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Abstract. We develop and analyze a measure-valued fluid model keeping track of parking
and charging requirements of electric vehicles in a local distribution grid.We show how this
model arises as an accumulation point of an appropriately scaled sequence of stochastic net-
workmodels. Our analysis incorporates load-flowmodels that describe the laws of electrici-
ty. Specifically, we consider the alternating current (AC) and the linearized Distflow power
flowmodels and showa continuity property of the associated power allocation functions.
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1. Introduction
To deal with the effects of climate change, many countries are in the process of implementing new policy meas-
ures to stimulate the use of electricity generated by renewable sources such as solar and wind. This comes with
many societal challenges and opportunities for research. The supply of energy is less predictable, which makes
the task of keeping high-voltage transmission networks reliable more challenging. In the local distribution grids,
new products and services can be used to balance the grid emerge (such as smart devices), but also create more
intermittency. In particular, electric vehicles (EVs) can cause a substantial additional load on local distribution
grids (Hoogsteen et al. 2017).

The focus of the present paper is on analyzing congestion associated to slow charging, which happens when a car
is parked while its owner is at home, at work, or shopping. In Carvalho et al. (2015), it was suggested to model the
evolution of slowly charging EVs in a local grid by bandwidth sharing networks, approximating the
instantaneous allocation of electricity to vehicles by proportional fairness. Themain constraint that needs to be sat-
isfied is that the voltage drop in the network needs to remain bounded. The focus in Carvalho et al. (2015) was
solely on simulation, assuming a Markovian model and infinitely many parking spaces for EVs. Using simula-
tions, the stability of proportional fairness andmax-min fairness was examined.

In a recent paper (Aveklouris et al. 2019), we proposed an extension of Carvalho et al. (2015) by allowing for
load limits, finitely many parking spaces, and deadlines (associated with parking times). The joint distribution of
charging requirements and parking times was not restricted to Markovian or independence assumptions. Using
heuristic arguments, Aveklouris et al. (2019) proposed a fluid model keeping track of the number of charged and
uncharged cars in the system and an associated invariant point. This invariant point is shown to be computation-
ally tractable in Aveklouris et al. (2019), as it is formulated in terms of an AC optimal power flow problem with
an exact convex relaxation.

The goal of the present paper is to put the analysis of Aveklouris et al. (2019) on rigorous footing using
measure-valued fluid limits. As in Aveklouris et al. (2019), we allow the parking times and the charging require-
ments of EVs to be dependent and generally distributed random variables. In addition, we consider general ar-
rival processes with time-varying arrival rates and multiple EV types. The distribution grid is explicitly modeled,
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and we allow for multiple parking lots, each with finitely many parking spaces; the fluid approximation of Ave-
klouris et al. (2019) did not take the subtleties of dynamically rejecting vehicles at parking lots into consideration
as we do here.

A measure-valued process that keeps track of the age in service or the residual service times of customers
has proven to be a useful tool in proving asymptotic limits for systems with many-server queues in which the
service discipline is not first-come-first-served. In Kang and Ramanan (2010) and Zhang (2013), the authors
develop fluid limit approximations for a many-server queueing system with impatient customers, where the
arrival, service, and abandonment times follow general distributions, and the assumption of the absolute con-
tinuity of the service and patience time distributions is removed in Zuñiga (2014). A fluid model for many-
server queues with time-varying arrival rates are studied in Liu and Whitt (2011) and Mandelbaum and
Momčilović (2017). In Puha and Ward (2019), the authors develop fluid limits for a multiclass many-server
queue with impatient customers for a wide class of scheduling policies. Fluid limits for many-server retrial
queues with nonpersistent customers are studied in Kang (2015), for processor-sharing queues in Zhang et al.
(2009), and for processor-sharing queues with impatient customers in Gromoll et al. (2008). Fluid approxima-
tions for bandwidth-sharing networks with generally distributed service and patience times are developed in
Gromoll and Williams (2009) and in Remerova et al. (2014).

Our work is also connected to the literature on bandwidth-sharing networks. Such networks have been suc-
cessfully used to model communication networks where the set of feasible schedules is determined by the maxi-
mum amount of data a communication channel can carry per time unit Massoulié and Roberts (1999). The
stochastic analysis of bandwidth-sharing networks was initially restricted to specific networks (Bonald and
Proutiere 2003, Bonald et al. 2006). The application of fluid and diffusion approximations led to computationally
tractable approximations of a large class of networks (Kang et al. 2009, Ye and Yao 2012, Borst et al. 2014, Reed
and Zwart 2014, Remerova et al. 2014, Vlasiou et al. 2014).

In the context of communication networks, proportional fairness is a nontrivial but justified approximation of
the transmission control protocol (TCP). A similar justification in the context of EV charging is performed in
Ardakanian et al. (2013) and Fan (2012). In these papers, by using arguments similar to the seminal work (Kelly
1997), it is shown how algorithms like proportional fairness emerge in decentralized EV charging. Our class of
controls contain proportional fairness as a special case.

Our analysis is mostly related to Remerova et al. (2014). The main difference is that, in the setting of EVs, an
important constraint that needs to be satisfied is to keep the voltage drops bounded, making the bandwidth-
sharing network proposed here different. This also causes new technical issues, as the capacity set can be nonpo-
lyhedral or even nonconvex. In addition, arriving vehicles finding a full parking lot are discarded; we assume
such cars park on a regular parking spot. This leads to the additional technical complication of a loss process in a
measure-valued context. An extension of the Erlang loss system has been analyzed in a measure-valued frame-
work in Kang (2015). However, in our setting, we use a different approach. We keep track of the residual service
times of EVs instead of their age in service. Moreover, we consider a multidimensional (dependent) vector of
processes that describes the number of total EVs and the number of uncharged EVs in each parking lot and uses
different test functions to define the fluid model.

We now describe our contributions in more detail. We develop a measure-valued fluid model for the vector
process which describes the number of total and uncharged EVs in each parking lot, allowing the dynamics of
the stochastic model to be approximated with a deterministic model. This model depends on the joint distri-
bution of the charging requirements and the parking times. We show that our measure-valued fluid model
arises as a weak limit of a vector of measure-valued processes under an appropriate scaling. To prove proper-
ties for the solutions of the fluid model, we investigate the properties of the bandwidth allocation function in
our setting where the capacity set is convex and establish similar continuity properties of the allocation func-
tion as in Reed and Zwart (2014). Although the structural properties of a linearized voltage model can be
developed in full, for the AC power flow equations we were only able to show continuity of the allocation
function. We conjecture that Lipschitz continuity holds as well but leave this problem open; we refer to Sec-
tion 3 for more specific comments.

For our proofs we mostly use techniques from Kang (2015) and Remerova et al. (2014). We first prove that a
fluid model solution is bounded away from zero. Then, we establish tightness of the processes by showing a
compact containment property and an oscillation control; the Prokhorov metric of the corresponding measures is
small enough. Last, we prove that any subsequential limit satisfies the fluid model equations.

The rest of this paper is organized as follows. In Section 2, we provide a detailed model description. In par-
ticular, we introduce our stochastic model, the power flow models that we use, and the definition of system
dynamics. Next, in Section 3, we present a continuity property of the optimal power allocation. Then, we
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move to the stochastic model. A fluid model is presented in Section 4, where we also study its properties. Sec-
tion 5 shows that the fluid model can arise as a weak limit of the fluid-scaled processes. All proofs are gath-
ered in Sections 6–8.

2. Model Description
In this section, we provide a detailed formulation of our model and explain various notational conventions that
are used in the remainder of this work. The model description in this section is nearly identical to that in
Aveklouris et al. (2019). We include all details on the network structure and physical characteristic for complete-
ness; the main difference is that the measure-valued state descriptor is fully developed and analyzed in the
present paper. To this end, we also require more sophisticated notation, which we introduce first.

2.1. Preliminaries
We introduce the notational conventions that are used throughout the paper. All vectors and matrices are de-
noted by bold letters. Furthermore, R is the set of real numbers, R+ is the set of nonnegative real numbers, and N

is the set of strictly positive integers. For two real numbers x and y, define x�y :�max{x,y}, x∧ y :�min{x,y},
and x+ :� x�0. For two vectors x,y ∈ R

I, define the coordinate-wise product x ◦ y :� (x1y1, : : : ,xIyI) (i.e., the Hada-
mard product) and the maximum norm ||x|| :�max

1≤i≤I
|xi|. Vector inequalities hold coordinate-wise, namely x > y

implies that xi > yi for all i. Furthermore, I represents the identity matrix and e and e0 are the vectors consisting
of ones and zeros, respectively, the dimensions of which are clear from the context. Also, ei is the vector whose
ith element is one and the rest are all zero.

Let Y be a metric space. We denote by C(Y,Y) the space of continuous functions f : Y→ Y and by Cb(Y,Y) the
space of continuous and bounded functions f : Y→ Y. By D(Y,Y) denote the space of functions f : Y→ Y that
are right continuous with left limits endowed with the J1 topology; that is, the Skorokhod space. Furthermore,

we write X(·) :� {X(t), t ≥ 0} to represent a stochastic process. Moreover, �d and →d denote equality and conver-
gence in distribution (weak convergence).

Let M(Y) be the space of Randon measures (i.e., locally finite and inner regular measures) on Y, endowed
with the Borel σ-algebra denoted by B(Y). Furthermore,MF(Y) is the space of the finite nonnegative measures in
M(Y) equipped with the weak topology. We say that a sequence of measures μn in MF(Y) converges to μ in the

weak topology and we write μn→W μ if and only if for each f ∈ Cb(Y,Y),
〈 f ,μn〉→ 〈 f ,μ〉, as n→∞,

where 〈 f ,μ〉 :�
∫
Y
f (y)μ(dy). Weak convergence in MF(Y) is equivalent to convergence in the Prokhorov metric:

for μ,ν ∈MF(Y) and ε > 0,

d(μ,ν) :� inf{ε : μ(B) ≤ ν(Bε) + εand ν(B) ≤ μ(Bε) + ε
for any nonempty closed B ⊆ Y},

where Bε is the ε-neighborhood of B, that is, Bε :� {y ∈ Y : dist(y,B) ≤ ε}. When Y � R
k, then dist(y,B)

:� infx∈B ||y− x||. For m,n ∈MF(Y)k, define
dk(m,n) :�max

1≤i≤k
d(μi,νi):

It is known that (MF(Y)k,dk) is a separate and complete space (Billingsley 1995); that is, a Polish space. When
Y � R

n
+, we simplify the notation toMF.

2.2. Network and Infrastructure
We consider the typical situation where a low-voltage distribution network has a tree structure. Thus, take a
rooted tree G � (I ,E), where I � {0, 1, : : : , I}, denotes its set of nodes (buses) and E is its set of directed edges, as-
suming that node 0 is the root node (known as feeder). Denote by εik ∈ E the edge that connects node i to node k,
assuming that i is closer to the root node than k. Let I (k) and E(k) be the node and edge set of the subtree rooted
in node k ∈ I . The active and reactive power consumed by the subtree (I (k),E(k)) are PI (k) and QI (k). The resis-
tance, the reactance, and the active and reactive power losses along edge εik are denoted by rik, xik, LPik, and LQik , re-
spectively. Moreover, Vi is the voltage at node i and V0 is known. At any node, except for the root node, there is
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a charging station with Ki > 0, i ∈ I \ {0}, parking spaces (each having an EV charger). Furthermore, we assume
that there are J � {1, : : : , J} different types of EVs indexed by j.

2.3. Stochastic Model for EVs
We start by giving a high-level description of the stochastic model and later we give a more detailed model de-
scription. We consider multiple types of EVs that arrive randomly at charging stations that have a finite number
of parking spaces. If all spaces are occupied, a newly arriving EV does not enter the system but is assumed to
leave immediately. Furthermore, it is assumed that each space has an EV charger that is connected to the power
grid. Moreover, each EV has a random charging requirement and a random parking time (counted both in time).
These depend on the type of the EV and the location that it is parked (i.e., the node), but are independent be-
tween EVs. Our framework is general enough to distinguish between types. For example, we can classify types
according to intervals of the ratio of the charging requirement and parking time and/or according to the contract
they have with the network provider. An EV leaves the system after its parking time expires and it may not be
fully charged. We refer to these EVs as uncharged EVs. In contrast, if an EV finishes its charge, it remains at its
parking space without consuming power until its parking time expires. EVs that have finished their charge are
called fully charged. The model is illustrated in Figure 1.

2.4. Charging Control Rule
An important part of our framework is the way we specify how the charging of EVs takes place. Let the number
of uncharged vehicles (of all types and in all nodes) be given by the vector z ∈ [0, ∞)I×J; that is, zij is the number
of uncharged vehicles of type j in node i. We assume the existence of a vector function p(z) � (pij(z) : i ∈
I \ {0}, j ∈ J ) that specifies the instantaneous rate of power each uncharged vehicle receives. Moreover, we as-
sume that this function is obtained by optimizing a global function. Specifically, for a type j EV at node i, we as-
sociate a function uij(·), which is strictly increasing and concave in R+, twice differentiable in (0, ∞) with
limx→0u′ij(x) � ∞. The charging rate p(z) is then determined by maxp

∑I
i�1

∑J
j�1 zijuij(pij) subject to a number of con-

straints that take into account physical limits on the charging of the batteries, load limits, and most importantly
voltage drop constraints. An important example is the choice uij(pij) � wijlogpij, which is known as weighted pro-
portional fairness. The greedy optimization problem we consider is an abstraction of what would happen in prac-
tice: optimizing the social welfare function acts as a proxy for a market mechanism. The field of network utility
maximization provides ways on how to relate our abstract formulation to what happens in practice (e.g., by us-
ing the alternating direction method of multipliers; Ye and Yao 2012).

A limitation of our formulation is that it does not take into account the remaining time until the deadline expires
and the remaining charging requirement. Our multiclass framework allows to us at least partially overcome this,
for example, by letting the functions uij(·) depend on the joint distribution of parking and charging times. For in-
stance, we can classify types j by the ratio of parking and charging times, and, in the context of proportional fair-
ness, modify weights wij accordingly. Last, note that it is feasible to communicate an indication of parking and
charging times by the owner of an EV at the parking lot Arif et al. (2016).

Figure 1. Network with J Types of EVs and Constant Arrival Rates

Charging station

Feeder

1j�

ij�

3j�

jI�

2 j�
Charging station

Charging station

(P,V,R,X)
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We next introduce the physical constraints of the network. The maximum electric power that can be consumed
in total by all cars isMi > 0 at node i. Each type j EV can be charged at a rate that is at most equal to cmax

j . That is,∑J

j�1
zijpij ≤Mi and 0 ≤ pij ≤ cmax

j : (2.1)

We refer to (2.1) as load constraints. In addition, we impose voltage drop constraints that are important constraints
in power systems and essentially say that the voltage magnitudes should not drop a lot. This helps the power
system to avoid voltage collapse, which can lead to blackouts (Simpson-Porco et al. 2016). These constraints rely
on the load-flow model used. Two of these models that we consider are described next where we give a brief
overview. For more details, we refer to Bienstock (2015), which provides a connection between electrical trans-
mission systems and operations research. Moreover, for a textbook on power systems with an emphasis on math-
ematical aspects, see Machowski et al. (2008).

2.4.1. AC Voltage Model. An electric grid is a connected network for transferring electricity from producers to con-
sumers. It consists of generating stations that produce electric power, high voltage transmission lines that carry power
from distant sources to demand centers, and distribution lines that connect individual customers, for example, houses
and electric chargers. The nodes that produce electricity are called generators and the ones that consume power are
called load nodes. In the sequel, we focus on a networkwith only distribution lines, which is called a distribution network
or a low voltage network. A distribution network usually consists of a neighborhood or a small town.

The AC power flow equations are one of the most widely used modeling tools in power systems. They charac-
terize the steady-state relationship between loads at each node, the voltage magnitudes, and the phase angles
that are necessary to transmit power from generators to load nodes. As distribution networks are typically radial,
we focus only on tree networks with load nodes and a feeder (or root node) that generates power.

The power flow equations essentially say that the power flow at any edge should be balanced, and there are several
equivalent ways to describe them (Low 2014a, Gan et al. 2015). In the sequel, we focus on the so-called bus injection
modelwhich is a variation of Kirchhoff’s law.We consider a simplification of the full AC power flow equations, based
on the typical situation that voltage angle differences in distribution networks are negligible (Kersting 2012, chapter
3). Under this assumption, Kirchhoff’s law for a tree network (Low 2014a, equation (1)) takes the form, for εpk ∈ E,

VpVk −VkVk −PI(k)rpk −QI(k)xpk � 0, (2.2)

where p ∈ I denotes the unique parent of node k. The previous equations are nonlinear. Applying the transfor-
mation,

W(εpk) �
(

V2
p VpVk

VkVp V2
k

)
�:

(
Wpp Wpk
Wkp Wkk

)
leads to linear equations (in terms ofW(εpk)),

Wpk −Wkk −PI(k)rpk −QI (k)xpk � 0, εpk ∈ E: (2.3)

Note that W(εpk) are positive semidefinite matrices (denoted by W(εpk) � 0) of rank one. The active and reac-
tive power consumed by the subtree (I (k),E(k)) are given by

PI(k) �
∑
l∈I(k)

∑J

j�1
zljplj +

∑
l∈I(k)

∑
εls∈E(k)

LPls,

QI(k) �
∑
l∈I(k)

∑
εls∈E(k)

LQls ,
(2.4)

whereby (Carvalho et al. 2015, appendix B),

LPls � (Wll − 2Wls +Wss)rls=(r2ls + x2ls),
LQls � (Wll − 2Wls +Wss)xls=(r2ls + x2ls):

Note thatWkk are dependent on the vectors p and z. We sometimes writeWkk(p,z)when we wish to emphasize
the dependence. The AC power flow equations cannot be solved explicitly because the set of possible solutions
(i.e., the feasible set) of the AC power flow equations is usually nonconvex and can be extremely complicated
(Hiskens and Davy 2001, Lavaei et al. 2014). Because the power flow equations are nonlinear, solutions may not
exist, and even when a solution exists, there may be multiple solutions. In more general and realistic distribution
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networks, there is typically a unique “high-voltage” solution (Molzahn et al. 2016), which is assumed to be a de-
sired operating point for the network (Dörfler et al. 2013).

Now, the power allocation function p(z) is given by the following optimization problem:

max
p,W

∑I

i�1

∑J

j�1
zijuij(pij)

subject to (2:1), (2:3), υi ≤Wii ≤ υi,
W(εik) � 0, rank(W(εik)) � 1, εik ∈ E, i,k ∈ I , (2.5)

for zij > 0. If zij � 0, then pij � 0. Because of our assumptions of the utility functions, we have that if zij > 0, then
the optimal solution of (2.5) satisfies pij(z) > 0. In addition, 0 < υk ≤W00 ≤ υk are the voltage limits and the in-
equalities hold for all k ∈ I . Observe that the optimization problem (2.5) is nonconvex and in general NP-hard be-
cause of the rank-one constraints. Removing the nonconvex constraints yields a convex relaxation, which is a
second-order cone program, namely

max
p,W

∑I

i�1

∑J

j�1
zijuij(pij)

subject to (2:1), (2:3), υi ≤Wii ≤ υi,
W(εik) � 0, , εik ∈ E, i,k ∈ I : (2.6)

We denote the feasible set of (2.6) by F(z). Furthermore, by Remark 2.1 and Low (2014b, theorem 5), we obtain
that the convex relaxation problem is exact; that is, both problems have the same set of solutions. In other words,
a solution of the convex relaxation problem satisfies the rank-one constraints and so we can work with the re-
laxed problem. Defining the bandwidth allocation function L(z) :� p(z) ◦z, that is, Λij(z) � pij(z)zij for i, j ≥ 1, the
optimization problem (OP) (2.6) takes the following equivalent form:

max
L,W

∑I

i�1

∑J

j�1
zijuij(Λij=zij)

subject to
∑J

j�1
Λij ≤Mi, 0 ≤Λij ≤ zijcmax

j ,

(2:3), υi ≤Wii(L) ≤ υi,
W(εik) � 0, εik ∈ E, i, k ∈ I : (2.7)

The constraints W(εik) � 0 are equivalent to WiiWkk −W2
ik ≥ 0, because we consider Wii > 0 for any node i ≥ 1.

In the sequel, we freely use both formulations.

2.4.2. Linearized Distflow Model. As mentioned previously, the AC power flow equations are not linear, which
is especially because of power losses. Although AC power flow model is tractable enough for a convex relaxa-
tion to be exact, it is rather complicated. In Baran and Wu (1989), a simplification of these equations is sug-
gested, assuming that the active and reactive power losses on edges are small relative to the power flows.
This is a linear approximation of the AC power flow model, called the linearized (or simplified) Distflow model.
Moreover, this is a widely used approximation in distribution networks and leads to a good approximation of
AC power flow model because the power losses are typically much smaller than the power flows along the
edges (Low 2014a, section VI). In this case, the voltage magnitudes Wlin

kk :� |Vlin
k |2 have an analytic expression

(Low 2014a, lemma 12):

Wlin
kk (p,z) �W00 − 2

∑
εls∈P(k)

rls
∑

m∈I(s)

∑J

j�1
zmjpmj, (2.8)

where the P(k) is the unique path from the feeder to node k.

Remark 2.1. Note thatWlin
kk ≤W00 for all nodes k, as we assume that the nodes only consume power, and by Low

(2014a, lemma 12) we obtainWkk(p,z) ≤Wlin
kk (p,z). That is, we can remove the constraintsWkk(L) ≤ υk from (2.5).

To derive the representation of the power allocation mechanism p(z) in this setting, one replaces the con-
straints in (2.5) by (2.1) and υk ≤Wlin

kk (p,z).
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2.5. State Descriptor
In this section, we first give a detailed model description introducing the essential notation, and then we move to
the definition of the state descriptor.

Type j EVs arrive at node i according to a counting process Eij(·) :� {Eij(t), t ≥ 0}; that is, Eij(t) is the number of
EVs that arrive to the parking lot in the time interval (0, t]. We assume that all Eij(·) are finite, nondecreasing pro-

cesses with Eij(0) � 0, Eij(t) −Eij(t−) ∈ {0, 1}, and E[Eij(t)] �
∫ t

0
λij(s)ds, where λij(s) > 0 are integrable functions.

Moreover, let ζijl denote the arrival time of the lth type j EV at node i. If all spaces are occupied, a newly arriving
EV does not enter the system, but is assumed to leave immediately.

Let Bijl and Dijl denote the charging requirement and the parking time of the lth EV of type j at node i. In queue-
ing terminology, these quantities are respectively called service requirements and deadlines. Moreover, we assume
that the sequence {Bijl,Dijl, l ∈ N} is a sequence of independent and identically distributed (i.i.d.) copies of a ran-
dom vector (Bij,Dij) with distribution law Fij(A) � P((Bij,Dij) ∈ A) for any Borel set A ∈ B(R2

+). Furthermore, for l �
1, : : : ,Qij(0) we denote by (B0

ijl,D
0
ijl) the residual charging requirement and the residual parking time of the initial

population of type j at node i, that is, Qij(0). Moreover, we assume the probability density function (pdf) of the
parking times fDij(·) exists with fDij(0) > 0 for any i, j ≥ 1. We shall see later that the deadlines are associated with
the stochastic process that describes the total EVs at each node and it represents the population of a loss system.
The latter is studied in Kang (2015), where a similar assumption of existence of the pdf is made.

In the sequel, we introduce the dynamics that describe the evolution of the system. Specifically, we incorporate
in the system dynamics all residual processes needed to obtain a Markovian system. Let Qij(·) and Zij(·) be non-
negative discrete measures for i, j ≥ 1. The total number of type j EVs at node i at time t > 0 and the number of un-
charged EVs are given by Qij(t) � 〈1,Qij(t)〉 and Zij(t) � 〈1,Zij(t)〉, respectively. Moreover, Qi(t) :� ∑J

j�1Qij(t) gives
the total number of EVs at node i ≥ 1.

Recall that ζijl is the arrival time of the lth EV of type j at node i. The residual parking time of the lth newly ar-
riving EV of type j can be written as Dijl(t) :� (Dijl − (t− ζijl))+, l � 1, : : : ,Eij(t) and for the initial population
D0

ijl(t) :� (D0
ijl − t)+, l � 1, : : : ,Qij(0). To define the residual charging requirements, we first introduce the following

operators:

Sij(z, s, t) �
∫ t

s
pij(z(u))du, (2.9)

where pij(z(u)) is the optimal solution of (2.6) if there are z(u) uncharged EVs at time u ≥ 0. For s ≤ t, Sij(Z, s, t) is
the cumulative bandwidth allocated per type j EV at node i during time interval [s, t]. The residual charging re-
quirement of the lth type j EV at node i at time t ≥ 0 is given by

Bijl(t) � (Bijl − Sij(Z, ζijl, t)
)+
,

for the newly arriving EVs and B0
ijl(t) � (B0

ijl − Sij(Z, 0, t))+, l � 1, : : : ,Zij(0), for the initially uncharged EVs. Now,
we define the measure-valued state descriptor for any t ≥ 0 and for any Borel set B ⊆ R,

Qij(t)(B) :�
∑Qij(0)

l�1
δ+D0

ijl(t))B) +
∑Eij(t)

l�1
δ+Dijl(t)(B) 1{Qi(ζ−ijl)<Ki}: (2.10)

The measure δ+· (B) is the Dirac measure restricted on (0, ∞); THAT IS, δ+x (B) :� δx(B ∩ (0, ∞)) and δx(B) � 1 if
x ∈ B. The measure Qij(t)(B) counts the total number of type j EVs in node i whose residual parking time belongs
to the Borel set B.

The number of uncharged EVs for which the minimum between their residual charging requirement and their
residual parking time belongs to any Borel set B′ ⊆ R

2 is given by

Zij(t)(B′) :� ∑Zij(0)

l�1
δ+(

B0
ijl(t),D0

ijl(t)
)(B′) + ∑Eij(t)

l�1
δ+(

Bijl(t),Dijl(t)
)(B′) 1{Qi(ζ−ijl)<Ki}: (2.11)

The measure δ+(·,·)(B′) is the Dirac measure restricted on (0, ∞)2; that is, δ+(x1,x2)(B′) :� δ(x1,x2)(B′ ∩ (0, ∞)2) and
δ(x1,x2)(B′) � 1 if x1 ∧ x2 ∈ B′. Last, {Qi(ζ−ijl) < Ki} represents the event that there is an idle EV charger right before
the arrival of the lth type j EV. As not all EVs enter the system, we naturally define the following stochastic
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processes. First, the number of accepted type j EVs at node i until time t > 0 is given by

Aij(t) �
∑Eij(t)

l�1
1{Qi(ζ−ijl)<K}: (2.12)

Next, the number of rejected EVs until time t > 0 is given by

Rij(t) �
∑Eij(t)

l�1
1{Qi(ζ−ijl)�K}: (2.13)

Observe that the following relation holds: Aij(t) +Rij(t) � Eij(t).
Having introduced the stochastic model, which is defined through Equations (2.10)–(2.13), we move to the

main results of this paper. We first study some properties of the bandwidth allocation function in Section 3. We
then define an appropriate fluid model in Section 4 and derive some of its properties.

3. Continuity of the Optimal Allocation Function
In this short section, we state some structural properties of the optimal allocation function, which may be of indepen-
dent interest. In particular, we show that the optimal solution of (2.7) is continuous under the AC power flow model
(2.3). This result is needed in Section 5 to show convergence of the fluid-scaled processes. Last, in power system anal-
ysis, rigorous proofs are typically difficult and require additional assumptions on the distribution system (Dvijotham
et al. 2017), even if one ignores the stochastic dynamics. In the rest of this section, we make an additional assumption
for the ratio of resistance and reactance. That is, rpkxpk

≥ rkl
xkl
for all εpk,εkl ∈ E. This assumption is reasonable in distribution

networks because in most networks the resistances are decreasing as we move away from the feeder since the power
losses should be kept small. Similar assumptions are made in Dvijotham et al. (2017) and Low (2014b).

We show that the optimal aggregated power allocation L(z), z ∈ (0, ∞)I×J, is a continuous function in z. To es-
tablish this property, we first present a preliminary result.

Proposition 3.1. Let z ∈ [0, ∞)I×J and L(z) be a feasible point of (2.7). Given a point 0 ≤L′ ≤L(z), we have that L′ is
also a feasible point of (2.7).

Observe that in case the feasible set of (2.7) is polyhedral, the conclusion is immediate. The proof of the previ-
ous proposition is given in Section 6. The main idea of the proof is to construct a new solution (W′,L′). Then, us-
ing the feasibility of the point L(z) and induction starting from the leaf nodes, we show that the point (W′,L′)
lies in the feasible set of (2.7). In the sequel, we present the main result of this section, which says that L(·) is a
continuous function.

Theorem 3.1 (Continuity). Let L(z) for z ∈ (0, ∞)I×J be the unique optimal solution of (2.7). We have that L(z) is a
continuous function in (0, ∞)I×J.

The proof of Theorem 3.1 is given in Section 6, and it combines Proposition 3.1, the continuity property of the
voltages as functions of loads, and arguments from Remerova et al. (2014, lemma 1).

If we assume the linearized Distflow power model (see Section 2.4), then the feasible set of (2.7) is polyhedral,
and we can show the stronger result that L(·) is Lipschitz continuous by applying directly (Reed and Zwart 2014,
theorems 3.1 and 3.2). In this case, we do not need any additional assumption of the ratio of resistance and reac-
tance. The same Lipschitz continuity property holds in the case of the AC power flow model under an additional
assumption that the strict complementary condition holds for some constraints as it is shown in Aveklouris
(2020, proposition 5.11.2). We summarize these in the following lemma.

Lemma 3.1. Suppose one of the following holds:
(i) Consider the linearized Distflow model.
(ii) Consider the AC power flow model and assume that the strict complementary condition holds for the constraints

W2
pk(z) −Wpp(z)Wkk(z) ≤ 0 for any εpk ∈ E and z ∈ (0, ∞)I×J, that is, the Lagrange multipliers that correspond to these con-

straints are strictly positive.
Then, the function L(·) is (locally) Lipschitz on (0, ∞)I×J.
Although in the case of AC flow model, we have not been able to establish this property without the aforemen-

tioned assumption, we conjecture that L(·) is Lipschitz continuous and leave this question open. The Lipschitz
continuity property of the power allocation function will be needed in Theorem 4.1, where we prove that the
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fluid model has a unique solution. However, we point out that the continuity property is enough to show that an
accumulation point of the fluid-scaled state descriptor satisfies the fluid model equations in Section 5.

We nowmove to the original stochastic network and its fluid model.

4. Fluid Model Definition
In this section, we define and study the properties of a deterministic fluid model, associated with the stochastic
model introduced in Section 2. All proofs of this section are gathered in Section 7.

Define the following classes

C :� {[x,∞), x ∈ R+}
and

C′ :� {[x,∞) × [y,∞), x, y ∈ R+}:
Further, for any A ∈ C and s ∈ R, define A+ s :� {y+ s, [y,∞) ∈ A} and for any A′ ∈ C′ and (s, t) ∈ R

2, define
A′ + (s, t) :� {s+ [x,∞) × t+ [y,∞), [x,∞) × [y,∞) ∈ A′}.
Definition 4.1 (Fluid Model). Let the initial data for the fluid model be given by(

E(·),Q(0),Z(0)
)
∈ C(R+,R+) × MI×J

F × MI×J
F ,

where Eij(t) �
∫ t

0
λij(s)ds. We say that the vector(

Q(·),Z(·),Q(·),Z(·)
)
∈ C(R+, MI×J

F )2 × C(R+, RI×J
+ )2

is a fluid model solution if Qij(t) � 〈1,Qij(t)〉, Zij(t) � 〈1,Z ij(t)〉, and if there exist nondecreasing nonnegative con-
tinuous functions Ri(·), Rij(·) such that

Ri(t) �
∫ t

0
1{Qi(s)�Ki}dRi(s) and Rij(t) �

∫ t

0

λij(s)∑J
h�1λih(s)

dRi(s):

Furthermore, for any t ≥ 0, A ∈ C, and A′ ∈ C′ the following relations hold:

Qij(t)(A) �Qij(0)P(D0
ij ∈ A+ t) +

∫ t

0
P(Dij ∈ A+ (t− s))dEij(s)

−
∫ t

0
P(Dij ∈ A+ (t− s))dRij(s),

(4.1)

Z ij(t)(A′) � Zij(0)P((B0
ij,D

0
ij) ∈ A′ + (Sij(z, 0, t), t))

+
∫ t

0
P((Bij,Dij) ∈ A′ + (Sij(Z, s, t), t− s))dEij(s)

−
∫ t

0
P((Bij,Dij) ∈ A′ + (Sij(Z, s, t), t− s))dRij(s):

Moreover, the functions Qij(·) � 〈1,Qij(·)〉 �Qij(·)(R+) and Zij(·) � 〈1,Z ij(·)〉 � Z ij(·)(R2
+) are given by

Qij(t) �Qij(0)P(D0
ij ≥ t) +

∫ t

0
P(Dij ≥ t− s)dEij(s) −

∫ t

0
P(Dij ≥ t− s)dRij(s) (4.2)

and

Zij(t) � Zij(0)P
(
B0
ij ≥ Sij(Z, 0, t),D0

ij ≥ t
)
+

∫ t

0
P(Bij ≥ Sij(Z, s, t),Dij ≥ t− s)dEij(s)

−
∫ t

0
P(Bij ≥ Sij(Z, s, t),D ≥ t− s)dRij(s):

We call the vectors (Q(·), Z(·)) and (Q(·), Z(·)) the measure-valued fluid model solution and the numeric fluid model
solution, respectively.

The fluid model equations, although still rather complicated, have an intuitive meaning. For instance, the term
P(Bij ≥ Sij(Z, s, t),Dij ≥ t− s) represents the fraction of EVs of type j admitted to the system at time s at node i that
are still in the system at time t. For this to happen, their deadline needs to exceed t – s and their service
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requirement needs to be bigger than the service allocated, which is Sij(Z, s, t). In addition, Rij(t) represents the
lost fluid of type j EVs at node i due to a full system until time t ≥ 0.

Remark 4.1. The sets C and C′ generate the Borel σ−algebra of R and R2, respectively. Then, by Dynkin’s π-λ theo-
rem, the fluid model solutions hold for any Borel set. See section 2.3 in Gromoll et al. (2008) for more details.
Moreover, by Remerova et al. (2014, remark 3.2), fluid model solutions are invariant with respect to time shifts.

We next show that the total number of EVs in the fluid model can be rewritten in a familiar form for queue-
ing systems and the departure process in the fluid model can be written as a function of the total number
of EVs.

Proposition 4.1. We have that for any i ≥ 1 and j ≥ 1,

Qij(t) �Qij(0) +Eij(t) −Rij(t) −Dij(t), (4.3)

where Dij(t) represents the amount of fluid that departs from the system in time interval [0, t), and

Dij(t) �
∫ t

0
lim
ε→0

Qij(s) −Qij(s)([ε,∞))
ε

ds <∞: (4.4)

The last proposition uses the assumption of existence of the density of the parking times to ensure that the lim-
it in (4.4) exists, and this is the only point where we need this assumption. It follows from Proposition 4.1 that
the total number of EVs can be written with the help of a one-dimensional reflection mapping. This result will be
helpful when we show uniqueness of the fluid model solution in Theorem 4.1. The novelty in our setting is (4.4),
where an intuitive explanation is as follows. The difference Qij(s) −Qij(s)([ε,∞)) represents the amount of fluid
of type j EVs at node i for which its residual parking time lies in the interval (0,ε). It is natural now to expect that

by dividing the last difference by ε > 0 and by allowing ε to be arbitrary small, the quantity limε→0
Qij(s)−Q ij(s)([ε,∞))

ε

represents the departure rate of an EV from the parking lot at time s > 0. Observe that (4.4) corresponds to Kang
(2015, equation (3.2)). However, in the latter, the authors use different test functions to define the fluid model
and they write the departure rate in terms of the hazard rate function.

Before we continue our analysis, we present an example in case of a Markovian model.

Example 4.1 (Markovian Model). Consider aMarkovian model (I.E., Poisson arrival process with constant arrival rate
and exponential parking times), and take J � 1 and Qi(0) � 0 for convenience. We shall show that the departure pro-
cess given in (4.4) can bewritten in thewell-known form for aMarkovianmodel (Pang et al. 2007), namely

Di(t) �
∫ t

0
lim
ε→0

Qi(s) −Qi(s)([ε,∞))
ε

ds � 1
E[Di]

∫ t

0
Qi(s)ds: (4.5)

To show (4.5), use (4.2) and A � [ε,∞) in (4.1) to get

Qi(t)([ε,∞)) �Qi(t)e−ε=E[Di]:

Observing that limε→0
1−e−ε=E[Di]

ε � 1
E[Di], we derive∫ t

0
lim
ε→0

Qi(s) −Qi(s)([ε,∞))
ε

ds � lim
ε→0

1− e−ε=E[Di]

ε

∫ t

0
Qi(s)ds

� 1
E[Di]

∫ t

0
Qi(s)ds:

Two important questions are when a solution of the fluid model equations exists and if it exists when it is
unique. The next theorem answers these questions.

Theorem 4.1. Assume that Qij(0) > 0 for all j ∈ J if Qi(0) � Ki and that (i) or (ii) in Lemma 3.1 holds. Suppose that
Z(0) � 0 or that Z(0) ∈ (0, ∞)I×J and the first projection of Z(0) is Lipschitz continuous; that is, there exists L > 0 such
that for any i, j ≥ 1, x < x′, and y > 0,

Z ij(0)([x,x′] × [y,∞)) ≤ L(x′ − x):

Then there exists a unique solution of the fluid model equations.
The proof of Theorem 4.1 is given in Section 7 and the main steps of the proof are as follows.
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1. The first step is to show that each pair (Qi(·),Ri(·)) satisfies a one-dimensional reflection mapping and (each
pair) is unique.

2. Second, we show that Zij(t) > 0 for any i, j ≥ 1 and t > 0.
3. Last, we prove that (Z(·),Z(·)) is also unique using arguments from Remerova et al. (2014).
We conclude this section by presenting numerical results based on the fluid model. Next, in Section 5, we show

that a fluid model solution arises as a weak limit of the original stochastic model under an appropriate scaling.

4.1. Numerical Analysis
Consider a line network with three nodes (one generator and two consumers) under the linearized Distflow
model and Markovian assumptions. We assume a single type of EVs and a weighted proportional fairness power
allocation, that is, ui(p) � wilog(p)with w1 � 0:01 and w2 � 0:02. We allow the voltage drop to diverge at most 10%
from its nominal value and denote by 1=νi and 1=μi the mean parking and charging times, respectively. Further-
more, we fix the resistance and reactance to 0.01 for both lines, n � (1, 1), Q(0) � (2, 2), Z(0) � (1, 1), and for
simplicity we remove the load constraints. In what follows, we focus on the performance metric that gives the
fraction of fully charging EVs at any time (success probability).

We first study the system when both charging stations have the same number of parking spaces and the arrival
rate is periodic, for example, λ1(t) � λ2(t) � sin(t) + 10. Figure 2 shows the success probability as a function of
time for different values of mean parking times. We note that the success probability is higher for the charging
station with a smaller mean charging time. Furthermore, the success probability is symmetric to both stations the
fact that can intuitively be explained as follows. The power grid can allocate the same amount of power to both
nodes because of the weighted proportional fairness allocation and the higher weight for the second node.

The behavior of the system is similar if we increase the arrival rate (Figure 3). In this case, we observe that the success
probability can vary, and it can be higher than the one in Figure 2. It can also be zero for the charging station with the
higher mean charging time. That is, both the total number of EVs and the uncharged EVs reach the parking capacity Ki.
In other words, the charging station cannot charge the EVs because of the high demand and the high charging times.

In Figure 4, we decrease the number of available parking spaces of the first charging station. This has an effect
on its success probability which becomes smaller than the one in Figure 3 for both mean charging times.

Last, we note that the success probability (and hence the state descriptor) seems to converge to an invariant
point when the arrival rate is constant as it is proven in Aveklouris (2020, section 5.6). We further observe that
the success probability of the first node is smaller because its mean charging time is higher (Figure 5(a)) and its
number of parking spaces is smaller (Figure 5(b)) than the second node.

5. Fluid Limit Theorem
In this section, we study the asymptotic behavior of the stochastic network described in Section 2. Consider a
family of systems indexed by n ∈ N, where n tends to infinity, with the same basic structure as that of the system

Figure 2. Success Probability for λ1(t) � λ2(t) � sin(t) + 10 andK � (10, 10)
(a) (b)

Notes. (a)m � (1=2, 3=2). (b)m � (3=2, 1=2).
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described in Section 2. To indicate the position of the system in the sequence of systems, a superscript n will be
appended to the system parameters and processes.

First, we introduce our asymptotic regime. We assume that the scaled capacity at node i is given by Mn
i � nM,

the scaled number of EV chargers at node i is Kn
i � nK, and the scaled resistance and reactance online εpk are

given by rnpk � rpk=n and xnpk � xpk=n. In our setting, we need to scale the physical parameters of the system in con-
trast to the typical scalings in stochastic networks that arise in communication networks. The fluid-scaled mea-

sure-valued processes are given by (Qn(·),Zn(·)) :� Qn(·)
n , Z

n(·)
n

( )
and the fluid-scaled counting processes are given

by (Qn(·),Zn(·)) :� Qn(·)
n , Z

n(·)
n

( )
. We summarize the assumptions we make in this section.

1. The scaling parameters are given by Kn
i � nK, Mn

i � nM, rnpk � rpk=n, and xnpk � xpk=n.

2. The external arrival process satisfies
En
ij(·)
n →d Eij(·), with Eij(t) �

∫ t

0
λij(s)ds.

Figure 3. Success Probability for λ1(t) � λ2(t) � 5sin(t) + 10 and K � (10, 10)
(a) (b)

Notes. (a)m � (1=2, 3=2). (b)m � (3=2, 1=2).

Figure 4. Success Probability for λ1(t) � λ2(t) � 5sin(t) + 10 andK � (5, 10)
(a) (b)

Notes. (a)m � (1=2, 3=2). (b)m � (3=2, 1=2).
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3. The limit of the external arrival process is Lipschitz continuous; that is, there exists ηij > 0 such that
|Eij(t) −Eij(s)| ≤ ηij |t− s|, for t, s ≥ 0.

4. The scaled initial configurations converge to random vectors of finite measures, Q
n
ij(0)→

d
Qij(0) and

Z
n
ij(0)→

d
Z ij(0) as n→∞.

5. For any i, j ≥ 1, Qij(0)(R+) and the projections Z ij(0)(· × R+) andZ ij(0)(R+ × ·) are almost surely free of atoms.
Moreover, our fluid scaling leads to the following relation pn(z) � p(zn). To see the latter, observe that under

our scaling the feasible set of (2.6) can be written as follows:

Fn(z) �

∑J

j�1

zij
n
pij ≤Mi, 0 ≤ pij ≤ cmax

j , Wii ≥ υi, WppWkk −W2
pk ≥ 0,

Wpk −Wkk − rpk
∑
l∈I(k)

∑J

j�1

zlj
n
plj

+ ∑
l ∈ I (k)
εls ∈ E(k)

(Wll − 2Wls +Wss) rpkrls + xpkxls
r2ls + x2ls

( )
� 0:

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
It is clear now that Fn(z) � F(zn ), which leads to

pn(z) � argmax
(p,W)∈Fn(z)

∑I

i�1

∑J

j�1
zijuij(pij)

� argmax
(p,W)∈F z

n( )
∑I

i�1

∑J

j�1

zij
n
uij(pij) � p

z
n

( )
:

Furthermore, by (2.9), we have that

Snij(Zn, s, t) � Sij(Zn, s, t):
The next theorem states that the fluid model arises as a limit of the fluid-scaled state descriptor under our

assumptions.

Theorem 5.1 (Fluid Limit). The sequence of the fluid-scaled measure-valued vector process (Qn(·),Zn(·)) is tight and ev-
ery accumulation point (Q(·),Z(·)) is a fluid model solution.

The proof of Theorem 5.1 is given in Section 8, which is organized as follows.
1. We establish tightness of the associated fluid-scaled measure-valued vector process

(
Qn(·),Zn(·)

)
.

Figure 5. Success Probability for λ1(t) � λ2(t) � 10

(a) (b)

Notes. (a)m � (1=2, 3=2) and K � (10, 10). (b)m � (2, 2) andK � (5, 10).
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2. We then show tightness for the fluid-scaled stochastic process describing the number of rejected customers,
that is,Rn(·).

3. The last step is to show that the limit of any convergent subsequence of
(
Qn(·),Zn(·)

)
satisfies the fluid model

equations.

Remark 5.1. The fluid limit theorem holds even if the external arrival process is a process with a general mean

Eij(·). In this case, we need to modify the definition of a fluid model solution such that Rij(t) �
∫ t

0
1{Qi(s)�Ki}

dRij(s). However, it seems that the uniqueness of the fluid model solutions does not hold.

6. Proofs for Section 3

Proof of Proposition 3.1. First, note that point 0 lies in the feasible set by choosing Wpk �W00. We now define a
partition of the set I . Recall that I(k) denotes the subtree rooted in node k ∈ I (including node k). Let us define
the following sets L0 :� {k ∈ I : I (k) � {k}} and for any m ≥ 1,

Lm :�
{
k ∈ I \ ⋃m−1

n�0
Ln : I (k) ⊆

⋃m−1

n�0
Ln

⋃{k}
}
:

As the number of nodes I + 1 is finite, there exists I′ ≤ I + 1 such that LI′ � {0}, that is, LI′ contains only the feeder
node. Note that L0 is the set of leaf nodes and the family L :� {Lm, 0 ≤m ≤ I′} is a partition of the set I . Indeed, we
have that ∅ ∉ L,

⋃I′
m�0Lm � I , and Li ∩ Lk � ∅ for i≠ k. In Figure 6, we depict an example of a partition with five sets.

Without loss of generality, we consider a single type of EVs; otherwise, set Λk :� ∑J
j�1Λkj. To simplify the nota-

tion, in the rest of the proof, we write L instead of L(z) and Wkk instead of Wkk(L). Recalling that L is a feasible
point of (2.7), we have that Λk ≤Mk, Λk ≤ zkcmax and for k ≥ 1, εpk ∈ E,

Wpk −Wkk −PI(k)rpk −QI(k)xpk � 0,

υk ≤Wkk ≤ υk,

WppWkk −W2
pk ≥ 0: (6.1)

Clearly,L′ satisfies the linear constraints of (2.7), that is,Λ′
k ≤Λk ≤Mk andΛ′

k ≤Λk ≤ zkcmax. To show thatL is a fea-
sible point of (2.7), we need to constructW′

il, i, l ≥ 0 such that the additional constraints of (2.7) are satisfied if we replace
L byL′. To this end, setW′

00 �W00,W′
pk �Wpk, for εpk ∈ E. Furthermore,W′

kk for k ≥ 1, are given by the solution of

W′
pk −W′

kk −P′
I (k)rpk −Q′

I(k)xpk � 0, εpk ∈ E: (6.2)

We shall show that Wkk ≤W′
kk for k ∈ I . The proof is then concluded by observing that by the inequality

Wkk ≤W′
kk, we have that υk ≤Wkk(L′) for k ≥ 1. Furthermore, by the third inequality of (6.1), we get for εpk ∈ E,

W′
ppW

′
kk −W

′2
pk �W′

ppW
′
kk −W2

pk ≥W′
ppW

′
kk −WppWkk ≥Wpp(W′

kk −Wkk) ≥ 0:

Thus, L′ satisfies all the constraints of (2.7), and hence it is a feasible point.

Figure 6. Sets Li in a Tree Network

Feeder

Notes. In this case, I′ � 4. The red nodes are in L0, the blue nodes are in L1, the yellow node is in L2, the green node is in L3, and L4 includes
only the feeder.
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We now proceed to the proof of the claim thatWkk ≤W′
kk for k ∈ I . Define I(k)− :� I (k) \ {k} and for εpk,εls ∈ E,

apkls :� rpkrls + xpkxls
r2ls + x2ls

:

For some 0 ≤m < I′ and for k ∈ Lm, we have that

Wkk −W′
kk � rpk(P′

I(k) −PI(k)) + xpk(Q′
I (k) −QI(k))

� rpk
∑
l∈I(k)

(Λ′
l −Λl) +

∑
l∈I (k)

∑
εls∈E(k)

apkls(W′
ll −Wll +W′

ss −Wss):

The last equation can be rewritten as follows:(
1 + ∑

εks∈E(k)
apkks)(Wkk −W′

kk

)
� rpk

∑
l∈I(k)−

(Λ′
l −Λl) + rpk(Λ′

k − Λk) +
∑

l∈I(k)−
∑

εls∈E(k)
apkls(W′

ll −Wll +W′
ss −Wss)

+ ∑
εks∈E(k)

apkks(W′
ss −Wss): (6.3)

We now show the inequalityWkk ≤W′
kk for each k by induction. Let k ∈ L0. By (6.3), we have that

Wkk −W′
kk � rpk(Λ′

k −Λk) ≤ 0, (6.4)

where p is the unique parent of node k. If m � 1 (i.e., k ∈ L1), then we have that I(k)− � I (k) \ {k} � L0 ∩
I (k) \ {k} and {εls ∈ E(k) : l ∈ I(k) \ {k}} � ∅. Furthermore, {s : εks ∈ E(k)} � L0 ∩ I(k) \ {k}. By (6.3) and (6.4), we
obtain (

1+ ∑
s∈L0∩I(k)−

apkks

)
(Wkk −W′

kk) � rpk(Λ′
k −Λk) +

∑
l∈L0∩I (k)−

(rpk − apkklrkl)(Λ′
l −Λl): (6.5)

Now, observe that
rpk − apkklrkl � rpk − rkl

rpkrkl + xpkxkl
r2kl + x2kl

� (r2kl + x2kl)−1(rpkr2kl + rpkx2kl − rpkr2kl − rklxpkxkl)
� xkl(r2kl + x2kl)−1(rpkxkl − rklxpk) ≥ 0,

where the last equation holds by the assumption rpk=xpk ≥ rkl=xkl. That is, Wkk ≤W′
kk, for k ∈ L1. Suppose now that

k ∈ L2. By (6.3), we have that(
1+ ∑

εks∈E(k)
apkks)(Wkk −W′

kk

)
� rpk

∑1
m�0

∑
l∈Lm∩I (k)−

(Λ′
l −Λl) + rpk(Λ′

k −Λk)

+ ∑
l∈L1∩I (k)−

∑
εls∈E(k)

s∈L0∩I(l)

apkls(W′
ll −Wll +W′

ss −Wss) +
∑1
m�0

∑
εks∈E(k)
s∈Lm

apkks(W′
ss −Wss):

The last equation can be equivalently rewritten as follows:

(
1 + ∑

εks∈E(k)
apkks

)
(Wkk −W′

kk) � rpk
∑1
m�0

∑
l∈Lm∩I(k)−

(Λ′
l − Λl) + rpk(Λ′

k − Λk)

+ ∑
l∈L1∩I (k)−

∑
εls ∈ E(k)

s ∈ L0 ∩ I(l)

apkls + apkkl
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠(W′
ll −Wll)

+ ∑
l∈L1∩I (k)−

∑
εls ∈ E(k)

s ∈ L0 ∩ I (l)

apkls(W′
ss −Wss)

+ ∑
εks∈E(k)
s∈L0

apkks(W′
ss −Wss):
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Applying (6.5) in the last equation, we obtain the following relation:(
1 + ∑

εks∈E(k)
apkks

)
(Wkk −W′

kk) � rpk(Λ′
k −Λk) +

∑
εks∈E(k)
s∈L0

(rpk − rksapkks)(Λs
′ −Λs)

+ ∑
l∈L1∩I(k)−

rpk − rkl

(
1 + ∑

s∈L0∩I(l)−
aklls

)−1 ∑
εls∈E(k)

s∈L0 ∩ I(l)

apkls + apkkl
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(Λ′
l − Λl)

+ ∑
l∈L1 ∩ I (k)−
εls∈E(l)
s∈L0

(rpk − rlsapkls)(Λs
′ − Λs):

Now, observe that using the assumption rpk=xpk ≥ rkl=xkl, we have that rpk − rksapkks ≥ 0. Furthermore, we have
that

rpk − rkl

(
1+ ∑

s∈L0∩I (l)−
aklls

)−1 ∑
εls∈E(k)

s∈L0 ∩ I(l)

apkls + apkkl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 1+ ∑
s∈L0∩I (l)−

aklls

( )−1
rpk(1+

∑
s∈L0∩I(l)−

aklls) − rkl
∑

εls∈E(k)
s∈L0 ∩ I (l)

apkls + apkkl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
(
1+ ∑

s∈L0∩I(l)−
aklls

)−1(
rpk − rklapkkl +

∑
s∈L0∩I(l)−

(rpkaklls − rklapkls)
)
≥ 0:

Suppose now that for all k∈Lj, j � 0, : : : ,m,(
1+ ∑

εks∈E(k)
apkks

)
(Wkk −W′

kk) ≤ rpk(Λ′
k −Λk): (6.6)

We shall show that the same holds for k∈Lm+1. To this end, by (6.3) and (6.4), we have that(
1+ ∑

εks∈E(k)
apkks

)
(Wkk −W′

kk) � rpk(Λ′
k −Λk)

+∑m
j�0

∑
s∈Lj ∩ I(k)−
l ∈ ⋃m+1

b�j+1Lb

rpk − rls

(
1+ ∑

εsf∈E(s)
alssf

)−1 ∑
εsf ∈E(s)
f ∈ ⋃j−1

b�0
Lb

apksf + apkls
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(Λs

′ −Λs):

Using again the assumption rpk=xpk ≥ rkl=xkl and adapting the previous steps, we obtain(
1+ ∑

εks∈E(k)
apkks

)
(Wkk −W′

kk) ≤ rpk(Λ′
k −Λk),

for k ∈ Lm+1. Thus,Wkk ≤W′
kk for any k ∈ Lm, 0 ≤m ≤ I′ or k ∈ ⋃I′

m�0Lm � I . This concludes the proof. w

Proof of Theorem 3.1. We follow the argument in Reed and Zwart (2014, lemma 7.1). Take a sequence zk ∈
(0, ∞)I×J such that zk → z as k→∞. We proceed by contradiction. Let us assume that L(·) is not continuous at
point z. That is L(zk) →L′ and L′ ≠L(z). The limit L′ exists as the sequence L(zk) lives in a subset of the com-
pact set {L ∈ [0, ∞)I×J :L ≤M}. First, we show that L′ is a feasible point of (2.7). As L(zk) is the optimal solu-
tion of (2.7), replacing z by zk we have that

∑J
j�1Λij(zk) ≤Mi and 0 ≤Λij(zk) ≤ cmax

j zkij. Taking the limit as k→∞,

we derive
∑J

j�1Λij
′ ≤Mi and 0 ≤Λij

′ ≤ cmax
j zij. Furthermore, we have that Wii(L(zk)) ≥ υi and W(εil,L(zk))
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� 0, εil ∈ E. The latter is equivalent to Wii(L(zk))Wll(L(zk)) −Wil(L(zk)) ≥ 0 (as we assume υi > 0). Now, by con-
tinuity of the voltage magnitudes (Dvijotham et al. 2017, theorem 3), we obtain Wii(L′) ≥ υi and
Wii(L′)Wll(L′) −Wil(L′)2 ≥ 0. That is, L′ is a feasible point of (2.7). Recalling that L(z) is the optimal solution
of (2.7), we have that

∑I

i�1

∑J

j�1
zijuij(Λij(z)=zij) >

∑I

i�1

∑J

j�1
zijuij(Λ′

ij=zij): (6.7)

To derive the contradiction, we construct a point Lk that is feasible for (2.7) if we replace z by zk. To this end,
define for any k ≥ 1,

Λk
ij :� Λij(z) ∧ cmax

j zkij:

We have that Lk →L(z) and Lk ≤L(z) for k ≥ k0. Observing that Λk
ij ≤ cmax

j zkij, by Proposition 3.1, we have that
Λk is a feasible point of (2.7) by replacing z by zk for k ≥ 1. It follows that as k→∞,

∑I

i�1

∑J

j�1
zkijuij(Λij=zkij) →

∑I

i�1

∑J

j�1
zijuij(Λ(zij)=zij)

and

∑I

i�1

∑J

j�1
zijuij(Λ(zij)=zkij) →

∑I

i�1

∑J

j�1
zijuij(Λ′

ij=zij):

That is, by (6.7), there exists a sufficiently large k such that

∑I

i�1

∑J

j�1
zkijuij(Λk

ij=z
k
ij) >

∑I

i�1

∑J

j�1
zijuij(Λ(zkij)=zkij):

The last inequality yields a contradiction as L(zk) is the optimal solution of (2.7) by replacing z by zk. w

7. Proofs for Section 4

Proof of Proposition 4.1. Using the identity P(Dij < t) +P(Dij ≥ t) � 1, (4.2) can be written as

Qij(t) �Qij(0) +Eij(t) −Rij(t) −Dij(t),
where

Dij(t) :�Qij(0)P(D0
ij < t) +

∫ t

0
P(Dij < t− s)dEij(s)

−
∫ t

0
P(Dij < t− s)dRij(s): (7.1)

In the sequel, we show that Dij(t) can be written as in (4.4). By the definition of the fluid model, we have
that

Qij(t) −Qij(t)([ε,∞)) �Qij(0)(P(D0
ij ≥ t) −P(Dij ∈ t+ [ε,∞]))

+
∫ t

0
(P(Dij ≥ t− s) −P(Dij ∈ t− s+ [ε,∞]))dEij(s)

−
∫ t

0
(P(Dij ≥ t− s) −P(Dij ∈ t− s+ [ε,∞]))dRij(s):

Observing that P(Dij ∈ t+ [ε,∞]) � P(Dij ≥ t+ ε) and

P(Dij ≥ t) −P(Dij ≥ t+ ε) � P(t <Dij < t+ ε),
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we have that
Qij(t) −Qij(t)([ε,∞)) �Qij(0) P(t <D0

ij < t+ ε)
+

∫ t

0
P(t− s <Dij < t− s+ ε)dEij(s)

−
∫ t

0
P(t− s <Dij < t− s+ ε)dRij(s):

By the assumption of existence of the pdf fDij(·), we have that

Qij(t) −Qij(t)([ε,∞)) �Qij(0)εfD0
ij
(t) +

∫ t

0
εfDij(t− s)dEij(s)

−
∫ t

0
εfDij(t− s)dRij(s) + o(ε):

Dividing the last equation by ε and letting ε go to zero, we have that

lim
ε→0

Qij(t) −Qij(t)([ε,∞))
ε

� Qij(0)fD0
ij
(t) +

∫ t

0
fDij(t − s)dEij(s)

−
∫ t

0
fDij(t − s)dRij(s): (7.2)

In other words, the limit of the left-hand side of (7.2) exists. Integrating (7.2) from zero to t and interchanging
the integrals using Tonelli’s theorem (Rudin 1987), we derive∫ t

0
lim
ε→0

Qij(s) −Qij(s)([ε,∞))
ε

ds � Qij(0)P(D0
ij < t) +

∫ t

0
P(Dij < t − s)dEij(s)

−
∫ t

0
P(Dij < t − s)dRij(s) � Dij(t):

Furthermore, the following inequality holds for any t ≥ 0,

Dij(t) ≤Qij(0) +
∫ t

0
P(Dij < t− s)dEij(s) ≤Qij(0) +Eij(t) <∞:

That is, Dij(t) represents the departure process that proves (4.3) and (4.4). w

The first step to prove Theorem 4.1 is to show that the fluid model solutions are bounded away from zero.
This is stated in the following proposition.

Proposition 7.1. Under the assumptions of Theorem 4.1, we have that for any ε > 0,

inf
t≥ε min

i, j
Zij(t) > 0:

Proof. Recall that an assumption of Theorem 4.1 is that Qij(0) > 0 if Qi(0) � Ki. Furthermore, by our assumptions,
there exists the probability density function of parking times and fDij(0) > 0 for any i, j ≥ 1. It is enough to show
that Zij(·) remains positive when the system is not full. Assume that Z(0) � 0 and define τ :� inf

{s ≥ 0 :Qi(s) � Ki}, where τ ∈ [0, ∞]. Note that P
(

Bij

cmax
j

∧Dij ≥ s
)
→ P

(
Bij

cmax
j

∧Dij ≥ 0
)
� 1 as s→ 0 and choose ε1 such

that P
(

Bij

cmax
j

∧Dij ≥ s
)
≥ 1

2 for s ∈ [0,ε1]. For t ≤ τ, we have that

Zij(t) ≥
∫ t

0
λij(s)P Bij

cmax
j

∧Dij ≥ t− s

( )
ds

�
∫ t

0
λij(t− s)P Bij

cmax
j

∧Dij ≥ s

( )
ds

� inf
0<s≤ελij(s)

∫ ε

0
P

Bij

cmax
j

∧Dij ≥ s

( )
ds

≥ inf
0<s≤ελij(s)ε∧ ε1

2
> 0,
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because λij(·) > 0. This also covers the case that τ �∞. If the arrival rate is constant, then the last bound
coincides with the one in Remerova et al. (2014, lemma 3). Now, for t > τ, we have that Qi(t) � Ki and by
the continuity of the fluid model solutions, we have that Qij(t) �Qij(τ). Furthermore, by (4.3), we have
that

Eij(t) −Rij(t) �Dij(t) −Dij(τ) +Eij(τ),
and using (4.4), we obtain

Zij(t) ≥
∫ t

τ

δij(s)P Bij

cmax
j

∧Dij ≥ t− s

( )
ds,

where we define δij(s) :� limε→0
Qij(s)−Q ij(s)([ε,∞))

ε . By the fact that Qij(t) �Qij(τ) > 0 for t > τ (this also covers the
case τ � 0), we have that δij(t) � δij(τ) � δij. Furthermore, by the assumption fDij(0) > 0, (7.2), and the fact that
Rij(s) � 0 for s ≤ τ, we have that δij(τ) > 0. Hence,

Zij(t) ≥ δij

∫ t

τ

P
Bij

cmax
j

∧Dij ≥ t− s

( )
ds

� δij

∫ t−τ

0
P

Bij

cmax
j

∧Dij ≥ s

( )
ds

≥ δij
(t− τ) ∧ ε1

2
> 0:

w

Proof of Theorem 4.1. We first show that each pair (Ki −Qi(·),Ri(·)) is unique for any i ≥ 1. By Remark 4.1, fluid
model solutions are invariant with respect to time shifts, and hence it suffices to show that (Ki −Qi(·),Ri(·)) is
unique on the time interval [0,T] for T > 0.

By Proposition 4.1, we have that

Ki −Qi(t) � Ki −Qi(0) −
∑J

j�1
Eij(t) +

∑J

j�1
Dij(t) + Ri(t), (7.3)

where Ri(t) �
∫ t

0
1{Qi(s)�Ki}dRi(s) �

∫ t

0
1{Ki−Qi(s)�0}dRi(s). Now, by the one-dimensional reflection mapping (Chen

and Yao 2001, chapter 6), we have that

Ki −Qi(t) �Ψ(Φi)(t) :� Φi(t) + sup
0≤s≤t

(−Φi(s)�0), (7.4)

where

Φi(t) :� Ki −Qi(0) −
∑J

j�1
Eij(t) +

∑J

j�1
Dij(t):

It is known that the reflection mapping Ψ(·) is Lipschitz continuous (Chen and Yao 2001). Now, for each i ≥ 1,
define the mapping Bi for each function a(·) on [0, ∞),

Bi(a)(t) � ζi(t) −
∑J

j�1

∫ t

0

λij(s)∑J
j�1λij(s)

a(s)fDij(t− s)ds

+∑J

j�1

∫ t

0

∫ s

0
a(u)d λij(u)∑J

j�1λij(u)
fDij(t− s)ds,
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where

ζi(t) � Ki −Qi(0) +
∑J

j�1
Qij(0)P(D0

ij < t) −∑J

j�1
Eij(t) +

∑J

j�1

∫ t

0
Eij(u)fDij(t− u)du:

Observing that λij(·)∑J
h�1λih(·)

≤ 1, we have that the mapping Bi(·) is locally Lipschitz continuous for any i ≥ 1,
namely

sup
0≤t≤T

|Bi(a1)(t) −Bi(a2)(t)| ≤ 2
∑J

j�1
P(Dij ≤ T) sup

0≤t≤T
|a1(t) − a2(t)|:

By Kang (2015, lemma 3), the following functional equation for any i ≥ 1 has a unique solution on [0,T]:
a(t) �Ψ(Bi(a))(t) −Bi(a)(t): (7.5)

The main idea now is to show that each function Ri(·) satisfies (7.5), and hence it is unique. To this end, by the

proof of Proposition 4.1, the relation Rij(t) �
∫ t

0

λij(s)∑J
h�1λih(s)

dRi(s), and the properties of the Riemann–Stieltjes inte-

gral, we obtain

Dij(t) �Qij(0)P(D0
ij < t) +

∫ t

0
P(Dij < t− s)dEij(s) −

∫ t

0
P(Dij < t− s)dRij(s)

�Qij(0)P(D0
ij < t) +

∫ t

0
Eij(s)fDij(t− s)ds−

∫ t

0
Rij(s)fDij(t− s)ds

and ∫ t

0
Rij(s)fDij(t− s)ds �

∫ t

0

∫ s

0

λij(u)∑J
h�1λih(u)

dRi(u)fDij(t− s)ds

�
∫ t

0

λij(s)∑J
h�1λih(s)

Ri(s)fDij(t− s)ds

−
∫ t

0

∫ s

0
Ri(u)d λij(u)∑J

h�1λih(u)
fDij(t− s)ds:

Using the last equation and replacing Dij(t) in (7.3), we have that

Ki −Qi(t) � ζi(t) −
∑J

j�1

∫ t

0

λij(s)∑J
h�1λih(s)

Ri(s)fDij(t− s)ds

+∑J

j�1

∫ t

0

∫ s

0
Ri(u)d λij(u)∑J

h�1λih(u)
fDij(t− s)ds+Ri(t)

� Bi(Ri)(t) +Ri(t):
Using again the reflection mapping, we obtain

Ki −Qi(t) � Ψ(Bi(Ri))(t):
The last equation and (7.4) yield

Φi(t) � Bi(Ri)(t): (7.6)

Combining (7.3) and (7.4), we derive

Ri(t) � Ψ(Φi)(t) −Φi(t):
Now, replacing Φi(·) in the last equation by the right-hand side of (7.6) leads to

Ri(t) �Ψ(Bi(Ri))(t) −Bi(Ri)(t):
Thus, Ri(·) is a solution of (7.5) and hence unique. This implies that Rij(·) is unique for any i, j ≥ 1, and hence

(Qij(·),Qij(·)) is unique for i, j ≥ 1.
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We now proceed to show the uniqueness of the Zij(·). First, we show that Z ij(·) has a Lipschitz continuous first
projection. Indeed, let x < x′ and y ≥ 0. For any i, j ≥ 0, we have that

Z ij(t)([x,x′] × [y,∞)
)
≤ Z ij(0)([x+ Sij(Z, 0, t),x′ + Sij(Z, 0, t)] × [y,∞))
+

∫ t

0
P(x+ Sij(Z, s, t) ≤ Bij ≤ x′ + Sij(Z, s, t))dEij(s):

By the Lipschitz continuity of Eij(·), the previous bound becomes

Z ij(t)([x,x′] × [y,∞)) ≤ Z ij(0)([x+ Sij(Z, 0, t),x′ + Sij(Z, 0, t)] × [y,∞))
+ηij

∫ t

0
P(x+ Sij(Z, s, t) ≤ Bij ≤ x′ + Sij(Z, s, t))ds:

By the assumption of the Lipschitz continuity of the initial condition, the change of variable
v �Θ(s) � Sij(Z, s, t), and Remerova et al. (2014, lemma 5), we have that

Z ij(t)([x,x′] × [y,∞)) ≤ L(x′ − x) + ηij

∫ Sij(Z,0,t)

0

P(x+ v ≤ Bij ≤ x′ + v)
pij(Z(Θ−1(v))) dv

≤ (L+ ||h|| sup
0≤s≤t

1
Z(s))(x

′ − x):

By Proposition 7.1, Z(·) is bounded away from zero. Now, the property of the utility functions limx→0u′ij(x) � ∞
for i ∈ I , j ∈ J guarantees that minij infspij(Z(s)) > 0. That is, the first projection of Z ij(·) is Lipschitz continuous
with constant

L+ ||h|| sup
0≤s≤t

1
Z(s) <∞,

where the last inequality follows by Theorem 3.1. Now, point 0 is a feasible point of (2.5). Furthermore,
for a vector z such that zij is small enough the power flow constraints are satisfied and hence pij(z) � cmax

j .
Moreover, the power allocation function is Lipschitz continuous because we consider the linearized Dist-
flow power flow model as we discussed in Section 3. Now, by the Lipschitz continuity of Eij(·) and by ap-
plying Remerova et al. (2014, theorem 1), we obtain that the fluid model solution (Z(·),Z(·)) is unique. w

8. Proof of Theorem 5.1
8.1. Establishing Tightness
The first step of the proof of Theorem 5.1 is to show that (Qn(·),Zn(·)) is C-tight, that is, tight with continuous weak
limits. To do so, we follow the idea of proof of Remerova et al. (2014, theorem 5). First, we show that both processes
satisfy the compact containment property. To this end, note that the following bounds hold almost surely

Qij(t) ≤
∑Qij(0)

l�1
δ+D0

ijl(t) +
∑Eij(t)

l�1
δ+Dijl(t) (8.1)

and

Zij(t) ≤
∑Zij(0)

l�1
δ+(B0

ijl(t),D0
ijl(t)) +

∑Eij(t)

l�1
δ+(Bijl(t),Dijl(t)): (8.2)

Moreover, by our assumptions,
En
ij(·)
n →d Eij(·). Hence, all the bounds in Remerova et al. (2014, lemma 9) hold true

for the measure-valued processes Qij(·) and Zij(·). That is, for any T > 0 and ε > 0, there exist compact sets C ∈
M(R+)I×J and C′ ∈M(R2

+)I×J such that

lim inf
n→∞ P

n(Qn(t) ∈ C ∀t ∈ [0,T]) ≥ 1− ε, (8.3)

and

liminf
n→∞ P

n(Zn(t) ∈ C′ ∀t ∈ [0,T]) ≥ 1− ε: (8.4)
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Next, we shall show the oscillation control. To do so, we first show a preliminary result. Define Hb
a :� R+ ×

[a,b] and Vb
a :� [a,b] × R+. If b �∞, then H∞

a :� R+ × [a,∞) and Vb
a :� [a,∞) × R+.

Proposition 8.1. For any T > 0, δ > 0, and ε > 0, there exist α > 0 and b > 0 such that

lim inf
n→∞ P

n( sup
0≤t≤T

sup
x∈R+

(||Qn(t)([x,x+α])||) ≤ δ) ≥ 1− ε

and

lim inf
n→∞ P

n( sup
0≤t≤T

sup
x∈R+

(||Zn(t)(Hx+b
x )||� ||Zn(t)(Vx+b

x )||) ≤ δ) ≥ 1− ε:

Proof. By Remerova et al. (2014, lemma 10), we have that there exist α > 0 and b > 0 such that

liminf
n→∞ P

n(sup
x∈R+

(||Qn(0)([x,x+ α])||) ≤ δ) ≥ 1− ε (8.5)

and

liminf
n→∞ P

n(sup
x∈R+

(||Zn(0)(Hx+b
x )||� ||Zn(0)(Vx+b

x )||) ≤ δ) ≥ 1− ε: (8.6)

Next, define

Q∞
ij (t) :�

∑Eij(t)

l�1
δ+Dijl(t), Z∞

ij (t) :�
∑Eij(t)

l�1
δ+(Bijl(t),Dijl(t)):

We shall show that

liminf
n→∞ P

n( sup
0≤t≤T

sup
x∈R+

(||Qn,∞(t)([x,x+ α])||) ≤ δ) ≥ 1− ε (8.7)

and

liminf
n→∞ P

n( sup
0≤t≤T

sup
x∈R+

(||Zn,∞(t)(Hx+b
x )||� ||Zn,∞(t)(Vx+b

x )||) ≤ δ) ≥ 1− ε: (8.8)

Then, the result follows. Indeed, by (8.1) and (8.2), we have that

liminf
n→∞ P

n( sup
0≤t≤T

sup
x∈R+

(||Qn(t)([x,x+ α])||) ≤ δ)
≥ lim inf

n→∞ P
n( sup

0≤t≤T
sup
x∈R+

(||Qn,∞(t)([x,x+α])||) ≤ δ)

and

liminf
n→∞ P

n( sup
0≤t≤T

sup
x∈R+

(||Zn(t)(Hx+b
x )||� ||Zn(t)(Vx+b

x )||) ≤ δ)
≥ lim inf

n→∞ P
n( sup

0≤t≤T
sup
x∈R+

(||Zn,∞(t)(Hx+b
x )||� ||Zn,∞(t)(Vx+b

x )||) ≤ δ):

Now, Proposition 8.1 follows by using the last inequalities, (8.5)–(8.8), and Remerova et al. (2014,
lemma 12).

We move now to the proof of (8.7) and (8.8). Denote by Ωn
0,q and Ωn

0,z the events for which (8.7) and (8.8) hold,
respectively. Let Ωn

1,q and Ωn
1,z be the events for which (8.3) and (8.4) hold, respectively. By Remerova et al. (2014,

proposition 1), C and C′ are relatively compact. Hence, Ξ :� supm∈C||m(R+)|| <∞, Ξ′ :� supm∈C′ ||m(R2
+)|| <∞,

supm∈C||m(R+ \ [0,L])|| ≤ δ=4, and supm∈C′ ||m(R2
+ \ [0, L′]2)|| ≤ δ=4 for large L and L′. In addition, put

p∗ :�mini,j{pij : zij > δ=4, ||z|| ≤ Ξ′}, β :� δ
8||h|| ∧T, α � β

3, and b � β(p∗∧1)
3 . Furthermore, take N and N′ such that

Nα > L+T and N′b > L′ + (||cmax||�1)T,
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and define the following sets

Ik :� [(k− 1)α,kα],
Ik :� [(k− 2)+α, (k+ 1)α],

Ik,k′ :� [(k− 1)b,kb] × [(k′ − 1)b, k′b],
Ik,k

′
:� [(k− 2)+b, (k+ 1)b] × [(k′ − 2)+b, (k′ + 1)b]:

Furthermore, pick functions gk ∈ C(R+, [0, 1]) and gk,k′ ∈ C(R2
+, [0, 1]) such that

1{Ik}(·) ≤ gk(·) ≤ 1{Ik}(·),
1{Ik,k′ }(·) ≤ gk,k′ (·) ≤ 1{Ik,k′ }(·),

and note that ∑
k∈N

|| < gk,FD > || ≤ ||∑
k∈N

< gk,FD > || ≤ 3,∑
k,k′∈N

|| < gk,k′ ,F > || ≤ || ∑
k,k′∈N

< gk,k′ ,F > || ≤ 9:

Define the load processes for the nth system, and t ≥ 0,

Ln,Q
ij (t) :� ∑En

ij(t)

l�1
δDijl ,L

n,Z
ij (t) :� ∑En

ij(t)

l�1
δ(Bijl,Dijl),

and the corresponding scaled load processes

L
n,Q
ij (t) :� Ln,Q

ij (nt)
n

,L
n,Z
ij (t) :� Ln,Z

ij (nt)
n

:

By Gromoll and Williams (2009, theorem 5.1), we have that

lim
n→∞P

n(max
1≤k≤N

sup
0≤t≤T

|| < gk,Ln,Q
> −E(t) < gk,FD > || ≤ δ

16N2) � 1

and

lim
n→∞P

n( max
1≤k,k′≤N′

sup
0≤t≤T

|| < gk,k′ ,Ln,Z
> −E(t) < gk,k′ ,F > || ≤ δ

16N′2
) � 1,

where we denote byΩn
2,q andΩn

2,z the corresponding events. Furthermore, by our assumptions

lim
n→∞P

n( sup
0≤t≤T

||En(t) −E(t)|| ≤ δ=16) � 1,

and we denote these events by Ωn
3. Adapting the proof of Remerova et al. (2014, lemma 11), it follows that Ωn

1,q ∩
Ωn

2,q ∩Ωn
3 ⊆Ωn

0,q and Ωn
1,z ∩Ωn

2,z ∩Ωn
3 ⊆Ωn

0,z. This concludes the proof of Proposition 8.1. w

Proposition 8.2 (Oscillation Control). For any T > 0, δ > 0, and ε > 0 there exist h > 0 and h′ > 0 such that

lim inf
n→∞ P

n(ω(Qn(·),h,T) ≤ δ) ≥ 1− ε (8.9)

and

liminf
n→∞ P

n(ω(Zn(·),h′,T) ≤ δ) ≥ 1− ε, (8.10)

where for a measure-valued process X (·), we define

ω(X (·),h,T) :� sup
0≤s, t≤T

{d(X (t),X (s)) : |t− s| < h}:
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Proof. We shall use the idea of proof of Remerova et al. (2014, lemma 13). Let Ωn
q and Ωn

z be the events such that
(8.9) and (8.10) hold, respectively. Denote byΩn

1 the following events:

lim
n→∞P

n( sup
0≤t≤T

||En(t) −E(t)|| ≤ δ=4) � 1:

Furthermore, by Proposition 8.1, there exist a > 0 and b > 0 such that

lim inf
n→∞ P

n( sup
0≤t≤T

||Qn(t)([0,α])|| ≤ δ) ≥ 1− ε

and
liminf
n→∞ P

n( sup
0≤t≤T

||Zn(t)(Hb
0

⋃Vb
0)|| ≤ δ) ≥ 1− ε:

Denote the corresponding events by Ωn
2,q and Ωn

2,z, respectively. Now, choose h and h′ such that h||η|| ≤ δ=2, h ≤
δ�α and h′(||cmax||�1) ≤ δ�b, h′||η|| ≤ δ=2.

We shall show that Ωn
1 ∩Ωn

2,q ⊆Ωn
q and Ωn

1 ∩Ωn
2,z ⊆Ωn

z . Take 0 ≤ s < t ≤ T with t− s < h. Let ω ∈Ωn
1 ∩Ωn

2,q, we
shall show that for any nonempty closed Borel set B ⊆ R+,

Q
n
ij(s)(B) ≤Q

n
ij(t)(Bδ) + δ, (8.11)

Q
n
ij(t)(B) ≤Q

n
ij(s)(Bδ) + δ, (8.12)

where Bδ :� {x ∈ R+ : infy∈B||x− y|| ≤ δ}. Then (8.9) follows. First, we prove (8.11). Define τ :� inf{s ≤ u
≤ t :Q

n
ij(u) � 0} ∧ t. Then, we have that

Q
n
ij(s)(B) ≤Q

n
ij(s)(B ∩ [α,∞)) +Q

n
ij(s)([0,α)) ≤Q

n
ij(s)(B ∩ [α,∞)) + δ,

where the last inequality holds because ω ∈Ωn
2,q. Now, observe that

Q
n
ij(s)(B ∩ [α,∞)) ≤Q

n
ij(τ)(Bδ),

because τ− s < h < δ∧ α. To see the last statement, observe that if for some EV in the system at time s,
Dijl − (s− ζijl) ∈ B, then Dijl − (s− ζijl) −Dijl + (τ− ζijl) ≤ δ, which yieldsDijl + (τ− ζijl) ∈ Bδ. Finally, we have that

Q
n
ij(s)(B) ≤Q

n
ij(τ)(Bδ) + δ:

Now, if τ � t, then (8.11) follows. If τ < t, then 0 ≤Q
n
ij(τ)(Bδ) ≤Q

n
ij(τ) � 0, and (8.11) follows. To show (8.12), we write

Q
n
ij(t)(B) ≤Q

n
ij(s)(Bδ) +E

n
ij(t) −E

n
ij(s) +R

n
ij(s) −R

n
ij(t)

≤Q
n
ij(s)(Bδ) +E

n
ij(t) −E

n
ij(s),

where the second inequality follows because R
n
ij(s) −R

n
ij(t) ≤ 0. Now, (8.12) follows because ω ∈Ωn

1. We conclude
that ω ∈Ωn

q . The proof ofΩ
n
1 ∩Ωn

2,z ⊆Ωn
z follows by similar arguments. w

8.2. Fluid Limits Satisfy the Fluid Model Solutions
The total number of EVs can be written as follows:

Q
n
ij(t) � Q

n
ij(0) + E

n
ij(t) − R

n
ij(t) −D

n
ij(t), (8.13)

where the number of rejected EVs R
n
ij(·) is given by (2.13) and

D
n
ij(t) :�

1
n

∑nQn
ij(0)

l�1
1{D0

ijl≤t} +
1
n

∑nEn
ij(t)

l�1
1{ζijl+Dijl≤t} 1{Qn

i (ζ−ijl)<Ki}:

Proposition 8.3. The fluid-scaled stochastic processesD
n(·) and Rn(·) are tight.

Proof. First, we shall show that D
n
ij(·) is a relatively compact sequence using Kurtz’s criteria (Kang and Ramanan

2010, proposition 6.2), and then by Prokhorov’s theorem, it is tight. Observe that almost surely

D
n
ij(t) ≤

1
n

∑nQn
ij(0)

l�1
1{D0

ijl≤t} +
1
n

∑nEn
ij(t)

l�1
1{ζijl+Dijl≤t}�:Dn,∞

ij (t),
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and by Reed (2009), the latter is a weakly convergent sequence in (D[0, ∞), J1) and hence it is tight. By Prokhor-
ov’s theorem it is also relatively compact. That is,

lim
c→∞P(Dn

ij(t) > c) ≤ lim
c→∞P(Dn,∞

ij (t) > c) � 0:

In other words, D
n
ij(·) is stochastically bounded and hence satisfies the first property of Kurtz’s criteria. To

show that it also satisfies the second property, we write

D
n
ij(t+ δ) −D

n
ij(t) �D

n,∞
ij (t+ δ) −D

n,∞
ij (t) + 1

n

∑nE
n
ij(t+δ)

l�1
1{ζijl+Dijl≤t+δ}1{Qn

i (ζ−ijl)�Ki}

− 1
n

∑nEn
ij(t)

l�1
1{ζijl+Dijl≤t}1{Qn

i (ζ−ijl)�Ki}

�D
n,∞
ij (t+ δ) −D

n,∞
ij (t) + 1

n

∑nE
n
ij(t+δ)

l�1
1{t<ζijl+Dijl≤t+δ} 1{Qn

i (ζ−ijl)�Ki}:

For any t ≥ 0 and n ≥ 1,

1
n

∑nE
n
ij(t+δ)

l�1
1{t<ζijl+Dijl≤t+δ} 1{Qn

i (ζ−ijl)�Ki} ≤ 1
n

∑nE
n
ij(t+δ)

l�1
1{t<ζijl+Dijl≤t+δ}

≤ sup
n

E
n
ij(t+ δ) <∞:

Furthermore, by continuity of the random variables ζijl and Dijl, we have that as δ→ 0,

1
n

∑nE
n
ij(t+δ)

l�1
1{t<ζijl+Dijl≤t+δ} → 0: (8.14)

Putting all the pieces together,

|Dn
ij(t + δ) −D

n
ij(t)| ≤ |Dn,∞

ij (t + δ) −D
n,∞
ij (t)| + 1

n

∑nE
n
ij(t+δ)

l�1
1{t<ζijl+Dijl≤t+δ}:

By (8.14), the fact that D
n,∞
ij (·) is relatively compact and using the same arguments as in Kaspi and Ramanan

(2011, lemma 5.10), we conclude that D
n
ij(·) satisfies the second property of Kurtz’s criteria. That is, D

n
ij(·) is rela-

tively compact and hence tight. The tightness of R
n(·) follows by (8.13) and by the tightness of D

n(·) and
Q

n(·). w

Next, we show that the fluid limits are bounded away from zero.

Proposition 8.4. Let (Q(·),Q(·),Z(·),Z(·)) be a fluid limit. Assume that if Qi(0) � Ki, then 0 <Qij(0) < Ki for any
i, j ≥ 1. For any δ > 0, there exist Cδ > 0 and Cδ

′ > 0 such that almost surely

inf
t≥δmin

i, j
Qij(t) ≥ Cδ and inf

t≥δ min
i, j

Zij(t) ≥ Cδ
′:

Proof. First, we shall show that Qij(·) is strictly positive. It is enough to show this inequality when the system is
not full. Fix Δ > δ. It is enough to show the result for t ∈ [δ,Δ]. Define

τ0i :� inf{δ ≤ s ≤ Δ :Qi(s) � Ki}, τ̃0
i :� inf{τ0i ≤ s ≤ Δ :Qi(s) < Ki},

τri :� inf{τ̃r−1 ≤ s ≤ Δ :Qi(s) � Ki}, τ̃r
i :� inf{τri ≤ s ≤ Δ :Qi(s) < Ki}:

Take a partition

(0,Δ] \ ⋃
r
[τri , τ̃r

i ) ⊆
⋃

1≤m≤N(Δ)
((m − 1)b=2,mb=2]:

By our assumptions for the external arrival process, we have that for any m,

1
n

∑En
ij(mb=2)

l�En
ij((m−1)b=2)+1

1{Dijl≥b} →
d (Eij(mb=2) − Eij((m − 1)b=2))P(Dij > b) > 0,
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where b is a continuity point for the distribution FDij(·) with P(Dij > b) > 0, and the last inequality follows because
Eij(·) is strictly increasing. Choose b such that maxij(Eij(mb=2) −Eij((m− 1)b=2))P(Dij > b) < Ki, and pick Cδ such
that maxij(Eij(mb=2) −Eij((m− 1)b=2))P(Dij > b) > Cδ: Then, for large enough n, we have that for any i, j ≥ 1,

P
n inf

δ≤t≤ΔQ
n
ij(t) ≥ Cδ

( )
≥ P

n inf
(m−1)b=2≤t≤mb=2

Q
n
ij(t) ≥ Cδ for any m

( )

≥ P
n

∑En
ij(mb=2)

l�En
ij((m−1)b=2)+1

1{Dijl≥b} ≥ Cδ for any m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ → 1:

Furthermore, note that by continuity of the limit, we have Q
n
ij(t) �Q

n
ij(τri ) ≥ Cδ for t ∈ [τri , τ̃r

i ). Finally, we have
that there exists Cδ > 0, such that, for any Δ > δ,

P
n( inf

δ≤t≤Δmini,jQ
n
ij(t) ≥ Cδ) → 1,

as n→∞. For any compact set C ⊆ R+, define the mapping φC :D(R+,RI×J) → R, given by φC(y) :�
inft∈Cmini,jyij(t). Note that φC(y) is continuous at a continuous y(·), which implies that

φ[δ,Δ](Qn)→d φ[δ,Δ](Q):
By the Portmanteau theorem (Billingsley 1999, theorem 2.1), we have that

P
n(φ[δ,Δ](Q) ≥ Cδ) ≥ lim sup

n→∞
P
n(φ[δ,Δ](Q

n) ≥ Cδ) � 1:

We now move to the proof of Zij(t) > 0 for t > 0. We first note that Q(·) is independent of Z(·), and hence we
can assume that the fluid limit (Q(·),Q(·)) satisfies the fluid model equations as we shall show later. That is,
(Q(·),Q(·)) satisfies the equations in Proposition 4.1. By Proposition 8.3, we have that the fluid-scaled process
that describes the number of accepted EVs given in (2.12) converges weakly to A(t) :� E(t) −R(t). First, we show
that Aij(t) is strictly increasing for any i, j ≥ 1. Let t1, t2 ≥ 0 with 0 ≤ t1 < t2. Assume that there exists a subinterval
in [t1, t2] such that the total queue length at node i is full. Without loss of generality, assume that there exists τ ∈
[t1, t2] such that Qi(s) � Ki for any s ∈ [τ, t2]. First, assume that τ > t1, then we have that

Aij(t2) −Aij(t1) � Eij(t2) −Rij(t2) −Eij(t1) +Rij(t1)
≥ Eij(t2) −Rij(t2) −Eij(t1) ≥ Eij(τ) −E(t1) > 0:

If τ � t1, then by (4.3), (4.4), and the fact that Qij(t2) �Qij(t1), we obtain

Aij(t2) −Aij(t1) �Dij(t2) −Dij(t1) �
∫ t2

t1
δij(s)ds,

where δij(s) � limε→0
Qij(s)−Q ij(s)([ε,∞))

ε . Furthermore, by the proof of Proposition 7.1, we have that δij(s) � δij(t1) > 0
for s ∈ [t1, t2], and hence Aij(t2) −Aij(t1) > 0. Now, consider a type j EV l at node i. Observe that by the constraints

pij(·) ≤ cmax
j , we have that Bijl

pij(·) ∧Dijl ≥ Bijl

cmax
j

∧Dijl. That is, EV lwill stay in the network at least Bijl

cmax
j

∧Dijl time units af-

ter its arrival. Hence, the stochastic process Zij(·) is bounded from below by the queue length Qinf
ij (·) of the

infinite-server queue with arrival process Aij(·), Qinf
ij (0) � 0, and i.i.d. service requirements

{
Bijl

cmax
j

∧Dijl, l ∈ N

}
. Re-

calling that Aij(·) is strictly increasing by Remerova et al. (2014, lemma 3.14), there exists Cδ
′ > 0 such that, for any

Δ > δ,

P
n( inf

δ≤t≤Δmin
i, j

Z
n
ij(t) ≥ Cδ

′) ≥ P
n( inf

δ≤t≤Δmin
i, j

Q
n,inf
ij (t) ≥ Cδ

′) → 1,

as n→∞. Now, using again the Portmanteau theorem, we have that

P
n(φ[δ,Δ](Z) ≥ Cδ

′) ≥ limsup
n→∞

P
n(φ[δ,Δ](Zn) ≥ Cδ

′) � 1: w
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8.2.1. Fluid Limits Are Fluid Model Solutions. In the sequel, we focus on proving that any fluid limit satisfies the
fluid model equations given in Definition 4.1. Let (Q(·),Q(·),Z(·),Z(·),R(·)) be a fluid limit along a subsequence,
which with an abuse of notation, we denote again by (Qn(·),Qn(·),Zn(·),Zn(·),Rn(·)). Recall that C :� {[x,∞), x ∈
R+} and C′ :� {[x,∞) × [y,∞), x,y ∈ R+}. Proposition 8.1 and Gromoll et al. (2008, lemma 6.2) imply that for any
A ∈ C and A′ ∈ C′, almost surely Qij(t)(∂A) � 0 and Z ij(t)(∂A′) � 0 for t ≥ 0 and i, j ≥ 1. Hence, we can restrict C
and C′ to the following restricted classes: C+ :� {[x,∞), x > 0} and C′+ :� {[x,∞) × [y,∞), x∧ y > 0}. In addition, we
fix T > 0 and we work in the time interval [0,T].

The total number of type j EVs at node i can be written as follows:

Qn
ij(t)(A) � Qn

ij(0)(A + t) + ∑En
ij(t)

l�1
1A(Dijl − (t − ζijl))1{Qn

i (ζ−ijl)<Ki}:

Furthermore, the previous expression can be rewritten as

Qn
ij(t)(A) � Qn

ij(0)(A + t) + ∑An
ij(t)

l�1
1A(Dijl − (t − ξijl)),

where ξijl represents the time of the lth accepted EV and An
ij(·) represents the number of accepted type j EVs at

node i. In the same way, the number of uncharged type j EVs at node i is given by

Zn
ij(t)(A′) � Zn

ij(0)(A′ + (Snij(Zn, 0, t), t)) + ∑An
ij(t)

l�1
1A′ (Bijl − Snij(Zn,ξijl, t),Dijl − (t− ξijl)):

In these expressions, we relabel the parking times and the charging requirements accordingly, where with
abuse of notation we denote them by the same letters. Now, we can follow the strategy in Remerova et al.
(2014, section 7.6). Consider a partition 0 < t0 <⋯< tN � t and take a nonincreasing function y(·) in [t0, t] such
that

sup
t0≤s≤t

|Sij(Zn, s, t) − y(s)| ≤ δ,

for some δ > 0. For ξijl ∈ (tr, tr+1], the following inequalities hold:

Dijl − (t− tr) ≤Dijl − (t− ξijl) ≤Dijl − (t− tr+1),
Bijl − (y(tr) + δ) ≤ Bijl − Snij(Zn,ξijl, t) ≤ Bijl − (y(tr+1) + δ):

Now, define the following quantities:

Γn,1ij (t) :� ∑N−1

r�0
(Aij(tr+1) − Aij(tr))FDij(A + (t − tr)) − X̃

n
,

Γn,2ij (t) :� ∑N−1

r�0
(Aij(tr+1) − Aij(tr))FDij(A + (t − tr+1)) + X̃

n + Aij(t0) + X̃
n
,

Γn,3ij (t) :� ∑N−1

r�0
(Aij(tr+1) − Aij(tr))Fij(A′ + (y(tr) + δ, t − tr)) − Xn,

Γn,4ij (t) :� ∑N−1

r�0
(Aij(tr+1) − Aij(tr))Fij(A′ + (y(tr+1) + δ, t − tr+1))

+Xn + Aij(t0) + Xn,

where

X̃
n
:� sup

A∈C
sup

0≤s≤t≤T

∣∣∣∣∣∣Ln,Q(s, t)(A) − (A(t) − A(s))◦FD(A)
∣∣∣∣∣∣,

with

L
n,Q
ij (s, t)(A) � 1

n

∑An
ij(nt)

l�1
δDijl(A) −

1
n

∑An
ij(ns)

l�1
δDijl(A),
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and

Xn :� sup
A′∈C′

sup
0≤s≤t≤T

∣∣∣∣∣∣Ln(s, t)(A′) − (A(t) − A(s)) ◦ F(A′)
∣∣∣∣∣∣,

with

L
n
ij(s, t)(A′) � 1

n

∑An
ij(nt)

l�1
δ(Bijl,Dijl)(A′) − 1

n

∑An
ij(ns)

l�1
δ(Bijl,Dijl)(A′):

Then, the following bounds hold:

Γn,1ij (t) ≤ Q
n
ij(t)(A) −Q

n
ij(0)(A + t) ≤ Γn,2ij (t)

and

Γn,3ij (t) ≤ Z
n
ij(t)(A′) − Z

n
ij(0)(A′ + (Snij(Zn, 0, t), t)) ≤ Γn,4ij (t):

By Gromoll et al. (2008, lemma 5.1), we have that

X̃
n →d 0 and Xn →d 0,

as n→∞. By Skorokhod’s representation theorem (Billingsley 1999), we can assume that all random elements
are defined on a common probability space. Furthermore, by the dominated convergence theorem (Rudin 1987),
we have that Sij(Zn, s, t) → Sij(Z, s, t), for s ∈ [t0, t] as n→∞. Moreover, the function Sij(Z, s, t) is continuous, and
Sij(Zn

, s, t) is monotone in s. Hence, we have that

sup
t0≤s≤t

|Sij(Zn
, s, t) − Sij(Z, s, t)| → 0:

Now, the convergence follows by adapting the conclusion of the proof of Remerova et al. (2014, theorem 5, sec-
tion 7.6).

In the remainder, we show that the fluid limit also satisfies the additional relations in Definition 4.1. Observe
that by (2.13) and the definition of the Riemann-Stieltjes integral, we have that

R
n
i (t) :�

∑J

j�1
R

n
ij(t) �

∫ t

0
1{Qn

i (s−)�Ki}d
∑J

j�1
E
n
ij(s):

Now, define

H
n
i (t) :�

∫ t

0

∑J

j�1
λij(s) 1{Qn

i (s−)�Ki}ds,

and notice that

R
n
i (t) −H

n
i (t) �

∫ t

0
1{Qn

i (s−)�Ki}d
∑J

j�1
(En

ij(s) −
∫ s

0
λij(u)du):

By our assumptions for the arrival processes, we obtain that R
n
i (·) −H

n
i (·)→

d
0 as n→∞, and hence

H
n
i (·)→

d
Ri(·). Now, by (2.13), the number of rejected type j EVs at node i can be written as follows:

R
n
ij(t) �

∫ t

0
1{Qn

i (s−)�Ki}d(E
n
ij(s) −

∫ s

0
λij(u)du) +

∫ t

0

λij(s)∑J
h�1λih(s)

dH
n
i (s):

Using the assumption of the external arrival process and the fact that H
n
i (·)→

d
Ri(·), we derive that R

n
ij(·)→

d
Rij(·)

and

Rij(t) �
∫ t

0

λij(s)∑J
h�1λih(s)

dRi(s):

We proved that any subsequential limit (Q(·),Q(·),Z(·),Z(·),R(·)) satisfies the fluid model equations given in
Definition 4.1, and hence the proof of Theorem 5.1 is completed.
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