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Abstract: After seminal work by Taqqu et al. relating self-similarity to heavy
tail distributions, a number of research articles verified that aggregated Internet
traffic time series show self-similarity and that Internet attributes, like WEB file
sizes and flow lengths, were heavy tailed. However, the validation of the theo-
retical prediction relating self-similarity and heavy tails remains unsatisfactorily
addressed, being investigated either using numerical or network simulations, or
from uncontrolled web traffic data. Notably, this prediction has never been
conclusively verified on real networks using controlled and stationary scenarii,
prescribing specific heavy-tail distributions, and estimating confidence intervals.
In the present work, we use the potential and facilities offered by the large-scale,
deeply reconfigurable and fully controllable experimental Grid5000 instrument,
to investigate the prediction observability on real networks. To this end we or-
ganize a large number of controlled traffic circulation sessions on a nation-wide
real network involving two hundred independent hosts. We use a FPGA-based
measurement system, to collect the corresponding traffic at packet level. We
then estimate both the self-similarity exponent of the aggregated time series
and the heavy-tail index of flow size distributions, independently. Comparison
of these two estimated parameters, enables us to discuss the practical applica-
bility conditions of the theoretical prediction.
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tail distributions
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Vérification du lien entre auto-similarité et

distributions à queues lourdes sur un dispositif

grande échelle

Résumé : À la suite du travail théorique de Taqqu et de ses collaborateurs,
reliant l’auto-similarité aux distributions à queues lourdes, quantité d’articles
de recherche ont vérifié que les séries temporelles de trafic internet présentent
en effet un caractère auto-similaire, et qu’en effet aussi, certaines variables
d’internet, telle que par exemple les tailles de flux, étaient à queue lourde.
Cependant, la validation de cette prédiction théorique liant auto-similarité et
distributions à queues lourdes, reste peu satisfaisante dans la mesure où elle n’a
été expérimentalement vérifiée que sur des simulateurs numériques de réseaux,
ou sur des données de trafic réel dont on ne mâıtrise aucun des paramètres. En
particulier, cette relation n’a jamais été formellement validée sur des réseaux
réels en situation contrôlée de scénarios stationnaires, dans lesquels des dis-
tributions à queues lourdes spécifiques sont prescrites, et des intervalles de
confiances estimés. Dans ce travail, nous exploitons le potentiel et les capacités
offertes par Grid5000, une plate-forme à grande échelle, profondément reconfi-
gurable et totalement controlée, pour confronter cette prédiction théorique au
contexte d’un véritable réseau. Pour ce faire, nous avons procédé à un grand
nombre d’expériences in situ, où nous avons généré entre deux cents nœuds
indépendants, différents profils d’un trafic entièrement contrôlé. Pour collecter
les données correspondantes, nous utilisons un système à base de FPGA capable
de traiter des flux de 1Gb/s avec une granularité à l’échelle du paquet. À partir
de ces données, nous estimons indépendemment l’exposant d’auto-similarité du
débit aggrégé et l’indice de queue lourde des distributions de taille de flux. La
mise en correspondance de ces deux estimations nous permet alors de définir en
pratique, les contours d’application du théorème.

Mots-clés : Réseaux informatiques, Grid5000, métrologie, auto-similarité,
distributions à queues lourdes



Self-similarity and heavy tailed distributions 3

1 Motivations

Comprehension and prediction of the network traffic is a constant and central
preoccupation for internet service providers. Challenging questions, such as the
optimization of network resource utilization that respect the application con-
strains, the detection (and ideally the anticipation) of anomalies and congestion,
contribute to guarantee a better quality of service (QoS) to users. From a sta-
tistical viewpoint, this is a challenging and arduous problem that encompasses
several components: network design, control mechanims, transport protocols
and the nature of traffic itself. In the last decade, great attention has been
devoted to the statistical study of time series and random variables, which col-
lected at the core of networks, are valuable fingerprints of the system state and
of its evolution. With this in mind, the pioneering work by [30] and [25] evi-
denced that the Poisson hypothesis, a relevant and broadly used model for phone
networks, failed at describing computer network traffic. Instead, self-similarity
was shown a much more appropriate paradigm, and since then, many authors
have reported its existence in a wide variety of traffics [14, 23, 5, 6]. Following
up this prominent discovery, the theoretical work by Taqqu and collaborators
constituted another major breakthrough in computer network traffic modeling,
identifying a plausible origin of self-similarity in traffic time series [25, 35, 37].
It is stated that the heavy-tail nature of some probability distributions, mainly
that of flow size distributions, suffice to generate traffic exhibiting long range
dependence, a particular manifestation of self-similarity [16]. To support their
claim, they established a close form relation connecting the heavy tail thickness
(as measured by a tail index) and the self-similarity exponent.

Notwithstanding its mathematical soundness, pragmatic validity of this model
has been corroborated with real world traffic data only partially, so far. First
pitfall lies in the definition of long range dependence itself, which, as we will
see, is a scale invariance property that holds only asymptotically for long obser-
vation durations. Its consistent measurement requires that experimental con-
ditions maintain constant, and that no external activity perturbs the traffic
characteristics. In those conditions, finding a scale range that limits itself to
stationary data, and that is sufficiently wide to endorse reliable self-similarity
measurements, is an intricate task.

Secondly, even though real traffic traces had led to check concordance be-
tween tail index and self-similarity exponent, only was it perceived for a given
network configuration that necessarily corresponded to a single particular value
of the parameters set. An extensive test, to verify that self-similarity exponent
obeys the same rule when the tail index is forced to range over some interval of
interest, was never performed on a large scale real network plate-form.

Finally, the exact role of the exchange protocol, viewed as a subsidiary fac-
tor from this particular model, is still controversial [21, 28, 19]. Due to the
lack of flexible, versatile, while realistic experimental environments, part of this
metrology questioning has been addressed by researchers of the network com-
munity, using simulators, emulators or production platforms. However, these
tools have limitations on their own, which turn difficult the studies, and yield
only incomplete results.

In the present work, we use the potential and the facilities offered by the very
large-scale, deeply reconfigurable and fully controlable experimental Grid5000
instrument to empirically investigate the scope of applicability of Theorem pro-
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4 Loiseau et al.

posed by Taqqu et al. [25, 35, 37]. Under controlled experimental conditions,
we first prescribe the flow size distribution to different tail indices and compare
the measured traffic self-similar exponents with their corresponding theoretical
predictions. Then, we elucidate the role of the protocol and of the rate control
mechanism on traffic scaling properties. In the course, we resort to efficient
estimators of the heavy-tail index and of the self-similarity exponent derived
from recent advances in wavelet based statistics and time series analysis.

The sequel is organized as follows. Section 2 summarizes related works.
Section 3 elaborates on theoretical foundations of the present work, including a
concise definition of parameters of interest. In section 4 we develop the specifities
of our experimental testbed, and we describe our experimental designs. Section
5 presents and comments the results. Conclusions and perspectives are itemized
in section 6.

2 Related Work

Without giving full bibliography on the subject (many can be found in [29, 5,
23]), there have been extensive reports on self-similarity in network traffic. As
most of them are based on measurements and on analysis of real-world traces
from the Internet, they only permit experimental validation of a single point on
the curve, corresponding to one particular configuration. As its was presented
before, the question here is more on the relation between these two properties,
which is rooted in the seminal work by [25, 35] about the M/G/N queueing
models with heavy-tail distributions of ON periods. Nonetheless, first experi-
mental works by Crovella and co-authors [14, 28], hinted that this theoretical
relation holds for internet traffic, and later on, also for more general types of
traffic [21, 19]. However, due to the impossibility of controlling important pa-
rameters when monitoring the Internet, only compatibility of the formula could
be tested against real data , but there is no statistically grounded evidences
that self-similarity measured in network traffic is the work of this sole equality.
On the other hand, study of self-similarity at large scales is very sensitive to
inevitable non-stationnarities (day and week periodicities for instance) and to
fortuitous anomalies existing on the Internet (see for instance [11]). It seems
that the question has, since, never received a full experimental validation. In
order to obtain such a validation, an important feature is to be able to make
the heavy tail index vary, and there is only few attempts to validate the relation
under these conditions. One is conducted in [28], that uses a network simulator,
and where some departure from the theoretical prediction is reported (Fig. 3
in this article). This deviation is probably caused by the limited length of the
simulation and also by the bias introduced by the used scaling estimator (R/S
and Variance Time) on short traces. Actually, the main restriction of simulators
lies in their scalability limitation, and in the difficulty of their validation. In-
deed, the network is an abstraction, protocols are not production code, and the
number of traffic sources or bitrates you can simulate depends on the computing
power of the machine. Large-scale experimental facilities are alternatives that
may overcome both Internet and simulators limitations as they permit to control
network parameters and traffic generation, including statistics and stationarity
issues.
Emulab [36] is a network experimental facility where network protocols and ser-
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Self-similarity and heavy tailed distributions 5

vices are run in a fully controlled and centralized environment. The emulation
software runs on a cluster where nodes can be configured to emulate network
links. In an Emulab experiment, the user specifies an arbitrary network topol-
ogy, having a controllable, predictable, and reproducible environment. He has
full root access on PC nodes, and he can run the operating system of his choice.
However, the core network’s equipments and links are emulated. The RON
testbed [9] consists of about 40 machines scattered around the Internet. These
nodes are used for measurement studies and evaluation of distributed systems.
RON does not offer any reconfiguration capability at the network or at the
nodes’ level. The PlanetLab testbed [12] consists of about 800 PCs on 400 sites
(every site runs 2 PCs) connected to the Internet (no specific or dedicated link).
PlanetLab allows researchers to run experiments under real-world conditions,
and at a very large scale. Research groups are able to request a PlanetLab slice
(virtual machine) in which they can run their own experiment .

Grid5000, the experimental facility we use in the present work, proposes a
different approach where the geographically distributed resources (large clus-
ters connected by ultra high end optical networks) are running actual pieces of
software in a real wide area environment. Grid5000 proposes a complimentary
approach to PlanetLab, both in terms of resources and of experimental environ-
ment. Grid5000 allows reproducing experimental conditions, including network
trafic and CPU usage. This feature warrants that evaluations and comparisons
are conducted according to a strict and scientific method.

3 Theory

Taqqu’s Theorem relates two statistical properties that are ubiquitously ob-
served in computer networks: On the one hand, self-similarity that is defined at
the level of aggregated time-series of the traffic, and on the other hand, heavy-
tailness that involves grouping of packets (such as TCP connections). Simplis-
tically, network traffic is described as a superposition of flows (without notions
of users, or sessions,...) that permits us to adopt the following simple two-level
model: (i) Packets are emitted and grouped in flows whose length (or number
of packets) follows a heavy tailed distributed random variable [17, 10, 22]; (ii)
the sum over those flows approximates network traffic on a link or a router.
This crude description is coherent with current (yet more elaborate) statistical
model for Internet traffic [10, 22].

After a succinct definition of these two statistical properties, we present the
corresponding parameter estimation procedures that we use in our simulations,
and chosen amongst those reckoned to present excellent estimation performance.

3.1 Self-similarity and long range dependence

3.1.1 Definition

Taqqu’s Theorem implies that Internet time series are relevantly modeled by
fractional Brownian motion (fBm), the most prominent member of a class of
stochastic processes, referred to as self-similar processes with stationary incre-
ments (H-sssi, in short). Process X is said to be H-sssi if and only if its satisfies
[16]:
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6 Loiseau et al.

X(t) −X(0)
fdd
= X(u+ t) −X(u), ∀t, u ∈ R, (1)

X(t)
fdd
= aHX

(
t

a

)
, ∀t, a>0, 0<H<1, (2)

where
fdd
= means equality for all finite dimensional distributions. Eq. (1) in-

dicates that the increments of X form stationary processes (while X itself is
not stationary). Essentially, self-similarity, Eq. (2), means that no character-
istic scale of time can be identified as playing a specific role in the analysis
or description of X . Corollarily, Eq. (2) implies that EX(t)2 = EX(1)2t2H ,
underlining both the scale free and the non stationary natures of the process.

It turns out that the covariance function of the increment process, Y (t) =
X(t+ 1) −X(t), of a H-sssi process X satisfies, for |τ | → +∞:

EY (t)Y (t+ τ) ∼ EX(1)2H(2H − 1)|τ |2H−2, (3)

When 1/2 < H < 1, hence 0 < 2 − 2H < 1, such a power law decay of the co-
variance function of a stationary process is referred to as long range dependence
[16, 29].

Long range dependence and self-similarity designate two different notions,
albeit often confused. The latter is associated to non stationary time series,
such as fBms, while the former is related to stationary time series, such as
fBm’s increments. In the present work, given that Taqqu’s Theorem predicts
that the cumulated sums of aggregated Internet time series are self-similar, we
adopt here the same angle and discuss the results in terms of self-similarity of
the integrated traces.

3.1.2 Self similarity parameter estimation

In [7], it was shown that wavelet transforms provide a relevant procedure for the
estimation of the self-similarity parameter. This procedure revealed particularly
efficient at analyzing Internet time series in [6, 5] and has then been massively
used in this context.

Let dX(j, k) = 〈ψj,k, X〉 denote the (Discrete) Wavelet Transform coeffi-
cients, where the collection {ψj,k(t) = 2−j/2ψ0(2

−jt − k), k ∈ Z, j ∈ Z} forms
a basis of L2(R) [26]. The reference template ψ0 is termed mother-wavelet and
is characterized by its number of vanishing moments Nψ > 1, an integer such
that

∫
tkψ0(t) dt ≡ 0, ∀k = 0, ..., Nψ − 1. Then, decomposing a H-sssi process,

the variance of the wavelet coefficients verifies [7]:

E|dX(j, k)|2 = E|dX(0, 0)|22j(2H+1), (4)

and, provided N > H + 1/2, the sequence {dX(j, k), k = . . . ,−1, 0, 1, . . .} form
a stationary and weakly correlated time series [6]. These two central properties
warrant to use the empirical mean S(j) = n−1

j

∑
k |dX(j, k)|2, (nj being the

number of available coefficients at scale 2j) to estimate the ensemble average
E|dX(j, k)|2. Eq. (4) indicates that self-similarity transposes to a linear behavior
of log2 S(j) vs. log2 2j = j plots, often referred to as Logscale Diagrams (LD)
in the literature [6, 5]. A (weighted) linear regression of the LD within a proper
range of octaves j1, j2 is used to estimate H .

INRIA



Self-similarity and heavy tailed distributions 7

In [6, 5, 7], the estimators performance are both theoretically and practically
quantified, and are proved to compare satisfactorily against the best parametric
techniques. Moreover, this estimator is endowed with a practical robustness
that comes from its extra degree of freedom Nψ. Its main use issue lies in the
correct choice of the regression range j1 ≤ j ≤ j2. This will be discussed in
Section 5, in the light of actual measurements.

3.2 Heavy Tail

3.2.1 Definition

A (positive) random variable w is said to be heavy tailed, with tail exponent
α > 0 (and noted α-HT) when the tail of its cumulative distribution function,
Fw, is characterized by an algebraic decrease [8]:

P (w > w) = 1 − Fw(w) ∼ cw−α for w → ∞. (5)

A α-HT random variable w has finite moments up to order α. For instance,
when 1 < α < 2, w has finite mean but infinite variance. A paradigm for α-HT
positive random variable is given by the Pareto distribution:

Fw(w) = 1 −
(

k

w + k

)α
, (6)

with k > 0 and α > 1. Its mean reads: Ew = k/(α− 1).

3.2.2 Tail exponent estimation

Estimation of the tail exponent α for α-HT random variables is an intricate
issue that received considerable theoretical attention in the statistics literature:
measuring the tail exponent of a HT-distribution amounts to evaluate from
observations, how fast does the probability of rare events decrease in Eq. (5).
Once random variables are know to be drawn from an a priori distribution,
such as the Pareto form (6) for example, parametric estimators exist and yield
accurate estimates of the tail index α (see e.g. [27]). However, if the actual
distribution of observations does not match the a priori expected α-HT model,
parametric estimators eloquently fail at measuring the tail decay.

For this reason, the non-parametric empirical estimator of α proposed in
[20] will be preferred. The principle of this estimator is simple and relies on the
Fourier mapping between the cumulative distribution function Fw(w) and the
characteristic function χw(s) of a random variable:

χw(s) =

∫
e−isw dFw(w). (7)

By a duality argument, the tail exponent α that bounds the order of finite
moments of Fw,

α = sup
r
{r > 0 :

∫
|w|r dFw(w) <∞}, (8)

transposes to the local Lipschitz regularity of the characteristic function χw at
the origin, according to:

α = sup
r
{r > 0 : 1 −ℜχw(s) = O(sr) as s→ 0+}, (9)
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8 Loiseau et al.

where ℜ stands for the real part. It is easy to recognize in this power law behav-
ior of ℜχw(s), a scale invariance property of the same type of that of relation
(3), which is conveniently identifiable with wavelet analyses. Hence, computing
the discrete wavelet decomposition of ℜχw, and retaining only the wavelet coef-
ficients that lie at the origin k = 0, yields the following multiresolution quantity:

dχw
(j, 0) = EΨ0

(
2jw

)
≤ C2jα for j → −∞, (10)

where Ψ0(·) denotes the Fourier transform of analyzing wavelet ψ0(·). Now,
let {w0, · · · , wn−1} be a set of i.i.d. α-HT random variables, and replace the
ensemble average in Eq. (10) by its empirical estimator, the estimate α̂ simply
results from a linear regression of the form

log d̂(n)
χw

(j, 0) = log n−1
n−1∑

i=o

Ψ(2jwi)

≈ α̂j + logC, as j → −∞. (11)

The estimator was proven to converge for all heavy tail distributions, and also
it has a reduced variance of estimation in O(n−1), where n is the sample size.
We refer the interested reader to [20] where robustness and effective use of
this estimator are thoroughly studied. Yet, let us mention the existence of
a theoretical scale range where the linear model, Eq. (11), holds, and which
shows very helpful for practitioners to adequately adjust their linear fitting over
a correct scale range.

3.3 Taqqu’s Theorem

A central result for interpreting statistical modeling of network traffic is a cel-
ebrated Theorem due to M. Taqqu and collaborators [25, 35, 37], in which
heavy-tailness of flow sessions has been put forward as a possible explanation
for the occurrence of self-similarity of Internet traffic.

The original result considers a M/G/N queueing model served by N inde-
pendent sources, whose activities Zi(t), i ∈ {1, ..., N}, are described as a binary
ON/OFF processes. The durations of the ON periods (corresponding to a packet
train emission by a source) consists of i.i.d. positive random variables τON, dis-
tributed according to a heavy-tail law PON , with exponent α. Intertwined with
the ON periods, the OFF periods (a source does not emit traffic), have i.i.d.
random durations τOFF drawn from another possibly heavy-tailed distribution
POFF with tail index β. Thus, the Zi(t) consist of a 0/1 reward-renewal pro-
cesses with i.i.d. activation periods.

Now, let YN (t) =
∑N

i=1 Zi(t) denote the aggregated traffic time series and
define the cumulative process XN(T t):

XN (tT ) =

∫ Tt

0

YN (u)du =

∫ Tt

0

(
N∑

i=1

Zi(u)

)
du. (12)

Taqqu’s Theorem (cf. [35]) states that when taking the limits N → ∞
(infinitely many users) and T → ∞ (infinitely long observation duration), in
this order, then XN(tT ) behaves as:

XN (tT ) ∼ EτON

EτON + EτOFF
NTt+ C

√
NTHBH(t). (13)

INRIA



Self-similarity and heavy tailed distributions 9

In this relation, C is a constant and BH denotes a fractional Brownian motion
with Hurst parameter:

H =
3 − α∗

2
, where α∗ = min(α, β, 2). (14)

The order of the limits is compelling to obtain this asymptotic behavior; this
has been discussed theoretically elsewhere and is beyond the issues we address
here. The main conclusion of Taqqu’s Theorem is that, in the limit of (infinitely)
long observations, fractional Brownian motions superimposed to a deterministic
linear trend, are relevant asymptotic models to describe the cumulated sum of
aggregated traffic time series. Moreover, Eq. (14) shows that only heavy tailed
distributions with infinite variance (i.e., 1 < min(α, β) < 2) can generate self-
similarity associated to long range dependence (i.e. H > 1/2). Conversely,
when both activity and inactivity periods have finite variance durations, α∗ = 2
and consequently H = 1/2, which means no long range dependency.

4 Experimental setup

To study the practical validity of Taqqu’s result, we use the potential and facil-
ities offered by the very large-scale, deeply reconfigurable and fully controllable
experimental Grid5000 instrument, so as to overcome the limitations previously
exposed of emulations, simulations or measurements in production networks.
After a general overview of Grid5000, the metrology platform is described first.
Design of a large set of experiments, aimed at studying the actual dependence
between the network traffic self-similarity and the heavy-tailness of flow size
distributions, is finally detailed.

4.1 Grid5000 instrument overview

Grid5000, is a 5000 CPUs nation-wide Grid infrastructure for research in Grid
computing [13], providing a scientific tool for computer scientists similar to
the large-scale instruments used by physicists, astronomers, and biologists. It
is a research tool featured with deep reconfiguration, control and monitoring
capabilities designed for studying large scale distributed systems and for com-
plementing theoretical models and simulators. Up to 17 french laboratories
involved and 9 sites are hosting one or more cluster of about 500 cores each.
A dedicated private optical networking infrastructure, provided by RENATER,
the French NREN is interconnecting the Grid5000 sites. Two international in-
terconnection are also available: one at 10 Gb/s interconnecting Grid5000 with
DAS3 in Netherlands and one at 1 Gb/s with Naregi in Japan. In the Grid5000
platform, the network backbone is composed of private 10 Gb/s Ethernet links
connected to a DWDM core with dedicated 10 Gb/s lambdas with bottlenecks
at 1 Gb/s in Lyon and Bordeaux (see Figure 1).

Grid5000 offers to every user full control of the requested experimental re-
sources. Its uses dedicated network links between sites, allows users reserving
the same set of resources across successive experiments, allows users running
their experiments in dedicated nodes (obtained by reservation) and lets users
install and run their proper experimental condition injectors and measurements
software. Grid5000 exposes two tools to implement these features : OAR is

RR n° 6472



10 Loiseau et al.

10G link

Site

used by experience

1G link

274 CPUs

520 CPUs

684 CPUs

198 CPUs

334 CPUs

48 CPUs
270 CPUs

356 CPUs

424 CPUs

Figure 1: Grid’5000 backbone

a reservation tool, and Kadeploy an environment deployment system. OAR
offers an accurate reservation capability (CPU/Core/Switch reservation) and
integrates the kadeploy system. With Kadeploy, each user can make his own
environment and have a total control on the reserved resources. For instance,
software and kernel modules for rate limitation, QoS mechanisms, congestion
control variants can be deployed automatically within the native operating sys-
tem of a large number of communicating nodes. OAR also permits users to
reserve equipements for several hours. As a consequence, Grid5000 enable re-
searchers to run successive experiments reproducing the exact experimental con-
ditions several times, an almost impossible task with shared and uncontrolled
networks. This insures also large-duration observation windows under station-
ary conditions – something that is unachievable on the Internet. As a private
testbed, Grid5000 turns the installation of experimental hardware, like for in-
stance the traffic capture instrument at representative traffic aggregation points,
quite easy.

4.2 Metrology platform

Using the facilities offered by Grid5000, a platform for metrology has been
designed, an schematized in Fig. 2. Before describing the monitoring facilities

INRIA



Self-similarity and heavy tailed distributions 11

PC 1

Rennes

PC 99

PC 100

PC 2

Switch
router

GtrcNet1 Capture
server

PC 1

PC 2

PC 99

PC 100

router
Switch

Bottleneck

Lyon

5 Mb/s

5 Mb/s

5 Mb/s

5 Mb/s

C = 1 Gb/s

RTT = 12 ms

Figure 2: Metrology platform overview

and the developed data processing softwares, let us present the effective topology
used for this experiment.

4.2.1 Experimental system description

Unless explicitly mentioned, all our experiments consist in producing data flow
transfer between many independent client nodes (sources) and many indepen-
dent server nodes (destinations). It is a classical dumbbell (or butterfly) topol-
ogy with a single bottleneck of capacity, here of C = 1 Gb/s. We selected
N = 100 nodes that are able to send up to at Ca = 1 Gb/s on each direction
(see Fig. 2)

For the experiments, we used nodes on the Grid5000 clusters of Lyon (clients)
and Rennes (server). The average RTT is then stable and equal to 12 ms which
gives a bandwidth-delay product of 1.5 MBytes. In our forthcoming scenarios,
TCP and UDP transfers are realized by using iperf [2] on Sun Fire V20z (bi-
opteron) workstations of Grid5000 [13], running GNU/Linux 2.6.18.3 kernels
with standard TCP and UDP modules. Iperf is a traffic generation tool that
allows users to tune the different TCP and UDP parameters and to evaluate
their impact on network performance.

4.2.2 Capture system

To measure the traffic at packet-level, we designed a specific system combining
packet capture, header extraction and dedicated data analysing software. Pack-
ets are first captured by mirroring traffic of the access link connecting Lyon site
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to the rest of Grid5000. Only the outgoing traffic from Lyon site to Grid5000
is mirrored, connecting a 1 Gb/s fiber port to a 1 Gb/s copper port directed to
the monitoring system.

This system is composed of a GtrcNET-1 device [24], developed by AIST
GTRC, and based on an FPGA that has been programmed to extract and
aggregate packets headers and send them to an attached server. This header
aggregation reduces the number of interrupts of the computer that receive the
traffic to analyse, decreasing the local loss probability. In the packet capture
system, the GtrcNET-1 is configured to extract a 52-Bytes headers (composed
of 14, 20 and 18 Bytes of Ethernet, IP and TCP headers respectively) from
the packets arriving at the one gigabit port. Headers are added a time-stamp
each, encapsulated by groups of 25 into a UDP packet and then sent to another
gigabit port. Time-stamps have a 60 ns (2−24s) resolution.

The concatenated headers are stored in a computer with a quad core proces-
sor running at 2.66 GHz, 4 GB memory, 2 ethernet gigabit ports, 300 GB SAS
disk for the system, 1 RAID controller with 5 x 300 GB SAS disk in a RAID 0
array offering 1500 GB available for storing capture files. We developed a driver
that reads GtrcNET-1 packets, de-encapsulates time-stamped packet headers
and writes them to a file in the pcap format.

4.2.3 Data processing and Flow Reconstruction

We use a series of tools over captured IP traffic traces, to go from the packet-
level traces to the aggregated traffic and the flow statistics that are needed in
this work. A first step is to handle the captured IP traffic traces; second, we
reconstruct the flows from the packets1.

IP traffic traces, saved in standard pcap format by the capture device, are
first processed by ipsumdump, a program developped at UCLA [4], able to read
the pcap format and to summarizes TCP/IP dump files into a self-describing
binary format. Thanks to this tool, we retrieve from our traces the needed
informations: timestamps, source and destination IPs, port numbers, protocol,
payload size, TCP flags, and sequence numbers. The information are condensed
into a binary file that is easier to parse, and which doesn’t depend on specific
capture hardware anymore.

Second, we have developed a collection of tools working on the ipsumdump

binary format directly, which performs a variety of useful data operations on the
traces. Of relevant interest here are: computation of the aggregated time-series
of traffic (used for self-similarity estimation); extraction of traffic sub-traces for
conditioned study, based on flows or packets random sampling, or on parameters
filtering (traffic from/to a list of IPs, traffic on given ports, traffic using a specific
protocol, etc); and reconstruction of the flows existing in the traces.

The question of flow reconstruction is an intricate problem, that is an im-
portant and difficult aspect when one wants to study the impact of their heavy-
tailness [18, 15, 29, 31]. It is necessary to recompose each flow from the inter-
twined packets stream measured on an aggregated link. This means we must
identify and group all the packets pertaining to the same set, while considering
a significantly large number of flows to guarantee statistical soundness. This

1Using standard flow monitoring tools, such as Netflow or Sflow, would not be sufficient
here. Indeed, we need statistical characterization at both the packet-level (for H-sssi) and the
flow-level (for α-HT).
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constraint faces the arduous issue of loss free capture, and that of dynamic table
updating.

In our tool, flows are classically defined as a set of packets that share the same
5-uplet comprising: source and destination IPs, ports, and protocol. However,
because there is a finite number of ports, it is possible for two different flows
to share the same 5-uplet, and thus to get grouped in a single flow. To avoid
this, we set a timeout threshold: a flow is considered as finished, if its packet
train undergoes an interruption lasting more that timeout. Any subsequent
packet with the same 5-uplet will tag the beginning of a new flow. Naturally,
a proper choice of timeout is delicate, but that is the only solution that works
for any kind of flows. For TCP flows, though, things are easier, as we can use
the SYN or SYN/ACK flags to initiate a flow (closing any currently open flow
with the same 5-uplet), and the FIN or RCT flag to close the flow, dispensing
with timeout. Note that timeout remains necessary when the FIN packet is
accidently missing.

Flow reconstruction (with timeout) is then performed in a table that con-
tains all currently open flows, using hash functions to speed up the access. The
relatively modest trace bitrate allows for keeping the whole table in memory.
Since TCP sequence numbers and payload size for TCP packets are captured,
it is possible to search for dropped or re-emmited packets during the flows’ re-
construction and take that into account. Elementary statistics on the flows are
then available: number of packets, number of Bytes, duration of the flow, etc.

All together the data processing tools extract the two elements needed for
this study: the aggregated time-series at the packet-level, and the experimental
flow-size distribution of any traffic that will be sent through, and monitored in
the metrology platform of Grid5000.

4.3 Rate limitation mechanisms

The last major aspect of the experimentation is the careful design of traffic gen-
eration. In real network, flows are not the fluid ON/OFF flows of the M/G/N
model: packets composing the flows are sent entirely, one after the other, at the
wire bit-rate. This acts as an ON/OFF sending process. Following on, a critical
feature to consider in network experiment design, is the mechanism of traffic
generation, especially the rate at which the packets are sent. An important
parameter is then the aggregation level of the traffic K, defined as the ratio
between the bottleneck capacity C and the access link nominal capacity Ca.
In xDSL context and more generally in the Internet, it is not rare to have K
ranging over 1000, while in the data-center context, K is around 1 or 10. In our
Grid5000 setup the K factor is close to 1. To obtain a K factor larger than 100
and to insure an aggregated throughput average lower than C = 1 Gb/s, the
sources rate has to be limited at most to 10 Mb/s.

End-host based mechanisms can control the individual flows in a scalable and
simple way [33]. When considering fixed size packets, the way to modify data
rates over a large period of time is to vary inter-packets intervals. To calculate
these intervals, one considers the time source that can be used to enforce the
limitation. In end-host systems, four different time sources are available: a)
userland timers, b) TCP self clocking namely RTT of the transfer’s path, c)
OS’s kernel timers, d) Packet-level clocking. These time sources allow to create
different sending patterns as shown on figure 3. In our experiments we used
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Figure 3: Different sending patterns. The upper figure shows a schematic view
of an RTT -based rate limitation, the lower ones packet-level rate limitation and
in-between timer based rate limitation.

three rate limitation approaches which act at different time scales: the first one
is based on packet-level clocking (packet spacer), the second one on OS’s kernel
timers (Token Bucket), the last one on TCP self clocking namely RTT of the
transfer’s path (window size limitation).

The first two methods rely on the linux traffic shaping mechanism: with the
tc utility [3], the qdisc associated to a network interface (the queue in which
packets are put before being sent to the network card) is configured. The PSP
(PSPacer) [34] qdisc spaces packets by inserting IEEE 802.3x PAUSE packets.
These PAUSE packets are discarded at the input port of the first switches. With
this mechanism, packets are regularly spaced and short bursts are avoided. The
second method resorts to HTB (Hierarchical Token Bucket) qdisc [1] that uses a
bucket constantly filled by tokens at the configured target rate. With this qdisc
the average rate limit can be overridden during short bursts.

The third and last method modifies the TCP window size to slow down the
throughput. The formula window size = target throughput × RTT determines
the TCP window size to use to limit the sending rate to target throughput . This
mechanism works well if the window size is not to small, which means also that
the target throughput and/or the RTT should not be too small either. As the
TCP limitation acts for each TCP connection, many sources located on the same
node can have independent rate limitation which is not the case for qdisk-based
limitation mechanisms. To limit the rate of a 1 Gb/s source to 5 Mbps with full
size (1500 Bytes) Ethernet packet and RTT of 12 ms one has to fix the window
size to 7.5 kBytes (corresponding to 5 full size Ethernet packet).
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description

Client nodes Sun Fire V20z (bi-opteron)
Kernel GNU/Linux 2.6.18.3

TCP variant Bic, with SACK
iperf version 2.0.2

Topology Butterfly
Bottleneck 1 Gb/s
RTT 12 ms

Sources nb. 100
Source rate 5 Mb/s

Exp. duration 8 hours
Flows nb. 5.106

Aggregation time ∆ = 100 µs
Flow timeout timeout= 100 ms

Table 1: Experimental global parameters.

4.4 Experiments description

Using the facilities offered by Grid5000, our metrology facilities and the rate
control mechanisms for traffic generation, several experiments were performed,
and we elaborate here on their rationale. First, the general experimental con-
ditions are presented.

The primary interest here is the effect of flow size distributions on self-
similarity, when each client behaves like a ON/OFF source model, where a ON
period corresponds to a flow emission, and a OFF period to a silent source. The
ON (respectively the OFF) lengths are random variables drawn independently
and identically distributed, following the specific probability distribution PON

(respectively POFF ) we want to impose on the flows duration τON (respectively,
on the silent periods, τOFF). The emission of packets in each flow is controlled
by one of the methods described in the previous Section, each source rate being
limited to 5 Mb/s to avoid congestion at the 1 Gb/s bottleneck.

All experiments consist of one trace of 8-hours traffic generation, repre-
senting a total of approximately n = 5.106 flows. As explained before, flows
are reconstructed from the traces and we extract their flow sizes (in packets)
W = {wi, i = 1 : n}. Grouping and counting the packets in each contiguous
time interval of width ∆ = 100 µ s, yields the aggregated traffic time series
X(∆)(t).

In order to clearly define the terms of application of the Taqqu’s Theorem on
real traffic traces, as well as to identify possible interactions with other factors,
we designed four series of experiments whose parameters are summarized in
table 2.

Experiment A. This is the cornerstone experiment to check relation (14). Distri-
bution of the ON periods are prescribed to Pareto laws with mean µON = 0.24
s (corresponding to a mean flow size of 〈P 〉 = 100 packets). The experiment is
repeated ten times with different prescribed tail index αON, varying from 1.1 to
4. OFF periods are kept exponentially distributed with mean µOFF = µON. For
each value of αON, an experimental point (α̂ON, Ĥ) is empirically estimated.
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Proto Band αON αOFF 〈P 〉 meas
lim param

A
TCP

PSP

1.1–4 - 100HTB Ĥ
TCP α̂

UDP iperf

B TCP TCP 1.1 – 4 -
100

∆
〈P 〉
j11000

C TCP TCP
1.5 1.1

100 ĤLRD1.1 1.5

D
TCP TCP

1.1 – 4 - 100 ĥlocUDP iperf

Table 2: Experimental conditions summary.

Moreover, to evaluate the possible influence of the protocol, and of the work-
load generation mechanism, the same series of experiments is reproduced with
TCP (window size limitation) and with UDP (user-level packet pacing) first,
and then using PSP, HTB and TCP throughput controls. The exact same trial
of random variables defining the flow lengths is used for all experiments that
imply the same probability law PON.

Experiment B. Under similar conditions as in series A, the mean of the ON peri-
ods takes on two different values µON = 0.24 s and µON = 2.4 s, corresponding
to mean flow sizes 〈P 〉 = 100 and 〈P 〉 = 1000 packets, respectively. The objec-
tive is here to relate 〈P 〉 to the lower scale bound ∆j1 = 2j1∆ defining a sensible
regression range to estimate H .

Experiment C. The protocol (TCP), the throughput limitation mechanism (TCP)
and the mean flow size (〈P 〉 = 100) being fixed, we investigate now to role of the
OFF periods distribution on the self-similar exponent H . In both experiment,
PON and POFF are set to Pareto HT distributions with means µON = µOFF =
0.24 s. In a first case, the tail index αON > αOFF, and conversely αOFF > αON

in a second case.

Experiment D. The last series of experiments aims at investigating self-similarity
at finer scales (lower than the RTT scale), and whose origin is distinct from LRD
phenomena. The changing paremeter is the tail index as in experiment A, yet
the scaling law index will be estimated in the short time-scales limit, in order
to characterize the traffic burstiness from the process X(∆). Under the same
experimental conditions as in series A, we then evaluate how the protocols (TCP
versus UDP) entail a significant change in the traffic burstiness.

5 Results and discussion

5.1 Verifying the Taqqu’s relation

For every traces, we use the wavelet-based methodologies described in Section
3 for heavy-tail and self-similarity analyses. The estimated tail index α̂ results
from the linear regression of Eq. (11) applied to the flow size sequence W , where
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Figure 4: Difference between the prescribed HT index α and the actually
estimated HT index α̂ for the set of different values of α used in experiment
series A (see Tab. 2) for two different protocols: TCP (+) and UDP (◦).

a sixth order derivative of a Gaussian wavelet is systematically used. The self-
similarity index Ĥ is estimated from the LD plots of the aggregated time series
X(∆), using a standard Daubechies wavelet with 3 vanishing moments [26].

5.1.1 Tail index estimates

Proceeding with experiment A, for different values of the tail index of flow size
distribution, Fig. 4 displays the differences between the prescribed value α and
the actually estimated value α̂. The two experimental curves, corresponding to
TCP and to UDP protocols respectively, superimpose almost perfectly. Beyond
coherence with the fact that the exact same trial of random variables defining
the flow lengths is used in both cases, such a concordance demonstrates that
the flow reconstruction procedure, for both TCP or UDP packets grouping, is
fully operative, notably including a relevant timeout adjustment (timeout =
100 ms).

Fig. 4 also shows an increasing difference (α̂ − α) with α. In our under-
standing, this is not caused by an increasing bias of the HT estimator, which
is known to perform equally well for all α values. It is rather caused by the
natural difficulty to prescribe large values of α over fixed duration. Indeed, as α
increases, large flows become more rare, and the number of observed elephants
during the constant duration (8 hours) of the experiments naturally decreases,
then deviating from a statistically relevant sample. This observation is fully
consistent with arguments developed in [32]. Notwithstanding this satisfactory
agreement, in the sequel we will systematically refer to α̂ rather than to the
prescribed α.

5.1.2 LD-description

Fig. 5 shows typical LDs of aggregated traffic time series, obtained under sim-
ilar conditions (experiment series A of Tab. 2, TCP protocol), for 4 different
values of α. Such plots enable a generic phenomenological description of LDs:
3 different range of scales can be visually idendify, whose bounds do not seem
to drastically vary with α:

Coarse scales: In the coarse scale domain, a clear scaling behavior is system-
atically observed. As mentioned earlier, Taqqu’s Theorem relates heavy tails
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Figure 5: Wavelet log-diagrams logS(j) versus time scale j of aggregated traffic
(aggregation interval ∆ = 100µ s). Log-diagrams correspond to 4 time series
obtained under similar experimental conditions with the protocol TCP, with 4
different values of α: 1.1 (+), 1.5 (△), 1.9 (◦) and 4.0 (♦).

and self-similarity in the asymptotic limit of coarse scales. Therefore, the coarse
scale scaling exponent, denoted Ĥ , is a candidate to match that involved in Re-
lation (14).

Fine scales: At fine scales, another clear scaling behavior is also observed.
However, the corresponding fine scale scaling index, denoted h, is no longer re-
lated to Taqqu’s Theorem prediction but rather to a local regularity property
of the data.

Medium scales: Intermediate scales mostly connect the two scaling behaviors
happening for fine and coarse scales, but exhibit no particular generic shape.

In Fig. 5, vertical lines materialize the two transitions scales between the
three depicted domains and can hence be identified as characteristic time scales
of the data. Let us now investigate the nature of these characteristic times.

5.1.3 Coarse scales domain lower bound

It is alluded in [22] that the range of scales where self-similarity can be mea-
sured is beyond a characteristic scale, referred to as the knee of the LD, and
that it is essentially controlled by the mean flow duration. To investigate this
argument in the context of our analyses, we designed two experiments series
with two different values of the mean flow duration (series B of Tab. 2). For
each case, all the LDs corresponding to the different values of α are computed.
To emphasize the impact of the mean flow durations, we substracted to each
LD, the asymptotic linear trend, obtained by linear regression between a scale
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Figure 6: Averaged normalized log-diagrams for two different mean sizes 〈P 〉 of
the transmitted flows: (×) 〈P 〉 = 1000 packets – (△) 〈P 〉 = 100 packets .

∆j1 , clearly above the knee position, and the maximum available scale ∆jmax
.

Fig. 6 shows, both for 〈P 〉 = 100 and 〈P 〉 = 1000 the mean and standard devi-
ation over all normalized LDs. A slope break can be clearly seen on each graph:
at scale ∆100

j = 0.64 s when 〈P 〉 = 100 and at scale ∆1000
j = 10.28 s when

〈P 〉 = 1000. Although for 〈P 〉 = 100, the knee effect slightly smoothes out, the
linear behavior observed for 〈P 〉 = 1000 clearly extends with the same slope
beyond ∆1000

j up to ∆100
j . Unquestionably, the measured knee position under-

goes the same variations as the mean flow duration, both quantities being in the
same order of magnitude: ∆100

j ≃ µON
100(0.24 s) and ∆1000

j ≃ µON
1000(2.4 s). This

analysis confirms the intuition that the coarse scale range, where self-similarity
is to be measured, lies above the knee of the LD, whose position is in the same
order of magnitude as the mean flow duration. The coarse scales can then be
termed: the flow scales, or the file scales.

5.1.4 Protocol, rate limitation and coarse scales

As we investigate Taqqu’s relation, we now focus on the coarse scale domain.
To inquire on the impact of the protocol on the coarse scales, Fig. 7 shows the
LDs obtained with two different protocols : TCP and UDP (for α = 1.5). Fig. 7
evidences the central feature that both LDs are undistinguishable in the coarse
scale domain. We conclude that protocol has no impact on the coarse scale SS,
at least in our experimental conditions, where source rate limitation precludes
congestion.

Similarly, to inquire on the impact of the rate limitation mechanism on the
coarse scales, Fig. 8 shows typical LDs (α = 1.5, TCP) obtained with three
different rate limitation mechanisms: PSP, HTB and TCP window limitation.
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Figure 7: Wavelet log-diagrams logS(j) versus time scale j of aggregated traffic
(aggregation interval ∆ = 100µs). Log-diagrams correspond to two time series
obtained under similar experimental conditions, for α = 1.5, with two different
protocols: TCP (+) and UDP (◦).

As the three LDs cannot be distinguished one from the other in the coarse scale
domain, we conclude that the rate limitation mechanism has no impact on the
scaling at coarse scales.

5.1.5 H versus α

Practically, to perform an empirical validation of Eq. 14, we need to estimate
the scaling parameter H and thus to carefully choose the range of scales where
the regression is to be performed. Although the knee position has been related to
a measurable experimental parameter (the mean flow duration), a systematic
choice of the regression range at coarse scales would certainly be hazardous.
Instead, we defined for each trace an adapted regression range, based on a
linearity criterion, and find that all regression ranges defined like this, encompass
a scale interval (maxα∆j1 = 20.5 s and ∆jmax

= 1310 s), significantly extended
to warrant statistically reliable SS exponent estimates.

Fig. 9 plots the estimates of coarse scale SS exponents against those of the
HT indices. Confidence intervals for Ĥ displayed on the graphs are supplied by
the estimation procedure detailed in Section 3.1.2 [7, 6]. Such estimations are
conducted independently for TCP and UDP protocols. For both protocols, esti-
mations show a very satisfactory agreement with Taqqu’s Theorem prediction.
To the best of our knowledge, this theoretical relation between self-similarity
and heavy tail had never been observed with such a satisfactory accuracy, (over a
large and significant range of α values). For instance, and although no definitive
interpretation has been proposed yet, the offset below the theoretical relation
for α close to 1, and the offset above the horizontal line for α larger than 2 have
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Figure 8: Wavelet log-diagrams logS(j) versus time scale j of aggregated traffic
(aggregation interval ∆ = 100µs). Log-diagrams correspond to 3 time series
obtained under similar experimental conditions, for α = 1.5, with three different
rate limitation mechanisms : TCP (+), PSP (◦) and HTB (△).
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Figure 9: Estimated Self-Similar index Ĥ of the aggregated traffic (aggregation
interval ∆ = 10µs) versus estimated tail index α̂ of the corresponding flow size
distribution. Solid plots represent the theoretical model of relation (14), dashed
plots correspond to experimental results: (a) with TCP protocol ; (b) with UDP
protocol.

been drastically reduced when compared to similar analyses results reported in
the literature (cf. e.g., [28]). This accuracy results from a number of factors:
First, the statistical tools for estimating H and α are chosen amongst the most
recent and robust (notably the proposed estimator for α had never been applied
before to Internet data) ; Second, the asymptotic coarse scale nature of Taqqu’s
Theorem is really accounted for by performing estimation in the limit of really
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αON αOFF α̂ON α̂OFF Ĥ

1.5 1.1 1.502 1.113 0.869±0.062
1.1 1.5 1.080 1.505 0.865±0.055

Table 3: HT distributed OFF periods

coarse scales ; Third, this is made possible thanks to the use of really long du-
ration, stationary and controlled traffic time series, wich is enabled by the use
of Grid5000 platform.

Additionally, our analyses do confirm that TCP and UDP protocols do not
impact this relation, at least in conditions corresponding to our experimental
setup, where congestion is avoided by source rate limitation. This is in clear
agreement with the findings reported in [19], or [21], showing that TCP is not re-
sponsible for the observed self-similarity. However, despite these earlier results,
a non negligible number of contributions debated, investigated and argued in
favor of an impact of protocols on self-similarity. Our analyses clearly show that
the range of scales where protocols impact the LD is far below the characteristic
time scales involved in self-similar phenomena.

As long as we actually consider coarse scales (larger than the mean duration
of a flow), the only cause for self-similarity is the heavy tail in the flow sizes
distribution.

5.1.6 OFF periods

To complement the experimental study of Taqqu’s Theorem, the experiments of
series C (see tab. 2) were designed to assess the influence of heavy tailed OFF
periods on the coarse scale SS exponent H . Under experimental conditions
detailed in Tab. 2, Tab. 3 sumarizes the resulting estimated coarse scale SS
exponents.

For both experiments, the estimated value of the coarse scale SS index is
about 0.86, which by inspection of Fig. 9 shows a satisfactory agreement with
a tail index close to 1.1. We can conclude that, as predicted by the theory, if
both ON-times and OFF-times are HT distributed, it is the smaller tail index
among αON and αOFF, that imposes and controls the coarse scale SS in traffic.

5.2 Further analyses of the LD

In the previous section, we focused on the coarse scales of LDs. Let us now
turn to the medium and fine scales and study the influence of protocols and
rate limitation mechanisms.

5.2.1 Medium scales

Firstly, let us notice that, while the mean flow duration gives an upper bound
for the medium scale domain, RTT (12 ms) seems to correspond to its lower
bound. Therefore, this medium scale range will be referred to as the RTT -
scales. Although no scaling behavior is visible in this medium scale range, Fig.
7 shows a significant difference between the LDs obtained from TCP and UDP
traffic. This is an expected result as RTT is the characteristic time of action of
the TCP protocol.
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Fig. 8 shows that there is no significant difference in this domain between
the LDs corresponding to the three different rate limitation mechanisms. The
characteristic time of action of the rate limitation is the mean inter-packet time.
Due to the source rate limitation at 5 Mb/s achieved with 1500-Bytes packets,
the mean inter-packet time for one source is 2.4 ms. As the mean number of
sources emitting simultaneously is 50, the mean inter-packet time is 48 ms, which
is much lower than RTT . Accordingly, the rate limitation does not impact the
traffic at RTT scales.

5.2.2 Fine scales

1.1 1.5 2 3 4
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Tail index α

Figure 10: Fine scale scaling exponent h estimates on aggregated traffic time
series (∆ = 100µs). For different values of the tail index α governing the flow
size distributions, h is estimated by linear regression of Log-diagrams (see Fig.
7) over the scale range [0.2 − 5]ms. Notched box-plots correspond to UDP
protocol, regular box-plots to TCP protocol.

TCP and UDP impact on fine scales scaling. Figure 7 shows a good
scaling behavior at fine scales, with a scaling index which seems to be different
for UDP and TCP

To analyze in more details the fine scales scaling exponent, each 8-hours
trace corresponding to a particular value of α (see experimental conditions of
Experiment A in Table 2) are chopped into 66 short-length of duration T = 100s
each. The resulting time series are then analyzed independently and a fine
scaling exponent h estimated. Hence, based on these 66 values of ĥ, box-plots
are displayed on Figure 10 for each theoretical value of α. TCP values remain
roughly constant around h ≃ 0.63. Likewise for UDP, h does not seem to depend
on α, but situates around 0.4, a significantly smaller value than that for TCP.

As these fine scales are smaller than RTT , and correspond to the packet-
scales. Thus, the scaling index at these scales is sensitive to the packet sending
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mechanism. When using UDP, packets are emitted individually, separated by
an inter-packet interval (2.4 ms) imposed by iperf to respect the rate limitation
(5 Mb/s). Then, UDP traffic is constantly and erratically varying. When using
TCP, packets are sent by bursts containing up to 5 packets. Then TCP traffic
is bursty, but also sparse, with ”long” periods with no packets. We believe that
this packet sending scheme difference, in close relationship with our experimen-
tal condition (source rate limitation used to avoid congestion) is sole responsible
for the observed difference between TCP and UDP on the local regularity.

Bandwidth limitation impact on fine scales scaling. Figure 8 shows
that the fine scale scaling index is approximately the same with TCP and HTB
limitation, but it is very different with PSP limitation. This difference can again
be explained by the packet sending mechanism. When using HTB limitation,
packets are sent by bursts, in the same way as with TCP limitation. This
explains why the local regularity observed with HTB is the same as the one
observed with TCP limitation. On the contrary, when using PSP, packets are
sent individually, in the same way as with UDP. Then, the fine scales scaling
index observed with PSP is lower than the one observed with TCP limitation,
as was the one observed with UDP.

6 Conclusions and perspectives

In this paper, we have revisited the relationship between file sizes and the self-
similarity of traffic observed at link level. This work is based on three important
innovative factors : the use of accurate estimation tools, a deeper analysis of
Taqqu’s Theorem applicability conditions and the use of a large scale recon-
figurable experimental facility. The wavelet based estimation procedure for H
is known has a state-of-the-art tool, being one of the most reliable and robust
(against non stationarities). It has been used with care. The α index estimation
procedure used here, shown to outperform previous available techniques, had
never been used before with Internet data. Widely reckoned, the deeply asymp-
totic nature of Taqqu’s Theorem has been better accounted for by conducting
estimations of the self-similarity parameter at really coarse scales (coarse being
quantified as scales far beyond the system dynamic). This asymptotic limit
requires to produce traffic with particularly long observation duration, yet sta-
tionary, and well controlled. The nation wide and fully reconfigurable Grid5000
instrument enables generation, control and monitoring of a large number of
finely controlled transfer sessions with real transport protocol stacks, end-host
mechanisms, network equipments and links. Given such real and very long
traces, we have been able to demonstrate experimentally, and with an accuracy
never achieved previously with real data nor with simulations, that Taqqu’s The-
orem and the relation between self-similarity and heavy-tailness can actually be
observed. In particular, we obtained a significant agreement between theoreti-
cal and experimental values at the transition points, around α = 2. This is of
particular difficulty for it mixes issues of different kinds regarding estimation of
both H and α .

Concerning the discussion about the relationship between transport proto-
cols and self-similarity – which remained quite controversial after and despite
Crovella et al.’s meaningful contributions [14] –, our observations confirm that

INRIA



Self-similarity and heavy tailed distributions 25

protocols, rate mechanisms or packet and flow-level control mechanisms do not
impact the observed self-similarity. Our analyses show that this is mostly be-
cause the ranges of scales related to self-similarity are far coarser than those
(fine and medium scale) associated to such mechanisms. Ranges of scales have
been quantified in terms of RTT and mean flow durations. We plan to further
investigate this issue by designing specific experiments on our unique experi-
mental Grid5000 tool. We aim at systematically investigating long term traffic
traces generated under various congestion and aggregation levels, heterogenous
source rates, mixed source protocols, various RTT s, different bottleneck and
buffer capacities and new high speed transport protocols variants. We expect
this will contribute to a better undestanding and a finer prediction of the net-
work traffic in current and future Internet as well as to a relevant design of
future transport and network control mechanisms.
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[17] A. B. Downey. Evidence for long-tailed distributions in the internet. In
SIGCOMM Internet Measurement Workshop, pages 229–241, New York,
NY, USA, 2001. ACM Press.

[18] N. Duffield, C. Lund, and M. Thorup. Estimating flow distributions from
sampled flow statistics. IEEE/ACM Trans. on Networking, 13(5):933–946,
October 2005.

[19] D. R. Figueiredo, B. Liu, A. Feldmann, V. Misra, D. Towsley, and W. Will-
inger. On TCP and self-similar traffic. Performance Evaluation, 61(2-
3):129–141, 2005.
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