-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by HAL-ENS-LYON

archives-ouvertes

Compensated Horner algorithm in K times the working
precision
Philippe Langlois, Nicolas Louvet

» To cite this version:

Philippe Langlois, Nicolas Louvet. Compensated Horner algorithm in K times the working
precision. [Research Report] 2008. <inria-00267077>

HAL Id: inria-00267077
https://hal.inria.fr /inria-00267077
Submitted on 26 Mar 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/52327531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00267077

Compensated Horner algorithm in
K times the working precision

PHILIPPE LANGLOIS
Laboratoire ELIAUS, Université de Perpignan
philippe.langlois@Quniv-perp.fr

NicorLAs LOUVET
INRIA, LIP, ENS Lyon
nicolas.louvet@ens-lyon.fr

Abstract

We introduce an algorithm to evaluate a polynomial with floating point coefficients as
accurately as the Horner scheme performed in K times the working precision, for K an ar-
bitrary integer. The principle is to iterate the error-free transformation of the compensated
Horner algorithm and to accurately sum the final decomposition. We prove this accuracy
property with an a priori error analysis. We illustrate its practical efficiency with numerical
experiments on significant environments and IEEE-754 arithmetic. Comparing to existing
alternatives we conclude that this K-times compensated algorithm is competitive for K up
to 4, i.e., up to 212 mantissa bits.

Keywords: Accurate polynomial evaluation, compensated algorithms, error-free transforma-
tions, floating point arithmetic.

1 Motivations and synthesis

The Horner scheme is of an undeniable practical interest to evaluate a polynomial p at the point
x with floating point arithmetic. Since it is backward stable, the Horner scheme returns results
arbitrarily less accurate than the working precision u — when evaluating p(x) is ill-conditioned.
This is for example the case in the neighborhood of multiple roots where most of the digits, or
even the order, of the computed value of p(z) can be false.

When the TEEE-754 floating point arithmetic is available but not precise enough, “double-
double” and “quad-double” libraries are classic software solutions to respectively simulate twice
or four times the working precision [3]. The compensated Horner scheme is an efficient alter-
native introduced in [§]. This compensated evaluation yields the same accuracy as the Horner
algorithm computed in doubled working precision.

We present another compensated algorithm that computes an approximate 7 of p(z) that is
as accurate as if computed in K-times the working precision (K > 2). The idea is to iterate the
compensation of the Horner scheme proposed in [8], improving the accuracy of the computed
result by a factor u at every iteration step. In the sequel we name CompHornerK this algorithm.
Given p(z) := Y. ja;2’, a polynomial with floating point coefficients, and = a floating point
value, we prove the announced behavior, i.e., the accuracy of the compensated result 7 computed
with CompHornerK is bounded as follows,

7 — p(=)]

K
()] <u+ O(u")cond(p, x). (1)

The classic condition number cond(p, z) describes the sensitivity of the polynomial evaluation,

cond(p, x) = > 1, (2)

Wit p(x) == D1 o la:z’| []. CompHornerK only requires IEEE-754 floating point arithmetic
with rounding to the nearest. Our main tool to improve the accuracy of the computed result is
an “error-free transformation” (EFT) for the polynomial evaluation with the Horner algorithm.

The time penalty to improve the accuracy with CompHornerK is very reasonable for K < 4.
Practical performances reported hereafter exhibit that CompHornerK is an efficient alternative to
other software solutions, such as the quad-double library or MPFR. In particular, our optimized
version of CompHornerK with K = 4 runs about 40% faster than the corresponding routine with
quad-double arithmetic. This justifies the practical interest of the proposed algorithm when
only a reasonable increase of the working precision is necessary.

Many problems in Computer Assisted Design (CAD) reduce to find the roots of a polynomial
equation, which is subjected to accuracy problems when dealing with multiple roots. More
accurate polynomial evaluation algorithms are used by some authors in this area [5]. Our
CompHornerK algorithm may be used with success in such cases since no restriction applies to
the magnitude of |z|, nor to the coefficients neither to the degree of the polynomial.

We start illustrating this motivation with a simple example. Let us consider the evaluation
in the neighborhood of its multiple roots of p(x) = (0.75 — z2)5(1 — x)!! —p(x) is written
in its expanded form. Double precision IEEE-754 arithmetic is used for these experiments
and the coefficients of p in the monomial basis are exact IEEE-754 double precision numbers.
We denote by Horner the classic Horner algorithm for polynomial evaluation. The top two
drawings of Figure|l|illustrate the evaluation of p(x) for 400 equally spaced points in the interval
[0.72,1.09], using Horner and CompHornerK with K = 2. It is clear that the Horner evaluation
is totally inaccurate and that twice the IEEE-754 double precision is sufficient here to provide
the expected smooth drawing of the polynomial. On the bottom three drawings of Figure [I]
we zoom the evaluation of p(x) for 400 equally spaced points in the interval [0.99975,1.00025],
using CompHornerK with K = 2,3 and 4. We see that using twice or 3-times the IEEE double
precision is not sufficient to obtain a smooth drawing at this scale. As it is well known these
simple experiments clearly illustrate that it may be useful to increase the precision to provide
an accurate polynomial evaluation in the neighborhood of its multiple roots.

In section B we recall some classic notations and well known results about the EFT of
arithmetic operators. We also briefly recall the EFT for the Horner evaluation already described
in [8]. In section |3| we use this result in as a basic block to design a new EFT for polynomial
evaluation. In section 4] we describe the algorithm CompHornerK and perform its error analysis.
Sections [and [6] are devoted to experimental results that respectively illustrate the actual
accuracy and the practical time performances of the proposed CompHornerK algorithm.

2 Notations and previous results

Throughout this paper, we assume a floating point arithmetic adhering to the IEEE-754 floating
point standard [6]. We constraint all the computations to be performed in one working precision,
with the “round to the nearest” rounding mode. We also assume that no overflow nor underflow
occurs during the computations. Next notations are standard (see [4, chap. 2] for example). F
is the set of all normalized floating point numbers and u denotes the unit round-off, that is half

!We apply this tilde notation to other polynomials further in this paper.

1.5e-12 1.5e-14

H(‘)rner‘ ' Con‘\pHo}nerK,‘ K=2‘7‘

1e-12 1e-14

5e-13 - 5e-15

-5e-13 -5e-15

te-12 e-14 |

-15e-12 L1 L L L L L L 15014 L1 L L L L L L
0.75 0.8 0.85 0.9 095 1 1.05 0.75 0.8 0.85 0.9 095 1 1.05

3e-28 2e-43 2e-43

C‘ompHon‘werK, K=‘2 —_— C‘ompHon‘werK, K=‘3 —_— C‘ompHon‘werK, K=‘4 _—
1.5e-43 1.5e-43
2e-28 - 4
1e-43 1 1e-43
1e-28 5e-44 |- 4 5e44 -
0 0 0
-1e-28 - -Be-44 - 4 -5e-44 [
1e-43 | 4 -e43 |
2628 - 7 -1.5e-43 - -1.56-43
3e-28 I I I I 00-43 I I I I 06-43 I I I I

L L L
0.9998 0.9999 1 1.0001 1.0002 0.9998 0.9999 1 1.0001 1.0002 0.9998 0.9999 1 1.0001 1.0002

Figure 1: More iterations of CompHornerK are necessary to zoom the polynomial evaluation —
here p(x) = (0.75 — z)3(1 — x)*! in its expanded form.

the spacing between 1 and the next representable floating point value. For IEEE-754 double
precision with rounding to the nearest, we have u = 2753 ~ 1.11 - 10716,

The notation fl(-) denotes the result of a floating point computation where every operation
inside the parenthesis is performed in the working precision. When no underflow nor overflow
occurs, the following standard model describes the accuracy of every considered floating point
computation: for a,b € F and for o € {+, —, x, /}, with have

fllaob) =(aob)(14+¢e1)=(aob)/(1+e2), with |e1],|e2] < u. (3)

To keep track of the (1 + ¢) factors in the error analysis, we use the classic (1 4 ;) and 74
notations [4, chap. 3]. For any positive integer k, 0 denotes a quantity bounded according to
|0k < vk := ku/(1 — ku). When using these notations, we always implicitly assume ku < 1. In
further error analysis, we essentially use the following relations: (1 4 0;)(1 4 6;) < (14 0k;),
ku < g, and vk < Ygt1.

Now we briefly review well known results about the error-free transformations (EFT) for ele-
mentary arithmetic operators. For the EFT of the addition we use the well known TwoSum algo-
rithm by Knuth |7, p.236] that requires 6 flop (floating point operations). TwoProd by Veltkamp
and Dekker [I] performs the EFT of the product and requires 17 flop. The next theorem sum-
marizes the properties of TwoSum and TwoProd.

Theorem 1 (|9]). Let a,b in F and o € {+, x}. Let x,y € F such that [z,y] = TwoSum(a,b)
if o=+, [x,y] = TwoProd(a,b) otherwise. Then,

a+b=z+y, z=fach), |yl<ulzl, |yl <ulaod.

We also recall the EFT for the Horner algorithm presented by Langlois and Louvet [8]. This
EFT of the polynomial evaluation with the Horner algorithm exhibits the exact rounding error
generated by the Horner algorithm together with an algorithm to compute it. We use this EFT
as a basic block in the next section to design a new EFT for polynomial evaluation.

Algorithm 2 ([§]). EFT for the Horner algorithm

function [sg, pr, po] = EFTHorner(p, x)
Sn = an
fori=n—-1:-1:0
[pi, mi] = TwoProd(s;+1,x)

[Si, 0'7;] = TwoSum(pi, a,—)

Let m; be the coefficient of degree i in p,

Let o; be the coefficient of degree ¢ in p,
end

Theorem 3 ([8]). Let p(x) = Y1 ya;z’ be a polynomial of degree n with floating point coeffi-
cients, and let x be a floating point value. Then Algom'thm@ computes both i) the floating point
evaluation Horner(p, x) and i) two polynomials pr and ps, of degree n — 1, with floating point
coefficients, such that [Horner(p, z), pr, ps] = EFTHorner(p, x). If no underflow occurs,

p(z) = Horner(p, z) + (pr + ps) (7). (4)

Moreover we have, using previously defined tilde notations,

(Pr + po)(2) < Y2 (). (5)

Relation means that algorithm EFTHorner is an EFT for polynomial evaluation with the
Horner algorithm.

3 A new EFT for polynomial evaluation

In the sequel of the paper, p; is a polynomial of degree n with floating point coefficients, and
x is a floating point value. Given an integer K < 2, we now define a new EFT for polynomial
evaluation. The principle of this EFT is to apply algorithm EFTHorner (Algorithm recursively
to K — 1 levels.

3.1 Recursive application of EFTHorner

Further developments will be easier to read introducing a graphical representation of one ap-
plication of the EFTHorner transformation (Algorithm . Given p; a polynomial of degree d
with floating point coefficients and x a floating point number, we consider the floating point
value h; and the polynomials po; and pg;11 of degree at most d — 1 such that [h;, pa;, p2it1] =
EFTHorner(p;,). From Theorem |3, we have h; = Horner(p;, z) and

pi(x) = hi + (p2i + p2iy1)(x).

We represent this EFT of p;(x) with the following cell where edges are polynomials (one entry

and two outputs) and the node is a floating point value.
pi

P2i P2it+1

Now we describe the principle of the EFTHornerK algorithm as the binary tree of depth K
represented with Figure 2] For levels 1 to K — 1, we recursively apply EFTHorner. At the last
level K this gives 25~! polynomials here represented as rectangles.

When EFTHorner is applied to a polynomial of degree d then the two generated polynomials
are of degree d — 1. Since p; is of degree n and EFTHorner is applied to K — 1 levels, the
polynomials computed on the level K are of degree at most n— K +1. In particular, if n— K+1 =
0 then the polynomials computed at the leaves of the binary tree are constants and so it is
useless to apply again EFTHorner. Therefore, to simplify the discussion we will always assume
2 < K <n+1in the sequel.

To easily identify the nodes in this binary tree, we define the following sets of indices.

level degree

1 n

2 n—1

3 n—2

Ps P9 P1o P11 P12 VAE] P1g P15

fl (hg) [hg) [hio) [h11) [hio) [h13) [hia) [his) n - 3
n—K+2
n—K+1

Figure 2: Representation of EFTHornerK as a binary tree.

o NVE ={1,...,2K — 1} is the set of all the nodes in the tree, and card(NF) = 25 — 1;
o N ={1,...,2571 — 1} is the set of the internal nodes, and card(NF) = 2K-1 — 1;
o NI ={2K-1 2K _ 1} is the set of the leaves, and card(NF) = 2K-1L.

In particular we have N7 = N7 UNL and Ny NN = 0. We avoid exponent K in the set
notations except when necessary. The recursive application of EFTHorner to K — 1 levels is then
defined by

[hi, p2is p2i+1] = EFTHorner(p;, z), for i€ N7, (6)

with h; € F for i« € N; and p; being a polynomial with floating point coefficients for every
i € Np. According to Theorem [3] every h; defined by the previous relation is the evaluation of
the polynomial p; at = by the Horner algorithm, i.e.,

h; = Horner(p;, z), for i€ N. (7)
Since EFTHorner is an EFT for the Horner algorithm, Theorem (3] also yields
pi(x) = hi + (p2i + paiv1)(x), for i€ N. (8)

The floating point values hjca;, and the polynomials p;cpn;, are computed thanks to the next
EFTHornerK algorithm.

Algorithm 4. Recursive application of EFTHorner to K — 1 levels

function [hienr,, Pienr,] = EFTHornerK(p1, x)
for i € N7, [hi,p2i, p2i+1] = EFTHorner(p;, x)

3.2 Numerical properties of EFTHornerK
First we prove that EFTHornerK (Algorithm [4]) is actually an EFT for the evaluation of p;(z).

Theorem 5. Given an integer K with 2 < K < n+ 1, we consider the floating point numbers
hicnr, and the polynomials picpr, , such that [hien;,, pienr,] = EFTHornerK(p1,) (Algorithm .

The following relation holds,
pi) = hi+ > pilx). (9)
1ENT 1ENT,

Algorithm EFTHornerK computes the evaluation h; = Horner(p;, x) of every polynomial p;,
for i € N. For the proof of Theorem[5] we also need to consider the evaluation of the polynomials
pi(z), for i € N. So let us also denote h; = Horner(p;,), for i € N.

Proof of Theorem[5 We proceed by induction on K. For K = 2, according to Theorem
we have pi(x) = Horner(p1,x) + (p2 + p3)(z) = h1 + p2(x) + p3(z), and therefore [hq,p2, ps3] =
EFTHorner(p1, x). Now let us assume that relation @ is satisfied for K such that 2 < K < n+1.
Then we consider the polynomials pyx, . .., pyxt1_; such that [h;, pe;, p2ir1] = EFTHorner(p;,),
for i € NX. For i € NX, Theorem (3| proves that p;(x) = h; + (p2; + p2i+1)(z). Thus,

Z pi(z) = Z hi + Z (p2i + p2it1)(x) = Z hi + Z pi().
iENE iENE iENE ieNE iENFT!
Reporting the last equality in Relation @D, we obtain
p@)= D hit D kit Y, opl@)=), kit)),
iENKE iENE iENFT! iENFH iENFH!
which concludes the proof of Theorem [5 |

Proposition 6. With the same hypothesis as in Theorem [5, the following relations hold,

pr() = Y hi| = | > pil®) = hi| < ook Van P1(2)- (10)
iENT ieNT,

The error generated when approximating p1(x) by the exact sum), Ay 1 is therefore equal
to the sum of the errors generated when approximating every p;(x) by h; = Horner(p;, x), for
1 € N1. The previous proposition also provides an a prior: bound on this error with respect to

pi() = X laillz|.
Proof. From Relation (9), since Ny = N7 UNL and Nf NN = 0 we have

p1(w) — Zhizzhﬁ- Zpi(ﬂﬁ)—zhi— Zhi: Zpi(x)—hi-

ieENT iENT ieENT, ieENT iENT, iENT,

Let us denote by e the left hand side in Inequality . Then we have e < ZiENL Ipi(x) — hil.
The polynomials p;cp;, are of degree n — K + 1. Since h; = Horner(p;,), we have

pi() — hi| < vo(n-ry1ypix), for i€ NL.

Since [h;, p2i, p2i+1] = EFTHorner(p;,), from Theorem [3| we have py;(z) + paii1(z) < Yonpi(z),
thus pa;(z) < Yonpi(w) and par1(x) < 42.p:(xz). Then it can be proved by induction that
pi(z) < 42 ~1pi(x), for i € Ni, and thus

Pi@) = hal < Vo sc sVl Fi(), for i€ NG

Since card(N7) = 2571, we obtain e < 72(n_K+1)7§L*12K_1p~1 (2), and from v& ~12K-1 < AK=1
Inequality holds. [|

Our approach is motivated by Inequality . This inequality shows that when the parame-
ter K is incremented by one, the distance between p;(x) and the exact sum . N i decreases
by a factor ~4,, that is roughly an accuracy improvement by a factor 4nu. In the next section
we propose to compute this sum with the floating point summation algorithm SumK from [9].
We prove that the computed result is as accurate as the evaluation of p;(z) computed by the
Horner algorithm in K times the working precision.

4 Algorithm CompHornerK

In this section, we formulate the algorithm CompHornerK (Algorithm , and then we provide
an a priori error analysis for the compensated evaluation performed by this algorithm.

4.1 Principle of the algorithm

As previously, the floating point values h;e . are defined according to the relations [hien,, Pien,] =
EFTHornerK(p1, z), and h; = Horner(p;, z) for i € N. Then Inequality shows that

pi(z) = Y kil < (4nw)*pi(x) + O, (11)
iENT

The principle of the algorithm we propose here is to compute an approximate 7 of ;. Ny 1 I
K times the working precision, so that

7 —pi(2)]
p1()|

< (u+0u?) + ((4nu)® + O(u" ™)) cond(p1, z). (12)
In the previous inequality the factor (4nu)® + O(u®*1) reflects that the intermediate compu-
tation is as accurate as if performed in precision u’. The first term u + O(u?) reflects the final
rounding of the result to the working precision u.

For the final summation, we use algorithm SumK proposed by Ogita, Rump and Oishi in [9].
This algorithm allows us to compute an approximate value of), N i with the same accuracy
as if it was computed in K times the working precision. The following theorem summarizes the
properties of algorithm SumK.

Theorem 7 (proposition 4.10 in [9]). Given a vector z = (21, ..., 2,) of n floating point values,
let us define s ="y zy and S =" | |z|. We assume 4nu < 1 and we denote by s the floating
point number such that s = SumK(z, K). Then, even in presence of underflow,

|5 — s < (u+37i_1)ls| + 7305 (13)

Now we formulate our compensated algorithm CompHornerK. We prove in the next subsection
that it is as accurate as the Horner algorithm performed in K times the working precision.

Algorithm 8. Compensated Horner algorithm providing K times the working precision.
function 7 = CompHornerK(p1, z, K)

[hienr;, Pienr,] = EFTHornerK(p1, z)

for i € Np, h; = Horner(p;, x)

7 = SumK (hien;, K)

In algorithm EFTHornerK, polynomials p;cps, are of degree at most n. Applying EFTHorner to
each of these polynomials requires O(n) floating point operations (flop). Since card(Nj) =
2K=1 _ 1 the cost of EFTHornerK is therefore (’)(n2K) flop. In CompHornerK, the evalua-
tion of the 25~ polynomials p;e A, also requires O(n2K) flop. Finally, the computation of
SumK (hiens, K) involves (6K — 5)(25~1 — 1) = O(n2K) flop. Overall, the cost of algorithm
CompHornerK is therefore O(nQK) flop. We will further see that this exponential complexity
does not reduce the practical efficiency of the proposed algorithm for reasonable values of K,
e.g., while K < 4.

4.2 A priori error bound

In the following theorem we prove an a priori bound for the forward error in the compensated
result computed by CompHornerK.

Theorem 9. Let K be an integer such that 2 < K < n+ 1. We assume (28 — 2)ya,11 < 1.
Then the forward error in the compensated evaluation of py(x) with T = CompHornerK(py, x)
(Algorithm [8) is bounded as follows,

’? - pl(x)‘ < (u + 3731’(_2 + 7§<+1_4) ’pl(x)‘ =+ (%ﬁ + 'Y2TL+1'Y§<+1_4 + %ﬁ—i_l) le(x) (14)

For the proof of Theorem [9 we use the following lemma to bound the absolute condition
number for the final summation of the floating point numbers h;cns, .

Lemma 10. With the notations of Algorithm@ assuming (25 —2)y9,41 < 1, we have D ieny 1hil <
[p1(2)] + yanp1 ().

Proof. We decompose the sum as follows, >, ;. [hil = [h] + 3 2;cn g1y [hil- Since hy =
Horner(p1,x), we have |h1| < |p1(x)| + v2np1(x). Moreover, for i € Np — {1} we also have
h; = Horner(p;,) with p; of degree at most n — 1 and p;(x) < vo2,,p1(x), thus

[hil < |pi(@)] + Yom-1)Pi(®) < (1 +Yo(n-1))Pi() < (1 + Yo(n—1))720P1(2) < Yon+1P1(2).

Therefore ZiENT |hi] < |p1 (:U)]—i—’ygn(l—l—(QK—2)72n+1)ﬁ1(x). By assumption (2K—2)72n+1 <1,
so that Y2, (1 4+ (25 — 2)79541) < 2720, < Yap, which proves the lemma. []

Proof of Theorem[9 Defining the terms e; := ‘pl (@) = D ien i

and ey := ‘ZiENT h; — 7|, we
have |7 — p1(z)| < e1 + e2. According to Proposition @ it follows that e; < ’ygn%ﬁ_lﬁl (). The
second term ey denotes the error occurring in the final summation with algorithm SumK. Using
the error bound 1} we deduce ey < (u+ 373x_,)|s| + vhki1 S, with s = > ieny hi and

5= iy |hil. Using Theorem (5 and Proposition ﬁ we have |s| < |p1(z)] +v2nyh p1(z). On
the other hand s is bounded according to Lemma Thus we write

IN

er < (393) (I @)+ 12078 B () + ey (1 (@) + 1 (2))
< (u + 3’)/22K_2 + 7§<+1_4) Ip1(x)| + (74n’)’§<+1_4 + %ﬁ—’—l) p1(x).
Therefore we have the inequality

7 — ()] < (W 302k o+ y) Ipi(2)] + (’yzwﬁ_l + Yan Yo sy + %{ffl) (),

which proves Theorem [9 [|

5 Numerical behavior of CompHornerK

To exhibit the numerical behavior of CompHornerK (Algorithm |8) with respect to the condition
number we have generated a set of 700 polynomials with condition number ranging from 102
to 10190, The coefficients of these polynomials are exact in IEEE-754 double precision we used
as the working precision in these experiments. The method for generating these extremely ill-
conditioned polynomials is the same as in [§]. We report with Figure |3| the relative accuracy
of every polynomial evaluation performed with CompHornerK, with respect to the condition
number cond(p, x) and for successive iterates K in 2,...,6. We also represent on this figure the

a priori relative error bound (12)).

1F
i
o‘x § § @6
102 & A\ % £ b
¢ § % 2
Q!
10 Qg,> R og go 8l
@ %
4 &)
10° g £
7 gg%
10 AN
%

10'10

Relative accuracy

10712

10'14

10'15

WO o
10'18

o6 R 6% o
°fu ° o o m® ° 1 ©
1 1 1

1016 1032 10‘5

cond(p,x)
Figure 3: Relative accuracy of the compensated evaluation performed with CompHornerK (Al-
gorithm [8) with respect to cond(p, x), for K = 2,...,6.

As expected from the results presented in Section [, algorithm CompHornerK is in practice
as accurate as the Horner algorithm performed in K times the working precision with a final
rounding to the working precision. For every considered value of K the relative accuracy of the
compensated evaluation is of the order of the working precision u as long as cond(p, z) is smaller
than u=®. When K = 2 we also notice that CompHornerK exhibits the same numerical behavior
as the compensated algorithm presented in [§].

We also observe that the a priori bound of the relative error in the computed evaluation
is always pessimistic compared to the actual (measured) error by many orders of magnitude.
Moreover this error bound is more and more pessimistic when the parameter K increases — this
phenomenon is also observed in [9] for the compensated dot product algorithm DotK.

6 Time Performances

Let us first emphasize that the running time of the considered algorithms do not depend on the
coefficients of the polynomial, nor on the argument z, but only on the degree n. We use the
following experimental environments.

(T) Intel Pentium 4, 3.0GHz, GNU Compiler Collection 4.1.2, fpu x87;
(II) AMD Athlon 64, 2 GHz, GNU Compiler Collection 4.1.2, fpu sse;
(IIT) Ttanium 2, 1.5 GHz, GNU Compiler Collection 4.1.1;

(IV) Itanium 2, 1.5 GHz, Intel C Compiler 9.1.

In the first part of our experiments, we study the performances of algorithm CompHornerK (Al-
gorithm [8)) assuming that K is an argument of the implemented routine. Since we use IEEE-
754 double precision as working precision, CompHornerK simulates a precision of the order of
K x 53 bits. We compare CompHornerK to the Horner algorithm implemented with the MPFR
libraryﬂ [2] using a precision of K x 53 bits; we denote by MPFRHornerK this implementation.
For our measures we use a set of 39 random polynomials of degree varying from 10 to 200, by
step of 5. For every considered degree n we measure the overhead introduced by the algorithms
CompHornerK and MPFRHornerK compared to the classic Horner algorithm (we measure the
ratio of the running time of CompHornerK over the running time of Horner, and we perform the
same measurement for MPFRHornerK). We report the average overheads for both algorithms
with respect to K on the left side of Figure]

CompHornerK is clearly not competitive compared to MPFRHornerK for large values of K.
Nevertheless, in our experiments CompHornerK runs always faster than MPFRHornerK while K
is smaller than 4. This illustrates the practical interest of CompHorner for simulating a small
improvement of the working precision.

Next we study an optimized version of CompHornerK a priori setting a value for K. We
name CompHorner4 the corresponding implementation for K = 4. Setting the parameter K to
a particular value does not change the principle of the algorithm but allows the compiler to
perform more optimizations and to provide better practical performances. In these experiments,
we compare CompHorner4 to the Horner algorithm implemented with the quad-double Iibraryﬁ
that also simulates 4 times the IEEE-754 precision [3]. We denote by QDHorner the Horner
algorithm implemented with quad-double arithmetic. For a fair comparison, our implementation
of QDHorner inlines the quad-double arithmetic described in [3] and is also compiled with the
same optimizing option as CompHorner4. We also compare CompHorner4d to MPFRHorner4 using
the MPFR library with a working precision of 212 bits.

[Environment I: P4, gcc, x87] [Environment II: Athlon 64, gcc, sse]
250 T T T T 7 250 T T T T
CompHornerK/Horner ==--=-- s CompHornerK/Horner ==--=--
200 | MPFRHornerK/Horner <A 200 | MPFRHornerK/Horner A
o 150 S 1 o 150F 1
® ~ ® -
=100 4 = 100 - 4
90 MPFRHomerd
| [e = orner:
50— .- sofp e — 80 I |
_____________________ ()
0 f===mmm - . L L [- . L L 70 - QDHorner 1
2 3 4 5 6 7 2 3 4 5 6 7 0 |) |
106 bit 159 bit 212 bit 265 bit 318 bit 371 bit 106 bit 159 bit 212 bit 265 bit 318 bit 371 bit)
K K o 50 (1 (n 1
) . A R S 4l oM]
[Environment lI: ltanium, gcc] [Environment IV: Itanium, icc] CompHorner4
250 . ; : = 250 - T T T SOy iy 1
CompHornerK/Horner =====-- g CompHornerK/Horner ===-=-- 20 L 0] i
200 | MPFRHornerK/Horner L B 200 | MPFRHornerK/Horner B i T I
p 10 F (V) R
o 150 F 1 o 150F s o Ed
= e © o
= 100 1 = 100t P
50 ——/____T"——~ 50 b ——————= = =
------- R . . i . .
2 3 4 5 6 7 2 3 4 5 6 7
106 bit 159 bit 212 bit 265 bit 318 bit 371 bit 106 bit 159 bit 212 bit 265 bit 318 bit 371 bit

Figure 4: Average measured overheads for CompHornerK and MPFRHornerK (left) and measured

overheads for CompHorner4, QDHorner and MPFRHorner4 (right).

As in the previous experiments, we use a set of 39 random polynomials of degree varying from
10 to 200 by step of 5. For every polynomial, we measure the overhead of CompHornerd compared
to the classic Horner algorithm. For every environment listed above we report the minimum,
the average and the maximum values of this overhead on the right side of Figure We also

2The MPFR library is available at http://www.mpfr.org/. We use version 2.2.1 in our experiments.
3The quad-double library is available at http://crd.1bl.gov/~dhbailey/mpdist/

10

http://www.mpfr.org/
http://crd.lbl.gov/~dhbailey/mpdist/

report the same average overheads for QDHorner and MPFRHorner4.

Our CompHornerd is always significantly faster than both QDHorner and MPFRHorner. In

particular CompHorner4 runs about 8 times faster than QDHorner in the environment (IV) which
is the Itanium architecture with the Intel compiler.

References

1]

2]

3]

[4]

[5]

T. J. Dekker. A floating-point technique for extending the available precision. Numer. Math.,
18:224-242, 1971.

G. Hanrot, V. Lefévre, P. Pélissier, and P. Zimmermann. The MPFR library. Available at
http://www.mpfr.org/.

Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double precision floating point
arithmetic. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic, pages
155-162, 2001.

N. J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial and
Applied Mathematics (STAM), Philadelphia, PA, second edition, 2002.

C. M. Hoffmann, G. Park, J.-R. Simard, and N. F. Stewart. Residual iteration and accurate
polynomial evaluation for shape-interrogation applications. In Proceedings of the 9th ACM
Symposium on Solid Modeling and Applications, pages 9-14, 2004.

IEEFE Standard for binary floating-point arithmetic, ANSI/IEEE Standard 754-1985. 1985.

D. E. Knuth. The Art of Computer Programming, Volume 2, Seminumerical Algorithms.
Addison-Wesley, Reading, MA, USA, third edition, 1998.

P. Langlois and N. Louvet. How to ensure a faithful polynomial evaluation with the compen-
sated Horner algorithm. In Proceedings of the 18th IEEE Symposium on Computer Arith-
metic, pages 141-149, 2007.

T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM Journal on
Scientific Computing, 26(6):1955-1988, 2005.

11

http://www.mpfr.org/

	1 Motivations and synthesis
	2 Notations and previous results
	3 A new EFT for polynomial evaluation
	3.1 Recursive application of EFTHorner
	3.2 Numerical properties of EFTHornerK

	4 Algorithm CompHornerK
	4.1 Principle of the algorithm
	4.2 A priori error bound

	5 Numerical behavior of CompHornerK
	6 Time Performances

