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Abstract
In this paper we consider implications of the current world-wide inclusion of computational thinking in relation to children’s 
development of algebraic thinking. Little is known about how newly developed visual programming environments such as 
Scratch could enhance early algebra learning. The study is based on examples of programming activities used by mathemat-
ics teachers in Sweden, teaching students aged 10–12 years during the first two years of implementing programming in the 
mathematics curriculum. Informed by Chevallard’s praxeology in terms of praxis and logos, we describe, unpack, discuss 
and expand these activities. Core issues related to algebra found in the three activities are as follows: making implicit vari-
ables explicit; using a counter variable; and identifying parameters as a specific type of variable. Our findings show that, in 
addition to already identified uses of variables in early algebra, programming activities in the early years bring in new aspects 
and new ways of treating variables that could, potentially, enhance students’ understanding of variables and generalization, 
provided that programming praxis is embedded in an appropriate algebra logos.

Keywords Variables · Early algebra · Programming · Scratch · Logos · Praxis

1 Introduction

Over the past 50 years, school mathematics has transformed 
in many ways, and significantly so for the age group of 5- to 
12-year-olds. One change is that algebra has moved down 
in the school system; early algebraic thinking has been 
introduced as an important part of the mathematics curricu-
lum in primary school, and as a growing field of research 
(Kieran, 2018). In recent years, computational thinking has 
commenced on a similar trajectory, as programming is mak-
ing its way into schools worldwide (Mannila et al., 2014). 
Programming activities, unplugged and as coding in a large 
variety of computer languages, have been introduced both 
as a tool for mathematics and as content in its own right. In 
many countries the connection to mathematics is emphasised 
by including programming in the mathematics curriculum 

(Bocconi et al., 2018), and in Sweden a specific connection 
has been made to algebra (Bråting et al., 2021). Regardless 
of the initial intentions and the path taken, once a digital tool 
has entered into the mathematics classroom it contributes to 
a transformation of school mathematics.

In the ICME-13 topical survey on Early Algebra (Kieran 
et al., 2016), the need for exploratory studies of digital 
tools in early algebra was identified. In this paper we seek 
to investigate how visual programming could change or 
contribute to the teaching and learning of variables in early 
algebra. The aim is to unpack different meanings of variables 
that come into play in programming activities. A focus on 
variables reveals a chasm between programming syntax and 
algebraic thinking, in which variables are used in slightly 
different ways, with sometimes inconsistent meanings 
(Bråting & Kilhamn, 2021; Partanen & Tolvanen, 2019). 
Here, we dig more deeply into these meanings, exploring 
what impact children’s encounter with variables through 
programming could have on their development of algebraic 
thinking. The paper is based on previously collected teacher-
designed activities in which programming was introduced in 
mathematics lessons. By analysing the teachers’ lesson plans 
and evaluation of the classroom activities, and then tinker-
ing with and redesigning the tasks used, we endeavoured to 

 * C. Kilhamn 
 cecilia.kilhamn@ped.gu.se

1 University of Gothenburg, Gothenburg, Sweden
2 Uppsala University, Uppsala, Sweden
3 Open University, Milton Keynes, UK
4 Oxford University, Oxford, UK

http://orcid.org/0000-0003-2294-4996
http://crossmark.crossref.org/dialog/?doi=10.1007/s11858-022-01384-0&domain=pdf


 C. Kilhamn et al.

1 3

answer the following research questions: What aspects of 
variables appear in programming activities using Scratch? 
How can these activities be modified in order to exploit their 
didactic potentials in relation to early algebra?

2  Variables in early algebra

Using and manipulating variables represented by letters has 
been seen as a core element in school algebra. However, as 
the introduction of algebra in school mathematics has moved 
down the school system from traditionally being introduced 
in lower secondary school, algebraic thinking and the use 
of algebraic tools has been extended to incorporate much 
more than manipulation of alpha-numerical symbols (Kieran 
et al., 2016). The teaching and learning of algebra in the 
early grades can be approached from different perspectives, 
applying a variety of mathematical tools and representations. 
Some claim that algebraic thinking precedes understanding 
of arithmetic (Britt & Irwin, 2011) and research has shown 
that children can learn to handle symbols for as-yet-unspec-
ified quantities even before they handle specific numbers 
(Davydov, 1972/1990). Others emphasise early algebra 
as generalised arithmetic or functional thinking (Blanton 
et al., 2011; Kaput, 2008). In an attempt to define algebraic 
thinking in the early grades, Kieran (2004) describes it as 
involving “ways of thinking within activities for which let-
ter-symbolic algebra can be used as a tool but which are not 
exclusive to algebra and which could be engaged in without 
using any letter-symbolic algebra at all” (p. 149).

2.1  Different meanings of variables

Although the essence of algebra is about making claims 
about and operating on quantities that are not specified, 
the ability to operate on variables without evaluating them 
seems to be a struggle for students. Many researchers, fol-
lowing Küchemann (1978), have studied students’ concep-
tions and misconceptions of variables (see Bush & Karp, 
2013, for an overview). Traditionally, these conceptions 
were tied to the use of alpha-numerical letters, but in early 
algebra more unconventional and often transient symbol 
systems appear. Radford (2014) described embodied forms 
of non-symbolic algebraic thinking as a first step towards 
the use of culturally evolved symbol systems. Furthermore, 
early algebra researchers all highlight the essential role of 
natural language in the development of algebraic thinking 
(Kieran et al., 2016).

The use of variables is seen as fundamental for algebra 
(Carraher & Schlieman, 2007). In the early days of the 
Dutch realistic mathematics education movement, Treffers 
(1987) describes different aspects of variables and the rep-
resentation of numbers by letters as an increasing level of 

abstraction within mathematics itself. He brought up four 
aspects of such representations, namely, generality—as 
any number, variability—that it may take different values, 
specificity—as a particular as-yet-unknown number, and 
constancy—a number that is unknown but stays the same. 
Over the years, many mathematics education researchers 
have described different meanings of variables in school 
algebra, identifying the same four aspects using slightly dif-
ferent terms, such as generalised numbers, varying varia-
bles, unknowns, and placeholders (e.g., Ely & Adams, 2012; 
Partanen & Tolvanen, 2019; Usiskin, 1988). Since letters are 
not always present in early algebra, Radford (2014) intro-
duced the term indeterminate quantities, with the idea that 
children could meet generalization and structure through any 
kind of symbolic placeholders that represent as-yet-unknown 
or as-yet-unspecified quantities. Integrating the different 
interpretations of variables and giving them meaning is a 
considerable didactical challenge.

Drawing on several decades of research about algebraic 
thinking, Radford (2014) suggested three conditions that 
characterise early algebraic thinking, as follows: (a) inde-
terminacy, i.e., involving unknown numbers, variables, 
parameters, etc.; (b) denotation—the indeterminate numbers 
are named or symbolized in various ways; and (c) analytic-
ity—the indeterminate quantities are treated as if they were 
known numbers. In this paper we adhere to these condi-
tions to describe the use of variables in early algebra, also 
recognising that algebraic thinking is to a large extent the 
recognition and articulation of generality, of seeing the gen-
eral through the particular and of seeing the particular in the 
general (Mason et al., 2005).

2.2  Variables in programming

In addition to semiotic tools and symbolism, the last few 
decades have produced an impressive development of digital 
environments to mediate mathematical learning. However, in 
the early years of computer development, Sutherland (1993) 
found that students’ unassisted use of computer variables 
was strongly related to their first assisted use of the idea, 
thus highlighting the role of the teacher when digital tools 
are used. In recent years, the use and meaning of variables 
in programming have come to play an increasing role in 
mathematics, and highlighted a new domain for mathematics 
teachers to embrace.

Programming in school mathematics was first introduced 
during the 1980’s with the development of the Logo envi-
ronment, specifically designed to help students develop 
a mathematical cast of mind (Noss, 1986; Papert, 1980). 
Noss (1986) studied how school children of age 8 to 11 years 
learned about variables through logo programming and con-
cluded that “children may—under the appropriate condi-
tions—make use of the algebra they have used in a Logo 
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environment, in order to construct algebraic meaning in a 
non-computational context” (p. 354), but he also pointed 
out the necessity of linking experiences from Logo to the 
formalism of traditional algebra.

In programming, a variable can be described as a memory 
location, and the value of the variable as the contents of this 
memory register (Usiskin, 1988). The value assigned to the 
variable in the code is stored in the computer’s memory and 
may be changed many times as the code is executed. This 
variability differs from school algebra, in which a variable 
always represents a number that stays the same throughout 
the whole algebraic expression and any manipulations made 
with it. In addition, an as-yet-unspecified number can often 
be determined at the end of an algebraic manipulation. In 
contrast to algebra, where we use single letters for the sake 
of easing manipulations, a computer can deal with long vari-
able names. Naming variables with descriptive words has 
been shown to decrease errors, but moving from long vari-
able names to short abbreviations or single letters can some-
times be a difficult transition for programmers (Hofmeister 
et al., 2019).

Compared to what we have been used to in school 
algebra, variables in early programming activities show a 
slightly different face (Bråting & Kilhamn, 2021). Firstly, 
they do not always represent quantities, and secondly, they 
are represented using different registers in which they can 
behave in idiosyncratic ways. Defining a variable x, and then 
writing, for example x = x + 2 is an untrue statement in alge-
bra, but a perfectly reasonable instruction of assignment in 
a computer code. This example illustrates Duval’s (2006) 
claim that signs make sense only within their own registers. 
At the same time, Duval argues, it is through transforma-
tions within and between registers that learners have access 
to abstract mathematical objects.

3  Theoretical framework

This study is part of a more comprehensive research project 
regarding the implementation of programming in Swedish 
school mathematics (Bråting et al., 2021). The project as a 
whole is embedded in Chevallard’s (2006) framework of 
how knowledge is transposed between different instances 
of the educational system. The outcomes of the process of 

teaching and learning depend on the humans involved in 
it, starting with scholars developing and determining the 
knowledge at one end, and ending with the students’ learned 
knowledge at the other (Fig. 1). In terms of this project, 
scholarly knowledge of programming as a science and as 
a tool for mathematicians is turned into knowledge to be 
taught and learned in mathematics classrooms. In each trans-
position, knowledge changes through interpretations and 
choices made by the individuals involved. Specifically, in 
this paper, we zoom in on the transposition of knowledge of 
programming in mathematics from ‘Knowledge to be taught’ 
to ‘Taught knowledge’ (encircled in red in Fig. 1).

In Chevallard’s discourse of transposition of knowledge, 
presented tasks and activities evoke elements of praxis 
often referred to as ‘know-how’, including knowing-what 
and knowing-how. Allied with praxis is logos—the theo-
retical underpinnings and justifications of praxis, which 
guide teachers’ didactical actions and their expectations of 
learners. The combination of logos and praxis constitutes 
what Chevallard (2006) calls a praxeology. Logos describes 
knowing-why certain tasks and techniques are introduced 
or employed. Depending on the relation between praxis and 
logos, a task can induce quite different kinds of learning.

In this paper, we analyse three programming tasks taken 
from authentic mathematics lessons and discuss how a 
transformation of logos could change the learning poten-
tial of a given task or technique. In the discourse of didac-
tic transposition, a discussion of affordances and possible 
improvements of a task presumes a logos perspective, since 
the discourse in which a task makes sense co-determines 
what we consider as worthwhile learning from it. We look 
at praxis in light of the underlying logos. If praxis is justified 
by and centred around mainly computational thinking goals, 
programming syntax and variables in the computer sense 
of assignment, we identify the logos as CT (see Sect. 4). In 
contrast, an algebra logos implies algebraic learning goals 
and justifications in line with Radford’s (2014) three condi-
tions described above and Mason et al.’s (2005) emphasis 
on generalisation.

The sequence of didactic transpositions poses a number 
of issues. Allied with transpositions are the range of didactic 
choices available to teachers, and those that are enacted. A 
narrow range of available didactic actions necessarily leads 
to a narrowly determined learning pathway; a broad range 

Fig. 1  The didactic transposition (Bosch & Gascón, 2006)
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of available actions opens up the possibility of responsive 
and sensitive choices, enabling a richer learning pathway. 
Didactic choices are centred around what, in the moment, 
forms the object(s) of learning as perceived by the teacher. 
For example, a focus on variable as used in algebra is likely 
to bring different actions to the surface than does a focus on 
programming syntax.

As with any mathematical problem, looking back, as 
George Pólya (1954) expressed it, involves asking yourself 
how something could be used in the future, and tinkering 
with aspects of it in order to appreciate the scope of gener-
ality available from the one example. Re-flecting includes 
pro-flecting, imagining yourself in some future situation 
making use of what has been learned or encountered cur-
rently (Mason, 2002). Tinkering with examples, and noting 
not just the results of tinkering but the nature of that tinker-
ing, enriches the space of examples to which you may have 
access in the future (Watson & Mason, 2005). Taking this to 
heart, in this paper we attempt to tinker with tasks presented 
by teachers, to see what they could potentially enhance in 
relation to algebra learning.

4  Programming in school mathematics

Recent years have seen a surge in introducing programming 
in school curricula (Blikstein, 2018). To a large extent this 
is driven by arguments related to preparing students for a 
digital society. In conjunction with this and as a comple-
ment to mathematical thinking skills, different ways of 
thinking about digital competences have been launched and 
relaunched, most importantly computational thinking (CT). 
Introduced by Papert (1980), the term was popularized again 
by Wing (2006) and later filled with detailed content in the 
form of categories of competencies (Brennan & Resnick, 
2012).

4.1  Programming for children

In many countries we now find young children engaged in 
reasoning about structures and patterns in computer algo-
rithms while creating, remixing and debugging code during 
mathematics lessons. A tradition that goes back to Papert, 
and beyond, is to build particular programming environ-
ments where children can explore the world of programming 
and develop computational thinking. The classic example is 
Logo (Papert, 1980) and the most prominent modern exam-
ple is Scratch. While Logo to a large degree was dedicated to 
the learning of mathematics in a programming environment 
(Noss, 1986), the main goal of the Scratch environment is to 
increase digital fluency among children at large, by engag-
ing them in creative digital design (Resnick et al., 2009). 

According to the website,1 Scratch is a free-of-charge world-
wide coding community for children, used by more than 200 
million during 2021. It was launched in 2013 and is now 
available in 70 languages. Although popular and inspiring, 
Scratch does not automatically lead to mathematics learning. 
In the ScratchMaths project in the UK (Benton et al., 2017; 
Hoyles & Noss, 2015), design principles for programming 
activities in Scratch that also enhance mathematics learning 
were developed during an extensive teaching experiment. An 
independent evaluation of the project found that children in 
ScratchMaths schools made progress in CT, but there was 
no evidence of any impact on their mathematics outcomes 
(Boylan et al., 2018).

4.2  Programming and algebra—the Swedish case

The recently revised Swedish curriculum for mathematics 
(Swedish National Agency of Education, 2018) calls for the 
introduction of programming to be included in mathematics. 
Furthermore, it is placed within the core content of algebra, 
hence the inclusion of programming implies a change in 
how students encounter algebraic ideas such as variables 
and generalization. This radical inclusion gives us a unique 
opportunity to explore the intersection of programming and 
school algebra.

When the core content of algebra is described in the cur-
riculum, programming is included as one among several 
other algebraic ideas, emphasising stepwise instructions 
and algorithms, first in visual programming environments 
and later in text-based environments. Other algebraic ideas 
are introduced gradually, as follows: equalities and patterns 
in grades 1–3; unknown numbers, algebraic expressions and 
equations, as well as the coordinate plane and simple graphs 
in grades 4–6; variables, linear equations, graphs and formu-
las as well as functions in grades 7–9. In all grades, different 
aspects of indeterminate quantities appear, with an increas-
ing level of abstraction starting with unknown numbers.

When it comes to programming, which is new to all and 
briefly described, teachers are faced with the challenge of 
identifying learning objectives, planning activities, creating 
tasks, and choosing techniques that can be justified within 
what they recognise as algebra, or at least as mathematics. 
An analysis of the way programming was introduced in 
the Swedish curriculum describes it as praxis-oriented and 
almost ‘logos free’, leaving teachers with little guidance as 
to the purpose of teaching programming or the justification 
of choices they make (Helenius & Misfeldt, 2021).

In an effort to support teachers, the research institute 
Ifous2 ran a three-year project with teachers using a lesson 

1 https:// www. scrat chfou ndati on. org/ our- story (20 December, 2021).
2 https:// www. ifous. se/ about/.

https://www.scratchfoundation.org/our-story
https://www.ifous.se/about/
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study design to develop lessons including programming, 
in line with the new curriculum. The final evaluation and 
project report (Jahnke, 2020), claimed that many of the 
tasks could potentially help develop CT competencies as 
described by Brennan and Resnick (2012). However, the 
report also showed that in the cases where mathematical 
learning was gauged, students in control groups using pen 
and paper methods learned more about the mathematical 
concepts and methods involved. Through interviews it was 
concluded that teachers struggled to use programming for 
mathematical learning. Learning to program seemed to be 
given priority over questions about how programming could 
be useful in relation to learning mathematics (Kilhamn et al., 
2021).

In summary, the results from the Ifous project reinforced 
that it is hard to design mathematics lessons using Scratch 
code while also catering for mathematical development on 
a profound level. This is in line with the call from Gadanidis 
et al. (2017) that ‘We need many more cases of what might 
be in mathematics and CT integration to better understand 
the role CT affordances might play in disrupting and improv-
ing mathematics education’ (p. 94). In the current paper we 
report an effort to do so through using a selection of lessons 
and associated Scratch code from the Ifous project, and a 
follow-up project modifying them, to show how important 
mathematical learning opportunities related to algebra could 
be opened up.

5  The study

In this paper we present an in-depth analysis of three tasks 
taken from authentic mathematics lessons developed within 
the Ifous project mentioned above (Jahnke, 2020). In the 
project, 135 teachers were engaged in traditional lesson 
studies as described by Takahashi and Yoshida (2004). 
Their challenge was to develop lessons to teach program-
ming within the frames of existing school subjects, when it 
was first introduced in the curriculum. In total, the project 
produced 32 mathematics lessons intricately balancing, on 
the one hand, learning of some traditional mathematics, and 
on the other hand, learning to use a specific programming 
environment. Each lesson was jointly planned by a group of 
teachers, who tried out, observed, evaluated and improved 
the lesson at least once in a traditional lesson study cycle. 
To report their work and share ideas within the larger group, 
the teachers created written documentations of their lesson 
studies. These documents were analysed earlier (Kilhamn 
et al., 2021), where findings showed that CT skills were fore-
grounded in most lessons, and that mathematics was often 
either non-existent (in 1/3 of the lessons) or serving only as 
a backdrop (in 1/3 of the lessons). Concerning mathematical 
content, the lessons were dominated by geometry and basic 

arithmetic. In particular, explicit algebra learning goals were 
absent. However, amongst the 32 mathematics lessons we 
found three, where variables were in play in different, but 
mathematically relevant, ways. The teachers’ written docu-
ments describing the task, complemented by their written 
lesson plans and evaluations of each of these three lessons 
constitute the data for the current study. The tasks are seen as 
examples of authentic teacher-planned activities that could 
potentially enhance algebraic thinking.

All three tasks included code in the visual environment 
called Scratch, where a code is built by dragging pre-defined 
blocks from one area to another on the screen and then 
ordering them sequentially in stacks connecting them to 
each other like a jigsaw puzzle (Resnick et al., 2009). There 
are different types of blocks identified by colour, where for 
example variable blocks are orange and motion blocks are 
blue (see Fig. 3). The environment includes three interface 
areas, one with available blocks, one where the code is built, 
and one where things happen when the program is executed. 
Figures or icons in the latter area that are acted on through 
the program are called sprites.

Each of the three tasks was individually analysed by at 
least two of the authors with the aim of identifying praxis 
(what and how) and logos (arguments and justifications for 
the choice of what and how, including learning goals) in the 
way the task was enacted, specifically focussing on the use 
of variables. All tasks provided both unexploited potentials 
and constraints related to algebra. In several rounds of tink-
ering and joint reflection, we then designed extensions and 
modifications to exploit didactical potential of the tasks. By 
viewing the task from a logos perspective, we asked what 
aspects of variables it could potentially enhance, and then 
modified the task in line with an algebra logos.

In the following Sects. 6, 7 and 8, the three tasks Drawing 
circles, Using a counter variable and A function machine 
are presented, each in three parts. Part 1 poses the initial 
task as described by the teacher and presented in class. Part 
2 describes our analyses of core issues related to the task 
from an algebra point of view, including a discussion of 
the teachers’ intentions. In part 3 we tinker with the task to 
develop variations and extensions that could further enhance 
algebraic ideas and possibilities of generalisation, based on 
an algebra logos aligned with the definition of early alge-
bra described by Radford (2014) and a focus on generality 
described by Mason et al. (2005).

6  Drawing circles

The first lesson was designed by three teachers and tried out 
first in grade 6 (with students of age 12 years) and then in 
grade 4 (age 10). According to the teachers, the aim of the 
lesson was to construct a geometrical object using a digital 
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tool, but also to experience the relationship between the 
number of degrees in a circle and the number of degrees in 
a semicircle, and later in smaller parts of a circle. However, 
the learning objectives were, using the words of the teachers, 
to ‘follow instructions, understand concepts, notice relation-
ships, share knowledge and to code using Scratch’.

6.1  Initial task

At the start of the lesson, the teacher gave explicit step-
by-step instructions showing how the Scratch code works 
(Fig. 2), expecting the students to construct the same code 
on their own computers. The teacher ran the program and 
discussed with the class why there is a repeat of 360 and a 
turn of one degree each time and why the result is a circle. 
Then the teacher asked: ‘What do we need to change in the 
code to make a semicircle, a quarter of a circle or a third of 
a circle? Try it out! Help each other’. Eventually the final 
problem was posed, as follows: to make a full circle where 
half the surface is red and half is blue. The drawn figure was 
labelled a circle, with no distinction made between the disc 
and the boundary.

The code starts by denoting a position (x, y) that will be 
the centre of the circle; adds direction with 90° being to the 
right on the screen; and sets pen size and colour. Then a loop 
is introduced where the pen draws lines from the centre to 
the boundary and back, turns 1° and repeats 360 times to 
create a full coloured disc.

6.2  Core issue: making implicit variables explicit

The original code does not include any variable blocks 
(orange blocks in Scratch), and there are no explicit vari-
ables in the standard mathematical sense. From a mathe-
matical point of view, the current position of the sprite is its 
x- and y-coordinates, but these are kept implicit and never 
operated on directly except when they are both set to 0 at 
the start. Instead, because the environment provides sev-
eral movement commands (move and turn are blue motion 
blocks, set and pen up are green operator blocks), the posi-
tion and the associated x- and y-values are, so to say, ‘oper-
ated on indirectly’. In fact, the program contains several such 
implicit variables, some presented in Table 1.

If we relate the technique used to a CT logos, the task 
seems rather successful, boosting computational concepts 
and practices as described by Brennan and Resnick (2012). 
The modification of making two semicircles of different col-
our decomposes the loop and the role of the number 360. But 
since the teachers do not mention variables in their lesson 
plan or evaluation, this aspect of the task can be seen as a 
hidden potential.

Several ways of modifying the task to enhance the learn-
ing of variables spring to mind, but choice of direction to 
explore depends on which kind of logos is foremost. Set-
ting the task in an algebra logos would highlight the role of 
variables. Most of the implicit variables in Table 1 could be 
made explicit in the sense that they could be given a name 
and then be operated on. Once we have them as variables 
it is possible, (a) to let the program ask for values for these 
variables at the start of each run, and (b) to change or let the 
program change values and repeat the code. Doing so, would 
create indeterminate numbers that are symbolized and acted 
upon analytically.

Fig. 2  Scratch code to draw a red circle

Table 1  Implicit variables in the original code

Implicit variable Block

sprite_position go to, move
sprite_rotation point in direction, turn
pen_size set pen size to
pen_color set pen color to
pen_location pen up, pen down
loop_counter Repeat
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6.3  Task modifications and possible didactic actions

Let us first consider the position of the sprite. At any state 
in which the program can be, the position is specified by 
the two quantities, x and y, which remain implicit. To 
make them explicit we can create variable blocks labelled 
x and y (see Fig. 3). To make the program change val-
ues, we defined a new red block that draws a red circle, 
and then placed it in a loop and added the variable block 
‘change x by 50’. This way the program draws several cir-
cles in succession. When this is done, we get nested loops 
and it is vital to understand what needs to be inside each 
loop and what remains outside. The code quickly becomes 
very long, which is a constraint when using Scratch that 
can be dealt with by defining new blocks. The outer loop 
now includes a block named ‘red circle’ which, in turn, 
includes a loop. By changing the background to a coordi-
nate plane, it is also easier to locate the circle in relation 
to the x and y values, thus making the mathematics more 
visible. Figure 3 shows the code and the result when the 
program is run. Now it is possible to discuss the value of 
x and y in a more general sense and explore the variables x 

and y through inserting different starting values and chang-
ing values.

Another extension would be to set the task in a computer 
graphics context and ask how well the program draws a cir-
cle (or disc). The implicit variables that affect the resulting 
image are pen size, number of rays, and number of steps 
moved. To assist exploration, we made them explicit by 
choosing orange variable blocks in the Scratch code and 
naming them raythickness, raynumber and radius (see 
Fig. 4).

Results of a selection of values on these variables is 
shown in Fig. 5. The original choice in Fig. 4 produces a rea-
sonable image of a disc, see left part of Fig. 5. To the right is 
the result when only drawing 90 rays. What are appropriate 
choices for the number and thickness of the rays for a given 
radius? The teacher can let the students experiment with 
different combinations and come up with hypotheses on suit-
able combinations of values. For example, few but thick rays 
will cover the disc, but produce a ‘flowery’ perimeter. Using 
a very high number of rays will make the drawing slow. At 
some point, the teacher could ask if there is a general rule 
that produces a reasonable image. One insight gained by 

Fig. 3  Scratch code to draw four red circles. The left code uses the 
variable blocks ‘set x to_’ and ‘set y to _’, and then repeats the red 
circle described in the new block ‘red circle’. For each repeat the x 

value is changed by 50. To the right is the result shown on screen 
when the code is run
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exploration could be that a minimum requirement to avoid 
fraying is that the accumulated width of all the rays must be 
at least as large as the circumference of the circle.

7  Using a counter variable

The second lesson was designed by three teachers, aimed at 
students in grade 6 (age 12) and also tried out with program-
ming novices in grades 7 and 8. According to the teachers, 
the learning objective was ‘to understand how programming 
can help create algorithms to solve and visualise mathemati-
cal methods’. The mathematical object of learning was to 
enact a particular multiplication by using repeated addition 
and to ‘get an introduction to new mathematical concepts, 
for example variable’. The teachers reported that the stu-
dents already had a good understanding of multiplication as 
repeated addition, and they found that programming syntax 
became the focus of attention.

7.1  Initial task

The teacher started the lesson by writing on the board: 
3 + 3 + 3 + 3 + 3, and asking whether it is possible to sim-
plify, leading on to ‘what does multiplication mean?’. 
Instructions were then put on the board:

Copy the Scratch code (Fig. 6)
Run the program
Try to compress the code
Try changing the operation

Fig. 4  Scratch code in which implicit variables have been made 
explicit

Fig. 5  At radius 100 and ray thickness 2, 360 rays (left image) will produce a shape of a disc while 90 rays (right image) will produce an image 
with frayed edges where the individual rays are visible
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We do not know what the teachers expected when ask-
ing students to compress the code, but we do know through 
their evaluation of the lesson that no one managed to do this.

In the Scratch code the two variables count and sum are 
named and given starting values 0. Then the number to be 
repeated and the number of repetitions are introduced as the 
two variables var1 and var2, and given values through the 
interactive ask and answer blocks. Finally, a loop is con-
structed where the count variable is gradually increased until 
it is equal to var2. For each iteration the sprite will write the 
relevant multiplication on the screen. The values of var1 and 
var2 are never reassigned: they keep their values through-
out the whole program. This is different from the variables 
count and sum which change their values during the pro-
gram. The count variable increases in order to keep track 
of the repeated additions and the sum variable accumulates 
the repeated additions. The final value stored in the variable 
sum is the result of the repeated addition, that is, sum is an 
output variable.

7.2  Core issue: a counter variable

In this example we have many variables, and issues arise 
concerning the transitions from implicit to explicitly 
named variables, including the use of a counter variable. 
There are also a number of issues related to Scratch syn-
tax, as follows: the use of different coloured blocks; what 

to place inside and outside the loop; and differentiating 
between input and output.

Whereas a human can keep track of two or even three 
things simultaneously, a computer needs to be told a 
sequence of steps. Consequently, names or labels are used 
for locations in which a value is stored, and which can be 
accessed by reference to the label. The label stands for the 
value currently within the location. In programming, nam-
ing a variable (for example var1) and assigning a value to 
the variable (here ‘answer’) are two different processes. 
Unlike in algebra, the name of a variable often reflects its 
content and gives the programmer a better understanding 
of the purpose of the variable, such as the count and sum 
variables in this code.

The answer block is a temporary variable, although not 
identified as a Scratch variable in an orange block since it 
is tightly bound to the sensing block ask. Answer is needed 
as an intermediate step between the value entered by the 
user and the computer’s assignment of this value to the 
variable var1. The next question generates a new answer, 
and when the value of answer is retrieved for var2, it refers 
to the second answer. In contrast to algebraic notation, this 
is an example of how variables with the same name can 
refer to different values in the same code.

The idea of using a variable as a counter in order to 
keep track of a repeated action is perfectly natural. Young 
children learn to do it when asked how many objects are 
made from combining two known piles, starting with the 
larger number and then counting-on the further number, 
and subtracting by counting-down from one number to 
another while keeping track of the number counted. What 
in programming is a straightforward use of the same idea 
in a different register, in the algebra register needs a com-
plex collection of signs and subscripts to be expressed 
effectively, increasing the gap between intuition and alge-
braic notation:

It would make sense to rehearse the actions of counting-
on and counting-down with learners in order to bring to the 
surface the idea of a counter which keeps track of the num-
ber of repetitions, and the idea of a variable which stores 
the current value. In terms of early algebra, the important 
realisation for learners is the use of symbols to stand for as-
yet-unknown or as-yet-unspecified quantities, and the possi-
bility of expressing general relationships using these labels.

The task as conceived by the teachers emphasised the 
what and how of syntax, without much reflection on why 
the students should work on syntax. In a CT logos it may 
make sense to delay explicit instruction in syntax, treating it 
either as a puzzle to be resolved by tinkering with examples, 

S1 = a; S
n+1 = S

n
+ a =

n+1
∑

1

a

Fig. 6  Scratch code for repeated addition
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or as an afterthought for reflection once templates have been 
adapted by learners.

7.3  Task modifications and possible didactic actions

In this modification we introduced an algebra logos by offer-
ing an alternative focus in setting up a counter to repeat a 
more complex action a specified number of times. Adding 
up 7 copies of 3 presents neither sufficient challenge, nor 
sufficient utility to trigger motivation or excitement. It may 
have been chosen so as not to complicate things, but one 
advantage of integrating programming with mathematics 
is to enrich and extend the mathematical scope by making 
use of fast machines. Therefore, the first modification was 
to increase the numbers. When the lesson starts, students 
might find on the board: 147 + 147 + 147 + ⋯ going on as 
long as will fit on the board, and they might be faced with 
the question ‘There are 239 terms here, how shall we get 
the computer to help us?’. Then, since the repeated addition 
is no longer needed once the connection to multiplication 
has been made, a more interesting use of a counter could be 
to generate the sum of consecutive numbers. For example, 
147 + 148 + 149 + 150 + ⋯. While the first is readily spotted 
as answered using multiplication, which can be done with a 
calculator or by hand, the second involves much more work.

The didactic choice of task details is to make the task 
just out of reach of the students’ immediate capacity, while 
remaining within their familiar actions. The teacher can take 
responses, acknowledging that this looks like a lot of work, 
and suggest trying a simpler example, in order to see how the 
programming works. The code to the left in Fig. 7 calculates 

the value of the five consecutive numbers 147 + 148 + ⋯ + 151 
by using a loop and a counter variable. With an algebra logos 
in mind, the teacher can now initiate an analytic discussion 
about how to turn this particular example of Scratch code 
into a more general code to calculate any sum of consecutive 
numbers. This is represented by the code to the right in Fig. 7 
where the starting and ending values have been implemented 
as variables.

Didactically it is vital for learners to articulate the role of 
each of the statements. One issue is what names to use. In 
algebra single letters are preferred, whereas in programming 
words that remind you what role the value has are preferred, 
such as startValue or countEnd. This could be a useful topic 
for discussion and a further translation from words to single 
letters could be a path into algebraic notation.

A counter variable can be a very useful idea for explor-
ing numbers and experiencing patterns. Similar tasks could 
include, for example, the following cases: adding three each 
time; doubling and subtracting one each time; adding the next 
positive integer or the previous two numbers together. The 
same idea could then be revisited as students encounter a wider 
range of numbers. Changing the task so as to present an unex-
pected phenomenon means that the program makes explora-
tion and example-construction possible, which might provide 
motivation to engage in programming as well as in expressing 
generalities, picking up syntax as it is needed.

Fig. 7  Scratch codes calculating 
a specific and an arbitrary sum 
of consecutive numbers
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8  A function machine.

The third lesson was designed by two teachers, each trying it 
in their own grade 6 class (age 12). Rather than being a stan-
dalone activity, the lesson was part of a sequence of lessons 
about functions, spanning several weeks. Before the pro-
gramming activity, the students had been working with what 
the teachers referred to as unplugged programming, using 
a box to represent a function machine, with one student 
outside the box choosing input values and another inside, 
calculating output values according to a ‘secret rule’. By 
introducing programming, the teachers wanted the students 
to deepen their understanding of functions. The students had 
some, but limited, prior experience of Scratch. The teachers 
explained the learning objectives in the following way: ‘The 
goal is for all to be able to remix the starting code and cre-
ate a function that makes the program calculate the y-value 
for an inserted x-value’. The original code gives a standard 
linear function, that is y = kx + m , where both k and m are 
whole numbers. For students who need a greater challenge, 
the teachers thought the task could provide opportunities to 
create other types of functions where for example k < 1 or 
m < 0 , which could result in functions such as y = x

2
− 4.

8.1  Initial task

The codes in Fig. 8 were shown to the students, and together 
the class discussed the questions: ‘Where in the code do we 
find the function?’, ‘In what ways can the code be changed?’ 
and ‘Why is x (referred to as) a variable?’. They were then 
asked to alter the code in order to construct a new function. 

The given code consists of three parts: one part resets the 
two lists and starts off the code asking for values when the 
green flag is clicked (centre Fig. 8); one part repeatedly asks 
for a value of x, calculates the corresponding y-value for 
2x + 1 and stores the values in two lists (left in Fig. 8); one 
part asks the user what the secret function is and reveals 
whether the answer is correct (right in Fig. 8).

8.2  Core issue: variables and parameters

Moving the hands-on function machine activity into a pro-
gramming environment introduces a new register and new 
syntax, and thus changes the knowing-how of the task. It 
is still the same task, where one person knows the rule and 
another person suggests input values and has to guess the 
rule, except that the computer executes the calculations. Not 
doing the arithmetic could help students attend to structure, 
as recommended by Hewitt (2019).

In their evaluation, the teachers noted that 20% of the 
students only copied the original code and struggled to con-
nect the activity to their previous work on functions, while 
74% constructed other linear functions and 6% came up with 
nonlinear functions such as y = x2 + 2 . Letting students alter 
the code and tinker with it opened up opportunities to choose 
values not only for x and y, but also for k and m, which 
for some students changed the knowing-what of the task 
to include integers or rational numbers, or nonlinear func-
tions. Here the programming environment supplied valu-
able opportunities for exploration. However, without also 
incorporating a graphical representation, the exploration 
is hampered, with small chances to ‘guess the rule’ of a 

Fig. 8  The original function machine code given to the students



 C. Kilhamn et al.

1 3

nonstandard function simply by looking at the table of val-
ues created by the program. The focus of the task therefore 
shifts from ‘finding the rule’ to ‘creating the rule’.

Linear functions are typically introduced in Swedish 
schools by the equation y = kx + m representing a straight 
line where k is the slope of the line and m is the y intersect. 
The symbol x is called a variable, which in turn is described 
as a letter that can assume different values. For the students 
this might create some uncertainty, considering that what 
they have at hand is an expression with four different sym-
bols (k, m, x, y). In algebra, it is possible to mark the differ-
ence between variables and parameters by using the notation 
f (x) . From this we know that x is the variable since we have 
‘a function of x’, and that the rest of the symbols are param-
eters. A parameter is thus another type of variable that can, 
but does not need to, be assigned a value.

8.3  Task modifications and possible didactic actions

Small changes of the original task could reframe it within 
an algebra logos, where the learning objective is to expe-
rience generality, and where students can encounter the 
power of variables and the various roles variables can play. 
Indeterminate quantities of different kinds could thereby 
be symbolized differently and discussed analytically. In the 
original task, the code needs to be modified every time the 
function is changed. By representing also the parameters k 
and m as variables, and by using lists and random values, it 
is possible to let the program generate different functions. 
That way the same person can run the program and guess 
the function. After exploring individually or in groups, the 
classroom discussion could then focus on the different roles 
of the variables.

The modified task started with the specific function given 
in the original task (A), which was generalised to an arbi-
trary linear function by replacing the constants with vari-
ables that were assigned randomised values (B). Finally, we 
added an interactive element where the user can guess the 
randomised values (C).

The sensing block ask and wait is replaced by two lists 
and a loop (see Fig. 9). The program starts by resetting the 
variable x and the two lists. This is necessary since variables 
in Scratch retain their values when restarting the program. 
The program then calculates the function value f(x) = 2x + 1 
for x = 0 to x = 4 by using the loop block repeat five times. 
For more values choose more repeats.

(B) The code is modified to an arbitrary function 
f (x) = kx + m , where k and m are given random values each 
time the program is running. This is done in the code to 
the left in Fig. 10 by using the operator block pick random, 
here limited to integers from 1 to 10. Again, the program 
goes through the loop five times, the difference is that this 
time the function consists of three variables; k, x and m, all 

represented by round orange variable blocks. The function y 
is also represented as a variable. Even though Scratch does 
not distinguish between the variables k, m, x and y, there is a 
significant difference from a mathematical perspective, since 
x and y change their values multiple times during the pro-
gram while k and m are fixed outside the loop. Mathemati-
cally, k and m would be considered as parameters while x is 
an independent variable and y a dependent variable.

(C) An interactive element is added to the program where 
the user is asked to guess, or actually conclude from the lists, 
the values of k and m. An example is shown to the right in 
Fig. 10, triggered by the sprite ‘Click to guess function’ in 
Fig. 11. The program produces a table of values which can 
be made longer in an instant. The students can therefore turn 
their attention to the structure of the function as expressed in 
the code or to the patterns that emerge in the table of values.

To stimulate reflection, the students could be asked how 
they can calculate k and m by using the lists or how they 
would calculate them if they did not set the x-value to 0, and 
to describe differences and similarities between x, k and m 
as the program runs.

In the modified task, the students are asked to generalise 
a specific function by constructing a code for an arbitrary 
linear function, which provides opportunities to experience 
how variables can behave differently and play different roles. 
This promotes an analytic discussion about the meaning of 
variable, both in relation to the code and in a mathemati-
cal perspective. Students might conclude that only x and 
y change value as the program runs, whereas k and m only 
changes when the program starts afresh. Hence, x and y 

Fig. 9  A program that calculates the values of 2x + 1 for x = 0 to x = 4 
and produces a list of values
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are allowed to vary within the program while k and m vary 
between programs.

As stated above, one of the great innovations of symbolic 
algebra is that it is easy to operate on and manipulate vari-
ables as as-yet-unknown or as parameters, without assigning 
them values. In programming it is not possible to run a code 

with variables without assigning them values. Therefore, 
analyticity requires that teachers engage the students in a 
discussion about the different roles of the variables. Even if 
the differentiation between variables and parameters may not 
be expected in early algebra, the task could provide a first 
intuitive way of thinking about variables that prepare young 
students for formal algebra later on, which is a key aspect of 
the early algebra movement (Carraher & Schliemann, 2007).

9  Discussion

By presenting, analysing and tinkering with three examples 
of authentic school programming activities in the Scratch 
environment, our aim was to unpack different meanings of 
variables and shed light on what might be in the interplay 
between programming and mathematics in relation to early 
algebra.

In Sect. 6 our analysis of the task Drawing circles identi-
fied implicit variables as a core issue, and found didactical 
potential in making implicit variables explicit, naming them 
and exploring effects of letting them vary. We showed that 
small modifications of the task could bring out such poten-
tial. Seeing what modifications are necessary presumes a 
logos that supplies arguments about what the Scratch code 

Fig. 10  A program that creates 
a random linear function (left) 
including an interactive element 
(right)

Fig. 11  In Scratch, the two lists generate a table of values
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could make visible, and what aspects of variables could be 
enhanced through the task. Block-based programming envi-
ronments like Scratch afford the identification of variables 
by having specific variable blocks that can be named and 
explored. Indeterminate numbers are thus symbolised by 
specific blocks and can be handled as if they were known 
numbers when creating and tinkering with the code. In the 
modified task the set numbers are replaced by placeholders, 
i.e., variables that are possible to change but set for each 
execution of the program. This conceptual switch from num-
bers to placeholders is referred to by Ely and Adams (2012, 
p. 22) as “the birth of symbolic algebra”. A constraint of the 
environment is, however, that when the variables are hidden 
in other types of blocks they may not be detected and seen 
as variables, in which case a learning opportunity is lost.

In Sect. 7 we identified the didactic potential of using a 
Counter variable to explore addition of consecutive num-
bers, and hence of other sequences generated successively, 
expanding the opportunity of experiencing patterns beyond 
simple calculations with single-digit numbers. This in turn 
offers the possibility of experiencing generalisation through 
changing aspects of the generating function. We argue that 
this switch of register (in the sense of Duval, 2006) from 
finger-tallying and pen-and-paper algorithms to the use of 
a computer code, can serve as an affordance when explor-
ing sequential addition and interesting number sequences 
exploiting the power of computers. A counter variable can 
build on children’s intuitive ideas of counting-on, but this is 
a difficult concept to work with using traditional algebraic 
notation, while a computer code is rather straightforward 
with its procedural rather than structural approach. In addi-
tion, the naming of variables in the computer code can start 
with meaningful words and gradually lead to single-letter 
names more often used in algebraic notation. The aspect of 
naming was found to be an issue already in the early Logo 
programming experiments in the 1980s (Noss, 1986). Our 
modifications of the task to name the variables startValue 
and countEnd instead of var1 and var2 could help early alge-
bra learners to see the role of the variables as generalized 
numbers.

Section 8 presents a task that builds on the well-known 
idea of a function machine, where a rule (a function) is 
presented and explored through input and output values. 
In this task we identified an opportunity to highlight dif-
ferences between variables and parameters, or what Ely 
and Adams (2012) refer to as placeholders. In a functional 
relation like y = kx + m the algebraic notation does not dis-
close the different meanings of the variables y, x, k and 
m. In the Scratch code, their different roles can be seen in 
where they appear and how they play out as the program is 
run, thus highlighting differences between parameters and 
variables. We argue that a register switch, from a meta-
phorical context in a linguistic and semiotic register to a 

code in a programming environment, changes the focus 
and could direct students’ attention to specific and dif-
ferent roles of variables. Instead of being only a question 
of calculating function values and guessing the function, 
students can begin reflecting on structure and the different 
roles of the variables. However, to fulfil the conditions for 
algebraic thinking as described by Radford (2014), the 
teacher plays an important role in moderating an analytical 
reflection on these different roles.

Previous research has shown that programming within 
the context of mathematics in the early grades does not 
automatically enhance mathematics learning (Benton et al., 
2017; Boylan et al., 2018). This was visible also in the lesson 
study project that provided the data for this paper (Jahnke, 
2020; Kilhamn et al., 2021). When analysing the three tasks 
described here, we concluded that one reason for the lack 
of mathematical learning opportunities could be that the 
teachers did not refer to a mathematically oriented logos 
that justified the choices they made. Explicit focus of atten-
tion towards syntax issues or programming concepts and 
procedures implies a computer-informed logos. In contrast, 
a mathematics-oriented logos would focus attention on the 
potential use of programming to enrich mathematical learn-
ing. Through our modifications of the tasks we have shown 
that focussing on powerful algebraic ideas, while letting 
computational thinking and syntax be subordinate learn-
ing objectives, opens up rich opportunities for a program-
ming environment to function as a new register in which 
to express and explore different aspects of variables in an 
early algebra context. Since variables do not always have the 
same meaning and role in algebra (Ely & Adams, 2012; Par-
tanen & Tolvanen, 2019; Usiskin, 1988), or in programming 
compared to algebra (Bråting & Kilhamn, 2021), exploring 
and comparing them ought to be made a focus of attention 
sooner rather than later.

Programming as part of the mathematics curriculum, and 
computer code as a register to use for mathematical repre-
sentation, is new to teachers in the lower grades, at least in 
Sweden. In order to achieve integration of programming and 
early algebra, our analysis suggests that attention must be 
paid to the didactic transposition at all institutional levels, 
from curriculum to classroom (Chevallard, 2006). If the aim 
is to use programming to learn algebra, knowledge needs 
to be transposed so that the logos underpinning praxis is 
explicitly oriented towards algebra. That means building 
a praxeology where praxis (i.e., tasks and techniques) is 
allied to a logos that gives arguments supporting the use 
of programming. We have shown that an algebra logos can 
enrich some programming activities to potentially enhance 
algebra learning. We do not know how these would play out 
in praxis when given to teachers, but we do know that teach-
ers play an essential role in bringing out potential learning 
opportunities (Sutherland, 1993). Teachers must therefore be 
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given as much help as possible to see the learning potentials 
in the activities and digital tools that are provided.

Just as important as how a Scratch code can enrich learn-
ing is to know also when it is not useful or even runs the 
risk of complicating things for algebra learners. Teachers 
with little knowledge of programming are restrained by a 
narrow range of available didactic choices when planning a 
mathematics lesson involving programming, so the praxeol-
ogy needs to be more clearly developed on the level of the 
educational system as knowledge to be taught (see Fig. 1). 
When programming tasks are presented to teachers the logos 
should be as clear as the praxis, and if we want students to 
develop algebraic thinking, tasks need to be justified by an 
algebra logos. We call for researchers, curriculum designers 
and textbook writers to take on this challenge.
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