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émanant des établissements d’enseignement et de
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This paper proposes a micro-particles detection scheme in digital holography.
In our inverse problems approach, we estimate the optimal particles set which
best models the observed hologram image. Such a method can deal with data
which have missing pixels. By considering the camera as a truncated version of
a wider sensor, it becomes possible to detect particles even out of the camera
field of view. We tested the performances of our algorithm against simulated
and experimental data for diluted particle conditions. With real data, our
algorithm can detect particles far from the detector edges in a working area as
large as 16 times the camera field of view. A study based on simulated data
shows that, compared to classical methods, our algorithm greatly improves the
precision of the estimated particle positions and radii. This precision does not
depend on the particle’s size nor location (i.e. inside or ouside the detector
field of view).

c© 2007 Optical Society of America

OCIS codes: 090.1760, 100.3190, 100.5010, 100.6640, 100.2000

1. Introduction

Experimental flow has long been studied by imaging
particles that are carried by the flow, either naturally
present or artificially seeded. The associated techniques
are known as Particle Tracking Velocimetry (PTV) when
each particle is tracked from one image to another, and
Particle Image Velocimetry (PIV) where local flow veloc-
ity is computed on a correlation criterion basis, suitable
only for high particle concentrations. Velocity and size
measurements are still often limited to the plane of the
light sheet by the lack of accurate truly 3-D imaging tech-
niques.

The 3-D recording capability of holography makes it
suitable for 3-D particle imaging and a lot of work has
been done in the field of particle holography [1–6]. Dig-
ital holography has greatly improved the processing of
holograms by suppressing the wet-chemical processing
step and opening new frontiers for automated volume
analysis. Hologram analysis still remains largely influ-
enced by traditional optical processing and most au-
thors describe analysis of 3-D reconstructed volume ob-
tained by diffraction simulation (Fresnel transform [1],

fractional transforms[7] or wavelets transform[8, 9]). We
refer to those approaches as classical approaches as they
are widely used and accepted.

Classical digital holography is performed in two steps:
first, a hologram is recorded with a holographic setup
directly on a digital camera; then, this hologram is pro-
cessed by reconstructing a 3-D volume and analyzing the
volume. In the case of particle holograms, the most effi-
cient setup is the Gabor setup (Fig. 7) which requires few
optical components: a coherent source, either a contin-
uous laser or a pulsed laser synchronized with the cam-
era, and a beam expander. The particles create a set of
diffraction patterns named a Gabor hologram. The use
of such a setup limits the particle size and the particle
concentration to small particles whose projections on the
sensor cover less than 1/100 to 1/10 of its surface [10].
The hologram is then processed in the second step by
first reconstructing a volumetric image using diffraction
simulation transforms (e.g. volume restitution by Fresnel
transform of the zero padded hologram image); and then
the reconstructed volume is segmented and the particle
3-D location and size can be deduced from the centroid
and mean diameter of each segmented object. Such ap-
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proaches, however, suffer from various limitations: (i) the
depth resolution is about 10 times worse than the trans-
verse resolution; (ii) the field of view is limited and, in
practice, must be restricted to the center of the hologram
to reduce the border effects; (iii) spurious twin-images of
the particles get reconstructed; (iv) multiple focusing[11]
can occur around the actual depth location of each par-
ticle.

In a companion article[12], we recently suggested an
inverse problems approach to overcome the issue of ac-
curate location of particles. It however remains that dig-
ital holograms are today technologically limited to a few
cm2, that are several times smaller than the size of holo-
graphic plates. Digital holograms therefore suffer from
truncation which leads to strong artifacts in the recon-
structed volume for particles found close to the borders of
the hologram. Out-of-field particles (i.e. particles whose
projection is outside the hologram) can not be recovered
by classical techniques unless they are a few tenths of a
pixels out of the hologram support.

Our preceding method detects particles in three steps:
pre-localization using a classical algorithm, location re-
finement, and particle cleaning. The limitations of classi-
cal algorithms can be partially avoided by expressing the
particle detection problem as a global optimization prob-
lem that is solved locally. However, the first step, based
on classical algorithms, restricts the method to particles
in the field of the hologram. This field is smaller in the
case of digital holography than that of optical hologra-
phy using a holographic plate and remains a drawback
for flow measurements by digital holography. Since our
previous algorithm is based on an inverse problems ap-
proach, it could be applied to out-of-field particles if only
they could be detected in the first step of the method. In
the present paper we propose to extend our inverse prob-
lems approach to the pre-localization stage of our method
so as to achieve detection of out-of-field particles.

The paper is organized as follows. In Sect. 2, we
briefly recall the general principle of our method[12]
which detects particles in three steps: pre-localization
using a classical algorithm, location refinement, and par-
ticle cleaning. In Sect. 3, we also recall the equations
of the model of the hologram used in our simulations
and in the inverse problems approach . In Sect. 4, we
derive an alternative technique to perform the volume
exploration. In Sect. 5, we present results obtained with
our algorithm on both simulated and experimental data
showing that out-of-field particle detection was effectively
achieved with almost no loss in precision. The benefits
of the new algorithm are summarized in Sect. 6.

2. General Algorithm Scheme

The particle detection method presented here, takes place
in a general particle localization scheme described in the
companion article[12]. The different stages of this algo-
rithm are depicted in Fig. 1. First, a detection algo-
rithm gets an approximate location of a particle, then

Fig. 1. Synopsis of the method.

this location is refined using an optimization procedure,
and finally the diffraction pattern of the detected par-
ticle is subtracted from the hologram. The hologram is
iteratively processed by the three steps and is gradually
cleaned from all the previously detected particles. We
stop the iterative method and consider that all particles
have been detected when the next most likely particle
found by the algorithm has aberrant parameters (neg-
ligible or negative contribution, too large or too small
radius...).

We have shown on real data that the coarse localization
step followed by the local optimization step effectively
solve the global optimization problem of finding the best
size and location of a particle in the (residual) hologram
image, even for particles located near the hologram bor-
ders. Repeating the detection and localization steps after
removal of previously detected particles, allows particles
with fainter signatures to be found, in particular particles
distant from the camera center.

Since our algorithm is derived following an inverse
problems approach, it does not require any explicit di-
rect inversion of the observed hologram: all estimations
are made in the data space. As a result, our algorithm
has a number of advantages over other existing meth-
ods. For instance, our method is insensitive to the twin-
image problem inherent in in-line holography. Moreover,
our algorithm is even able to deal with truncated field of
view and with holograms with saturated or dead pixels.
However, the first detection step (based on a classical ap-
proach) must be improved in order to detect out of field
particles.
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Fig. 2. Notations used in the hologram model. The pa-
rameters pj = {xj , yj , zj , rj} are the position and radius
of the j-th particle, (x′

k, y′

k) is the location of the k-th
pixel and ρj,k is the distance between the projection of
the j-th particle on the detector and the k-th pixel.

3. Model of the hologram formation

In this section, we recall the model of the observed holo-
grams derived in our previous paper[12]. We consider an
in-line holography setup (see Fig. 7) where studied par-
ticles are illuminated with a collimated laser beam, and
the digital camera records both the object wave (scat-
tered light) and the reference wave (laser). We work with
small spherical particles and under Fresnel’s diffraction
approximation[13], that is for z3

j ≫ 4π r4
j /λ, which is ver-

ified for the conditions considered in our simulations and
experimental results: laser wavelength λ = 532 nm, par-
ticle distances to the detector zj ≈ 250 mm and particle
radii rj . 55 µm.

In our previous paper[12], we have shown that, under
such conditions and for n particles of radii rj and 3-D po-
sitions (xj , yj , zj), the intensity measured by the detector
at position (x, y) is given by:

I(x, y) = Isrc + Ibg − 2 Isrc

n
∑

j=1

ηj Re
(

fj(x, y)
)

+ Isrc

n
∑

i=1

n
∑

j=1

ηi fi(x, y) ηj fj
⋆(x, y)

(1)

where Isrc is the image level due to the laser source, Ibg

is the background level, the real factors ηj ∈ [0, 1] ac-
count for possible variation of incident energy seen by a
particle due to non-uniform laser illumination and fj is
the amplitude diffraction term by j-th particle[12, 14]:

fj(x, y) =
rj

2 i ρj(x, y)
J1

(

2 π rj ρj(x, y)

λ zj

)

× exp

(

i
π ρ2

j (x, y)

λ zj

) (2)

where i =
√
−1, J1 is the first order Bessel function and

where ρj(x, y) =
√

(x − xj)2 + (y − yj)2 is the distance
between the point (x, y) in the detector plane (at z = 0)

and the projection (xj , yj) of the location of the j-th
particle on the detector.

Under the considered conditions (low particle density,
zj ≈ 250 mm and rj . 55 µm), the second order interfer-
ence terms in Eq. (1) can be neglected[12] and the model
simplifies to:

I(x, y) ≃ I0 −
n
∑

j=1

αj gj(x − xj , y − yj) , (3)

with I0 = Isrc + Ibg, αj = 2 Isrc ηj and:

gj(∆x,∆y) =
rj

2 ρ(∆x,∆y)
J1

(

2 π rj ρ(∆x,∆y)

λ zj

)

× sin

(

π ρ2(∆x,∆y)

λ zj

)

,

(4)

where ρ(∆x,∆y) =
√

∆x2 + ∆y2 is the projected dis-
tance.

The model in Eq. (3) will be the basis of our particle
detection approach in Sec. 4. The resulting hologram
expression is a sum of terms depending on the location
and size of each diffracting particle. The notations and
coordinate system used in our model are summarized in
Fig. 2.

4. Particle detection

Assuming this model of hologram formation, we suggest
in this section a new particle detection scheme achiev-
ing detection of out of field particles. Determining the
optimal set of particles that best models the intensity
distribution of the hologram is equivalent to finding the
n particle parameters {xj , yj , zj , rj ; j = 1, . . . , n} that
minimize the weighted least-squares penalty:

Pn =
∑

x′

k

∑

y′

k

w(x′

k, y′

k) [mn(x′

k, y′

k) − d(x′

k, y′

k)]
2

(5)

where (x′

k, y′

k) are the coordinates of the k-th pixel, mn is
the model, d(x′

k, y′

k) is the k-th pixel value in the observed
hologram and w(x′

k, y′

k) is its statistical weight:

w(x′

k, y′

k) =

{

1

Var(d(x′

k, y′

k))
if k-th pixel is measured,

0 otherwise.

(6)
where Var(d(x′

k, y′

k)) is the noise variance at pixel
(xk, yk). The noise considered here is meant to ac-
count for the detector noise and for the photon noise
but Var(d(x′

k, y′

k)) can also be set to account for artifacts
(such as fringes due to the detector glass window) and
for approximation errors (such as digitization and such
as speckle noise due to undetected objects at this stage
or due to the neglected interferences between particles).

In the case where the noise is assumed constant all
over the known pixels, 1

Var(d(x′

k
,y′

k
)) can be factorized out
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of Eq. (5). In this case w(xk, yk) can be viewed as a
binary mask on the data:

w(x′

k, y′

k) =

{

1 if k-th pixel is measured,
0 otherwise.

(7)

The model mn(x′

k, y′

k) for n particles is given by
Eq. (3):

mn(x′

k, y′

k) = I0 −
n
∑

j=1

αj gj(xj − x′

k, xj − y′

k) . (8)

As our algorithm proceeds iteratively for each particle (as
described in Fig. 1), we consider the previously detected
particles parameters as fixed. In our iterative approach,
locating the n-th particle consists of determining the pa-
rameters of the n-th particle and the constant level that
minimizes Pn. This is achieved by fitting the parame-
ters {αn, I0, xn, yn, zn, rn} on the centered residual image
rn−1:

rn−1(x
′

k, y′

k) = d(x′

k, y′

k)+

n−1
∑

j=1

αj gj(xj−x′

k, yj−y′

k)−cn−1 ,

(9)
which is the hologram image after having subtracted the
contribution of the previous n−1 particles and a constant
c defined as the mean gray level of the (n−1)-th residual
image:

cn−1 =
∑

x′

k

∑

y′

k

w(x′

k, y′

k)



d(x′

k, y′

k) +

n−1
∑

j=1

αj gj(xj − x′

k, yj − y′

k)



 .

(10)
In other words, this constant is such that:

σw r
def

=
∑

x′

k

∑

y′

k

w(x′

k, y′

k) rn−1(x
′

k, y′

k) = 0 , (11)

which is used to simplify the equations in what follows.

For the detection/location of the n-th particle, our mis-
fit criterion writes:

Pn =
∑

x′

k

∑

y′

k

w(x′

k, y′

k) [In − αn gn(xn − x′

k, xn − y′

k)

−rn−1(x
′

k, y′

k)]
2

(12)

with In = I0 − cn−1. For the first parti-
cle, we take r0(x

′

k, y′

k) = d(x′

k, y′

k), and c0 =
∑

x′

k

∑

y′

k

w(x′

k, y′

k) d(x′

k, y′

k). The expression in Eq. (12)

can be expanded as:

Pn = σw r2 + 2 αn σw r g − 2 αn In σw g + I2
n σw + α2

nσw g2

(13)
where it is accounted for the fact that σw r = 0 (see 11)

and where:

σw =
∑

x′

k

∑

y′

k

w(x′

k, y′

k) (14)

σw r2 =
∑

x′

k

∑

y′

k

w(x′

k, y′

k) r2
n−1(x

′

k, y′

k) (15)

σw r g =
∑

x′

k

∑

y′

k

w(x′

k, y′

k) rn−1(x
′

k, y′

k) gn(xn − x′

k, yn − y′

k)(16)

σw g =
∑

x′

k

∑

y′

k

w(x′

k, y′

k) gn(xn − x′

k, yn − y′

k) (17)

σw g2 =
∑

x′

k

∑

y′

k

w(x′

k, y′

k) g2
n(xn − x′

k, yn − y′

k) . (18)

A. Optimal Parameters Determination

Given xn, yn, zn and rn, the optimal offset I+
n and factor

α+
n for such a model are obtained by solving the linear

system:















∂Pn

∂In

∣

∣

∣

∣

In=I
+
n ,αn=α

+
n

= 0

∂Pn

∂αn

∣

∣

∣

∣

In=I
+
n ,αn=α

+
n

= 0

which yields:

I+
n =

−σw g σw r g

σw σw g2 − σ2
w g

= α+
n

σw g

σw

, (19)

α+
n =

−σw σw r g

σw σw g2 − σ2
w g

, (20)

Replacing In and αn by their optimal I+
n and α+

n values
in Eq. (13) yields the partially optimized criterion:

P+
n

def

= Pn|In=I
+
n ,αn=α

+
n

= σw r2 − σw (σw r g)
2

σw σw g2 − σ2
w g

. (21)

It remains to optimize P+
n with respect to the other

parmaters, namely xn, yn, zn and rn. This is equivalent
to maximizing:

Qn
def

=
σw (σw r g)

2

σw σw g2 − σ2
w g

(22)

under the condition (by definition αj = 2 γ
∣

∣A0

∣

∣

2
ηj >

0):

α+
n =

−σw σw r g

σw σw g2 − σ2
w g

> 0 . (23)

B. Fast Computation

It is possible to achieve fast determination at pixel res-
olution of the projected coordinates (x′

n, y′

n) of the n-th
particle given its other parameters zn and rn. The terms
σw r g, σw g2 and σw g (given respectively by equations
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Eq. (16), Eq. (17) and Eq. (18)) are involved in the ex-
pression of the criterion Qn to maximize. When zn and
rn are chosen, these terms are simply 2-D discrete convo-
lutions (the term σw is a constant which can be computed
once for all). Under circulant approximation (as CCD is
a rectangular grid), it is possible to compute these terms
by a few fast Fourier transforms (FFT’s) for any pro-
jected coordinates (xn, yn) matching the locations of the
CCD pixels. In other words, given the depth zn and
radius rn of the n-th particle, it is possible to quickly
compute a 2-D map of the criterion Qn with respect to
the projected coordinates and with a resolution equal to
the size of a pixel. The maximum of this map indicates
the most likely projected positions of the n-th particle if
it were located at distance zn with a radius rn. In the
following, we detail the computation of the 2-D map of
Qn.

We denote g̊ the vector of values of gn for given depth
zn and radius rn and sampled at projected coordinates
equal to the CCD coordinates:

g̊k
def

= gn(x′

k, y′

k) . (24)

Similarly we denote by r̊ the 2-D map of residuals:

r̊k
def

=

{

rn−1(x
′

k, y′

k) dk is measured,
0 otherwise,

(25)

and by ẘ the 2-D map of non-stationnary weights:

ẘk
def

=

{

Var(dk)−1 dk is measured,
0 otherwise (mainly outside the field of view).

(26)
We purposely defined r̊ and ẘ for a field of view larger
than the CCD support. The next section explains how
support and aliasing issues are solved by using such an
extended field of view. Note that the value of r̊ outside
the field of view is irrelevant that’s why the weights ẘ

must be set to zero outside the field of view (and for any
bad pixels).

Under the circulant approximation, the 2-D map of
σw g can be approximated by:

å
def

= F−1 · diag(F · ẘ) · F · g̊ (27)

where F is the 2-D discrete Fourier transform (DFT) ma-
trix operator and where diag(u) is the diagonal matrix
with diagonal elements equal to the elements of vector u;
hence diag(u) · v is simply the element-wise product of
vectors u and v:

[diag(u) · v]k = uk vk . (28)

Under circulant approximation, å represents the correla-
tion between ẘ and g̊. Likewise, the 2-D maps of σw r g

and σw g2 can be respectively approximated by:

b̊
def

= F−1 · diag(F · diag(ẘ) · r̊) · F · g̊ , (29)

c̊
def

= F−1 · diag(F · ẘ) · F · diag(̊g) · g̊ . (30)

Finally, the 2-D map of the criterion Qn is approximated
by:

Qk ≈ Q̊k =
σw b̊k

σw c̊k − å2
k

(31)

which is the value of Qn for a projected position
(xn, yn) = (x′

k, y′

k).
For every particle and for every sampled depth and

particle radius, a circulant approximation of the 2-D map
of Qn must be computed. This requires 7 FFT’s (4 direct
FFT’s plus 3 inverse FFT’s). In fact, the DFT of ẘ can
be computed once for all, whereas the DFT of diag(ẘ) · r̊
must be computed for every new particle, hence only 5
more FFT’s are required for every particle and for every
sampled depth and particle radius.

C. Reconstruction Outside of the Field of View

T

W/2 HR

WR

R

W

H/2

W

H

T

HT

Fig. 3. Computing region R and working area T com-
pared to the CCD size (W×H)

With such a formulation, it is possible to seek for par-
ticles outside of the field of view in a working area T
which is larger than the CCD. However, for fast compu-
tation of Pn, we use fast Fourier transforms which yield
spatial aliasing because of the circulant approximation.
To limit the aliasing effects, we perform all computations
on a region R which is larger than the working area T
where particles are to be detected. The width and height
of the region R are chosen so that WR ≥ WT + W and
HR ≥ HT + H where HT × WT and W × H are the di-
mensions of the working area T and of the detector (cf.
Fig. 3). The residuals and statistical weights over the
region R are set according to Eq. (25) and Eq. (26).

D. Segmentation

Laterally, Pn is sampled with the same size as pixel width
inside and outside of the field of view. Pn is computed
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for several slices (zn, rn) with a coarse sampling (typically
every mm in depth and every 5µm for radius). This four
dimensional space of solutions is exhaustively explored in
order to extract parameters {x′+

n , y′+
n , z+

n , r+
n } that mini-

mize Pn. In practice, to reduce computation, only a three
dimensional space of solutions (x′, y′, z) is evaluated us-
ing an average radius. For improved efficiency, the mean
radius can be estimated using the direct hologram analy-
sis described in reference [15]. Eventually, at the optimal
depth z+

n , Pn can be computed for a few rn values de-
pending on particle radius dispersion (see Sec. 5).

5. Results

A. Simulated Data

To assess the performance of our algorithm, we first pro-
cessed simulated data. We compare the results obtained
with the new algorithm and the results obtained with
a classical approach. A study of the accuracy versus
transversal location of the particle was conducted. This
data set is composed of 32 holograms simulated with the
same experimental conditions. Each hologram records
the diffraction pattern of 20 disks with random radii be-
tween 40 and 50µm and randomly distributed in a box
of 13.72×13.72×50.00 mm3. The wavelength of the laser
is 0.532 µm. The camera has 1024 × 1024 pixels spaced
by 6.7 µm and is placed at about 250 mm from the stud-
ied volume in order to stay in the approximation range
defined in section 3. The field of view of this camera
(6.86 × 6.86 mm2) represents a quarter of the section of
the studied volume and is centered on it.

Our inverse problems approach is based on a simplified
model of the hologram image formation. To account for
the effects of such simplifications on the detection and lo-
calization of the particles, we use a more accurate model
to simulate the hologram images used in this test. More
precisely, we use the image model given by Eq. (1) to
simulate the holograms whereas the simplified model in
Eq. (3) is assumed during the detection and localization
steps of the algorithm. Hence the interference pattern be-
tween waves diffracted by different particles is accounted
for in the simulated images whereas it is neglected by the
algorithm. In order to properly simulate quantization by
the detector, the dynamics of the simulated hologram im-
ages is converted into 8-bit integer values prior to their
processing.

In the particle detection step, a reconstruction every
millimeter in z was sufficient for a successful coarse detec-
tion. These 50 detections were performed for an average
radius of 45µm. At the depth z+ that minimizes Pn, 5
detections were performed for equally sampled radii be-
tween 40 and 50µm. This leads to (55 × 5 + 2) FFT
computations per particle.

The results of this inverse problems approach were
compared with a classical particle detection algorithm
(based on hologram reconstruction followed by 3-D seg-
mentation). As such conventional methods can only deal
with particles inside (or very close to) the camera field

of view, we conducted the tests on simulated holograms
under exactly the same conditions to have approximately
the same number of detected particles. To achieve mean-
ingful statistical results, we performed all the tests on 100
simulated holograms.

Our method detected almost every particle: on aver-
age, only 20 particles out of 640 were not detected (de-
tection ratio of 97 %) and 2 were falsely detected (false
positive ratio of 0.3 %). The conventional method detects
631 particles out of 2000 (detection ratio of 32 %). As ex-
pected, we noticed that such a method cannot properly
deal with out of field particules (detection ratio of 100%
in the field of view and 6% outside).
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Fig. 4. Comparison of lateral error (on x and y) for classi-
cal and ”inverse problems” approach (pixel size: 6.7 µm).

Errors on particle parameters (x, y, z, r) are plotted as
a function of the distance of the particle to the closest
edge of the CCD. This representation seems to underline
well algorithm artifacts. Results are shown in Fig. 4,
Fig. 5 and Fig. 6.

• Transversal errors of both methods are plotted in
Fig. 4. Sub-pixel precision is reached for both
methods but our method is unbiased and more
precise. It presents an equal standard deviation
on both x and y axis (∆x ≃ ∆y ≃ 0.3 µm or
1/20 pixel). This standard deviation does not sig-
nificantly depend on the size nor the location of the
particles.

• Fig. 5 shows the depth error for both methods. Our
method improves greatly the classical one: the bias
is negligible and the sub-pixel standard deviation
(∆z ≃ 0.9 µm or 1/7 pixel) is almost constant what-
ever the particle parameter.

• Only errors on radius for our approach are plot-
ted in Fig. 6 as radius estimation by the classical
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method presents errors too large to be plotted on
the same figure (bias is −8.8µm and ∆r ≃ 1.8 µm
for classical method). Radius estimation by our
method is very precise with a standard deviation of
∆r ≃ 0.04 µm for an average radius of 45µm. Al-
though radius estimation is unbiased for particles
outside of the field of view, a small negative bias
can be noticed for particles inside. This bias is due
to the simplifications made in our model: the ne-
glected interference term (second term in Eq. (1)) is
larger when particles are inside of the field of view.

X

Y

Z
laser

and spatial filter
beam expander droplets injector

CCD

Fig. 7. In-line holography setup

B. Experimental Data

We carried out an experimental test of our algorithm
using real data from an in-line holography setup. The
experimental test data are the same as in the companion
article[12]. The experimental layout is shown by Fig. 7.
The camera is a 12-bit CCD with 1280 × 1024 pixels of
size 6.7 µm × 6.7 µm. It is located at about 25 cm from
the injector in order not to disturb the flow experiment.
This leads to a small but realistic numerical aperture of
Ω = 0.014. The laser wavelength is 0.532 µm. Studied
particles are water droplets injected by a piezoelectric
injector (conceived by Bremen University) which gener-
ates monodisperse droplets. Their sizes are adjustable
between 50 to 100 µm.

The experimental dataset consists of a set of 100 pairs
of holograms with four or five droplets on each image. An
example of such holograms can be seen in the central box
of Fig. 9. The 3-D locations and radii of droplets were
extracted from this dataset by our algorithm. Each holo-
gram was processed as described Sec. 2. At each itera-
tion, P is computed to detect the next particle. Paste-up
Fig. 8 shows an example of a slice (x, y) with calculated
P at each iteration. Fig. 9 illustrates the result of the
processing of one hologram of the dataset. Let us point
out that although four particles were in the camera field
of view (in the box on the figure), up to 18 were detected.

The measured particles locations are shown in Fig. 10.
The average trajectory clearly is close to the straight
line expected from the experimental conditions. Detected
out-of-field particle locations and their spacings describes
well their ballistic trajectory. At each extremity of the
reconstructed jet, the low signal to noise ratio increases
the observed deviations from the ideal straight trajectory.
For particles far from sensor edges, assumptions made in
Sec. 3 become less relevant and model noise is added to
measurement noise. The jet divergence which can be seen
in Fig. 10 is mostly due to vibrations of the injector[12].
Hence, the effective precision of the measured locations is
smaller than the variations due to these physical effects.

The droplet sizes estimated by our algorithm have a
bell-shaped distribution (see Fig. 11) with a mean diam-
eter of 94.1 µm and a standard deviation of 0.3 µm in
agreement with the settings of the droplet injector.
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Fig. 8. Paste up representing a slice (x, y) of P com-
puted on an experimental hologram. It is composed of
13 images (numbered from 1 to 13). Each image is com-
puted on the residuals after the detection of the particles
(pointed by arrows) detected in the previous images.

6. Conclusion

In a companion article[12], we have introduced a new
algorithm that accurately estimates the parameters of
particles in digital holography. In this paper, we com-
plete this scheme by describing a new algorithm for the
detection of particles outside of the field of view of the
sensor. The most important difference from other ex-
isting techniques is that our processing is based on an
inverse problems approach and thus does not require any
direct inversion. In this framework, we introduce a sim-
plified model of the hologram images which directly in-
corporates the sizes and locations of the diffracting par-
ticles. We solve the problem by determining the set of
particle parameters for which the difference between the

Fig. 9. Superimposition of an experimental hologram (in
the box) on an synthesized hologram of 18 reconstructed
particles.
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Fig. 10. Droplets jet reconstruction. 3-D representation
of segmented droplets. Grey area represents the camera
field of view.
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model and the data is minimized. The objective function
turns out to have multiple local minima and thus a global
optimization procedure is required to properly solve the
problem. Our algorithm effectively achieves global mini-
mization by performing an approximate detection of the
particles in the whole parameter space followed by a lo-
cal refinement. By repeating these steps on the residual
images, our algorithm is able to detect particles even if
their signature is faint compared to the speckle noise due
to the other particles in the original hologram.

We have tested our algorithm on both simulated and
real data. Our results show that the precision along
the depth direction is greatly improved and is much
better than the optical resolution in such conditions
(δz ≥ λ/Ω2 = 2.6 mm). In simulations our algorithm
achieves unbiased localization with constant accuracy
even far from the sensor edges. Comparison with clas-
sical methods shows very strong improvements (later-
ally ∆x = ∆y = 0.3µm, ∆z < 1µm in depth and
∆r < 0.05µm for radius). When dealing with experimen-
tal data, it appears that our algorithm is also robust with
respect to non-homogeneous illumination and to spurious
patterns due to experimental noise, as seen in Fig. 9. As
the estimation is done in the data space, our algorithm
can cope with truncated holograms or bad pixels: it is
sufficient to set to zero the weight of unmeasured or bad
pixels. Such a formulation allows us to detect particles
outside the classical field of view, effectively extending
the area of measurement. For instance, Fig. 9 shows that,
even though only six particles signatures could be seen
on the CCD, our algorithm was able to accurately local-
ize 12 additional particles, using non-local information in
the detected image.

In its current implementation, the computation bur-
den of our algorithm is quite heavy: for our simulation,
the full processing (detection, refinement and cleaning)

takes about 7 minutes per particle on a Pentium IV CPU
at 3.60 GHz. For routinely use, we plan to accelerate the
method. This could be done if we manage to perform
multiple-particle detection per pass. This improvement
but also a more extensive analysis of perfomances and
possible limitations of our algorithm are currently under
study and will be part of forthcoming paper. For in-
stance, as the density of particles augments, one expects
that interferences between the wave diffracted by close
particles to become more important which could break
the approximation made in the detection step. We have
checked[12] that our method works for at least 100 parti-
cles over 1000× 1000 pixels but we did not tried to push
this limit. Nevertheless, in-line digital holography meth-
ods are clearly devoted to diluted particle conditions (be-
cause they involve the recording of 3-D information on a
2-D detector with no phase information), the occurrence
of pairs of very close particles is very unlikely in these
conditions.
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