
Texas A&M University-San Antonio Texas A&M University-San Antonio 

Digital Commons @ Texas A&M University-San Antonio Digital Commons @ Texas A&M University-San Antonio 

Computer Science Faculty Publications College of Business 

12-2021 

Models versus Datasets: Reducing Bias through Building a Models versus Datasets: Reducing Bias through Building a 

Comprehensive IDS Benchmark Comprehensive IDS Benchmark 

Rasheed Ahmad 

Izzat Alsmadi 

Wasim Alhamdani 

Lo'ai A. Tawalbeh 

Follow this and additional works at: https://digitalcommons.tamusa.edu/computer_faculty 

 Part of the Computer Sciences Commons 

https://digitalcommons.tamusa.edu/
https://digitalcommons.tamusa.edu/computer_faculty
https://digitalcommons.tamusa.edu/business
https://digitalcommons.tamusa.edu/computer_faculty?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages


future internet

Article

Models versus Datasets: Reducing Bias through Building a
Comprehensive IDS Benchmark

Rasheed Ahmad 1,* , Izzat Alsmadi 2 , Wasim Alhamdani 1 and Lo’ai Tawalbeh 2

����������
�������

Citation: Ahmad, R.; Alsmadi, I.;

Alhamdai, W.; Tawalbeh, L. Models

versus Datasets: Reducing Bias

through Building a Comprehensive

IDS Benchmark. Future Internet 2021,

13, 318. https://doi.org/10.3390/

fi13120318

Academic Editor: Paolo Bellavista

Received: 10 November 2021

Accepted: 16 December 2021

Published: 17 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Information Sciences, University of the Cumberlands, 6178 College Station Drive,
Williamsburg, KY 40769, USA; wasim.alhamdani@ucumberlands.edu

2 Department of computing and cyber security, University of Texas A&M San Antonio, One University Way,
San Antonio, TX 78224, USA; ialsmadi@tamusa.edu (I.A.); ltawalbeh@tamusa.edu (L.T.)

* Correspondence: rahmad4758@ucumberlands.edu

Abstract: Today, deep learning approaches are widely used to build Intrusion Detection Systems
for securing IoT environments. However, the models’ hidden and complex nature raises various
concerns, such as trusting the model output and understanding why the model made certain decisions.
Researchers generally publish their proposed model’s settings and performance results based on
a specific dataset and a classification model but do not report the proposed model’s output and
findings. Similarly, many researchers suggest an IDS solution by focusing only on a single benchmark
dataset and classifier. Such solutions are prone to generating inaccurate and biased results. This
paper overcomes these limitations in previous work by analyzing various benchmark datasets and
various individual and hybrid deep learning classifiers towards finding the best IDS solution for IoT
that is efficient, lightweight, and comprehensive in detecting network anomalies. We also showed
the model’s localized predictions and analyzed the top contributing features impacting the global
performance of deep learning models. This paper aims to extract the aggregate knowledge from
various datasets and classifiers and analyze the commonalities to avoid any possible bias in results
and increase the trust and transparency of deep learning models. We believe this paper’s findings
will help future researchers build a comprehensive IDS based on well-performing classifiers and
utilize the aggregated knowledge and the minimum set of significantly contributing features.

Keywords: Intrusion Detection System (IDS); deep learning; feature extraction; Internet of Things
(IoT); model interpretation

1. Introduction

Growing consumer, business, and industrial demand for advanced Internet of Things
(IoT) solutions creates unique challenges to securing these devices. IoT devices are limited
in resources such as memory, disk space, and processing power. Therefore, traditional se-
curity solutions (firewall, antivirus, software patches) applicable to personal computers do
not adequately secure the growing number of IoT devices [1]. Unlike personal computers,
these small devices not only lack built-in robust security features, but manufacturers also do
not consistently deliver security patches and upgrades after selling the devices [2]. Naïve
users either do not change the default passwords or set strong or difficult-to-remember
passwords; this makes the devices vulnerable to various cyber-attacks. By using advanced
mining tools, adversaries can easily takeover these devices remotely by finding many
access points and penetrating deep into the network [3]. Once compromised, thousands
or possibly millions of IoT devices can be controlled by a command and control (C&C)
server to launch various large-scale attacks such as Distributed Denial of Service (DDoS)
on critical national infrastructure and websites.

In order to secure IoT devices, a drastic change in security approaches and a paradigm
shift are required [4]. A common and widely adopted network attack detection approach
is known as anomaly-based (also known as behavior-based) Intrusion Detection System

Future Internet 2021, 13, 318. https://doi.org/10.3390/fi13120318 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-7154-7295
https://orcid.org/0000-0001-7832-5081
https://doi.org/10.3390/fi13120318
https://doi.org/10.3390/fi13120318
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13120318
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13120318?type=check_update&version=2


Future Internet 2021, 13, 318 2 of 22

(IDS). This approach provides robust capabilities to detect various known and zero-day
cyber-attacks by analyzing network traffic [5]. Researchers have been proposing anomaly-
based IDS solutions for IoT environments using different Machine Learning (ML) and Deep
Learning (DL) models trained on benchmark network datasets. Even though anomaly-
based IDS provides good attack detection results, it may generate high false-positive
detection results if not appropriately built [6]. An increase in false-positive results would
undermine the system’s performance in detecting attacks. Unfortunately, many cyber-
attacks and their variants are not so easy for an IDS to detect.

Several critical factors must be considered to create a proper and comprehensive secu-
rity solution for IoTs to prevent large-scale attacks. The most important factors involve the
quality and reliability of the benchmark datasets and their various features that contribute
the most to providing a high attack detection rate. Regarding data quality and reliability,
many recent IoT IDS research studies have been proposed based on very old benchmark
datasets such as KDD CUP 99 [7,8], or NSL-KDD [9–11]. These datasets lack the modern
day’s network traffic patterns and the various current attack information [5,12,13]. There
are other important factors that most of the research studies lack in their proposed solution,
such as (a) Many researchers report their DL model’s settings but nothing about explaining
the model’s behavior on making specific predictions. (b) Researchers propose a DL-based
IDS solution by reporting their findings on a single dataset, which produces biased results.
Any model trained on a single benchmark dataset represents limited or restricted training;
such models produce biased results when detecting different attack classes [14]. The goals
of this research study are many-fold, including (a) to gather, extract, and analyze aggregate
knowledge from various benchmark network datasets and look at the commonalities to
avoid any possible bias in produced results; (b) mitigate dataset quality and reliability
issues; (c) improve DL model transparency; (d) extract top features that influence the
model predictions the most. Our results will provide insights and several benchmarks
to future researchers when building a comprehensive IDS for IoTs. Some of the bench-
marks would include finding which DL models perform well on which dataset; similarly,
finding which DL models converge quickly and are suitable for a resource-constrained
IoT environment. Our empirical results revealed that some of the DL models famous for
processing sequential data such as LSTM, BLSTM, and BRNN are very expensive, take
long hours to converge, and require millions of trainable parameters. However, it still
does not produce better results compared to other models such as MLP, CNN, and TCN
that converge in minutes, require minimum trainable parameters, and produce the best
results. Although it is generally known that some models are computationally heavy than
others, it is an important consideration point that computationally expensive models put
additional burden on frequent model retraining on new data. Such IDS may not present an
acceptable solution for IoT regardless of training them on the edge or fog layer. The more
complex and deep the model is, the more computational and energy resources it needs,
making model building and training burdensome and expensive. The results would help
future researchers make a rational and knowledgeable decision on choosing a particular
classifier for datasets with a large number of features.

The rest of the paper is organized as follows. Section 2 presents benchmark datasets
used to explain various deep learning algorithms and the rationale for considering them for
an IDS and libraries used to explain models and extract features that significantly contribute
to making predictions. Section 3 presents our proposed framework in detail. Section 4
presents the experiments carried out using various datasets and classifiers. In Section 5,
we compare the results of our proposed framework with the previous researcher’s work in
the IDS field. Finally, the conclusion and future work is presented in Section 6.

2. Literature Review

IoTs are resource constraint devices built for a specific purpose. Due to limited
resources and their ability to communicate over the internet and work independently,
they are exposed to many cyber-attacks. Resource limitations prevent security experts



Future Internet 2021, 13, 318 3 of 22

from applying conventional security solutions such as firewalls, antivirus, and patches [1].
In contrast, access to the internet allows cyber-attackers to use sophisticated software to
quickly overtake these devices and use them as bots to launch further large-scale distributed
attacks on critical infrastructure and websites [15]. There are many attack types that can
impact IoT systems. Some of them include distributed denial of service (DDoS), botnet,
keylogging, phishing, spamming, click fraud, identity theft, and malware proliferation.
However, the most common and the most dangerous are Denial of Service (DDoS) and
botnet. Some of these attacks are active attacks because they occur during real-time network
communication. They either affect the normal operations or alter the system resources,
e.g., data alteration or flooding the target system (DDoS, DOS) to make it unresponsive
to prevent it from serving any new requests. Contrary to active attacks, passive attacks
monitor and analyze the traffic pattern by eavesdropping to find vulnerabilities such as
open ports, low cipher usage, and unencrypted traffic [16]. Protecting the IoT environment
is critical. Many research studies have been based on finding the optimal machine learning
solution. However, most of them do not provide a comprehensive solution by investigating
network traffic from various sources or building robust models that converge quickly and
provide the best results. Some researchers trained their models on a single and old dataset
(e.g., NSL-KDD), which lacks modern-day attacks [17]. An IDS must detect a large number
of attack types because some of the DDoS attacks such as “Slowloris” slowly deplete server
resources and are hard to detect [18]. In contrast, others such as “Jamming” attacks can
quickly drain resources and have serious consequences [19].

2.1. Related Work

The performance of conventional ML approaches plateau and remains stagnant once a
certain computational threshold has reached; in contrast, DL performance grows rapidly as
the dataset size grows [10]. Therefore, our focus in this study is only on deep learning-based
models. Due to the continuous changes in network attacks every year, it is important to
train models on diverse datasets consisting of different attacks and also provide the ability
to quickly retrain models on new traffic patterns to evaluate IDS performance [20]. The se-
curity experts need to be able to interpret the model’s output consistently and understand
the factors and features that cause the model to make certain predictions [21]. Features
have a significant impact on ML model predictions and their quality [22]. Many research
studies have recently been performed on explaining model outputs [23–26]. The two
common approaches to explain model output are post hoc, also known as model-agnostic
and model-specific approaches. The model-agnostic approach has received much attention
in the research community [27]. Model-agnostic approaches to explain machine learning
models provide many advantages over model-specific interpretation approaches. One
of the important ones is to allow researchers to build any machine learning model they
desire without worrying about the model’s complexity and interpretability [28]. For a
model-specific interpretation, it is difficult to switch to a new or existing model with a
slight change in the model settings.

Many researchers have proposed deep learning-based IDS for IoT environments;
however, few have explained their model’s output. For example, in [23], the authors tried
to explain their model’s output, but their solution is not comprehensive. They only looked
at a single dataset NSL-KDD to train the model and predict attacks. In another study,
the authors only investigated the robustness of interpretable models [29]. Some researchers
used Convolutional Neural Networks (CNN) to detect diseases using localized model
interpretation only [30]. In another research, the authors used the NSL-KDD dataset to train
a deep neural network and applied LIME and SHAP to explain the model behavior [31].
However, their solution only focuses on explaining a single classifier and using a single
dataset, “NSL-KDD,” which is old and lacks recent attacks [32]; they have not used their
research to find optimal classifier settings across various datasets. In [33], the authors
used a localized explanation to interpret the model using an old dataset and Multilayer
Perceptron (MLP).



Future Internet 2021, 13, 318 4 of 22

This paper is a step forward from our previously published paper [34] which proves
the bias issues in models that are trained on a single dataset. In our previous work,
first, we replicated various DL-based models from many researchers using the same
dataset, classifier settings, and the preprocessing steps; second, we proved the bias issue
by switching the dataset to a new benchmark dataset that caused the good performing
classifier to drop their performance considerably. In this paper, we overcome this limitation.
Instead of building a model on a single dataset and a single DL algorithm, we incorporated
multiple datasets and multiple algorithms to diversify the input data and the processing
algorithm for optimal performance.

2.2. Benchmark Datasets

The dataset has a critical role in building and testing a holistic IDS solution. Deep learn-
ing models need a large volume of data for better classification and improved performance.
Some of our goals in this study, as stated earlier, are (a) to gather, extract, and analyze
aggregate knowledge from various benchmark network datasets and look at the com-
monalities to avoid any possible bias in produced results and (b) mitigate dataset quality
and reliability issues. To achieve these goals, we gathered various benchmark network
datasets to capture a diverse set of attacks, devices used for data collection, different traffic
capture duration, and actual and simulated traffic patterns. Some of these datasets, such
as KDD CUP 99 and NSL-KDD, are very old and not IoT specific; however, researchers
have still used them extensively to build their models. Others similar to BoT_IoT are
recent and provide IoT-specific traffic. Table 1 provides details of the datasets used in our
empirical analysis.

Table 1. Benchmark datasets analysis.

Dataset Attacks Captured Total Features Total Benign
Records

Total Malicious
Records

Description

Bot-IoT DoS, DDoS, Reconnaissance, Theft 45 477 3,668,045 The dataset consists of both legitimate and simulated IoT traf-
fic and various attack types. It provides full packet capture in-
formation with corresponding labels [35]. The dataset is highly
imbalanced, with very few benign and a large volume of ma-
licious records. The full dataset consists of 73,360,900 rows
and has a size of over 69 GB. UNSW provides a scaled-down
5 percent dataset to make data handling easy.

N-BaIoT Gafgyt combo, Gafgyt junk, Gafgyt
scan, Gafgyt TCP, Gafgyt UDP, Mi-
rai ack, Mirai scan, Mirai syn, Mirai
UDP, and mirai_udpplain

115 555,932 6,506,676 The dataset consists of real IoT network traffic collected from
9 commercial IoT devices. Dataset is infected with two famous
and harmful IoT botnets Mirai and BASHLITE (also known
as Gafgyt) [36]. Dataset is unbalanced, with benign records
much smaller than malicious records [37].

CICIDS-2017 DoS Hulk, PortScan, DDoS, DoS
GoldenEye, FTP-Patator, SSH-
Patator, DoS slowloris, DoS
Slowhttptest, Bot, Web Attack Brute,
Force, Web Attack XSS, Infiltra-
tion, Web Attack SQL Injection,
Heartbleed

85 2,271,320 556,556 This dataset consists of complex features that were not avail-
able in previous datasets, such as NSL-KDD, KDDCUP 99 [38].
Dataset does not provide IoT-specific traffic [12]. The dataset
contains some of the recent large-scale attacks such as DDoS
and bot [39]. The dataset consists of 83 features and captures
14 attacks. The dataset is highly imbalanced [40] and is prone
to generate biased results towards the majority classes with
poor generalization [41]

UNSW-NB15 Generic, Exploits, Fuzzers, DoS, Re-
connaissance, Analysis, Backdoor,
Shellcode, Worms

49 2,218,764 321,283 Dataset is designed based on a synthetic environment for
generating attack activities [42]. The dataset is not IoT specific
and generated by collecting the real benign network traffic
and synthetically generated attacks. It contains approximately
one hour of anonymized traffic traces from a DDoS attack in
2007 [43]. The overall classification accuracy has a mitigating
effect on this dataset; it is due to the greater number of classes
(10 in NB15 vs. 5 in KDD) and a higher Null Error Rate (55.06%
in NB15 vs. 26.1% in KDD) [44]

NSL-KDD DoS, Probe, R2L, U2R 43 77,054 71,463 Dataset is an extension of the dataset “KDDCUP 99”. It is not
IoT specific, contains no duplicate records, and lacks in mod-
ern large-scale attacks [5,12,45]. The training dataset provides
22 attack types, and the test dataset provides 37 attack types,
which are categorized into four attack classes [46].

KDD CUP 99 Dos, Probe, R2L, U2R 41 1,033,372 4,176,086 Dataset is not specific to the IoT environment. Lacks the latest
attack data and contains unbalanced labels [5,12,13]. Exces-
sive duplication in records leads to skewed label distribution,
and the classifier generates biased results towards most occur-
ring records and cannot thoroughly learn the least occurring
records [47]



Future Internet 2021, 13, 318 5 of 22

2.3. Dataset Quality and Reliability Issues

Data quality is important and greatly affects the reliability and robustness of an IDS.
Data quality problems impact model predictions and impact security experts’ decisions
that rely on IDS results. From an IDS perspective, it is important to not only train ML-
based models on clean and reliable data, but it is also important to diversify the data to
cover a vast range of traffic patterns and minimize the model’s biased output towards
limited traffic patterns. In ML, some of the common data quality issues consist of noisy or
insufficient labeled data, imbalanced data, duplicate data, incomplete data, and inconsistent
data. A dataset consisting of a few attack patterns cannot fulfill the IDS purpose. In the
preprocessing steps of ML-based modeling, data quality issues are fixed using statistical or
manual techniques to ensure models are trained with clean and reliable data only.

In [48], the authors emphasized the impact of poor-quality data on ML-based models’
performance. The authors argued that very few research studies pay attention to data
requirements and quality issues. The authors presented eight data quality issues relevant
to ML-based IDS. These include reputation, relevance, comprehensiveness, timeliness,
variety, accuracy, consistency, and de-duplication. In [49], the authors empirically analyzed
data quality issues and stated that the data quality issues in ML-based models cause
compounding negative events, create downstream effects, and become a technical burden
to manage over time.

Today, many ML-based IDS solutions are proposed by training the model on a single
dataset. These models are proposed to assume that the training labels are accurately identi-
fied. However, this assumption is not fully accurate because the labels are manually created
by a security expert who may lack the appropriate judgment; similarly, imbalanced class
labels can impact the performance and accuracy of an ML model [50]. There are different
approaches adopted by the researchers to mitigate dataset quality and reliability issues,
such as removing noise in the labels, increasing unique input data instances to statistically
represent the population, utilizing techniques such as bootstrapping or SMOT (Synthetic
Minority Over-sampling Technique) [5] to overcome class imbalance issues. In this paper,
we improved the data quality issues that may cause biased results by performing various
preprocessing steps to clean the noise from the data and trained various models on multiple
datasets containing unique attack classes and traffic patterns.

2.4. Deep Learning Classifiers for Sequential Data

Researchers have been proposing a vast range of ML and DL solutions for network
anomaly detection. This paper focused our experiments on only those DL classifiers that
are famous, commonly used, and are known to perform well on sequential data. Section 3
presents our proposed framework with various DL classifiers used in this study. Firstly,
we implemented a Multilayer Perceptron (MLP), which is a feed-forward Neural Network
and consists of an input, hidden, and an output layer. It has frequently been used for
network anomaly detection [11,51–54]. Autoencoders (A.E.) are robust unsupervised neural
networks. A.E. helps avoid data imbalance and dimensionality reduction and reconstruct
errors while detecting anomalies [55]. Researchers have shown great interest in A.E.
when solving anomaly detection, fault diagnostics, dimensionality reduction, compression,
and other related problems.

A Recurrent Neural Network (RNN) is a powerful and famous algorithm to find hid-
den patterns in sequential data [56]. RNN captures temporal dependencies in the data by
storing the data received earlier [57]. RNN’s are good at processing sequential data; how-
ever, they suffer from gradient vanishing problems, are challenging to train [58], and cannot
remember longer sequences [59]. Long Short-term Memory (LSTM) is a specialized RNN
that can remember information for a longer period using a memory cell. It overcomes
RNN’s vanishing gradient problem [60]. LSTM’s consist of three gates, i.e., input gate, for-
get gate, and output gate [57]. The gates control access and information flow in the memory
cell and prevent stored information from being overwritten with irrelevant information.
Bi-directional LSTM (BLSTM) came to solve some of the problems in traditional LSTM,



Future Internet 2021, 13, 318 6 of 22

such as that LSTM cannot operate in both positive and negative directions [61]. Similarly,
LSTM does not work for tasks requiring explicit and external memory [60]. BLSTM are
good in processing sequential data in both time directions using forward and backward
LSTM layers [62].

A Convolutional Neural Network (CNN) is primarily used for image classification
and produces high accuracy when performing complex tasks [56]. A basic CNN consists of
one or more convolutional, pooling, and fully connected layers. The 1D-CNN has been
used in many IDS studies and produces good results in processing sequential data [63].
CNN’s main advantage over a feed-forward neural network is that each neuron in CNN
only connects to a subset of input; this reduces the total number of network parameters
and improves training time and process [64]. Temporal Convolutional Network (TCN) is
a feed-forward network and is a variant of CNN that uses causal convolutions. A CNN
architecture combined with causal padding makes it a causal convolution [65]. TCN is
known to maintain a temporal sequence of data, which helps in preventing information
loss. TCN allows better GPU optimization during training [66].

2.5. Feature Importance

Over the past many years, extensive research has been performed on building an opti-
mal IDS for an IoT environment. However, researchers have been challenged to optimally
handle the changing network traffic patterns, technology shifts, and large data volume man-
agement [67]. An essential operation in machine learning (ML) is finding the best features
before training the models. Unfortunately, there are no commonly agreed-upon approaches
on feature selection that can be applied to every problem on hand. Researchers sometimes
use their judgment, experience, or statistical techniques such as Principal Component
Analysis (PCA) to find the least number of optimal features. Each of these approaches aims
to effectively handle large data sets with a large number of features without compromising
model performance and accuracy. Once the representational features are extracted, they are
used to train the ML classifiers and are applied to test the anonymous traffic patterns [68].

Selecting the important features is commonly performed manually in traditional ML
approaches. The process is challenging, labor-intensive, time-consuming, and is prone
to errors [57]. The feature selection computation time increases when the input dataset
has a large number of features [69]. On the other hand, deep learning algorithms perform
well on large datasets without explicitly performing feature selection [70]. However,
some researchers still find benefits in performing feature selection in deep learning-based
models [56]. For example, in one study, the authors used the NSGA-ii-aJG feature selection
method with the CNN + LSTM model and achieved 99.03% accuracy [71]. On the other
hand, in another study, the authors used DL’s capabilities to auto-select features to detect
anomalies; their proposed LSTM model achieved a 99.98% precision score compared to the
SVM model, which could only achieve an 88.18% precision score [57].

Deep learning models are inherently complex with a large number of hidden parame-
ters, complex settings, multiple layers, and hidden nodes. Because of the complex nature
of DL models, many researchers only report model settings and performance results but
nothing about the output and findings of the model itself. Some researchers try to justify
their classifier performance using techniques such as cross-validation, but DL models could
still fail to learn important hidden representations that an expert human in the field might
consider necessary. Similarly, a model may consider certain features important, which an
expert human may not consider necessary.

Explaining model output is essential for various reasons, including (a) human curiosity
about specific predictions [72], (b) making the model explainable to naïve humans, (c) en-
hancing and redesigning the model by analyzing its output to gain optimal performance,
(d) understanding why specific wrong predictions were made, and (e) improving trust
and confidence in the model’s decisions. Once a model is analyzed as a whole, or when
individual predictions are deeply analyzed, it is assumed that models can be redesigned
with a limited set of features for better results and performance. When a model is explained



Future Internet 2021, 13, 318 7 of 22

locally, its scope is limited to single-input data instance only. Individual probabilistic
scores are calculated to express the predictions for an individual instance compared to all
predictions. On the other hand, models can be explained as a whole with a global scope.
The approach to explaining models can be built within a DL model itself or can be applied
as a post hoc approach. However, model explanation within a model has a restrictive scope
and can lead to significant changes with a slight change in model settings. On the other
hand, researchers have shown interest in the post hoc approach that uses ad hoc methods
and techniques to explain any model already built [73]. It is not easy to interpret complex
deep learning models such as ensemble or hybrid models. For complex models, the post
hoc approach provides a simpler approach to interpret model outputs. The following
sub-section presents two state-of-the-art libraries commonly used in post hoc methods to
explain models locally and globally.

2.5.1. Local Interpretable Model-Agnostic Explanation (LIME)

The LIME explains the individual predictions of any model by approximating it
locally [74]. The output of LIME provides a quantitative and visual understanding of an
instance and the model predictions in order for a naïve or expert person to build trust in a
model and make effective decisions. LIME provides local fidelity of predictions, which may
provide different results than global explanatory methods; in other words, features that
LIME considers important for a local prediction might not be considered important by the
global explainers and vice versa. LIME has some advantages over global model explainers
such as SHAP; for example, it is computationally fast and converges quickly. Explaining
an individual model prediction is faster compared to finding and aggregating global
permutations. LIME uses an intuitive approach to analyze model output by providing
variations in the input data. The variation in input data is generated by creating new
perturb data from the original input. The new data are then used to train the model and
interpret its predictions. An important pre-consideration must be made to specify the
number of features we want to interpret the model when interpreting models. The higher
the features, the better the trustworthiness of the model. Equation (1) represents a local
interpretation of input data sample x:

interpretation(x) = argming ∈ GL(f,g, πx) +Ω(g) (1)

where g represents an individual model from the list of available explainable models G
(e.g., decision tree, linear regression) for the sample instance, x and f represent the original
model (e.g., MLP) being explained. πx defines the proximity measure or weight between
the original and sample data. L(f,g, πx) represents the fidelity function that will try to
reduce the loss L (e.g., categorical cross-entropy) and measures the difference between the
predictions made by the original model f and its representation g. Finally, Ω(g) represents
the complexity of model g. LIME explains the model by trying to minimize the fidelity
function and the complexity so naive humans can easily interpret the model.

2.5.2. SHapley Additive Explanation (SHAP)

SHAP is another popular method used to interpret model predictions for increased
model transparency. It is based on coalitional game theory, which fairly distributes the
payout among the features. SHAP measures each feature’s contribution towards the model
output [75]. The two great advantages of SHAP include: (a) global interpretability, which
provides a good explanation of each feature’s contribution (either positive or negative) to
the model predictions across all permutations. (b) Local interpretability, which provides
transparency through the local interpretability of each observation. Each observation x is
assigned a corresponding SHAP value that can be applied to any model. SHAP computes
the contribution of each feature to the predictions as follows:

g(z′) = φ0 + ΣM
j=1φjz′ j (2)



Future Internet 2021, 13, 318 8 of 22

where g represents the explainable model of deep learning model f. z’ ε {0,1}M represents
simplified features, also known as a coalition vector, where 0 means the feature value in
the new data is not available in the original data, and 1 means the feature value in the new
data is available in the original data. M represents the maximum coalition size, and φj ε

R represents the feature attribution, quality, or impact of feature j on predictions. A large
value of φj presents a strong positive impact of a feature on predictions.

Depending on the model type, SHAP provides various explainers [76]; some of the
commonly used explainers are as follows: (a) TreeExplainer can be used to explain tree-
based classifiers such as XGBoost, random forest, etc. (b) KernelExplainer can be used
to explain any function, (c) DeepExplainer only explains deep neural networks, and (d)
GradientExplainer can also be used to explain neural networks frameworks, such as
TensorFlow, Keras, and Pytorch [77].

3. Proposed Framework

Many research studies have been performed on anomaly detection where researchers
report their model settings and performance measures. Our proposed methodology over-
comes some of the important limitations in previous research studies, where researchers
do not report their proposed model’s output itself but what features contributed to the
model to make certain predictions or influence the overall model performance. Similarly,
many previous research studies generate bias results due to training the models only on
a single dataset consisting of a limited network traffic pattern. A single dataset does not
classify a vast range of attack classes and may lack recent traffic patterns [11]. This paper
explores the output of various DL models by implementing SHAP and LIME, analyzing
predictions, finding commonalities to avoid bias, improving classifier quality and reliability,
and extracting top contributing features that influenced the model predictions most. Figure
1 depicts the proposed framework overview.

To avoid the bias issue of a single dataset, we used various benchmark datasets.
The details of these datasets are presented in Section 2.1. Datasets are then trained on eight
different deep learning models known for processing sequential data and producing good
results in anomaly detection. In our approach, we first implemented single classifiers and
then hybrid classifiers to find the impact on classification. Detailed summary results were
captured with numerous valuable information such as model settings, trainable parameters,
training time, and model size, etc. The novelty of this work is reducing bias results and
improving model interpretability by using LIME to explain local predictions and SHAP to
explain both local and global model output. The top 20 important contributing features
were extracted, which were then used to enhance the DL models by improving model
settings, performance and choosing the best classifier for a resource constraint environment.

Figure 1. Overview of the proposed framework.



Future Internet 2021, 13, 318 9 of 22

Our experiments involve various datasets and DL models. To preserve the space,
we only present the architecture of one of our hybrid models, “Autoencoder + TCN,”
in Figure 2. The same architecture has been used for other hybrid model implementations
shown in Figure 1. In other implementations, we replaced the “TCN Structure” block
in Figure 2 with LSTM, BRNN, or BLSTM. Model-specific settings are reported in Table 2
(individual classifiers) and Table 3 (hybrid classifiers). In this architecture, first, the au-
toencoder takes the input shape of the dataset, reduces its dimensions to a smaller size
(also known as latent space) and then reconstructs the original data from the compressed
representation. Autoencoders generate reconstruction errors and guarantee very high
accuracy with low latency detection [78]. The output of autoencoders is passed into a TCN
structure. The pooled outputs of TCN block layers are flattened into a one-dimensional
array and are passed to a fully connected layer. The last layer is passed with total output
classes using the “softmax” activation function to make predictions on each label.

Table 2. Individual DL classifiers summary.

Trainable Training Model
Classifier Dataset Parameters Time Size Accuracy

MLP Bot-IoT 32,581 7 min 434 KB 100.00%
CICIDS2017 38,255 5 min 500 KB 99.90%
NSL-KDD (*a) 43,205 1 min 193 KB 78.20%
NSL-KDD (*b) 43,205 0.5 min 560 KB 98.90%
UNSW_NB15 (*a) 52,890 0.5 min 673 KB 38.90%
UNSW_NB15 (*c) 53,786 5 min 684 KB 97.80%
N-BaIoT 42,411 2 min 550 KB 90.80%
KDD CUP 99 42,693 1 min 553 KB 99.90%

CNN Bot-IoT 12,901 11 min 198 KB 100.00%
CICIDS2017 18,495 9 min 264 KB 100.00%
NSL-KDD (*a) 23,525 1 min 322 KB 80.10%
NSL-KDD (*b) 23,525 1 min 322 KB 98.60%
UNSW_NB15 (*a) 33,170 1 min 436 KB 37.30%
UNSW_NB15 (*c) 34,066 15 min 447 KB 97.70%
N-BaIoT 22,683 5 min 313 KB 90.90%
KDD CUP 99 23,013 2 min 316 KB 99.90%

LSTM Bot-IoT 3,100,261 162 min 36 MB 100.00%
CICIDS2017 3,188,495 248 min 37 MB 100.00%
NSL-KDD (*a) 3,270,245 23 min 38 MB 73.60%
NSL-KDD (*b) 3,270,245 20 min 38 MB 98.70%
UNSW_NB15 (*a) 3,423,930 23 min 39 MB 51.50%
UNSW_NB15 (*c) 3,438,266 532 min 39 MB 98.00%
N-BaIoT 3,256,011 121 min 37 MB 90.80%
KDD CUP 99 3,262,053 61 min 37 KB 99.90%

Figure 2. Autoencoder + TCN architecture.



Future Internet 2021, 13, 318 10 of 22

Table 3. Hybrid DL classifiers summary.

Classifier Dataset Trainable Params Epoch Batch Size Training Time Model Size Accuracy

Autoencoder + TCN Bot-IoT 87,483 20 256 70 min 1 MB 100%
CICIDS2017 140,315 10 512 24 min 2 MB 99.99%
NSL-KDD (*a) 173,505 100 256 25 min 2 MB 75.6%
NSL-KDD (*b) 173,505 100 256 15 min 2 MB 99%
UNSW_NB15 (*a) 339,626 100 32 53 min 2 MB 75.7%
UNSW_NB15 (*c) 348,858 50 256 208 min 3 MB 97.9%
N-BaIoT 167,073 20 128 39 min 2 MB 90.7%
KDD CUP 99 169,473 10 32 22 min 2 MB 99.9%

Autoencoder + LSTM Bot-IoT 3,104,180 5 512 35 min 36 MB 100%
CICIDS2017 3,204,681 5 512 40 min 37 MB 99.4%
NSL-KDD (*a) 3,291,591 100 256 90 min 38 MB 79%
NSL-KDD (*b) 3,291,591 20 32 68 min 38 MB 98.9%
UNSW_NB15 (*a) 3,454,951 50 32 193 min 40 MB 42.3%
UNSW_NB15 (*c) 3,511,558 15 512 216 min 40 MB 97.9%
N-BaIoT 3,276,174 10 256 42 min 38 MB 80.5%
KDD CUP 99 3,282,603 10 128 30 min 38 MB 99.9%

Autoencoder + BRNN Bot-IoT 2,329,268 5 512 121 min 27 MB 100%
CICIDS2017 2,517,833 5 512 181 min 29 MB 99.4%
NSL-KDD (*a) 2,686,663 50 256 350 min 31 MB 73.6%
NSL-KDD (*b) 2,686,663 20 256 121 min 31 MB 51.9%
UNSW_NB15 (*a) 3,044,095 50 256 375 min 35 MB 31.9%
UNSW_NB15 (*c) 3,074,566 5 512 272 min 35 MB 95.7%
N-BaIoT 2,656,910 5 256 181 min 31 MB 23.3%
KDD CUP 99 2,669,483 10 128 228 min 31 MB 79.2%

Autoencoder + BLSTM Bot-IoT 8,825,780 5 512 56 min 101 MB 100%
CICIDS2017 9,014,345 5 512 88 min 103 MB 99.9%
NSL-KDD (*a) 9,183,175 100 256 300 min 105 MB 76%
NSL-KDD (*b) 9,183,175 20 32 145 min 105 MB 98.7%
UNSW_NB15 (*a) 9,540,607 50 256 156 min 109 MB 38.1%
UNSW_NB15 (*c) 9,571,078 5 512 300 min 110 MB 97.7%
N-BaIoT 9,153,422 10 256 162 min 105 MB 90.8%
KDD CUP 99 9,165,995 10 128 105 min 105 MB 99.5%

CNN + LSTM Bot-IoT 3,115,925 20 256 126 min 36 MB 100%
CICIDS2017 3,204,159 20 256 190 min 37 MB 100%
NSL-KDD (*a) 3,285,909 20 256 18 min 38 MB 73.4%
NSL-KDD (*b) 3,285,909 20 256 20 min 38 MB 98.9%
UNSW_NB15 (*a) 3,439,594 20 256 25 min 39 MB 52.7%
UNSW_NB15 (*c) 3,453,930 20 256 550 min 39 MB 97.7%
N-BaIoT 3,271,675 20 256 125 min 38 MB 90.9%
KDD CUP 99 3,277,717 20 256 62 min 38 MB 99.9%

The TCN block in Figure 2 is the layered implementation of the dilated causal convo-
lution of the TCN architecture. Figure 3 reflects the details of this model. TCN block takes
three parameters as follows:

TCN block (filters, kernel_size, dialation_rate)

where “filters” are similar to units in LSTM, and they affect the model size. A larger
filter size is preferred. It helps to train the model in parallel and faster, unlike RNN and
LSTM, where predictions must wait for the predecessor results [79]. In TCN, a longer
input sequence can be processed as a whole instead of sequentially. The “kernel_size”
parameter determines the size of each filter in each convolution layer. It helps to calculate
how much of the input is used to calculate each value in the output. A larger kernel_size
helps detect complex features. The “dialation_rate” parameter represents a fixed step
between two adjacent filters. A “dilation_size=1” is the same as a regular convolution in a
CNN network. A larger dilation rate captures a bigger input range on the top convolution
layer, making a TCN more receptive [79]. Our TCN structure starts with a CONV1D dilated
causal convolution layer, followed by a batch normalization layer to obtain high accuracy
values and increase model training. We then implemented a Rectified Linear Unit “Relu” to
allow quick network convergence. We then added a “Dropout” layer to avoid over-fitting
and added regularization by randomly dropping 30% of weights connected to certain



Future Internet 2021, 13, 318 11 of 22

nodes during the training process. The same layer structure was repeated in the TCN block
and is shown in Figure 3.

Figure 3. TCN block architecture.

4. Experiments, Results, and Analysis

This section discusses the experimental setup and various findings. We present our
rigorous experiments in various parts. First, Table 2 shows the summary of individual clas-
sifiers, and Table 3 shows the hybrid classifier’s implementation summary. All experiments
presented in Table 2 were executed with 20 epochs and a batch size of 256. Several pieces
of valuable information were gathered, including (a) trainable parameters, (b) training
time, (c) model size, (d) accuracy, (e) epochs, and batch size. Two separate experiments
were performed on NSL-KDD and UNSW_NB15 datasets; In (*a), models were trained and
predicted on the given training and testing set. In (*b), we merged the training and testing
set, shuffled the dataset, and recreated a new training and testing set based on the 70:30
split ratio. In (*c), models were trained on the given full dataset and created a training and
testing set based on a 70:30 ratio. Second, Figure 6 shows the SHAP’s local explanation of
the KDD CUP 99 dataset. To conserve space, we only presented a single prediction from a
single dataset. Figure 7 also shows the local explanation of one of the predictions using
LIME. Lastly, Figure 8 shows the results of SHAP’s global explanation by listing the top
20 most important contributing features.

Table 2 shows that the LSTM model requires over 3 million trainable parameters, thus
requiring a longer training time than MLP and CNN. Running the model on UNSW_NB15
(*c) requires over 8.5 h, making it an expensive algorithm for a resource-constrained IoT
environment. Figure 4 compares the accuracy comparison of each of the classifiers. All
three algorithms return similar accuracy, with LSTM performing slightly better on the
UNSW_NB15 (*a) dataset.

Figure 4. Individual classifier models’ accuracy.

Table 3 shows the summary of hybrid classifiers. The “Autoencoder + TCN” takes on
average the least number of trainable parameters around 199K, whereas “Autoencoder +
BLSTM” takes the most over 9.2 million parameters. All other classifiers also require a large
number of parameters, with “Autoencoder + LSTM” taking over 3.3 million and “CNN +
LSTM” taking over 3.2 million trainable parameters. For an IoT environment, “Autoencoder



Future Internet 2021, 13, 318 12 of 22

+ TCN” is convenient due to a smaller than 3 B, shorter training time, and better accuracy
than other models.

Figure 5 shows the accuracy comparison of each of the hybrid classifiers. “Autoencoder
+ TCN” returns better accuracy compared to other algorithms. “Autoencoder + BRNN”
returns very low accuracy with only 23.30% on N-BotIoT and 31.90% on UNSW_NB15 (a*)
datasets. Model training time is also an important concern in a live environment. As shown
in Table 3, algorithms such as “CNN + LSTM” took over 9 h to converge on UNSW_NB15
(*c) dataset. Models that converge faster can be trained multiple times during the day with
new attack information to keep them up-to-date.

Figure 5. Hybrid classifier models’ accuracy.

4.1. Individual Prediction Interpretation—Localized Explanation

We performed two analyses to look for a suitable measure of feature importance.
SHAP and LIME provide a localized explanation of a specific prediction. Both local and
global explanations show the complexity of models when making predictions. SHAP local
explanation in Figure 6 visually shows the features considered important by the classifier in
making an individual prediction. The prediction reflects the probability that the input traffic
is a DOS attack. Results showed that the base value of 79.24% (model’s average prediction
over the training set) would be predicted if the features to the current output f(x) were
unknown. However, the classifier was able to predict the DOS attack with 100% accuracy.
The top features that predict the attack are shown in red color and are count, dst_host_count,
service_ecr_i, service_http, etc., whereas the blue features dst_host_srv_count drives the
prediction value lower. The larger arrow size of the count shows the magnitude of this
feature’s effect on making a classification decision.

Figure 6. SHAP local explanation of a DOS attack.

Figure 7 shows the local explanation of a DoS vs. NOT DoS attack using LIME.
The classifier predicts that the traffic is a DoS attack, and the LIME bar chart highlights
the importance given to the most relevant features that led to the prediction. As shown
in Figure 7, protocol_type_udp, logged_in, count, srv_count, and dst_host_srv_count are
depicted as contributing to the “DOS” prediction, while serror_rate is against it. Cybersecu-
rity experts can review these granular details to make an informed decision about trusting
the model’s predictions.



Future Internet 2021, 13, 318 13 of 22

Figure 7. LIME local explanation of DoS vs. NOT DoS attack.

4.2. Model Interpretation—Global Explanation

Similar to the local explanations presented in Section 4.1, global explanations also
interpret the model by providing insights on input features, patterns, and the output
correlation to promote model behavior transparency [73]. SHAP provides various methods
to explain models. This paper’s scope is limited to deep learning models only, so we used
DeepExplainer and GradientExplainer to extract important contributing features in the
overall model output. Analyzing global explanations of models is important to understand
general model behavior when dealing with large datasets and a large number of features.
We implemented multiclass classification in our experiments and extracted the top 20
contributing features for each attack type. The experiments were run on all eight datasets
and eight DL classifiers. To conserve space in the paper, we present the visual output
of only two datasets in Figure 8. Figure 8a shows the top 20 most contributing features
extracted from the BoT_IoT dataset, and Figure 8b shows the top 20 most contributing
features extracted from the UNSW_NB15 dataset. Different target classes are shown in
color legends as well.

SHAP adds the absolute Shapley values per feature per target label to identify im-
portant features globally and sorts them with maximum values on the top and minimum
values at the bottom. The visual graph in Figure 8 depicts important contributing features
from top to bottom in different colors. The process is represented in Equation (3).

Ij = Σn
i=1|φj

(i)| (3)

where φj
(i) refers to the Shapely value for feature j in the i-th data; N is the total number

of samples in the dataset; and I_j is the average Shapley value of the feature j. Briefly,
Figure 8a depicts dur as the most important feature followed by sum, N_IN_Conn_P_DstIP,
etc., in the BoT_IoT dataset. Similarly, Figure 8b depicts sttl as the most important feature,
followed by ct_state_ttl, dttl, smeansz, etc. Further details and analysis of which features
each classifier considered important are presented in Section 4.3. Global explanation helps
to refine further models towards building an online IDS, which can look at only a limited
set of network traffic features to make decisions quickly in an unsupervised manner.

Figure 8. SHAP global explanation of top 20 features impact on model output magnitude.



Future Internet 2021, 13, 318 14 of 22

4.3. Top Contributing Features

This section presents the aggregated knowledge of important features identified by
each of the eight DL classifiers from all eight datasets. Our approach was to extract the top
20 features and is divided into three sub-categories, (a) Table 4 provides a list of features
identified by every classifier. These features must be considered the most important features
(b) Table 5 provides a list of features identified by six or more classifiers, and (c) Table 6
provides a list of features identified by five or fewer classifiers. Each classifier reports
features sorted by top contributing to low contributing; however, we are not reporting
the ordering sequence here because it will require a very big table size if we report the
individual output of eight classifiers on eight datasets. Our goal is to present an aggregated
knowledge and report those features to which all or the majority of classifiers have been
given some importance in the top 20 list regardless of the ordering sequence.

Table 4. Top features identified by all classifiers.

Dataset Feature Name

BoT_IoT mean, min, N_IN_Conn_P_DstIP, N_IN_Conn_P_SrcIP,
Pkts_P_State_P_Protocol_P_DestIP, proto_number, seq, state_number,
stddev, stime, TnP_Per_Dport, dur, TnP_PDstIP

CICIDS2017 ACK Flag Count, Destination I.P., Fwd Packet Length Max,
Init_Win_bytes_forward, Min Packet Length, Source I.P., Source Port

NSL-KDD (*a) count, dst_host_count, dst_host_rerror_rate, dst_host_same_src_port_rate,
dst_host_same_srv_rate, dst_host_serror_rate, dst_host_srv_count, ser-
vice_http, dst_host_srv_serror_rate, flag_S0, logged_in, same_srv_rate,
srv_rerror_rate

NSL-KDD (*b) count, dst_host_count, dst_host_rerror_rate, dst_host_same_src_port_rate,
dst_host_same_srv_rate, dst_host_serror_rate, dst_host_srv_count,
same_srv_rate, service_http, srv_serror_rate, logged_in

UNSW_NB15
(*a)

ct_dst_src_ltm, ct_srv_dst, ct_srv_src, ct_state_ttl, dmean, dttl, service_dns,
service_-, sttl

UNSW_NB15
(*c)

ct_dst_sport_ltm, ct_dst_src_ltm, ct_src_dport_ltm, ct_srv_dst, ct_state_ttl,
dmeansz, dttl, service_dns, service_-, sttl, swin

N-BaIoT MI_dir_L0.1_weight

KDD CUP 99 count, dst_host_count, logged_in, protocol_type_icmp,
dst_host_same_src_port_rate, dst_host_srv_count, service_ecr_i,
same_srv_rate, service_http

Table 5. Top features identified by six or more classifiers.

Dataset Feature Name

BoT_IoT flgs_number, ltime, max, sum, Pkts_P_State_P_Protocol_P_SrcIP,
TnP_PerProto, TnP_PSrcIP

CICIDS2017 Protocol, Average Packet Size, Destination Port, PSH Flag Count, Fwd IAT Std

NSL-KDD (*a) dst_host_diff_srv_rate, dst_host_srv_rerror_rate, rerror_rate. service_private

NSL-KDD (*b) diff_srv_rate, dst_host_diff_srv_rate, dst_host_srv_serror_rate, serror_rate,
flag_SF, rerror_rate

UNSW_NB15
(*a)

id, smean, ct_src_dport_ltm, ct_src_ltm, proto_tcp

UNSW_NB15
(*c)

ct_srv_src, smeansz, proto_tcp, proto_udp



Future Internet 2021, 13, 318 15 of 22

Table 5. Cont.

Dataset Feature Name

N-BaIoT MI_dir_L1_variance, H_L0.01_weight, H_L0.1_variance, H_L1_weight,
H_L0.1_weight, H_L0.01_variance, H_L1_variance, MI_dir_L0.1_variance,
MI_dir_L0.01_weight, MI_dir_L1_weight

KDD CUP 99 dst_host_diff_srv_rate, dst_host_same_srv_rate, protocol_type_udp, ser-
ror_rate, dst_host_serror_rate, dst_host_srv_serror_ra, protocol_type_tcp,
srv_count

Table 6. Top features identified by five or fewer classifiers.

Dataset Feature Name

BoT_IoT sport, TnBPSrcIP, dport, drate, pkts

CICIDS2017 Packet Length Variance, Down/Up Ratio, Fwd IAT Max, Packet Length Std,
Flow IAT Std, Avg Bwd Segment Size, Bwd IAT Total, Bwd Packet Length Max,
Bwd Packet Length Mean, Bwd Packet Length Min, Bwd Packet Length Std,
FIN Flag Count, Flow Duration, Flow IAT Max, Flow Packets/s, Fwd IAT Total,
Fwd Packet Length Mean, Fwd Packet Length Min, Fwd Packet Length Std,
Idle Max, Idle Mean, Idle Min, Max Packet Length, Packet Length Mean

NSL-KDD (*a) serror_rate, srv_serror_rate, diff_srv_rate, fla_REJ, flag_SF, protocol_type_tcp,
protocol_type_udp, service_telnet, srv_count

NSL-KDD (*b) dst_host_srv_rerror_rate, fla_REJ, flag_S0, hot, protocol_type_icmp, pro-
tocol_type_tcp, protocol_type_udp, service_domain_u, service_ecr_i, ser-
vice_private, srv_count, srv_diff_host_rate, srv_rerror_rate

UNSW_NB15
(*a)

ackdat, ct_dst_ltm, ct_dst_sport_ltm, ct_flw_http_mthd, djit, dload, dur, dwin,
proto_udp, proto_unas, rate, service_http, sjit, sload, state_CON, state_FIN,
state_INT, swin, trans_depth

UNSW_NB15
(*c)

ackdat, ct_dst_ltm, ct_src_ltm, djit, dload, dtcpb, dwin, ltime, proto_leaf-2,
proto_unas, sjit, sload, sloss, spkts, state_CON, state_FIN, state_INT, stcpb,
stime

N-BaIoT H_L0.01_mean, H_L0.1_mean, H_L1_mean, H_L3_mean, H_L3_variance,
H_L3_weight, H_L5_weight, HH_jit_L0.01_mean, HH_jit_L0.01_weight,
HH_jit_L0.1_mean, HH_jit_L0.1_weight, HH_jit_L1_mean, HH_jit_L1_weight,
HH_jit_L3_mean, HH_jit_L5_mean, HH_L0.01_magnitude, HH_L0.01_mean,
HH_L0.01_weight, HH_L0.1_mean, HH_L0.1_weight, HH_L1_magnitude,
HH_L1_weight, HH_L3_mean, HH_L5_magnitude, HH_L5_mean,
HH_L5_weight, HpHp_L0.01_mean, HpHp_L0.1_magnitude,
HpHp_L0.1_mean, HpHp_L1_magnitude, HpHp_L1_mean,
HpHp_L3_magnitude, HpHp_L5_magnitude, HpHp_L5_mean,
MI_dir_L0.01_mean, MI_dir_L0.01_variance, MI_dir_L0.1_mean,
MI_dir_L1_mean, MI_dir_L3_weight, MI_dir_L5_variance, MI_dir_L5_weight

KDD CUP 99 srv_serror_rate, dst_host_rerror_rate, flag_SF, diff_srv_rate, service_domain_u,
service_other, service_smtp, flag_S0, hot, service_ftp_data, dst_bytes,
dst_host_srv_diff_host_rate, duration, flag_REJ, rerror_rate, service_private

Table 4 reveals that some features in each of the datasets carry more importance than
others. Every classifier picked such features in making decisions. Similarly, as shown in
Table 5, some other features were given a little less importance by only one out of eight
classifiers who did not think it was an important feature. Lastly, many other features were
considered important by five or fewer classifiers. These features in the third category still
carry importance but not as much compared to the first two categories.

Feature selection has an important role in machine learning. For an IDS, eliminating
unnecessary features can help in improving the performance, reducing the computational
cost, and early detection of malicious traffic. In addition to these benefits, feature optimiza-
tion also helps to find a subset of features that can produce better classification results.



Future Internet 2021, 13, 318 16 of 22

This paper, based on the output of multiple deep learning algorithms and datasets, pre-
sented a minimum set of top contributing features consisting of diverse attack classes and
algorithms. From the top contributing features shown in Tables 4–6, multiple traffic flow-
based features are discovered by each algorithm, for example, source and destination IP
addresses, ports, protocol, and flags used. Network flow-based features provide metadata
details of many securities-related details of network activities. From the traffic flow infor-
mation, security experts can identify a given session’s full TCP/IP information to analyze
a particular activity better. Network flow-based features also present a good use case to
detect large-scale attacks such as DDoS and DoS. These attacks generate excessive network
traffic, and detecting them using individual packets could consume all available resources;
therefore, it is optimal to analyze flow-based features to detect large-scale attacks [80].

The experimental results and identifying the top contributing features in each dataset
by a specific model are a step towards future research where authors plan to further
optimize each of the models by training them using only top contributing features shown
in Tables 4–6. Some DL models generate thousands of neurons and trainable parameters,
as shown in Tables 2 and 3. For a large dataset with many features, this leads to the
problem of “Curse of Dimensionality.” Reducing the number of input features helps solve
this problem [81]. In [71], the researchers reported accuracy improvement with a 5-fold
reduction in training time by selecting reduced features for model training compared to
total feature space.

5. Models versus Datasets, a Comparison Study

The performance of an ML-based model depends on multiple factors. For example,
the dataset’s size directly impacts the model training time. Although DL is known to
provide optimal performance on large datasets, the bigger the training dataset, the longer
it takes to train the model. Therefore, researchers have started exploring options to train
DL-based models with distributed training using TPU’s and GPU’s that provide better
computational capabilities [82]. Another important impact on DL-based models is the
datasets with a large number of features. As shown in Tables 2 and 3, the LSTM model gen-
erates over 3 million trainable parameters in individual classifiers, whereas “autoencoder
+ BLSTM” generates over 9 million trainable parameters on multiple datasets. Models
that generate a large number of trainable parameters require longer training time and
have bigger model sizes. Domain shift is another issue that impacts DL performance [83].
A general assumption in DL-based modeling is that the training and testing data come from
the same distribution under the same settings. This assumption contradicts the real-life
scenario where data comes from different sources and would consist of different attack
patterns (variants of existing attacks or completely new attacks). DL-based models are
normally trained offline with limited traffic patterns collected at a certain time period. Any
change in the test data would result in models generating poor results. In [84], the authors
empirically proved the impact of dataset size on model accuracy. The authors argued
that accuracy increases as the dataset size grows for the DL model. The authors also
argued that increasing the minority classes using techniques such as the SMOTE algorithm
considerably increases the model accuracy of minority classes.

In data analytics projects, researchers usually publish their results using a particular
dataset and a classification model. An accurate comparison with previous work is not
possible due to various reasons, which include but are not limited to the following: (a)
variation in model settings, i.e., researchers normally publish their results but do not
publish their model settings such as the number of hidden layers, epochs, and trainable
parameters, (b) difference in computation resources, i.e., training a model on a CPU vs. a
GPU environment or a local vs. a cloud provider. (c) The difference in dataset preprocessing
steps, i.e., reducing dataset dimensionality using Principal Component Analysis (PCA)
vs. Autoencoder or using any other method. By considering all these limitations, we
attempted to provide a model accuracy comparison of our work with some of the previous
researchers’ work, where researchers have trained an individual or hybrid deep learning



Future Internet 2021, 13, 318 17 of 22

classifier using a single benchmark dataset. Although we strongly believe and reported
in this paper that any model trained on a single dataset produces bias results. Table 7
gathered some of the previous work where researchers proposed an IDS for IoT’s using a
single benchmark dataset to train deep learning classifiers.

Table 7. Accuracy comparison with previous work.

Other Researcher’s Model and Accuracy

Ref. Dataset Model Accuracy

[10] NSL-KDD CNN 92.99%

[70] CICIDS2017

MLP 86.34%
CNN 95.14%
LSTM 96.24%
CNN + LSTM 97.16%

[71] CICIDS2017 CNN + LSTM 99.03%

[58] NSL-KDD TCN 90.50%

[51] UNSW-NB15
DNN 99.24%
MLP 98.96%

[53] N-BaIoT
CNN 99.57%
MLP 96.13%

[85] BoT-IoT
CNN 90.76%
MLP 54.43%

[8] KDD CUP 1999 BRNN 99.04%

Accuracy of Our Models

MLP CNN LSTM AE +
TCN

AE +
LSTM

AE +
BRNN

AE +
BLSTM

CNN +
LSTM

98.90% 98.60% 98.70% 99.00% 98.90% 51.90% 98.70% 98.90%
99.90% 100.00% 100.00% 99.99% 99.40% 99.40% 99.90% 100.00%
99.90% 100.00% 100.00% 99.99% 99.40% 99.40% 99.90% 100.00%
98.90% 98.60% 98.70% 99.00% 98.90% 51.90% 98.70% 98.90%
97.80% 97.70% 98.00% 97.90% 97.90% 95.70% 97.70% 97.70%
90.80% 90.90% 90.80% 90.70% 80.50% 23.30% 90.80% 90.90%
100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
99.90% 99.90% 99.90% 99.90% 99.90% 79.20% 99.50% 99.90%

Our proposed deep learning model stack provides comparable performance with
previous researchers’ work with added benefits of avoiding bias by utilizing various
datasets and classifiers. Some of our classifiers perform well on one dataset but not on
others; for example, autoencoder + LSTM produces an accuracy of 100% on the BoT_IoT
dataset but 80.50% on the N-BaIoT dataset. Similarly, Autoencoder + BRNN returns 100%
accuracy on the BoT_IoT dataset but only achieved 23.30% on N-BaIoT, 51.90% on NSL-
KDD, and 79.20% on KDD CUP 99 datasets. This emphasizes one of the reasons that a single
classifier is not good enough to capture attacks reported in different benchmark datasets.
When comparing with the previous researcher’s work, Reference [10] reported a 92.99%
accuracy on CNN, whereas our CNN classifier achieved 98.60% accuracy. Reference [70]
reported 86.34% accuracy on MLP, which is less than our MLP’s accuracy of 99.90%.
They also reported 95.14% accuracy on CNN, whereas our CNN achieved 100% accuracy.
The one notable difference where our models returned minimum accuracy is against the
N_BaIoT dataset, where Reference [53] reported 99.57% accuracy on CNN and 96.13% on
MLP, our models achieving on average 90.80% accuracy. Lastly, Reference [85] reported
only 54.43% accuracy on MLP compared to our MLP classifier achieving 100% accuracy.
Although our results show an overall better performance than other researchers’ work, we



Future Internet 2021, 13, 318 18 of 22

believe that there is a need for baselines or benchmarks to reuse the same configurations to
reproduce and provide true comparable results.

6. Conclusions and Future Work

Machine learning predictive modeling is often a trade-off between what the model has
predicted and understanding the reasons for why certain predictions were made. Many
machine learning-based research studies only report model settings and performance
metrics but nothing about the model’s interpretability, output, and findings. Similarly,
many machine learning models produce biased results for various reasons, such as training
the classifier on a single benchmark dataset or trying to find and tune a single classifier that
can provide blanket protection against intrusion detections. Explaining models visually and
understanding the reasons for certain model behavior provide a useful tool to detect bias.

Due to the complexity and hidden layers of deep learning models, a post hoc (after
model training) approach to interpreting the model is proposed in this paper. We performed
a comparative analysis of various benchmark datasets and deep learning models to gather
the model’s output commonalities and aggregated knowledge of each model generated on
various datasets. SHAP and LIME were used to gather localized explanations of specific
predictions and the overall impact of top contributing features to the model’s output to
gain insights into model decisions. Our results reveal that building a comprehensive
IDS is not possible if the chosen framework is based on a single classifier and a single
dataset. To be more explicit, in Table 2, an MLP model could detect attacks in the Bot_IoT
dataset with 100% accuracy, while for UNSW_NB15 (*a), it could detect attacks with
only 38.90%. Similarly, the “autoencoder + TCN” model could detect attacks in Bot_IoT
with 100% accuracy, but for the dataset NSL-KDD (*a), it could detect attacks with only
75.6%. Thus, it is important to diversify the model training on multiple input datasets to
increase the model knowledge base for optimal predictions. Our findings in this paper
will help the security experts to make informed decisions and improve their trust in the
model’s predictions. Similarly, the global interpretation of the model’s output would help
researchers improve their model’s design to reduce the size, increase processing speed,
and improve attack detection capability. This work reveals future opportunities towards
building a comprehensive online IDS based on minimum but significantly contributing
features. Future researchers can also gain insight into good-performing classifiers and
benchmark datasets to find an optimal fusion of best classifiers and related settings.

Author Contributions: Conceptualization, R.A. and I.A.; methodology, R.A. and I.A.; software,
R.A.; validation, I.A., W.A. and L.T.; formal analysis, R.A.; investigation, R.A.; resources, R.A.; data
curation, R.A.; writing—original draft preparation, R.A.; writing—review and editing, R.A. and I.A.;
visualization, R.A.; supervision, I.A., W.A. and L.T.; project administration, I.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Anthi, E.; Williams, L.; Słowińska, M.; Theodorakopoulos, G.; Burnap, P. A supervised intrusion detection system for smart home

IoT devices. IEEE Internet Things J. 2019, 6, 9042–9053. [CrossRef]
2. Agazzi, A.E. Smart home, security concerns of IoT. arXiv 2020, arXiv:2007.02628.
3. Karie, N.M.; Sahri, N.M.; Haskell-Dowland, P. IoT threat detection advances, challenges and future directions. In Proceedings of

the 2020 Workshop on Emerging Technologies for Security in IoT (ETSecIoT), Sydney, Australia, 21–21 April 2020; pp. 22–29.
[CrossRef]

http://doi.org/10.1109/JIOT.2019.2926365
http://dx.doi.org/10.1109/ETSecIoT50046.2020.00009


Future Internet 2021, 13, 318 19 of 22

4. Khan, A.Y.; Latif, R.; Latif, S.; Tahir, S.; Batool, G.; Saba, T. Malicious insider attack detection in IoTs using data analytics. IEEE
Access 2020, 8, 11743–11753. [CrossRef]

5. Soe, Y.N.; Santosa, P.I.; Hartanto, R. DDoS Attack Detection Based on Simple ANN with SMOTE for IoT Environment. In
Proceedings of the 2019 Fourth International Conference on Informatics and Computing (ICIC), Semarang, Indonesia, 16–17
October 2019; pp. 1–5. [CrossRef]

6. GarcIa-Teodoro, P.; DIaz-Verdejo, J.; MaciA-FernAndez, G.; VAzquez, E. Anomaly-based network intrusion detection: Techniques,
systems and challenges. Comput. Secur. 2009, 28, 18–28. [CrossRef]

7. Zong, Y.; Huang, G. A feature dimension reduction technology for predicting DDoS intrusion behavior in multimedia internet
of things. In Multimedia Tools and Applications; Dordrecht; Springer Nature B.V.: Dordrecht, The Netherlands, 2019; pp. 1–14.
[CrossRef]

8. Dushimimana, A.; Tao, T.; Kindong, R.; Nishyirimbere, A. Bi-directional recurrent neural network for intrusion detection system
(IDS) in the internet of things (IoT). Int. J. Adv. Eng. Res. Sci. 2020, 7, 524–539. [CrossRef]

9. Das, S.; Venugopal, D.; Shiva, S.; Sheldon, F.T. Empirical Evaluation of the Ensemble Framework for Feature Selection in DDoS
Attack. In Proceedings of the 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020
6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), New York, NY, USA, 1–3 August 2020;
pp. 56–61. [CrossRef]

10. Ma, L.; Chai, Y.; Cui, L.; Ma, D.; Fu, Y.; Xiao, A. A Deep Learning-Based DDoS Detection Framework for Internet of Things. In
Proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020;
pp. 1–6. [CrossRef]

11. Das, S.; Mahfouz, A.M.; Venugopal, D.; Shiva, S. DDoS intrusion detection through machine learning ensemble. In Proceedings
of the 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C), Sofia, Bulgaria,
22–26 July 2019; IEEE: Sofia, Bulgaria, 2019; pp. 471–477. [CrossRef]

12. Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network Intrusion Detection for IoT Security Based on
Learning Techniques. IEEE Commun. Surv. Tutor. 2019, 21, 2671–2701. [CrossRef]

13. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6.

14. Feng, Z.; Xu, C.; Tao, D. Self-supervised representation learning from multi-domain data. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (ICCV) 2019, Seoul, Korea, 27 October–2 November 2019. [CrossRef]

15. Kelly, C.; Pitropakis, N.; McKeown, S.; Lambrinoudakis, C. Testing and hardening IoT devices against the Mirai botnet. In
Proceedings of the 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Dublin,
Ireland, 15–19 June 2020; pp. 1–8. [CrossRef]

16. Singh, D.; Mishra, M.K.; Lamba, A. Security Issues in Different Layers of IoT and Their Possible Mitigation. 2020. Available
online: http://www.ijstr.org/final-print/apr2020/Security-Issues-In-Different-Layers-Of-Iot-And-Their-Possible-Mitigation.
pdf (accessed on 5 September 2020).

17. Otoum, Y.; Liu, D.; Nayak, A. DL-IDS: A Deep Learning–Based Intrusion Detection Framework for Securing IoT.
Available online: https://www.researchgate.net/profile/Yazan-Otoum/publication/337641081_DL-IDS_a_deep_learning-
based_intrusion_detection_framework_for_securing_IoT/links/5f5a67c9299bf1d43cf97509/DL-IDS-a-deep-learning-based-
intrusion-detection-framework-for-securing-IoT.pdf (accessed on 5 September 2020).

18. Shorey, T.; Subbaiah, D.; Goyal, A.; Sakxena, A.; Mishra, A.K. Performance comparison and analysis of slowloris, goldenEye and
xerxes DDoS attack Tools. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 318–322. [CrossRef]

19. Fadele, A.; Othman, M.; Hashem, I.; Yaqoob, I.; Imran, M.; Shoaib, M. A novel countermeasure technique for reactive jamming
attack in internet of things. Multimed. Tools Appl. 2019, 78, 29899–29920. [CrossRef]

20. Ankit Thakkar, R.L. A Review of the Advancement in Intrusion Detection Datasets. Procedia Comput. Sci. 2020, 167, 636–645.
[CrossRef]

21. Kim, B.; Khanna, R.; Koyejo, O. Examples Are not enough, Learn to Criticize! Criticism for Interpretability. In Proceedings of the
NIPS’16, Barcelona, Spain, 5–10 December 2016; Curran Associates Inc.: Red Hook, NY, USA, 2016; pp. 2288–2296.

22. Binbusayyis, A.; Vaiyapuri, T. Identifying and benchmarking key features for cyber intrusion detection: An ensemble approach.
IEEE Access 2019, 7, 106495–106513. [CrossRef]

23. Wang, M.; Zheng, K.; Yang, Y.; Wang, X. An Explainable Machine Learning Framework for Intrusion Detection Systems. IEEE
Access 2020, 8, 73127–73141. [CrossRef]

24. Hu, Z.; Ma, X.; Liu, Z.; Hovy, E.; Xing, E. Harnessing Deep Neural Networks with Logic Rules. arXiv 2020, arXiv:1603.06318.
25. Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep Inside Convolutional Networks: Visualising Image Classification Models and

Saliency Maps. arXiv 2014, arXiv:1312.6034.
26. Zhou, B.; Sun, Y.; Bau, D.; Torralba, A. Interpretable Basis Decomposition for Visual Explanation; Lecture Notes in Computer Science;

Springer International Publishing: Cham, Switzerland, 2018; pp. 122–138. [CrossRef]
27. Shi, S.; Zhang, X.; Fan, W. A Modified Perturbed Sampling Method for Local Interpretable Model-agnostic Explanation. arXiv

2020, arXiv:2002.07434.

http://dx.doi.org/10.1109/ACCESS.2019.2959047
http://dx.doi.org/10.1109/ICIC47613.2019.8985853
http://dx.doi.org/10.1016/j.cose.2008.08.003
http://dx.doi.org/10.1007/s11042-019-7591-7
http://dx.doi.org/10.22161/ijaers.73.68
http://dx.doi.org/10.1109/CSCloud-EdgeCom49738.2020.00019
http://dx.doi.org/10.1109/ICC40277.2020.9148944
http://dx.doi.org/10.1109/QRS-C.2019.00090
http://dx.doi.org/10.1109/COMST.2019.2896380
http://dx.doi.org/10.1109/ICCV.2019.00334
http://dx.doi.org/10.1109/CyberSecurity49315.2020.9138887
http://www.ijstr.org/final-print/apr2020/Security-Issues-In-Different-Layers-Of-Iot-And-Their-Possible-Mitigation.pdf
http://www.ijstr.org/final-print/apr2020/Security-Issues-In-Different-Layers-Of-Iot-And-Their-Possible-Mitigation.pdf
https://www.researchgate.net/profile/Yazan-Otoum/publication/337641081_DL-IDS_a_deep_learning-based_intrusion_detection_framework_for_securing_IoT/links/5f5a67c9299bf1d43cf97509/DL-IDS-a-deep-learning-based-intrusion-detection-framework-for-securing-IoT.pdf
https://www.researchgate.net/profile/Yazan-Otoum/publication/337641081_DL-IDS_a_deep_learning-based_intrusion_detection_framework_for_securing_IoT/links/5f5a67c9299bf1d43cf97509/DL-IDS-a-deep-learning-based-intrusion-detection-framework-for-securing-IoT.pdf
https://www.researchgate.net/profile/Yazan-Otoum/publication/337641081_DL-IDS_a_deep_learning-based_intrusion_detection_framework_for_securing_IoT/links/5f5a67c9299bf1d43cf97509/DL-IDS-a-deep-learning-based-intrusion-detection-framework-for-securing-IoT.pdf
http://dx.doi.org/10.1109/ICACCI.2018.8554590
http://dx.doi.org/10.1007/s11042-018-6684-z
http://dx.doi.org/10.1016/j.procs.2020.03.330
http://dx.doi.org/10.1109/ACCESS.2019.2929487
http://dx.doi.org/10.1109/ACCESS.2020.2988359
http://dx.doi.org/10.1007/978-3-030-01237-3_8


Future Internet 2021, 13, 318 20 of 22

28. Ribeiro, M.T.; Singh, S.; Guestrin, C. Model-Agnostic Interpretability of Machine Learning. arXiv 2016, arXiv:1606.05386.
29. Alvarez-Melis, D.; Jaakkola, T.S. On the Robustness of Interpretability Methods. arXiv 2018, arXiv:1806.08049.
30. Magesh, P.R.; Myloth, R.D.; Tom, R.J. An Explainable Machine Learning Model for Early Detection of Parkinson’s Disease using

LIME on DaTscan Imagery. arXiv 2020, arXiv:2008.00238.
31. Mane, S.; Rao, D. Explaining Network Intrusion Detection System Using Explainable AI Framework. arXiv 2021, arXiv:2103.07110.
32. Siddique, K.; Akhtar, Z.; Aslam Khan, F.; Kim, Y. KDD Cup 99 Data Sets: A Perspective on the Role of Data Sets in Network

Intrusion Detection Research. Computer 2019, 52, 41–51. [CrossRef]
33. Marino, D.L.; Wickramasinghe, C.S.; Manic, M. An Adversarial Approach for Explainable AI in Intrusion Detection Systems.

arXiv 2018, arXiv:1811.11705.
34. Ahmad, R.; Alsmadi, I.; Alhamdani, W.; Tawalbeh, L. Towards building data analytics benchmarks for IoT intrusion detection.

Clust. Comput. 2021, 1–17. [CrossRef]
35. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of

things for network forensic analytics: Bot-IoT dataset. arXiv 2018, arXiv:1811.00701.
36. Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Breitenbacher, D.; Shabtai, A.; Elovici, Y. N-BaIoT: Network-based detection of

IoT botnet attacks using deep autoencoders. IEEE Pervasive Comput. 2018, 17, 12–22. [CrossRef]
37. Alsamiri, J.; Alsubhi, K. Internet of things cyber attacks detection using machine learning. Int. J. Adv. Comput. Sci. Appl. 2019, 10,

627–634. [CrossRef]
38. Kurniabudi, K.; Stiawan, D.; Dr, D.; Idris, M.; Bamhdi, A.; Budiarto, R. CICIDS-2017 dataset feature analysis with information

gain for anomaly detection. IEEE Access 2020, 8, 132911–132921. [CrossRef]
39. Sharafaldin, I.; Habibi Lashkari, A.; Ghorbani, A.A. Toward generating a new Intrusion detection dataset and intrusion traffic

characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy, Funchal,
Madeira, Portugal, 22–24 January 2018; SCITEPRESS—Science and Technology Publications: Funchal, Portugal, 2018; pp. 108–116.
[CrossRef]

40. Mera, C.; Branch, J.W. A Survey on Class Imbalance Learning on Automatic Visual Inspection. IEEE Lat. Am. Trans. 2014,
12, 657–667. [CrossRef]

41. Wang, S.; Minku, L.L.; Yao, X. A Systematic Study of Online Class Imbalance Learning With Concept Drift. IEEE Trans. Neural
Netw. Learn. Syst. 2018, 29, 4802–4821. [CrossRef] [PubMed]

42. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra,
Australia, 10–12 November 2015. [CrossRef]

43. Yavanoglu, O.; Aydos, M. A Review on Cyber Security Datasets for Machine Learning Algorithms. Available online:
https://www.researchgate.net/profile/Murat-Aydos-2/publication/321906131_A_Review_on_Cyber_Security_Datasets_
for_Machine_Learning_Algorithms/links/5a3a6ece458515889d2dded5/A-Review-on-Cyber-Security-Datasets-for-Machine-
Learning-Algorithms.pdf (accessed on 5 September 2020).

44. Divekar, A.; Parekh, M.; Savla, V.; Mishra, R.; Shirole, M. Benchmarking datasets for Anomaly-based Network Intrusion Detection:
KDD CUP 99 alternatives. Version: 1. arXiv 2018, arXiv:1811.05372. [CrossRef]

45. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the Internet of
Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

46. Ingre, B.; Yadav, A. Performance Analysis of NSL-KDD Dataset Using ANN. Available online: https://www.researchgate.net/
profile/Anamika-Yadav-5/publication/309698316_Performance_analysis_of_NSL-KDD_dataset_using_ANN/links/5959
eceeaca272c78abf14bc/Performance-analysis-of-NSL-KDD-dataset-using-ANN.pdf (accessed on 5 September 2020).

47. McHugh, J. Testing Intrusion detection systems: A critique of the 1998 and 1999 DARPA intrusion detection system evaluations
as performed by Lincoln Laboratory. ACM Trans. Inf. Syst. Secur. 2000, 3, 262–294. [CrossRef]

48. Haihua, C.; Ngan, T.; Anand, T.; Jay, B.; Junhua, D. Data Curation and Quality Assurance for Machine Learning-based Cyber
Intrusion Detection. arXiv 2021, arXiv:2105.10041v1.

49. Nithya, S.; Shivani, K.; Hannah, H.; Diana, A.; Praveen, P. Everyone Wants to Do the Model Work, Not the Data Work: Data
Cascades in High-Stakes AI. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Online Virtual
Conference, 8–13 May 2021.

50. Eitel, L.; Giri, T. Statistical machine learning for network intrusion detection: A data quality perspective. Int. J. Serv. Sci. 2018, 1,
179–195. [CrossRef]

51. Nagisetty, A.; Gupta, G.P. Framework for detection of malicious activities in IoT networks using keras deep learning library. In
Proceedings of the 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India,
27–29 March 2019; pp. 633–637. [CrossRef]

52. Lai, Y.; Zhou, K.; Lin, S.; Lo, N. Flow-based Anomaly Detection Using Multilayer Perceptron in Software Defined Networks.
In Proceedings of the 2019 42nd International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2019; pp. 1154–1158. [CrossRef]

53. Liu, J.; Liu, S.; Zhang, S. Detection of IoT Botnet Based on Deep Learning. In Proceedings of the 2019 Chinese Control Conference
(CCC), Guangzhou, China, 27–30 July 2019; pp. 8381–8385. [CrossRef]

http://dx.doi.org/10.1109/MC.2018.2888764
http://dx.doi.org/10.1007/s10586-021-03388-z
http://dx.doi.org/10.1109/MPRV.2018.03367731
http://dx.doi.org/10.14569/IJACSA.2019.0101280
http://dx.doi.org/10.1109/ACCESS.2020.3009843
http://dx.doi.org/10.5220/0006639801080116
http://dx.doi.org/10.1109/TLA.2014.6868867
http://dx.doi.org/10.1109/TNNLS.2017.2771290
http://www.ncbi.nlm.nih.gov/pubmed/29993955
http://dx.doi.org/10.1109/MilCIS.2015.7348942
https://www.researchgate.net/profile/Murat-Aydos-2/publication/321906131_A_Review_on_Cyber_Security_Datasets_for_Machine_Learning_Algorithms/links/5a3a6ece458515889d2dded5/A-Review-on-Cyber-Security-Datasets-for-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Murat-Aydos-2/publication/321906131_A_Review_on_Cyber_Security_Datasets_for_Machine_Learning_Algorithms/links/5a3a6ece458515889d2dded5/A-Review-on-Cyber-Security-Datasets-for-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Murat-Aydos-2/publication/321906131_A_Review_on_Cyber_Security_Datasets_for_Machine_Learning_Algorithms/links/5a3a6ece458515889d2dded5/A-Review-on-Cyber-Security-Datasets-for-Machine-Learning-Algorithms.pdf
http://dx.doi.org/10.1109/CCCS.2018.8586840
http://dx.doi.org/10.1016/j.future.2019.05.041
https://www.researchgate.net/profile/Anamika-Yadav-5/publication/309698316_Performance_analysis_of_NSL-KDD_dataset_using_ANN/links/5959eceeaca272c78abf14bc/Performance-analysis-of-NSL-KDD-dataset-using-ANN.pdf
https://www.researchgate.net/profile/Anamika-Yadav-5/publication/309698316_Performance_analysis_of_NSL-KDD_dataset_using_ANN/links/5959eceeaca272c78abf14bc/Performance-analysis-of-NSL-KDD-dataset-using-ANN.pdf
https://www.researchgate.net/profile/Anamika-Yadav-5/publication/309698316_Performance_analysis_of_NSL-KDD_dataset_using_ANN/links/5959eceeaca272c78abf14bc/Performance-analysis-of-NSL-KDD-dataset-using-ANN.pdf
http://dx.doi.org/10.1145/382912.382923
http://dx.doi.org/10.1504/IJSSCI.2008.019611
http://dx.doi.org/10.1109/ICCMC.2019.8819688
http://dx.doi.org/10.23919/MIPRO.2019.8757199
http://dx.doi.org/10.23919/ChiCC.2019.8866088


Future Internet 2021, 13, 318 21 of 22

54. Mergendahl, S.; Li, J. Rapid: Robust and adaptive detection of distributed denial-of-service traffic from the internet of things. In
Proceedings of the 2020 IEEE Conference on Communications and Network Security (CNS), Avignon, France, 29 June–1 July
2020; pp. 1–9. [CrossRef]

55. Moussa, M.M.; Alazzawi, L. Cyber attacks detection based on deep learning for cloud-dew computing in automotive IoT
applications. In Proceedings of the 2020 IEEE International Conference on Smart Cloud (SmartCloud), Washington, DC, USA,
6–8 November 2020; pp. 55–61. [CrossRef]

56. Ahmad, R.; Alsmadi, I. Machine learning approaches to IoT security: A systematic literature review. Internet Things 2021,
14, 100365. [CrossRef]

57. Liang, X.; Znati, T. A Long Short-Term Memory Enabled Framework for DDoS Detection. In Proceedings of the 2019 IEEE Global
Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [CrossRef]

58. Fu, N.; Kamili, N.; Huang, Y.; Shi, J. A novel deep intrusion detection model based on a convolutional neural network. Aust. J.
Intell. Inf. Process. Syst. 2019, 15, 52–59.

59. Chang, S.; Zhang, Y.; Han, W.; Yu, M.; Guo, X.; Tan, W.; Cui, X.; Witbrock, M.; Hasegawa-Johnson, M.; Huang, T.S. Dilated
Recurrent Neural Networks. arXiv 2017, arXiv:1710.02224.

60. Rezaei, S.; Liu, X. Deep learning for encrypted traffic classification: An overview. IEEE Commun. Mag. 2019, 57, 76–81. [CrossRef]
61. Hayashi, T.; Watanabe, S.; Toda, T.; Hori, T.; Roux, J.L.; Takeda, K. Bidirectional LSTM-HMM Hybrid System for Polyphonic

Sound Event Detection. Available online: http://dcase.community/documents/challenge2016/technical_reports/DCASE2016_
Hayashi_2006.pdf (accessed on 16 April 2021).

62. Cui, Z.; Ke, R.; Pu, Z.; Wang, Y. Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic
speed prediction. arXiv 2019, arXiv:1801.02143.

63. Hwang, R.H.; Peng, M.C.; Huang, C.W.; Lin, P.C.; Nguyen, V.L. An Unsupervised Deep Learning Model for Early Network
Traffic Anomaly Detection. IEEE Access 2020, 8, 30387–30399. [CrossRef]

64. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for IoT big data and streaming analytics: A survey. IEEE
Commun. Surv. Tutor. 2018, 20, 2923–2960. [CrossRef]

65. Derhab, A.; Aldweesh, A.; Emam, A.Z.; Khan, F.A. Intrusion detection system for internet of things based on temporal convolution
neural network and efficient feature engineering. Wirel. Commun. Mob. Comput. 2020, 2020, 6689134. [CrossRef]

66. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional sequence to sequence learning. arXiv 2017,
arXiv:1705.03122.

67. Veena, K. A Survey on Network Intrusion Detection. Int. J. Sci. Res. Sci. Eng. Technol. 2018, 4, 595–613. [CrossRef]
68. Nguyen, H.; Franke, K.; Petrovic, S. Feature Extraction Methods for Intrusion Detection Systems. Available online: https:

//www.researchgate.net/profile/Hai-Nguyen-122/publication/231175349_Feature_Extraction_Methods_for_Intrusion_
Detection_Systems/links/09e41512b872eebc5d000000/Feature-Extraction-Methods-for-Intrusion-Detection-Systems.pdf
(accessed on 5 September 2021).

69. Xue, B.; Fu, W.; Zhang, M. Multi-Objective Feature Selection in Classification: A Differential Evolution Approach; Lecture Notes in
Computer Science; Springer International Publishing: Cham, Switzerland, 2014; pp. 516–528. [CrossRef]

70. Roopak, M.; Tian, G.Y.; Chambers, J. Deep Learning Models for Cyber Security in IoT Networks. In Proceedings of the 2019 IEEE
9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp.
0452–0457. [CrossRef]

71. Roopak, M.; Tian, G.Y.; Chambers, J. An Intrusion Detection System Against DDoS Attacks in IoT Networks. In Proceedings of
the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January
2020; pp. 0562–0567. [CrossRef]

72. Miller, T. Explanation in Artificial Intelligence: Insights from the Social Sciences. arXiv 2018, arXiv:1706.07269.
73. Das, A.; Rad, P. Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey. Version: 2. arXiv 2020,

arXiv:2006.11371.
74. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. arXiv 2016,

arXiv:1602.04938.
75. Lundberg, S.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874.
76. Pal, N.; Ghosh, P.; Karsai, G. DeepECO: Applying Deep Learning for Occupancy Detection from Energy Consumption Data. In

Proceedings of the 2019 18th IEEE International Conference On Machine Learning and Applications (ICMLA), Boca Raton, FL,
USA, 16–19 December 2019; pp. 1938–1943. [CrossRef]

77. SHAP API Reference. 2021. Available online: https://shap.readthedocs.io/en/latest/api.html (accessed on 8 May 2021).
78. Naveed, K.; Wu, H. Poster: A Semi-Supervised Framework to Detect Botnets in IoT Devices. In Proceedings of the 2020 IFIP

Networking Conference (Networking), Paris, France, 22–26 June 2020; pp. 649–651.
79. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling.

arXiv 2018, arXiv:1803.01271.
80. Omar, E.; Mohammed, A.; Bahari, B.; Basem, A. Flow-Based IDS for ICMPv6-Based DDoS Attacks Detection. Arab. J. Sci. Eng.

2018, 43, 12. [CrossRef]
81. Wojtowytsch, W. Can Shallow Neural Networks Beat the Curse of Dimensionality? A mean field training perspective. arXiv 2021,

arXiv:2005.10815.

http://dx.doi.org/10.1109/CNS48642.2020.9162278
http://dx.doi.org/10.1109/SmartCloud49737.2020.00019
http://dx.doi.org/10.1016/j.iot.2021.100365
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013450
http://dx.doi.org/10.1109/MCOM.2019.1800819
http://dcase.community/documents/challenge2016/technical_reports/DCASE2016_Hayashi_2006.pdf
http://dcase.community/documents/challenge2016/technical_reports/DCASE2016_Hayashi_2006.pdf
http://dx.doi.org/10.1109/ACCESS.2020.2973023
http://dx.doi.org/10.1109/COMST.2018.2844341
http://dx.doi.org/10.1155/2020/6689134
http://dx.doi.org/10.32628/ IJSRSET1848160
https://www.researchgate.net/profile/Hai-Nguyen-122/publication/231175349_Feature_Extraction_Methods_for_Intrusion_Detection_Systems/links/09e41512b872eebc5d000000/Feature-Extraction-Methods-for-Intrusion-Detection-Systems.pdf
https://www.researchgate.net/profile/Hai-Nguyen-122/publication/231175349_Feature_Extraction_Methods_for_Intrusion_Detection_Systems/links/09e41512b872eebc5d000000/Feature-Extraction-Methods-for-Intrusion-Detection-Systems.pdf
https://www.researchgate.net/profile/Hai-Nguyen-122/publication/231175349_Feature_Extraction_Methods_for_Intrusion_Detection_Systems/links/09e41512b872eebc5d000000/Feature-Extraction-Methods-for-Intrusion-Detection-Systems.pdf
http://dx.doi.org/10.1007/978-3-319-13563-2_44
http://dx.doi.org/10.1109/CCWC.2019.8666588
http://dx.doi.org/10.1109/CCWC47524.2020.9031206
http://dx.doi.org/10.1109/ICMLA.2019.00311
https://shap.readthedocs.io/en/latest/api.html
http://dx.doi.org/10.1007/s13369-018-3149-7


Future Internet 2021, 13, 318 22 of 22

82. Xiaoxin, H.; Fuzhao, X.; Xiaozhe, R.; Yang, Y. Large-Scale Deep Learning Optimizations: A Comprehensive Survey. arXiv 2021,
arXiv:2111.00856.

83. Eduardo, P.; Pedro, B.; Rodrigo, B. Can we trust deep learning models diagnosis? The impact of domain shift in chest radiograph
classification. arXiv 2020, arXiv:1909.01940.

84. Haipeng, C.; Fuhai, X.; Dihong, W.; Lingxiang, Z.; Ao, P. Assessing impacts of data volume and data set balance in using deep
learning approach to human activity recognition. In Proceedings of the 2017 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), Kansas City, MO, USA, 13–16 November 2017; pp. 1160–1165. [CrossRef]

85. Susilo, B.; Sari, R.F. Intrusion detection in IoT networks using deep learning algorithm. Information 2020, 11, 279. [CrossRef]

http://dx.doi.org/10.1109/BIBM.2017.8217821
http://dx.doi.org/10.3390/info11050279

	Models versus Datasets: Reducing Bias through Building a Comprehensive IDS Benchmark
	Introduction
	Literature Review
	Related Work
	Benchmark Datasets
	Dataset Quality and Reliability Issues
	Deep Learning Classifiers for Sequential Data
	Feature Importance
	Local Interpretable Model-Agnostic Explanation (LIME)
	SHapley Additive Explanation (SHAP)


	Proposed Framework
	Experiments, Results, and Analysis
	Individual Prediction Interpretation—Localized Explanation
	Model Interpretation—Global Explanation
	Top Contributing Features

	Models versus Datasets, a Comparison Study
	Conclusions and Future Work
	References

