition, or trace the boundary of an image region in 
which measurements should be performed. 
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The menus, sliders, dialog boxes and other interactive components found in general 
purpose toolkits provide sufficient support for the first set of operations, as can be seen 
in systems such as SCIL-1mage [oA91] for image analysis. We are therefore concerned 
with the tools required for the user to interactively aid the system in specific analysis 
steps. 

Now, consider the components of an image analysis system depicted in Figure A.l. 
Both image acquisition and restoration are global operations in which the role of the 
user, beyond decision making, is limited. Image processing systems such as Adobe 
Photoshop [Ado90] in which the user can manipulate the image data using various 
painting tools have become increasingly popular in recent years, and fall in the category 
of image enhancement methods. Because these tools manipulate rather than evaluate 
the image data, however, they are not suitable for image analysis systems. In fact, 
application of such tools makes objective analysis of the image impossible due to a 
loss of information in the enhancement process. 

Segmentation of an image into meaningful parts is the most difficult task to auto­
mate in image analysis [Sme91]. Simultaneously, it is an essential element in almost all 
image analysis applications.1 The precision of all subsequent measurements on image 
objects depends directly on the accuracy of the segmentation procedure. Segmentation 
techniques are, in general, geared toward identifying the region of an image associated 
with an object, or by identifying the path of the object region's boundary. Given ei­
ther description, the other can be computed directly. Both approaches, when applied 
without a priori knowledge of an object's characteristics are severely limited in their 
applicability to new analysis problems. In general, a segmentation method must be 
based on a model of how the image object differs from its background. Models which 
have been developed to date (see for instance [RA77, HS85]) are only applicable to a 
limited set of image analysis problems. 

If an expert is provided with drawing tools such as those found in general purpose 
drawing packages (cf [Cla92]), then many images for which no appropriate segmen­
tation models have been developed can be segmented interactively, allowing further 
object analysis to take place. Optimally, the user sketches should be taken as rough 
outlines and corrected (see for examples Chapters 4 and 5). Alternatively, results ob­
tained with automatic methods might be corrected. Splitting an object in two based 
on a user defined path, as in [vVYtK+89], is a useful example. Similarly interactive 
techniques can be used to connect or split edges to produce complete object boundaries 
if automatic edge detection techniques fail to do so. 

Some object measurements which are difficult to obtain even when segmentation 
has been successfully completed, might be extracted interactively. For example if the 
distance between two image objects is of interest, the user can indicate the objects 
under consideration with simple pointing and clicking techniques. If an image object is 
to be matched with a graphical database model for identification, the user may select 
the appropriate model from a database. The actual fitting might be assisted if the 

1 Analysis of images known to contain a single texture provide a rare example of when segmentation 
is not one of the analysis steps. 
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user can drag a copy of the model to the object region of the image and interactively 
modify its geometry (scaling, rotation, etc) until it matches the object in the image. 

Specifying a region of interest with the operations available in most image analysis 
systems is awkward and inaccurate at best, requiring the user to estimate and type in 
the coordinates of a rectangle surrounding the region. It is often an important step in 
reducing the amount of superfluous data extracted in the analysis of an image. Direct 
manipulation techniques such as those found in drawing packages, for specifying re­
gions can therefore be very useful in many image analysis problems. In image database 
applications, the ability to specify arbitrary geometric patterns is essential for image 
database searches [GS92]. 

A.3 Design Considerations 

An environment which enables the development of the interaction techniques described 
in the previous section must support data communication and shared control of devices 
among the graphics and image processing system components. At the most basic 
level, all applications which display both graphical output and an image require that 
information be exchanged about modifications to the display contents so that screen 
updates can be handled correctly. Tools for correction of user defined boundaries such 
as those in Chapters 4 and 5, clearly require significant interchange of data. The user 
defined graphical sketch is used to drive the image processing, and the results (a 2D 
path) must in turn be presented to the user. Likewise, the tools provided in Athena 
[vVYtK+sg], drive the low level image operations based on graphical user input. 

The key elements in GRIP which support the necessary cooperation between the 
graphical and image processing components are incorporated in the workstation struc­
ture. As in standard graphics systems, the term workstation is used to refer to the 
data structure which describes the physical and abstract input and output devices. 
The workstation keeps track of the required physical display details such as its dimen­
sions and depth, and input device characteristics such as the number of buttons on 
the mouse. For updating and interactive manipulation, a list of displayed graphical 
objects is also maintained on a workstation. This data structure can also be used to 
support of printers and storage files, neither of which has input devices. The worksta­
tion concept described here is common to many graphics packages including the GKS 
[HDGS83] and PRIGS [Gra88] standards. 

Because our primary concern is the support of interactive image analysis, we intro­
duce the concept of a shared workstation. By shared, we mean the structure supports 
cooperation with applications and user interface tools for output to and updates of a 
shared display space. Mechanisms are provided in the system so an application can 
update the display space before or after GRIP update operations are executed. 

Another essential aspect of GRIP for cooperative work with other systems is the 
external input model. In sharp contrast with systems such as GKS and PRIGS, GRIP 
responds to notifications from another system that input has occurred. After handling 
the input, control is returned. In standard graphics systems, full control of all input 
and output devices is assumed. This is one of the key problems in using those systems 
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in cooperation with a window system or an application which may assume the same 
control. 

In the remainder of this section, we consider the key aspects of GRIP which enable 
cooperative use of the input and output mechanisms. We first define a number of 
terms which arise in the discussion. 

Terminology 

Much of the terminology used in this appendix is common in computer graphics lit­
erature, and definitions can be found in standard graphics texts such as [FvDFH90]. 
Terminology which is essential for understanding the description of GRIP is briefly 
defined here, and in more depth in Section A.4. 

The appearance of graphical output on a workstation is controlled in part by a 
set of geometric transformations. The transformation mechanism used in GRIP is 
analogous to that used in GKS and PRIGS. A user specified rectangular area in a user 
defined, world coordinate coordinate system (WC) is mapped to the display coordinate 
system (DC). The mapping is done via the normalized device coordinate system (NDC) 
defined by the square {(0,0),(l,l)}. See Section A.4.4. 

Graphical objects are formed by assigning graphical primitives such as the polyline, 
polymarker and text primitives to a graphical object or group. A group is similar to a 
segment in GKS in the sense that primitives in a group can be identified, manipulated 
and deleted as a set. 

A primitive attribute set contains information which controls the appearance of 
primitives which use it. Some examples of primitive attributes are color, line thickness, 
line style (e.g dotted, dashed), marker style (e.g. circle, star), and text font. 

A set of group attributes is associated with each graphical object. These define the 
group transformation, priority, and primitive attribute set for the object. The group 
transformation determines the size, location, and orientation of all primitives in the 
group. The priority determines the visibility of primitives in the group in relation to 
primitives in other groups. If the display area of primitives in two or more groups 
overlap, the priority determines which primitives will be "on top" and thus selected 
first in pick operations. 

A full description of these system components is found in Section A.4. 

A.3.1 The GRIP Input Model 

In order to coordinate activities with underlying packages, and to work in coopera­
tion with a user interface toolkit or management system, GRIP uses an external input 
model. By this we mean that the application programmer controls the input devices 
using the capabilities and tools of the window system, or the user interface toolkit 
(which might be part of an image analysis package). By means of a call-back mecha­
nism GRIP is notified when specific events occur. The programmer defines functions 
for those events which should be handled if some event occurs, and informs the appli­
cation via a function naming mechanism. Presumably, the system which controls the 
input will call the appropriate function under a generic name when the event occurs. 
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GRIP supports the locator and pick input classes, and assumes the choice, keyboard, 
stroke and valuator input classes are supported by the user interface toolkit used, or 
by the application programmer. The locator input device returns the world coordinate 
position of a device location, and the pick input device returns an object identifier for 
the nearest object to a device position. Which object is "nearest" depends on the 
position, the object priorities (see Section A.4.2, and on parameters which may be 
set by the programmer. For example, a programmer can specify that a filled area be 
detected only if a location is within its boundaries, and that a marker have a large 
neighborhood in which it is detected. A marker may then be picked even if a filled 
area is actually closer. The object priority determines the order in which objects of 
the same distance will be inspected. For interactive applications, the device position 
usually corresponds to user pointer location, but a programmer may of course pass 
any position. 

Whether input is handled in event, request or sample mode is up to the programmer 
and the toolkit being used to create the user interface. This is in sharp contrast to 
the nonextensible internal input model used in GKS and PRIGS. It is not possible 
to make use of modern user interface tools in applications based on those packages, 
or to extend the input model beyond its original design [HM91]. This is unfortunate 
as increasingly sophisticated dialog tools with buttons, sliders and text manipulation 
support become widely available [Com85, You89]. 

For the locator input class, echo functions are provided which allow the program­
mer to provide feedback to the user in a number of common ways. For indicating a 
change in functionality, a variety of cursors are available, and to give feedback as a 
path is interactively defined, the rubber-band line and rectangle functions are avail­
able. Mechanisms are available for the programmer to use externally defined echo 
functions, so application related feedback can be supported. For the pick device class, 
highlighting of a selected graphical primitive or group can be performed by changing 
the primitive attribute set associated with the group (see Section A.4.3). This allows 
the programmer full control over the feedback mechanism for pick related functional­
ity. For example, an object picked for deletion might be highlighted differently than 
one picked for scaling. 

The model described here is essential for a graphics package to work effectively 
with other systems. Rather than providing a fully defined input model, mechanisms 
are provided for cooperation with an arbitrary input model. Interactive tools have been 
created using the GRIP input tools in cooperation with the X event model [SGN88], 
the X Toolkit and the X Widget Set [You89], and with the SCIL_Image package [oA91]. 
In all cases, the external model used in GRIP has proven to work harmoniously with 
the input model of the system used. A detailed description in terms of the input 
related functions is provided in Section A.4.5. 

A.3.2 The NDC Grid 

Two operations which depend on the ability to identify the graphical objects which 
are displayed in the immediate neighborhood of a screen location are required for an 
interactive system. The first, hit detection, is used to identify the closest displayed 
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object in the vicinity of a screen location. This is necessary for pointing and drag­
ging techniques, or any other form of interactive object manipulation. To support 
these interactive techniques, the object to be manipulated must be identified. The 
second operation, damage repair, is used to regenerate the contents of a display area, 
when damage has occurred. This may be necessary when an object is drawn, moved, 
or erased, or if the priority of an object is modified. This requires the immediate 
identification of all displayed objects to which damage may have been inflicted. For 
direct manipulation techniques, it is essential that hit detection and damage repair be 
performed immediately, to maintain a sense of control on the part of the user. 

For rectangular objects, the bitBlt procedure described by Pike in [Pik83], has 
proven an effective means of damage repair. For arbitrarily shaped graphical objects, 
however, the situation is far more complex. Many graphical systems, including GKS, 
postpone damage inducing operations until a complete redraw of the screen contents 
is requested. This makes the fast display of small changes such as those caused by 
deleting a small object impossible, and is therefore not suitable for highly interactive 
environments. Another approach introduced by Bramer in [BS81], is to erase an object 
by redrawing it in exclusive OR mode. This causes parts of objects which intersect it 
to be redrawn as well, and thus may do more damage than it repairs. Even if no other 
objects are displayed, this operation will leave the display of the underlying image 
modified, and can therefore not be used when the display area is to be shared. 

Warner introduced another approach in which the smallest enclosing rectangle for 
each graphical object displayed on the workstation is computed [WK79]. If an object 
is erased, the entire rectangle is cleared, and any graphical objects whose enclosing 
rectangles intersect that of the erased object are redrawn using it as a clipping region 
to prevent further damage. This method, while attractive, has the disadvantage that 
many objects which never intersect the erased object may have to be redrawn. In 
the worst case, the erased object is a diagonal line which extends from one corner to 
another of the display space. If it is erased, the entire picture must be redrawn. If 
there is an image in the display area, this is a costly and visible operation. 

In the tiling method introduced by Slater [SDS88], the display space is divided 
into an N x N grid of tiles, each containing w x h display pixels. When a primitive 
is drawn, some calculations are performed to determine the set of tiles it intersects. 
This tile set is then used for the same purposes as the enclosing rectangle described 
above. Although elegant, the tiling method is limited by the fact that the grid is 
defined in display coordinates. Its major drawback in a windowing environment is 
that a window resize requires the entire tile grid to be destroyed and rebuilt, which 
includes recalculation of the tile intersections for all primitives. 

To address this problem, we introduce a tiling grid on the normalized device coor­
dinate (NDC) space defined by the rectangle { (0, 0), (1, 1)}. This allows us to define 
an N x M grid in terms of a world coordinate system, which for image analysis applica­
tions might be expressed in terms of image dimensions. To support both hit detection 
and damage repair, we maintain a list of the graphical primitives which intersect each 
grid element or tile. This requires that when a primitive is drawn, the tiles it intersects 
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be computed. The primitive identifier must then be stored in each intersected tile. 
When deleted or geometrically modified, it must be removed from each tile's list. 

Hit Detection 

When a request is made that the nearest graphical object to a given location be 
determined, a list is made of all primitives that intersect the grid element to which the 
device location maps, as well as those primitives which intersect the eight connected 
neighboring grid elements. Selection among the list of primitives depends on a number 
of factors including viewport and object priority as discussed in Section A.4. 

Damage Repair 

In GRIP, the contents of the display device are updated whenever viewed data is 
modified. Immediate updates are imperative for direct manipulation tools, as the user 
must have instant feedback on the consequences of interactive input. A number of 
data modifications in GRIP might inflict damage, and thus require repair. Drawing, 
erasing or moving a graphical object requires the area effected by the modification 
be redrawn. Any modification to a primitive attribute set requires that all primitives 
using that set be redrawn. Most modifications to a groups' attribute set require a 
redisplay of the group. Finally, if changes are made to an underlying image, graphical 
objects in the area modified must be redrawn. 

A key problem for GRIP is that the display of an underlying image must be kept 
intact when graphical display contents are updated. Because copying image data to 
a display is a costly operation which depends on the dimensions of the region to be 
copied, reducing the size of the update region is essential for efficient damage repair. To 
achieve acceptable performance, we use the NDC grid to limit the area of modification 
to the set of tiles effected by the damage inducing operation. 

As an example, consider what happens when an object is erased. Associated with 
each primitive in the group, is a list of tiles intersected by the primitive which is 
calculated when it is first drawn. The list of tiles for the primitive group to be erased 
is assembled. For each tile in the list, the object name is removed from the list of 
graphical objects for that tile, and a list is made of all other objects intersecting that 
tile. A mask is created for updating the underlying image based on the tiles through 
which the object passed. This is similar to drawing in the background color to erase a 
primitive. The objects which intersected the grid elements are then redrawn in order 
of priority using the set of grid elements as a clip mask. 

Corresponding grid based methods are used for other operations which require 
display updates. Using the grid for these operations reduces the area to be modified 
to that actually effected by the change, and therefore allows them to be executed at 
an acceptable speed for interactive purposes. In the context of image analysis, we 
define the grid in terms of image coordinates, and require the divisions to fall between 
pixels. Calculation of the image region associated with a tile set is thus efficient and 
unambiguous. 
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A.4 GRIP - A Functional Overview 

The graphics library GRIP supports the development of applications for which two 
dimensional interactive graphics functionality must be combined with image analysis 
functionality, or with some other application functionality which requires access to the 
input and/or output devices. Because GRIP has been successfully implemented as 
part of the SCIL_Image package for image analysis [oA91], we describe parts of the 
system using its incorporation in SCIL_Image as an example. The library is, however, 
designed to share input and output devices with an arbitrary application. 

Graphical output appears in a window opened and controlled by GRIP or in a win­
dow opened by an application with which it shares its display space. In SCIL_Image, a 
GRIP display structure is initialized with useful defaults in each window containing an 
image. Therefore graphical output can be sent to any or all image windows with the 
use of the GRIP functions. Update of the graphical output when window exposes and 
resizes occur, is handled automatically (in the routine which updates the image display 
SCILJ:mage calls a GRIP redraw function). Further, when a new image is generated 
in a display window containing GRIP output, this output will appear automatically 
"above" the new image contents. The image sharing display space with GRIP is not 
modified, only thE: display is. 

A.4.1 Workstations 

GRIP display objects are made visible on a graphics workstation. For interactive 
image analysis applications, GRIP supports both a simple window and a shared display 
window as workstations. The input and output devices of a simple workstation are 
completely controlled by GRIP. A shared workstation allows another application to 
share control over the workstation contents. 

Before output can appear on the display, a workstation must be opened with either 
GrOpen Ws(), or GrOpenSh Ws(). These functions initiate the necessary data struc­
tures to manage graphical output on the workstation. For each image display window 
created in SCIL_Image, a GRIP workstation identifier is reserved and GrOpenSh Ws() 
is called to allow output to be superimposed on the display of the image. 

GRIP determines which of the open workstations should display a graphical ob­
ject based on a workstation activation scheme. All workstations that are active when 
a graphical object is initially created will display the object. Workstations are acti­
vated and deactivated with GrActWs() and GrDeActWs(). Further, GrDeActAllWs() 
deactivates all workstations. These functions provide a mechanism for controlling 
the direction of output for applications such as SCILJ:mage, which use several work­
stations simultaneously. For instance, to insure that output appears in exactly one 
workstation, GrDeActAllWs() can be called just prior to Gr Act Ws(). 

In addition to whether a workstation is active, the visibility of a given graphical 
object on a workstation depends both on the locations specified for the graphical prim­
itives which make up the object, and the various transformations that these locations 
traverse before being displayed (see Section A.4.4). 
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A.4.2 Graphical Output 

A group ( or graphical object) in GRIP is a collection of graphical output primitives 
which can be identified as a set for manipulation, modification and deletion. A unique 
group identifier can be obtained with the function GrGetGid() for associating a number 
of output primitives and subsequently manipulating them as a set. A group can be 
created implicitly by referring to it in a primitive drawing function, or with a call to 
GrSetGroupAttr() which sets its attributes. Graphical primitives may be added to or 
deleted from a group whenever some GRIP workstation is active. A group is deleted 
with GrDelGroup(). 

There are three graphical output primitives supported in the current implementa­
tion of GRIP. 

GrPolyline() defines n - 1 connected lines between n points in the order specified. 

GrPolymark() defines n markers at n points specified. 

GrText() defines a character string at the specified location with the specified height. 

Graphical primitives are created in a group. Each of the above functions for cre­
ating primitives requires that a primitive and a group identifier be specified. These 
identifiers can be used to modify the set of primitive attributes with GrModPrimAttr(), 
or to delete the primitive from its group with GrDelPrim(). Alternatively, NONE can 
be specified as the primitive identifier, in which case the primitive can no longer be 
identified for individual modification or deletion. No two primitives in the same group 
may have the same primitive identifier. Visual characteristics of a primitive, such as 
line width and marker style, depend on the primitive attribute set with which it is 
created (see Section A.4.3). If a group is deleted, all primitives in the group will be 
deleted. 

Each group of primitives (or graphical object) in GRIP has the following set of 
attributes associated with it which control its visibility and its visual characteristics. 

Transformation: This is a matrix of affine transformation parameters that are used 
to translate, rotate and scale all primitives in a group prior to display. By default, 
the transformation is described by the identity matrix, and all primitives are 
drawn exactly as specified. A number of routines are available for manipulation of 
the group transformation. It is easy to define any scaling, rotation or translation 
for all primitives in a group (see Section A.4.4). 

Priority: The value of the group priority as compared with that of other groups 
which share the immediate display space ( e.g. overlap) determines which group 
is "on top", or visible to the user. By default, the priority of a newly created 
group is higher than that of all existing groups to assure it is visible when 
created. GrSetGroupAttr() can be used to set the priority of a group explicitly. 
Alternatively, the function GrSwitchPri() can be used to exchange the priorities 
of overlapping groups. 
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Primitive attribute set: This is the set of attributes which control the appearance 
of output primitives which use default attributes. By default, these attributes 
are inherited from the output workstation. The default primitive attribute set 
is NONE. This means the primitive attribute set associated with each output 
workstation on which the group is drawn will be used to determine the visual 
characteristics for those primitives in which NONE has been specified as the 
primitive attribute set (see Section A.4.3). 

A group is visible on those workstations which are active at the time of its creation. 
This is at the time the group identifier is first used in a drawing or manipulation 
function and not when the identifier is reserved for use. A group can be copied to other 
workstations after its creation with GrCopyGroup Ws(). This is the only function in 
GRIP which can be used to produce output on an inactive workstation. 

A.4.3 Primitive Attributes 

A primitive attribute set contains information which controls the appearance of prim­
itives which use it. Some examples of primitive attributes are color, line thickness, 
line style (e.g. dotted, dashed), marker style (e.g. circle, star), and text font. An 
attribute set can be assigned to a primitive explicitly, or a primitive can inherit the 
attribute set from its group. If no primitive attribute set is associated with the group, 
the primitive will inherit its attributes from the set on each workstation on which its 
group resides. This is explained in more detail below. 

An attribute set is created with GrGetAid(), which returns a unique identifier for 
the set. It can be deleted with GrDelAid(). The following functions are provided to 
modify the parameters in a primitive attribute set. 

GrSetColor() sets the color in which to draw the primitive. 

GrSetLineStyle() determines whether a line will be solid, dashed, or dotted. 

GrSetLineAttr() can be used to set the line join and cap styles as well as the style 
and width. 

GrSetMarkAttr() is used to set the style and size of a marker. 

GrSetTextAttr() is used to set the font and direction of the text string. 

Each primitive drawing function in GRIP takes an attribute set identifier as one of 
its arguments. If NONE is specified as the attribute set, then the primitive attribute 
set associated with the group in which the primitive has been defined will be used. If 
this in turn is NONE (the default), the attribute set for each workstation on which the 
primitive appears will be used. A primitive will have the visual characteristics defined 
in the attribute set at the most specific level. Accordingly, the visual characteristics 
of a primitive are determined by the primitive attribute set hierarchy in Figure A.2. 

Each workstation is created with a generic set of attributes with the same default 
settings as a set created with GrGetAid(). This set exists for the life of the workstation, 
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Figure A.2: The primitive attribute inheritance scheme. Primitive 1 in Group 1 and 
Primitive 1 in Group 2 use private attribute sets 3 (bold font and fat lines) and 4 (italic 
font and fat striped lines) respectively. Primitive 2 in Group 1 inherits attribute set 2 
(italic font and dotted lines) from Group 1. Finally because no attribute set is specified 
for Primitive 2 in Group 2, and none is set in Group 2, the attribute set 1 (roman font 
and solid line) are used to draw that primitive. 

and cannot be modified in any way. When a workstation is opened, this is the default 
set for primitives drawn on the workstation. Another set can be specified to be the 
default by calling GrSetWsDefAttr(). This set can be modified with the functions 
listed above to modify the default visual characteristics of a workstation. 

A.4.4 Transformations 

Before a graphical primitive is displayed, the set of display coordinates which corre­
spond with the user defined coordinates in the primitive definition must be computed. 
The coordinate sets are related by a set of transformations. First, the affine trans­
formation associated with the group of primitives must be performed resulting in a 
possible rotation, translation and scaling of the primitive with respect to the coordi­
nates in the primitive definition. Second, the user or world coordinate system in which 
the user defines the primitives must be transformed to a normalized coordinate system 
which is independent of both the application and the selected output devices. Finally, 
the primitive coordinates in the normalized coordinate system must be transformed 
to the output devices being used. Thus, there are three independent transformations 
each primitive undergoes between its specification and its display. The transforma­
tions, along with the functions related to manipulating them, are discussed below. The 
model used in GRIP is similar to that used in standard graphics systems as described 
in [FvDFH90]. 
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The Normalization Transformation 

A normalization transformation maps a rectangular window of the world to a rectan­
gular region in a normalized coordinate system. By default, the square defined by the 
coordinate pair { (0, 0), (1, 1)} is mapped to itself. The rectangle of the world coordi­
nate system is completely determined by the user. With the function GrSetWindow() 
the user can define a window in application (world) coordinates. For a plotting ap­
plication, the coordinates of the window might depend on the domain and the range 
of the function being plotted. For an image analysis application, it may depend on 
the size and the section of the image being investigated. The world coordinate win­
dow is mapped to a rectangular subsection or viewport of the normalized coordinate 
system {(0, 0), (1, 1)} with GrSetViewport{). A number of normalization transforma­
tions or window /viewport pairs can exist simultaneously. GrSelTrans() selects the 
normalization transformation to be used for drawing. 

SCIL-1mage and the Normalization Transformation When SCIL_Image cre­
ates an image window, a default transformation is defined in which the dimensions 
of the window in the world coordinate system corresponds to the image dimensions, 
and in which the viewport corresponds to some part of the NDC (normalized device 
coordinate) square {(0, 0), (1, 1)}. By selecting this transformation whenever graphi­
cal output is to appear in the workstation in which the image is displayed, primitives 
defined in terms of image coordinates are superimposed on the displayed image as 
expected ( assuming simple group and workstation transformations). 

If the image size is changed, the transformation associated with the image is mod­
ified so the world coordinate window coincides with the new image size. This is 
managed by creating a unique normalization transformation for each image being dis­
played. For easy manipulation, the workstation in which the image is displayed and 
the normalization transformation associated with the image are assigned the same 
identifier. 

A convenience function, Drawln(), is provided with SCIL_Image to simplify the 
management of transformations and the workstation activation scheme for the majority 
of applications. Although a very simple function, it prevents users wanting to perform 
simple drawing in images from having to be aware of the normalization transformation 
the workstation activation scheme. The source of Drawln() is listed in Figure A.3. 

For drawing in non-image windows or for using GRIP in other systems, similar 
functions can be written in terms of the application context. 

The Group Transformation 

The group transformation allows the user of the library to scale, translate or rotate 
a group of primitives in any way desired. Primitives are stored in groups in the 
coordinates in which they are specified. Prior to being displayed, they are transformed 
according to the affine transformation matrix in the group attribute set, and then 
according to the normalization transformation associated with the group. This is the 
last transformation selected with GrSelTrans() prior to creation of the group. 
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#include "image.h" 
#include "grip.h" 

Drawln(ip) 
IMAGE *ip; 
{ 

} 

int wsid; 
if((wsid = GetWsid(ip)) >= 0) { 

GrDeActAllWs(); 
GrActWs(wsid); 
GrSelTrans(wsid); 

} 
return(wsid); 
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Figure A.3: The source of Drawln() which allows easy handling of transformations 
when using GRIP with SCI1-lmage. 

There are two ways to modify the affine transformation associated with a group. 
Any of the functions GrRotateGroup(), GrTranslateGroup(), GrScaleGroup(), and Gr­
RefiectGroup(), which apply a simple transformation to a group can be used. Each 
of these functions applies the transformation indicated by its name, to the transfor­
mation already associated with the group. For example, if GrRotateGroup() is twice 
requested to rotate a group 45°, the group transformation will then include a rotation 
of 90°. GrRefiectGroup() reflects all primitives in a group about a specified line. 

The group transformation can also be modified with the function GrSetGroupAttr(). 
This function is used to apply a predefined combined transformation. This can be use­
ful if an object is to be translated and rotated without a display update between the 
two transformations. Each of the transformation functions, GrRotate(), GrTrans­
late(), GrScale(), and GrRefiect() is used to define a simple transformation. The 
results can be combined with the function GrCompose(). 

In some applications, it is necessary to maintain a set of group transformations. 
This is particularly useful for animation applications, in which the same set of trans­
formations may be applied and reversed numerous times. For these purposes, the 
group transformation is implemented as a stack which can be manipulated with the 
functions GrPushTrans() and GrPopTrans(). 

The Workstation Transformation 

Finally, the primitive location must be mapped to the display. This mapping is de­
termined by the size of the display space and by the workstation transformation. By 
default, this transforms the NDC square { (0, 0), (1, 1)} to the entire device coordi­
nate (DC) space. The area or window in NDC to be mapped can be modified with 
GrSet Ws Window(). The viewport of the display to which it will be mapped can be 
modified with Gr Set Ws Viewport(). Although this function is used to specify a rect-
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angle in device coordinates, the coordinates are specified in NDC, and transformed 
automatically, because the device coordinates may not be known to the programmer. 

Transformations in Practice 

For simple image overlays, and interactive image manipulations such as those described 
in this thesis, the default transformations and those maintained for SCIL_.Image are 
sufficient. Using the function Drawln(), one need only select the output image display 
window. For other sorts of interaction, such as zooming tools, the added control of 
the transformation parameters is essential. 

A.4.5 Input 

As discussed in Section A.3.1, the GRIP input model is external, which means input 
events can be accessed and handled according to the needs of an application pro­
grammer. A call-back mechanism is provided for accessing events, and a number of 
functions are provided for handling them. Mechanisms to access internal data, such 
as the world coordinate position of a given device coordinate pair, or what object is 
closest to a given location are supplied. A number of tools are also provided for ma­
nipulating feedback according to a programmer's wishes. The programmer is free to 
handle input independently of or in combination with the GRIP functions. Because 
GRIP does not control input, but only provides functions for handling it, it can be 
used in combination with interactive systems which do control input, such as the X 
Toolkit and the SCIL_Image package for image analysis. 

In this section, we discuss the tools available in GRIP for input handling. We begin 
with a discussion of how events are accessed within SCIL_Image, to indicate how direct 
manipulation tools for image analysis might be developed. We then describe input 
control functions, which determine which information internal to GRIP is extracted 
with information retrieving functions. Finally, tools supplied for providing feedback 
to the user are described. 

Accessing Events in SCIL_lmage 

GRIP receives all input events associated with image windows from SCIL_Image after 
they have been handled. The call-back mechanism which allows applications to handle 
events of interest, works as follows. A number of function pointers are available which 
are initially set to NULL. If the programmer wants to handle a particular event, the 
function pointer can be set to a function which should be called whenever the event 
occurs. 

The available call-back functions are GrB-n-Press(), GrB-n-Release(), GrKey­
Press(), and GrMotion(). The press and release functions are supplied for up to five 
mouse buttons. The functions are by default dummies, implemented as NULL func­
tion pointers in the C programming language [KR78]. In SCIL_Image, the appropriate 
GRIP function is called after the corresponding event has been handled. Using the 
function pointer mechanism, the programmer can reassign the function for a partic-
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ular event to one which handles the event ( e.g. mouse button press) in a desired 
fashion. The input handling for a particular action is changed by reassigning the 
function pointer, or it can be shut off by resetting the pointer to NULL. The source 
code example in Figure A.4 indicates how this works in practice. The same event han­
dling mechanism can be used in applications outside of SCIL_Image, with the function 
GrHandleEvent(). 

Input Control Functions 

The input control functions in GRIP allow the application programmer to determine 
which data is returned by the information retrieval functions Gr Locate() and GrPick(). 
Both functions request information based on a device location. Which information is 
returned depends on the viewport input priorities of the normalization transforma­
tions. That with the highest viewport input priority will be used in conjunction with 
the workstation transformation to translate device coordinates to world coordinates. 
The groups created while this transformation was active, will be the first inspected by 
the function GrPick(). 

Suppose, for example that in SCIL_Image, one wants the location in image coordi­
nates of a particular device location in the window associated with image A. The first 
step is to set the normalization transformation associated with image A to have the 
highest viewport input priority. In Section A.4.4, we explained that a normalization 
transformation with the same identifier as the workstation, is associated with each im­
age window. We can access the identifier for image A with the function Get Wsid(). To 
assure this will be the transformation used to translate the device coordinates to world 
coordinates (in this case image coordinates), the value returned by Get Wsid() can be 
passed to the input control function GrTop VplnputPri() The function Gr Locate() is 
then used to perform the actual translation from device to world coordinates. If one 
wants to pick an object in image A, the same steps would be taken prior to a call to 
GrPick(). Thus for highly interactive applications, a function GetFrom() analogous 
to Drawln() (see Figure A.3) would be useful in SCIL_Image. 

Finally, the input control function Gr Set VplnputPri() can be used to set the view­
port input priority of a normalization transformation to be higher or lower than that 
of another. This allows one to control the relative viewport input priorities of trans­
formations with overlapping viewports. 

Information Functions 

The function GrLocate() produces the world coordinate position of a device location. 
The translation to world coordinates is based on the normalization transformation with 
the highest viewport input priority. Gr Locate() is essential for interactive drawing. For 
example, when the user points to a particular device location, the location of the mouse 
pointer can be translated to world coordinates, and a primitive can then be defined in 
terms of its location. 

The function GrPick() is used to determine which, if any, primitive is close to 
a particular device location. As described in Section A.3.2, those primitives drawn 
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#include <stdio.h> 
#include <Xll/X.h> 
#include <Xll/Xlib.h> 

A. GRIP - A GRapbics library for Image Processing 

#include "grip.h" /* where function pointers are known * / 

int hello(); 
int bye(); 

my_func() 

{ 

} 

/* set up responses to user button presses * / 

GrBlPress = hello; 
GrB2Press = bye; 

hello( event) 
XEvent *event; 

/* handle event * / 

{ 
printf( "Hello\ n"); 

} 

bye( event) /* handle event - shut off event handling * / 
XEvent *event; 

{ 

} 

printf("My lips are sealed!\n"); 
GrBlPress = NULL; 
GrB2Press = NULL; 

Figure A.4: An example of the event access mechanism in GRIP. After hello() is 
called, pressing the first mouse button will generate the text "hello" on the standard 
output. If the second mouse button is pressed, a different message is printed, and 
further button presses will be ignored. 
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in the immediate neighborhood about the device location are considered potential 
hits. These primitives are sorted, first according to the viewport input priority of the 
normalization transformation active when the primitive's group was created, and then 
according to the relative priority of the primitive's group. The sorted primitive list 
is inspected, and the first to satisfy the hit criteria will be selected. The hit criteria 
depend on the primitive type. 

To inspect graphical primitives, GrGetPlineData(), GrGetPmarkData(), and Gr­
GetTextData(), are provided. Each of these functions returns a pointer to a data 
structure containing the data used to draw the primitive, and the attribute identifier 
which determines its visual characteristics. These functions must be called for the 
correct primitive type, which an be obtained for a particular primitive identifier with 
GrGetPrimType(). 

Feedback Functions 

GrChange WsCur() can be used to modify the form of the mouse cursor. This helps in­
dicate that a particular action is being performed. GrEchoLoc() echos the user pointer 
position in terms of a base location. Two types of echo are provided, RUBBER_LINE, 
and RUBBER_RECT, which are useful for interactive drawing. This feedback mech­
anism can be used in combination with application specific feedback functions. 

No generic functions are available for echoing a primitive or group obtained with 
GrPick(). Rather, a different primitive attribute set can be assigned to the primi­
tive, or group. In this way the feedback mechanism is controlled by the application 
programmer. 

A.5 GRIP versus GKS 

Given that GRIP is a two dimensional graphics package, it is useful to know how 
it differs from a standard graphics package such as GKS. Programmers familiar with 
GKS, PRIGS and other packages should find it easy to use GRIP, as it shares a number 
of features found in these packages. The key similarities and differences in GKS and 
GRIP are the following. 

Similarities 

• Both systems have a multiple workstation model in which output is directed to 
the workstations which are active when it is generated. 

• Primitive groups in GRIP are similar to segments in GKS in the sense that a 
group contains a number of primitives which can together be manipulated and 
deleted. 

• The transformation model is identical in both systems. 
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Differences 

• GRIP can share its display space with another package such as SCI1-1mage. The 
lack of this capability in other systems was the motivating factor in the decision 
to develop GRIP. 

• Primitive groups can be created in GRIP at any time simply by referring to 
them in a function which creates a primitive. The identifier must, however, be 
reserved prior to use. In GKS, a segment must be created explicitly. 

• Primitives can be added to or deleted from a group at any time. In other words, 
primitive groups can be edited. In GKS, a segment can only have primitives 
added to it while it is open. It must be closed explicitly. More than one segment 
may not be open simultaneously. 

• The primitive attribute inheritance model described in Section A.4.3 for the 
manipulation of primitive attributes differs strongly from the GKS model. 

• In GRIP, modifications to primitive attributes and changes induced by transfor­
mations result in an immediate update of the display contents. GKS supports a 
programmable model for manipulating screen updates. 

• GRIP has an external input model, which means that the programmer can handle 
input according to the context within which it is used, be it SCILJ:mage, an X 
Windows widget set, or another system. The input model in GKS is internal, 
meaning that input is handled according to a fixed input model, and cannot be 
extended in any fashion. 

A.6 Implementation 

GRIP has been implemented under the X Window System [SGN88] in the C pro­
gramming language [KR78], and runs on a variety of UNIX workstations including the 
Sun-3, the Sun Spare workstation series, the SGI workstation series, the IBM RS6000, 
the Stardent 3000, the HP9000, and a variety of Apollo workstations. It has been in­
corporated in the SCIL_Image package [oA91], and is employed both for experimental 
image analysis and for application development. 

The communication between SCIL_Image and GRIP works as follows. When 
SCILJ:mage opens a window for image display, it calls GRIP, and passes pointers 
to image and display structures using a connection data structure provided for shared 
applications. In particular, it passes the application name, the X window identifier 
and X window display pointer, and pointers to the SciUmage image structure and 
to the X Window System image data structure (XImage). The application name is 
used for resource handling, the X window and display pointer for directing graphical 
output, and the XImage pointer for performing selective update operations. 

SCIL_Image performs X Window event handling. When an expose event is received, 
or when the XImage is modified due to the execution of an image processing operation, 
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SCILJ:mage calls the appropriate redrawing function in the GRIP library. Window 
resize events also cause SCILJ:mage to call a special function to update the workstation 
transformation. All other events are passed to GRIP or to the application. 

Finally, GRIP has been designed to be portable. The system components which 
are UNIX and X-Window dependent make up only 15% of the source code and are 
separated from the remainder of the sources. Moreover, the shared workstation and 
cooperative input models in GRIP, while designed to work well with SCILJ:mage have 
no knowledge of the context in which they are used, and can be easily incorporated in 
other systems which require cooperative use of the input and output devices. 

A.1 Conclusions 

GRIP provides the basic graphics functionality necessary to the development of direct 
manipulation user interface tools for image analysis. It was used to construct the 
polygonal drawing and correction tools described in Chapters 2 and 4 of this thesis, 
and for the tracing tool described in Chapter 5. It has also been used in various 
analysis applications to display object boundaries, medial axes, and other geometric 
object entities (see for example [PRS+94]). 

Because we designed GRIP with direct manipulation tools in mind, we support 
an intentionally simple display-update model which is effective for this application 
domain. For applications such as animation or robot simulation, however, in which 
numerous modifications follow one another immediately, it is far more efficient to 
update the display after a series of modifications rather than after each individual 
modification. Extending GRIP to allow periodic updates under programmer control 
would make it useful for other applications in which communication with an image 
analysis package is required. 

The default update scheme combined with the attribute inheritance scheme makes 
GRIP far easier to program than standard packages such as GKS and PHI GS. Further, 
the external input model and the shared workstation model make GRIP fit in well with 
currently available user interface toolkits. This makes it possible to develop highly 
interactive applications for image analysis and other domains which require access to 
the display and input devices. 
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Summary 

The segmentation of an image into meaningful parts is a key step in nearly every im­
age analysis problem. Accurate segmentation is crucial for object identification and 
feature analysis. In spite of the apparent ease with which approximate segmentation 
is performed with the human eye, it remains a central problem in computer vision. 
In general, successful segmentation requires a good model of the image function, par­
ticularly in the neighborhood of object boundaries. In this thesis, we introduce an 
approach to segmentation called supervised boundary formation for the segmentation 
of images for which we have insufficient models. With this approach, an image is 
partitioned based in part on user sketches of image object boundary paths. Problems 
which arise in the effort to segment images with this approach are investigated for two 
interactive path specification models, namely connect-the-dots and freehand drawing. 
These two models were selected because they have been effective for interactive path 
specification in drawing packages. Because a user path cannot be assumed to be an 
accurate description of an object boundary path, supervised boundary formation is 
an effective method of segmentation only if it provides a means for correcting a user 
input path. Such correction, of course, requires user input be correctly interpreted. 

Aspects of user interpretation which are critical for image object boundary for­
mation are formally addressed for both the connect-the-dots and freehand drawing 
input models. Based on numerous experiments, we show supervised boundary forma­
tion to be an effective approach to the segmentation of images for which a sufficient 
segmentation model is unavailable. 

User error model To correct a user sketch of an image object boundary, it is es­
sential to understand the type and degree of error a user makes in producing it. In 
Chapter 2, we describe experiments used to measure user errors in the specification 
of corners on polygonally shaped objects. A number of users were presented with 
images containing arbitrary polygonal objects and asked to specify points correspond­
ing to corners on the object boundaries. Lines were drawn automatically between 
the subsequent points specified by the user ("connect-the-dots"). For each corner on 
the resulting polygonal path, we measured the error in distance, corner angle, corner 
orientation, and corner scale. These experiments lead us to conclude that the type 
and degree of errors made by individual users in the specification of corner points, can 
be predicted. Among the tested users, however, performance differed significantly. A 
user dependent error model for corner specification is therefore derived based on the 
results. This model consists of the maximum expected distance between a user defined 
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point and the corresponding point on the object boundary, and the bias and deviation 
of the user corner angle, orientation and scale in comparison with the model corner in 
the image. In Chapter 4, this model is employed to develop a user adaptable technique 
for corner correction. 

Inexact polygon matching To perform the corner error measurements described 
in Chapter 2, points in a user defined polygon must be matched with those in a model 
polygon. An isomorphic relationship between the user defined polygon and the object 
model polygon cannot be assumed, as users do not always specify all corner points 
on the test object, and sometimes specify extra ones. To address this problem, we 
introduce an algorithm for inexact polygon matching of nonisomorphic polygons. A 
goodness-of-fit measure for comparing polygon components (points or line segments) 
is quantified in a cost function which is applied to every component pair derived from 
two polygons. Subsequently, we determine an optimal fit of the polygons with an A* 
algorithm that exploits the cyclic characteristics of polygons and allows points to be 
skipped in either polygon. 

A general framework for the development of a cost function used to compare pos­
sible matches is described. Within this framework, we developed a cost function used 
to match the user and model polygons generated by the experiments in Chapter 2, 
and a cost function suitable for robotics applications in which the camera position is 
fixed. The algorithm was used to correctly match each of the user input polygons 
in the experiments in Chapter 2 with the associated model polygon. In a robotics 
application, it has been successfully applied to decide whether an object in an imaged 
scene matches one extracted from a database. A complexity analysis shows it to be 
two orders of magnitude faster than existing methods for object matching. The key 
contribution which distinguishes our approach from other polygonal object matching 
methods, however, is the separation of the node pair match evaluation from the global 
matching decision. This allows us to guarantee that, with respect to a given cost 
function, the match of the polygons produced with our algorithm is a global optimum 
match. 

Model-based corner detection In Chapter 4, we turn our attention to the cor­
rection of polygonal object boundary paths, specified by a user using a "connect-the­
dots" drawing tool. To correct user errors made in the specification of corner points on 
polygonally shaped objects, we develop a model-based corner detection method. Our 
scheme enables the evaluation of an image region based on the geometry of a corner 
in a polygonal shape specified by a user. Based on the user error model derived in 
Chapter 2, we examine constraints on the geometry of corner on the image object in 
relation to the geometry of a corner specified by a user. For a given user error model 
and an image feature measure ,\ we examine conditions under which we can extract 
an image corner model with respect to the measure >... We show that if the window 
size required to measure >.. and the user error in distance are both sufficiently small in 
relation to the corner angle and scale, then we can establish the presence of a ramp 
or roof corner as measured by >... In our experiments, we show that if >.. measures the 
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grey value intensity, we determine the correct corner model in 95% of the cases. We 
use the model to localize the corner in the object boundary. 

Magnetic contour tracing In Chapter 5, we develop a method for real time correc­
tion of a user specified boundary path. The interactive model supported is "free-hand 
drawing", but rather than producing the path actually traced by the user, we extract 
a best approximation to an object boundary path in the immediate region. Under the 
assumption that the user path satisfies specific conditions in relation to the path of 
the object boundary, we derive a set of candidate digital paths guaranteed to contain 
a best digital approximation to the image object boundary. If our model of the image 
function along the image object boundary is correct, the dynamic programming algo­
rithm described in Chapter 5 will produce a best approximation to the path of the 
object boundary. 

The definition of a cost function determines which among a set of candidate paths 
is selected. For interactive segmentation, the cost function is defined as a weighted 
combination of a user term based on the direction of user movement and a boundary 
(gradient) strength term. The influence of the weights is evaluated experimentally, 
and the set which minimizes the errors made over the length of a boundary is used. 
The magnetic ink method produces a good approximation of a boundary path for a 
range of test images containing discs, ellipses and hexagons. Moreover, it works very 
well for a far wider combination of input and boundary paths than the theoretical 
arguments would lead us to believe. 

Conclusion The results in this thesis show that the uncertainty about the segmen­
tation results involved when a human expert plays a direct role in the segmentation 
process, can be eliminated based on user modeling and formal analysis. By approach­
ing the human interface issues involved with image object boundary specification in a 
systematic fashion, we have shown supervised boundary formation to be an effective 
approach to segmentation. 
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Samenvatting 

Het opdelen van een beeld in zinvolle gebieden is een essentiele stap bij beeldanalyse. 
Nauwkeurige segmentatie is cruciaal voor het identificeren van objecten in een beeld 
en voor het meten van gegevens als omtrek en vorm van objecten. Hoewel het voor 
een mens vaak eenvoudig is om een beeld te segmenteren, blijft het automatiseren van 
dit proces een van de moeilijkste problemen in de beeldanalyse. Om een beeld auto­
matisch te kunnen segmenteren, is een goed model van de beeldfunctie in de omgeving 
van objectgrenzen vereist. Voor een willekeurig beeld is echter in het algemeen geen 
geschikt segmentatiemodel voorhanden. In dit proefschrift introduceren we een nieuwe 
aanpak, "supervised boundary formation", voor het segmenteren van beelden waar­
voor onvoldoende modellen beschikbaar zijn. Bij deze aanpak gebruiken we een door 
een mens gemaakte schets van de objectgrenzen in een beeld om een segmentatiemodel 
te bouwen. 

De problemen die zich bij onze methode voordoen hebben we voor twee interac­
tieve tekenmodellen onderzocht, namelijk "connect-the-dots" en "freehand drawing". 
Deze twee modellen zijn gekozen omdat ze in tekenpakketten handig zijn gebleken bij 
het schetsen van paden. Omdat niet zonder meer mag worden aangenomen dat een 
gebruikersschets de werkelijke objectgrens precies weergeeft, is "supervised boundary 
formation" alleen doeltreffend als het automatisch verbeteren van een gebruikersschets 
dee! van de methode uitmaakt. Het aanpassen van zo'n schets vereist uiteraard een 
correcte interpretatie van de gebruikersinvoer. 

Voor beide tekenmodellen onderzoeken we daarom op formele wijze aspecten van 
de gebruikersinvoer die van belang zijn voor beeldsegmentatie. Aan de hand van 
talrijke experimenten tonen we aan dat "supervised boundary formation" een effec­
tieve methode is voor het segmenteren van die beelden waarover te weinig informatie 
beschikbaar is om de segmentatie volledig automatisch te verrichten. 

Een gebruikers-foutenmodel Om een door de gebruiker gegeven schets van de 
grens van een object in een beeld te kunnen corrigeren, moeten we weten wat voor 
soort fouten een gebruiker maakt bij het tekenen en hoe groot die fouten kunnen 
zijn. In Hoofdstuk 2 van dit proefschrift beschrijven we experimenten om de fouten te 
meten die iemand maakt bij het aangeven van hoekpunten van polygonale objecten. 
Een aantal personen is gevraagd om de hoekpunten van polygonale objecten in test­
beelden aan te geven. Opeenvolgende punten in de tekening worden automatisch door 
lijnstukken verbonden ("connect-the-dots"). Voor iedere hoek in de aid us verkregen 
schets hebben we vervolgens de geometrische eigenschappen positie, aantal graden, 
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orientatie en schaal vergeleken met de eigenschappen van de corresponderende hoek 
van het testobject. Uit deze experimenten bleek dat de fouten die gemaakt worden 
bij het aangeven van hoekpunten per persoon voorspelbaar zijn. Derhalve hebben we 
een gebruikersspecifiek foutenmodel kunnen afleiden. In dit model wordt de maximaal 
verwachte afstand tussen een punt dat een gebruiker aangeeft en het overeenkomstige 
punt op de feitelijke objectgrens beschreven, en zijn de bias en de standaarddevi­
atie voor de afwijkingen in het aantal graden van de hoek, de orientatie en de schaal 
opgenomen. In Hoofdstuk 4 maken we van dit model gebruik om een aan een gebruiker 
aan te passen methode voor hoekcorrectie te ontwikkelen. 

Polygoon matchen Om bovengenoemde hoekafwijkingen te kunnen meten moet 
eerst iedere hoek die een gebruiker in een polygoon aangeeft met een hoek van het 
testobject gei:dentificeerd worden. Tijdens het tekenen zou een gebruiker per ongeluk 
een of meerdere hoekpunten van het object kunnen overslaan of extra punten kunnen 
aangeven. Men mag dus niet aannemen dat de gebruikerspolygoon isomorf is met 
de polygoon in het testbeeld. Om dit probleem aan te pakken introduceren we in 
Hoofdstuk 3 een methode voor het matchen van twee polygonen. Eerst wordt een 
kostenfunktie beschreven die een waarde toekent aan de mate van verschil tussen 
componenten (punten of lijnstukken) van polygonen. Met deze kostenfunktie wordt 
iedere component in de ene polygoon vergeleken met iedere component in de andere. 
Een A* algoritme berekent uit de resulterende matrix de reeks van componentparen 
die een match van de twee polygonen specificeert en optimaal is met betrekking tot de 
gegeven kostenfunctie. Dit algoritme benut de cyclische kenmerken van een polygoon 
en is daardoor zeer efficient. 

Een algemeen raamwerk voor het ontwikkelen van kostenfuncties voor willekeurige 
applicaties wordt beschreven. Binnen dit raamwerk hebben we een kostenfunctie ont­
worpen om de door gebruikers geschetste polygonen en de testpolygonen uit Hoofd­
stuk 2 met elkaar te vergelijken. We zijn er vervolgens in geslaagd om met ons A* algo­
ritme iedere geschetste polygoon correct te matchen met het bijbehorende testobject. 
Verder hebben we binnen hetzelfde raamwerk een kostenfunctie voor lijnstukken ont­
worpen voor een robotica toepassing. Het is gelukt om met onze methode objecten 
die in de ruimte voorkomen te matchen met objecten uit een databestand. 

Een complexiteitsanalyse toont aan dat onze methode twee orden van grootte 
sneller is dan bestaande methoden. Belangrijker is echter dat onze methode, in tegen­
stelling tot andere, het met een kostenfunctie vergelijken van componenten scheidt van 
het berekenen van een geschikte reeks componentparen. Door deze scheiding kunnen 
we garanderen dat de gevonden reeks optimaal is met betrekking tot de gebruikte 
kostenfunctie. 

Model gebaseerde hoekdetectie In Hoofdstuk 4 houden we ons bezig met het 
corrigeren van een door een gebruiker aangegeven hoekpunt in een polygonale schets 
die met de "connect-the-dots" methode is gemaakt. Hiertoe proberen we eerst een 
model van het beeld in het gebied van het aangegeven punt te bouwen. Aan de 
hand van de geschetste hoek in de omgeving van het punt wordt een geometrisch 



Sam en vatting 163 

model van de hoek in het beeldobject gebouwd. Voor een gegeven functie .\ die een 
bepaald kenmerk, bijvoorbeeld grijswaarde of textuur, van een punt in een beeld meet, 
onderzoeken we onder welke voorwaarden we een model van de hoek kunnen afleiden. 
We tonen aan <lat het mogelijk is om een op .\ gebaseerd hoekmodel te bouwen als 
zowel het gebied <lat nodig is om .\ te meten als de te verwachten gebruikersfout 
klein is in verhouding tot het aantal graden en de schaal van de door de gebruiker 
aangegeven hoek. Het door de gebruiker geschetste polygonale pad deelt het gebied 
rondom het aangegeven hoekpunt in tweeen. Als de waarden van de functie .\ voor 
de twee gebieden duidelijk verschillend zijn, zijn we in staat het soort hoek ( ramp of 
roof) te bepalen en vervolgens de positie van het eigenlijke hoekpunt te lokaliseren. 

Het magnetisch schetsen van contouren In Hoofdstuk 5 van <lit proefschrift 
wordt een methode ontwikkeld voor dynamische correctie van een gebruikersschets. In 
<lit geval maken we gebruik van het "freehand drawing" tekenmodel, maar in plaats 
van het door de gebruiker geschetste pad weer te geven, wordt de schets aangepast aan 
de nabijgelegen beeldgrens. Het lijkt also£ de pen van de gebruiker door een magneet 
naar de grens van het object wordt getrokken. Indien de verhouding tussen de schets 
van de gebruiker en het pad van de objectgrens aan bepaalde eisen voldoet, kunnen 
we een verzameling digitale paden afleiden die gegarandeerd de beste benadering van 
de objectgrens bevat. Het algoritme <lat we in Hoofdstuk 5 beschrijven kan een opti­
male digitale benadering van een objectgrens vinden als we een correct model van de 
beeldfunctie voor de omgeving van die grens hebben. 

We selecteren de optimale benadering van een grens uit de verzameling van mo­
gelijke digitale paden met behulp van een kostenfunctie. De kostenfunctie voor inter­
actieve beeldsegmentatie wordt bepaald door de tekenrichting en de verwachte_eigen­
schappen van de beeldfunctie in de omgeving van de objectgrens. Hoe zwaar elk van 
deze factoren mee moet wegen hebben we experimenteel vastgesteld. De magnetische 
schetsmethode leidt tot een goede digitale benadering van objectgrenzen van cirkels, 
ellipsen en hexagonen in testbeelden. Bovendien levert de methode ook uitstekende 
resultaten bij een groot aantal beelden die niet voldoen aan de theoretische eisen. 

Conclusie In <lit proefschrift tonen we aan <lat het nemen van gebruikersinvoer als 
uitgangspunt voor beeldsegmentatie tot goede resultaten leidt, mits men zich baseert 
op een formele analyse van gebruikersschetsen. Als gebruikerskarakteristieken syste­
matisch warden gemodelleerd kan "supervised boundary formation" een doeltreffende 
aanpak voor beeldsegmentatie zijn. 
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1. Zowel het soort fouten als de grootte van de fouten die een gebruiker zal maken bij het 
interactief schetsen van de grens van een object in een beeld kan worden voorspeld. 

2. Een door een gebruiker gemaakte schets van de grens van een object, kan als basis 
dienen voor het ontwikkelen van een model van de beeldfunctie in de omgeving van 
de grens. Dit model kan vervolgens voor beeldsegmentatie worden gebruikt. 

3. Als de eigenschappen van een gebruiker met betrekking tot het schetsen van object­
grenzen systematisch worden gemodelleerd, kan de onzekerheid over de resultaten 
van interactieve beeldsegmentatie worden weggenomen. 

4. "Supervised boundary formation" zoals in dit proefschift wordt voorgesteld kan niet 
veralgemeniseerd worden tot "supervised surface formation" voor drie dimensionale 
beeldsegmentatie, omdat een drie dimensionale dataset niet nauwkeurig. kan worden 
weergegeven in twee dimensies. "Supervised boundary formation" kan echter als 
uitgangspunt dienen voor segmentatie van een driedimensionaal beeld als het op een 
of meerdere beelvlakken toegepast wordt. 

5. Zonder a priori kennis van de beeldfunctie in het overgangsgebied tussen object en 
achtergrond, kan een schets van een gebruiker niet tijdens het tekenen worden gecor­
rigeerd. 

6. Als een punt gerepresenteerd wordt door a= {x(a) = racos0a,y(a) = rasin0a}, dan 
definieert 

een metriek, en als het Centraal Station als de oorsprong wordt genomen, benadert 
deze functie de "city block distance" in het centrum van Amsterdam veel beter dan 
de functie 

d(a, b) = lx(a) - x(b)I + ly(a) - y(b)I, 

die geschikt is om de "city block distance" in Portland, Oregon te benaderen. 

7. Jongleren vereist maar een zeer beperkte hand-oog coordinatie, noch draagt het bij 
aan een significante verbetering daarvan. 

8. Als een reiziger onderweg niet slaapt: 

• neemt bij een reis naar het westen de sterkte van de jetlag logaritmisch toe als 
functie van het tijdverschil. 

• neemt bij een reis naar het oosten de sterkte van de jetlag exponentieel toe als 
functie van het tijdverschil. 

9. lemand die kan leren schaatsen kan ook leren fietsen op een eenwieler. 

10. Het generaliseren over mensen in andere landen dat af en toe opduikt in de Ned­
erlandse Journalistiek en in Nederlands conversatie, is in strijd met het beeld van 
ruimdenkendheid en wereldwijsheid wat diegenen die zo generaliseren vaak van zich 
zelf hebben. 



1. The type and extent of errors that a user will make in the interactive specification of 
an image object boundary path can be predicted. 

2. A user defined sketch of an image object boundary can be used to extract a model 
of the image function in the neighborhood of the boundary which is sufficient for 
subsequent segmentation. 

3. By approaching the user modeling issues in image object boundary formation in a 
systematic fashion, the uncertainty about the results of interactive segmentation can 
be eliminated. 

4. Supervised boundary formation as presented in this thesis cannot be generalized 
to supervised surface formation for the segmentation of three dimensional images 
because a three dimensional data set cannot be accurately represented in two dimen­
sions. However, if applied to one or more image slices, supervised boundary formation 
can serve as a basis for the segmentation of a three dimensional image. 

5. Without a priori knowledge of the image function in the object to background transi­
tion region, dynamic correction of a user sketch of an object boundary as it is drawn 
is not possible. 

6. If a point is denoted by a= {x(a) = ra cos 0a, y(a) = ra sin 0a}, then 

defines a metric, and if Central Station is defined as the origin, it provides a much 
better approximation to the city block distance in the Amsterdam city center than 
the well known 

d(a, b) = jx(a) - x(b)I + jy(a) - y(b)I, 

which is suited to approximate the city block distance in Portland, Oregon. 

7. Juggling neither requires a significant level of hand-eye coordination, nor does it 
improve one's coordination significantly. 

8. If an air traveler does not sleep enroute, then: 

• when traveling west, the severity of jet lag increases logarithmically as a function 
of the number of hours in the time change. 

• when traveling east, the severity of jet lag increases exponentially as a function 
of the number of hours in the time change. 

9. Anyone who can learn to ice skate can learn to ride a unicycle. 

10. The generalizations about people from other countries which sometimes creep into 
Dutch journalism and conversation are in conflict with the open-minded and worldly 
view those who formulate the generalizations often have of themselves. 
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