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Preface  
This study focused on the air temperature spatial downscaling method based on machine learning 
algorithms. Due to the contradiction between the temporal and spatial resolution of some 
meteorological images, or the inability to provide high-resolution images, five metropolitan areas 
in Japan were selected as case studies to analyze the feasibility of the downscaling method. Then 
based on the downscaled high-resolution air temperature data, this study analyzed and compared 
the atmosphere urban heat islands of each metropolitan area. Through comparison with surface 
urban heat island, the characteristics of two types of urban heat island were indicated. 
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RESEARCH ON SPATIAL DOWNSCALE 

TEMPERATURE PREDICTION BY USING 

MACHINE LEARNING AND ITS APPLICATION 

IN URBAN HEAT ISLAND 
 

ABSTRACT 
 

With the rapid development of urban around the world, the urban environment has been greatly 

damaged, the most notable of which is the growth of urban heat island. Urban heat islands are not 

only harmful to the health of residents, but also to society development. Various metropolitan areas 

in Japan are also facing the problem of urban heat island. 

This study mainly applied the spatial downscaling method of air temperature based on machine 

learning algorithm to study the urban heat island in five typical metropolitan areas in Japan. The 

downscaling method used in this study is a statistical downscaling method. The main principle is 

the regression invariance of air temperature and underlying surface characteristics at different scales, 

that is, the regression with low resolution was established first, and then the regression model was 

used to predict high-resolution air temperature in combination with high-resolution underlying 

surface characteristics. Based on the downscaled high-resolution air temperature, urban heat island 

intensity and urban heat island ratio index were applied to evaluate and compare the atmosphere 

urban heat islands of each metropolitan area. Moreover, the surface urban heat island based on land 

surface temperature was compared with the atmosphere urban heat island, and the similarities and 

differentiates were indicated. 

In Chapter One, the research background and significance of urban heat island and the application 

of temperature downscaling in urban heat island research are demonstrated. In addition, the 

importance of urban heat island research and temperature downscaling research were analyzed, and 

previous research was reviewed. Then, the purpose of this study was purposed. 

In Chapter Two, this is the core of this study, the air temperature spatial downscaling method was 

introduced. Firstly, it was the basic principle of statistical downscaling method. Secondly, three 

different types of downscaling methods are analyzed and compared. The results showed that the 

random forest model based on machine algorithms was the most suitable for temperature spatial 

downscaling in highly heterogeneous regions. Thirdly, five machine learning based downscaling 

models were evaluated and compared to select the optimal downscaling model, namely, extra trees 

model. Fourthly, in order to prevent the model from overfitting and underfitting, it is necessary to 

tune the parameters of the extra trees model. Finally, after using the downscaling model to predict 
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the high-resolution air temperature, residuals were fitted on the downscaling results to obtain the 

final downscaled high-resolution air temperature.  

In Chapter, maximum likelihood classification method was developed to identify the urban 

structure which was the independent variables in the air temperature downscaling model. Based on 

the remote sensing data and Google Earth images, urban was divided into 17 types, including 10 

built types and 7 land cover types. After accuracy test, we found that this method can be used to 

identity urban structure. Moreover, ENVI-met, a climate simulation tools, was applied to simulate 

the micro-climate of some typical urban structure. The results showed that urban structure had a 

great impact on air temperature, which provided theoretical support for the air temperature 

downscaling model. 

In Chapter Four, Kanto Major Metropolitan Area was selected as a case study to verify whether 

the downscaling mentioned proposed in Chapter Two was feasible and efficient. K-fold cross-

validation method and measured air temperature data obtained from meteorological station were 

used to test the precision. It had been verified that the air temperature downscaling method has high 

accuracy and can be applied to the subsequent air temperature downscaling in various metropolitan 

areas. 

In Chapter Five, five metropolitan areas of different climatic zones in Japan were selected as the 

research object. The climate characteristics of each metropolitan areas were introduced. Based on 

the above urban structure identification method and air temperature downscaling method. The urban 

structure which is necessary for the downscaling model was identified. Then, combined with the 

digital evaluation model which indicate altitude, the monthly average air temperature in January 

and August and annual average air temperature in 2010 were downscaled from 1 kilometer to 250 

meters for the next analysis and comparative study of atmosphere urban heat islands in each 

metropolitan area. 

In Chapter Six, based on the air temperature spatial distribution in each metropolitan area 

obtained in the previous, the urban heat island intensity and urban heat island ratio index were 

introduced to evaluate and compare atmosphere urban heat island. Densely inhabit districts were 

defined as urban areas, and other regions were referred to suburb area, the average air temperature 

difference of the two regions was the urban heat island. Meanwhile, according to the normalized air 

temperature, urban area was divided into seven temperature zones, from low temperature zone to 

extremely high temperature zone. High temperature zone and extremely high temperature zone were 

defined as urban heat island zone, then the urban heat island ratio index was calculated. According 

to these two indicators, the atmosphere urban heat islands of each metropolitan area were compared 

horizontally, and then the atmosphere urban heat island in winter (January) and summer (August) 

were also contrasted. 

In Chapter Seven, previous scholars indicated that there were some great differences between 
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atmosphere urban heat island and surface urban heat island. Limited by the weather conditions of 

remote sensing data, land surface temperature of only Kanto Major Metropolitan Area and Kinki 

Major Metropolitan Area could be retrieved for the surface urban heat island analysis. According to 

the normalized air temperature and normalized land surface temperature, we calculated the 

normalized urban heat island of the two metropolitan areas separately and compared atmosphere 

and surface urban heat island. In addition, four landscape pattern metrics were introduced to 

evaluate the impact of different urban structure on atmosphere urban heat island and surface urban 

heat island. 

In Chapter Eight, the whole summary of each chapter has been presented. 
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1.1. Introduction  

The process of urbanization is advancing rapidly around the world, and the connection with global 

climate change is getting closer. Urbanization refers to the population shift from rural to urban areas, 

the decrease in the proportion of people living in rural areas[1,2]. Today, about 55% of the world’s 

population lives in urban areas, and this proportion is expected to increase to 68% by 2050 [3]. 

Urbanization has spread rapidly throughout the western world. Since the 1950s, it has also begun to 

occupy an important place in the developing world. At the beginning of the 20th century, only 15% of 

the world’s population lived in cities [4]. By 1950, the urban population has reached 751 million, 

accounting for about 29.6% of the total population. It is a stage of rapid urban population growth after 

1950. According to the UN, the year 2007 witnessed the turning point when more than 50% of the 

world population were living in cities, for the first time in human history. And in 2018, the world’s 

urban population has increased to 4.2 billion. According to Figure 1.1, despite the relatively low level 

of urbanization, Asia still accounts for 54% of the world’s urban population, followed by Europe and 

Africa with 13% each. After entering the 21st century, the urbanization of Asia and Africa is obviously 

faster than that of other continents. Although the area of the city is not large, the urban population 

accounts for more than half of the total population. Therefore, the urban climate problem directly 

affects the residents’ life and production activities, and also affects the health of the urban population. 

 

 

Figure 1.1. Urban trends by world regions. 

(Source: European Environment Agency) 

 

With the development of urbanization, there are many urban phenomena occurred. This includes 

population issues, environmental issues, social issues, and many other aspects[5]. Rapid urbanization 
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has led to drastic changes in land use and land cover, resulting in a decrease in latent heat flux and an 

increase in sensible heat flux, which has a significant impact on the climate [6]. Most notably, it causes 

global warming. Urbanization has led to a continuous increase in greenhouse gas production (mainly 

CO2). Figure 1.2 shows the global and Japanese air temperature trends. The blue line represents the 

air temperature variation trend around the world, and the orange line represents the trend in Japan. It 

is obvious that the air temperature has risen by about 1.6 ℃ globally. And in Japan, the air temperature 

has risen by about 1.5 ℃. Generally speaking, the trends of air temperature in Japan and all the world 

are almost equal. A major manifestation of global warming is the intensification of urban heat island. 

 

 

Figure 1.2. Air temperature trends around world and in Japan from 1900 to 2015. 

(Source: World Bank Open Data) 

 

Changes in urban climate have brought many ecological problems, for example, the common “heat 

island”, “dry island”, “wet island”, etc. Among them, urban heat island is one of the most significant 

urbanization climate effects, and it is widespread in almost all urbans in the world. Urbanization has 

caused the natural ground to be replaced by the artificial impermeable surface, which affects the 

material circulation and energy exchange process on the surface, leading to the continuous 

deterioration of the environment. The larger the urban size and population density in the city, the more 

prominent the impact of the side effect of urban heat islands, including high temperature disasters and 

extreme weather. As the main and common climatic feature of all urbans, the urban heat island affects 

urban water bodies, urban soils, and urban residents’ health. 

For the research of urban heat island, there are mainly three methods: traditional observation, 

numerical simulation, and remote sensing inversion. Faced with different urban heat islands, 
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(including atmosphere urban heat island and surface heat island), the data sources used are not the 

same. Remote sensing inversion is mostly applied in the study ode surface urban heat islands. However, 

it is tedious to obtain the air temperature distribution required in the study of atmosphere urban heat 

island. Japan National Land Numerical Information provided the air temperature distribution 

throughout Japan with a spatial resolution of only 1 kilometer. It is not enough to support high-

resolution atmosphere urban heat island research. Temperature downscaling based on the regression 

of urban structure and urban climate can effectively improve the resolution of air temperature 

distribution data, facilitate the analysis and research of atmosphere urban heat island, and provide 

effective responses to the government and policymakers. 
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1.2. Research Background 

1.2.1 Introduction of Urban Heat Island 

Urban heat island refers to a climatic phenomenon in which the temperature in the urban area is 

higher than that in suburbs area due to the changes in the underlying surface structure and nature and 

the population density and other factors [7–10]. The concept of urban heat island was first proposed 

by Howard in 1833 in response to the phenomenon that the temperature in central London is higher 

than that in the suburbs. 

Currently, the causes of urban heat islands are known and mainly concentrated in the following 

three aspects (Figure 1.3): 

 

⚫ urban morphology causes: high-density buildings cause short and long wave radiation to be 

trapped in the urban [11], and the high roughness buildings also reduces the wind speed, 

thereby preventing heat dissipation [12–14]. 

⚫ urban surface causes: a high percentage of impervious surface reduces water storage, so it 

cannot be cooled by evapotranspiration like vegetation [15]. Meanwhile, artificial urban 

materials (eg. asphalt) will absorb short and long wave radiation which contributes to ground 

and air overheating [16]. 

⚫ human activity causes: inhabitants and appliances release anthropogenic heat, including the 

traffic [17,18] 

 

 

Figure 1.3. The causes of urban heat islands. 

(Source: Heat Island Countermeasure Guidelines, 2012 Edition) 

 

According to the Intergovernmental Panel on Climate Change (IPCC) results, UHI may become a 

serious issue in the next decades. With the increasing severity of UHI, the impact on the urban 

ecological environment is also multifaceted. Since the appropriate temperature is an important 
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ecological factor for biological growth and activities, UHI have changed biological physiological 

activities, phenology, and their distribution. Previous studies have shown that the increase in urban 

temperature will advance physiological time, including germination, flowering, etc., and delay the 

falling leaves time [19]. UHI will not only endanger the normal growth of vegetation, but also directly 

affect the health of urban residents. They can potentially increase the magnitude and duration of heat 

waves within cities. Related studies have found that the mortality rate during the heat wave increases 

exponentially with the maximum, and UHI exacerbates this effect [20]. Increasing UHI can cause heat 

stroke, physical exhaustion, syncope and cramps [21]. Not only health, but heat can also affect 

behavior. It can make people more irritable and aggressive. Meanwhile, UHI promote the formation 

of clouds and accelerate their movement, thereby increasing rainfall in urban areas and changing urban 

precipitation characteristics and hydrological conditions [22,23], and forming “urban rain islands”. 

The existence of UHI makes air exchange between the urban center and suburbs form a closed 

circulation, which causes the concentration of urban air pollutants, including volatile organic 

compounds , carbon monoxide , nitrogen oxides , and particulate matter [24]. The warm airflow in 

urban contains a large amount of dust and smog. During the movement of the airflow, it may land on 

the urban and its surrounding area, or gather in the sky about the urban, and combine with the water 

vapor in atmosphere to form “urban pollution islands” and “urban fog islands”. These air pollutants 

and fogs reduce the visibility and increase the urban pollution level to cause harm to the human 

respiratory system. UHI not only have a negative impact on the quality of the urban environment and 

residents’ health, but also bring a great economic burden. The continuous high temperature will 

increase the energy consumption of urban industrial and commercial electricity, residential electricity, 

etc., resulting in electricity tensions. 

According to the difference of research objects, UHI are divided into atmosphere urban heat island 

(AUHI) and surface urban heat island (SUHI) [25,26]. Early research on UHI was mainly proposed 

for AUHI, which refers to the difference between the air temperature in urban area and that in the 

suburbs. It usually depends on fixed or mobile meteorological observation stations to obtain discrete 

air temperature data values, both temporal and spatial resolution are not reach standards. It was not 

until 1972 that Rao first proposed the use of thermal infrared remote sensing to study UHI, making a 

new stage in UHI research [27]. The temperature obtained by thermal infrared remote sensing is the 

radiant temperature of the surface, which can cover a large area of the earth’s surface, with good spatial 

continuity and high spatial resolution [25,28]. With the use of thermal infrared remote sensing in the 

study of UHI, the meaning of urban heat island has also changed slightly, and SUHI represented by 

land surface temperature. 
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1.2.2 The Application of Temperature Downscaling Prediction in UHI Research 

Image fusion, spatial sharpening [29–31], downscaling [32,33], and disaggregation [34] are some 

terms that describe the methods that improve the spatial resolution of input data based on auxiliary 

data with higher spatial resolution [32,35]. Downscaling methods mainly include two categories, 

namely dynamical downscaling and statistical downscaling [36].  

Dynamic downscaling refers to the use of a regional climate model driven by global climate model 

output or reanalysis data to generate regional climate information [37–40]. This method has been 

widely used in the prediction of climate change [41,42]. In contrast, statistical downscaling is a method 

based on the invariance of the regression at different scales. In the past 20 years, various statistical 

downscaling methods have been developed, which have a range of application in climate and climate 

change research. They are mainly divided into three types: analogs, weather typing, and regression 

[43]. Among the three methods, the regression method is relatively easy to implement, and the 

calculation requirements are small, so the regression method is the widely used method. 

Each downscaling method has the advantages and disadvantages in application. The statistical 

downscaling method has low requirements for calculation and can be easily applied, however, it 

requires long-term, high-quality surface observation to establish a reliable statistical regression 

between independent variables and dependent variables. In contrast, dynamic downscaling methods 

involves the use of a regional numerical model that contains the complete physical set, and this method 

is based on physics, and computationally expensive. Previous studies [44–46] found that when 

downscaling the current climate, the results of the two methods are very similar, but they are very 

different in predicting climate. Since this research mainly analyzed and compared the urban heat island 

based on the current climate data. And the prediction of future climate is not involved. Therefore, this 

study used statistical downscaling method for the following research.  

Temperature downscaling prediction was originally generated to meet the needs of agricultural 

remote sensing monitoring, because crops have a short growth cycle and require a high temporal 

resolution land surface temperature for early identification of crop, drought monitoring, etc. Nowadays, 

the research on downscaling in urban heat islands mainly focuses on land surface temperature, that is, 

the research on temperature downscaling is mainly on surface urban heat islands. Surface urban heat 

island based on land surface temperature is a phenomenon with high temporal and spatial variability. 

In this case, land surface temperature data obtained from satellite thermal infrared remote sensing with 

high temporal and spatial resolution is required. However, due to the technical limitations, the thermal 

sensor in satellite have a trade-off between spatial and temporal resolution [47]. The higher spatial 

resolution, the lower the temporal resolution, and vice versa. The characteristic of thermal sensor on 

satellite is shown in Table 1-1. For example, Landsat 4-5 TM, Landsat 7 ETM+, and Landsat 8 

OLI/TIRS can provide high spatial resolution, however, the use in urban climate research is limited 

due to the limited availability of image data at night and low temporal resolution. On the other hand, 
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remote sensing data with low spatial resolution such as Moderate Resolution Imaging 

Spectroradiometer (MODIS) can provide land surface temperature with high temporal resolution and 

provide land surface temporal data of the observation area twice a day. 

 

Table 1-1 The characteristic of thermal sensor on satellite 

Sensor–Satellite Spatial Resolution (m) Wavelength (µm) Temporal Resolution 

AVHRR-NOAA* 1100 
Band 4: 10.3-11.3, 

Band 5: 11.5-12.5 
Twice a day 

MODIS-Terra* 1000 Band 31-36: 10.78-14.39 Twice a day 

TM-Landsat 5** 120 (resampled to 30) Band 6: 10.40-12.50 16 days 

ETM+-Landsat 7** 60 (resampled to 30) Band 6: 10.40-12.50 16 days 

TIRS-Landsat 8** 100 (resampled to 30) 
Band 10: 10.60-11.19 

Band 11: 11.50-12.51 
16 days 

ASTER–Terra** 90 Band 10-14:8.125-11.65 16 days 

AATSAR–Envisat 1000 11µm band, 12 µm band 35 days 

ATSAR – ERS 1000 11µm band, 12 µm band 35 days 

Note: * represents the remote sensing data for land surface temperature with high temporal and low 

spatial resolution; ** represents the remote sensing data for land surface temperature with low 

temporal and high spatial resolution, the spatial resolution of TM on Landsat 5, ETM+ on Landsat 7, 

and TIRS on Landsat 8 can be resampled to 30 m. 

 

Land surface temperature downscaling has been widely applied in the surface urban heat island 

research, however there are still few previous studies on temperature spatial downscaling in 

atmosphere urban heat island. The main reason is that air temperature images are difficult to obtain. It 

is not like land surface temperature that can be obtained on a large scale through satellite remote 
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sensing.  

Japan National Land Numerical Information provides monthly and annual average weather data in 

2010m, including air temperature and precipitation, etc. based on the meteorological station and 

meteorological observation points [48]. With the help of downscaling in the application of land surface 

temperature, we can also downscale the air temperature through the same method. 
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1.3. Review of Previous Study 

1.3.1. Study on Urban Heat Island  

In 1833, Howard first proposed the urban heat island in the scientific magazine “The climate of 

London”, pointing out that the air temperature in the central of London was higher than that in the 

surrounding countryside [7]. Subsequently, researchers from various countries have carried out more 

and more studies on urban heat islands. 

Previous studies of urban heat islands were mainly based on the long-term observation of 

meteorological station and meteorological observation points. After statistics and analysis, the 

characteristic and evolution of urban heat islands were summarized. Based on the measured 

meteorological data, Kazimierz and Krzysztof [49] conducted research on Lodz, Poland, and found 

that the urban heat island is closely related to wind speed, and the urban heat island intensity is the 

highest at night on a clear and windless day. And Morris et al. [50] concluded that the urban heat island 

is influenced by cloud cover and wind speed through the research on Melbourne, Australia. The 

research of Gedzelman et al. [51] and Kim et al. [52] found that there are great difference in the urban 

heat island structure between inland urban and coastal urban. The urban heat island intensity in coastal 

urban is weak, and the time is delayed. The analysis shows that sea-land breeze circulation is the main 

reason. 

In the past 20 years, scholars have mainly used satellite remote sensing data in urban land surface 

temperature for surface urban heat island research. Carnahan and Larson [53] used Landsat TM 

thermal infrared band data to study the land surface temperature characteristics of urban areas and 

found that urban areas showed lower land surface temperature than rural areas. Gallo et al. [54] used 

satellite remote sensing data to study Seattle, the United States, and found that the normalized 

difference vegetation index (NDVI) is inversely proportional to the land surface temperature. Mackey 

et al. [55] took Chicago, the United States, as an example, and used Landsat remote sensing images to 

study the effect of urban scale on the reduction of urban heat island. Camilloni & Barrucand [56] took 

Buenos Aires, the capital of Argentina, as an example. Based on long-term land surface temperature 

retrieved from thermal infrared remote sensing data, they studied the annual and seasonal changes of 

the urban heat island. 

The urban heat island research based on the remote sensing data can reflect the spatial distribution 

of land surface temperature, but the air temperature cannot be obtained from remote sensing to study 

the spatial distribution of atmosphere urban heat island. The resolution of the air temperature spatial 

distribution provided by Japan National Land Numerical Information is only 1 km. Therefore, in order 

to study the atmosphere urban heat island more accurately, we spatially downscaled the air temperature 

data to obtain the high-resolution spatial distribution of air temperature for high-resolution atmosphere 

urban heat island research. 
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1.3.2. Study on Temperature Downscaling  

The statistical downscaling method refers to the scale invariance based on the statistical regression 

between air temperature and some explanatory variables, that is, an algorithm that uses high-resolution 

urban structure and altitude data to enhance the spatial resolution of low-resolution air temperature 

images. This algorithm is widely used to enhance the spatial resolution of low-resolution thermal 

infrared temperature images. Based on the assumption that the relationship between land surface 

temperature and normalized difference vegetation index is constant under different spatial resolutions, 

Kustas et al. [57] proposed the DisTrad algorithm that uses the relationship between land surface 

temperature and NDVI to achieve sub-pixel decomposition of thermal infrared images. Agam et al. 

[29] proposed the TsHARP algorithm on the basis of the DisTrad algorithm. Through the comparison 

of four vegetation index – land surface temperature relationship models, they proved that the unary 

linear regression between vegetation index and the land surface temperature is optimal for the land 

surface temperature downscaling. Hutengs and Vohland [58] establish a random forest model based 

on machine learning algorithm for a complex landscape in the Eastern Mediterranean, the Jordan River 

Region to downscale land surface temperature. 

Most of the existing statistical downscaling methods are applied to land surface temperature. We 

used the same principle to downscale the air temperature data and verify accuracy. 
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1.4. Research Content and Purpose 

1.4.1. Research Content 

This study focused on the use of downloaded high-resolution air temperature data to analyze the 

atmosphere urban heat island. Based on the previous study and theory analysis, using a statistical 

downscaling method based on machine learning algorithms, combined with low-resolution air 

temperature obtained from Japan National Land Numerical Information and high-resolution urban 

structure identified from remote sensing data and digital elevation model, we obtained high-resolution 

air temperature distribution through downscaling and used these data to study the atmosphere urban 

heat islands of metropolitan areas in various climatic zones in Japan. The research flow is shown in 

Figure 1.4. 

 

 

Figure 1.4. Research flow 

 

⚫ Previous Study 

In Chapter One, we introduce the research background and significance of urban heat island and the 

application of temperature spatial downscaling. In addition, we reviewed the previous studies of urban 

heat island and temperature spatial downscaling method. Finally, we elaborated on the purpose of this 

study. 

⚫ Research Method 

In Chapter Two, we mainly introduced the spatial downscaling method. Firstly, we explained that 

the basic principle of the statistical downscaling method is that the regression between air temperature 

and underlying surface characteristics remain unchanged under different scales. Next, we compared 
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and selected the different types of downscaling models, that mainly include two parts. The first part is 

to select a random forest model based on machine learning algorithms from three types of downscaling 

models. The second part is to select the optimal model from machine learning models and determine 

the independent variables of the downscaling model. Then, we introduced the parameter tuning 

method of downscaling model to obtain the optimal model and use this model to predict high-

resolution air temperature. Finally, we fitted the residual of the predicted air temperature and get the 

final downscaling result. 

 

⚫ Data Preprocessing and Precision Analysis 

Chapter Three mainly includes the identification of urban structure and the study of the influence 

of urban structure on air temperature. We used the maximum likelihood classification method to divide 

the urban area into 17 types combined with Landsat series remote sensing data and Google Earth 

satellite images and use the error matrix to verify the accuracy. Then, ENVI-met was applied to 

simulate the micro-climate of several typical urban structure to analyze the impact of urban structure 

on air temperature, so as to provide a strong theoretical basis for the downscaling method mentioned 

in Chapter Two. 

In Chapter Four, Kanto Major Metropolitan Area was selected as the case study to verify the 

feasibility of the above downscaling method. In this chapter, we use two verification methods. The 

first is to cross-validate the predicted low-resolution air temperature with the original air temperature. 

Secondly, we obtained the air temperature data of all meteorological stations and meteorological 

observation points in the study area, and then compared them with the downscaling high-resolution 

air temperature data to verify the accuracy of the downscaling method. 

 

⚫ Urban Heat Island of Metropolitan Area in Japan 

In Chapter Five, five metropolitan areas in each climatic zone in Japan were selected as the research 

object. And we selected the monthly average air temperature in January and August and annual average 

air temperature in 2010 as the data source. According to the downscaling method, the low-resolution 

air temperature of metropolitan areas was downscaled in this chapter for the further atmosphere urban 

heat island analysis. 

In Chapter Six, based on the downscaled high-resolution air temperature in Chapter Five, we 

calculated the urban heat island intensity and urban heat island ratio index for the urban heat island 

evaluation of each metropolitan area to compare and analysis the atmosphere urban heat island of each 

metropolitan area. 

In Chapter Seven, in order to compare the surface urban heat island and the atmosphere urban heat 

island, we retrieved the land surface temperature of Kanto Major Metropolitan Area and Kinki Major 

Metropolitan Area. Then, urban heat islands were normalized to the range between 0 and 1. Meanwhile, 
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we introduced two landscape pattern metrics and used multiple linear regression model to indicate the 

effect of urban structure on urban heat island. 

 

⚫ Conclusion 

Chapter Nine presented the whole summary of each chapter. 

 

1.4.2. Research Purpose 

Nowadays, many previous research on urban heat island and temperature spatial downscaling 

method were carried out. However, for the research on atmosphere urban heat island, the current data 

source and method have the following problems. 

 

⚫ Reason for atmosphere urban heat island research 

Most of the research on urban heat island focuses on surface urban heat island. Due to the shortage 

of air temperature distribution data, there are few studies on atmosphere urban heat island. According 

to the Web of Science [59], we counted the frequency of atmosphere and surface urban heat island in 

previous studies during 1965 and 2021. And the results as shown in Figure 1.5 indicate that the study 

of atmosphere urban heat island is significantly less than that of surface urban hear island since 1965, 

and is only less than one-fifth of that on surface urban heat island. 

 

 

Figure 1.5. The frequency of atmosphere and surface urban heat island in previous studies 

 

Previous studies have also shown that there is a great difference between the atmosphere and surface 

urban heat island due to the different formation mechanisms. Therefore, we mainly studied the 

atmosphere urban heat islands of metropolitan areas in different climatic zones in Japan, and selected 
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Kanto and Kinki Major Metropolitan Areas to compare atmosphere and surface urban heat islands. 

 

⚫ Difficulty in obtaining data 

With the development of remote sensing technology, the acquisition of land surface temperature has 

become more convenient and efficient, which has greatly promoted the surface urban heat island 

research. In contrast, the accuracy and efficiency of the estimation of air temperature data based on 

remote sensing data is low, therefore, the obtaining of air temperature is mainly based on a large 

number of meteorological stations and meteorological observation points. The lack of data has led to 

less research on atmosphere urban heat island based on air temperature.  

However, in recent years, some government agencies and scientific research institution in various 

countries have increased research on meteorology, so they have also provided air temperature 

distribution data in some regions based on meteorological data. In order to study the atmosphere urban 

heat islands of metropolitan areas in different climatic zones in Japan, we obtained air temperature 

distribution data from the National Land Numerical Information. 

 

⚫ The resolution of air temperature is low 

The resolution of air temperature obtained from National Land Numerical Information is only 1 km. 

In order to study atmosphere urban heat island, we need to downscale the air temperature. In this study, 

the resolution was downscaled from 1 km to 250 m. 

Previous studies show that the statistical downscaling method for land surface temperature is very 

mature, which mainly predicted the high-resolution land surface temperature based on the regression 

model of the land surface temperature and underlying surface characteristics. Scholars used the 

principle to develop a variety of models for land surface temperature downscaling, including DisTrad 

model established by the regression between land surface temperature and NDVI, the TsHARP model 

based on the further optimization from DisTrad model, HUTS model and other commonly used 

temperature downscaling methods.  

This study also used the principle of invariance of the regression model to establish an air 

temperature spatial downscaling model to improve the air temperature spatial resolution for the more 

detailed atmosphere urban heat island research. 

 

⚫ Reason to use machine learning models 

The first land surface temperature downscaling method was mainly used in the agricultural field. 

The downscaling accuracy for highly heterogeneous areas is low and the research area is small, 

therefore, only traditional statistical downscaling method, such as TsHARP model, can be applied for 

research, which will be proved in Section 2.2. 

The research objects of this study are five metropolitan areas in Japan with high spatial 
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heterogeneity, and the area of the research area is huge. Taking the Kanto Major Metropolitan Area as 

an example, the number of low-resolution data used to establish the model is about 13 thousand, and 

the number of high-resolution independent variables for prediction is about 217 thousand. Obviously, 

the traditional regression formula cannot accurately describe the relationship between the independent 

variables and dependent variables. Therefore, it is necessary to introduce machine learning models for 

spatial downscaling of air temperature. The machine learning model can represent the regression 

between air temperature and several underlying surface characteristics more accurately, thereby 

greatly improving the accuracy and efficiency of downscaling. 

 

⚫ Selection of independent variables 

Previous studies generally set remote sensing bands or some high-order land surface parameters as 

independent variables to establish models and predict high-resolution land surface temperature. The 

research object of this study is air temperature, meanwhile, the past research results show that urban 

structure has a great influence on air temperature, which has been proved in Chapter 3. Therefore, we 

used urban structure as an independent variable of the air temperature downscaling model and 

quantified it. Then, according to lapse rate, the air temperature drops by about 0.6 °C every 100 m 

rises on average. It indicates that altitude can determine air temperature. Thus, we also add DEM, 

which represents altitude, as the independent variable. In summary, we set DEM and urban structure 

as independent variables. 
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2.1. The Basic Principles of Temperature Downscaling 

The fundamental nature of temperature downscaling is to improve the spatial resolution of low-

resolution temperature products by using high-resolution auxiliary parameters. And the principle was 

that the quantitative correlation between temperature and urban structure remained unchanged with 

different resolution; that is to say, the downscaling regression model between temperature and 

independent variables with low resolution, including DEM and urban structure, could still be suitable 

to the high-resolution model. It could be expressed as the following equation: 

 

𝑇𝐻𝑅 = 𝑓(𝑃𝐻𝑅) + ∆𝑇 

(2-1) 

∆𝑇 = 𝑇𝐿𝑅 − 𝑓(𝑃𝐿𝑅) 

(2-2) 

 

where 𝑇𝐻𝑅  and 𝑇𝐿𝑅  represent high-resolution and low-resolution temperature, respectively; 𝑓 

represents the downscaling regression model between temperature and independent variables with 

both high and low resolution; 𝑃𝐻𝑅  and 𝑃𝐿𝑅  represent the high-resolution and low-resolution 

independent variables, including DEM and urban structure; and ∆𝑇 represents the residual. 
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2.2. Selection of Commonly used Downscale Model and Surface Urban Heat Island 

Analysis: A Case Study of Hangzhou 

There are many commonly used downscaling models. In this section, we selected a square urban 

area with a side length of 25 km in Hangzhou, China as a research object, and used three different 

models to downscale land surface temperature (LST) obtained from Moderate Resolution Imaging 

Spectroradiometer (MODIS). The main objectives of this section were (1) to estimate the accuracy of 

the downscaled LST in a heterogeneous urban landscape (Hangzhou, China) based on three different 

models; (2) to assess the seasonal variation of the results during 2013 and 2014; (3) to confirm the 

change of the surface urban heat island (SUHI) of Hangzhou across four seasons; (4) to verify the 

feasibility of the optimal downscaling model combined with LST retrieved at a resolution of 30 m. 

LST is an important parameter reflecting the interaction between surface and atmosphere at the 

regional and global scales [1]. LST is also a natural indicator closely related to human production and 

life. It can characterize the urban thermal environment [2,3] and is widely used in urban heat island 

analysis [4], soil moisture estimation [5], surface flux estimation [6] and other fields. Therefore, 

obtaining measures of LST is an important research objective in the fields of climate, ecology, 

hydrology, soil and urban studies. However, due to the restrictions of imaging conditions, existing 

remote sensing products have a contradiction between temporal resolution and spatial resolution. A 

single dataset cannot satisfy LST spatiotemporal monitoring and application research [7]. For example, 

the Landsat 8 Thermal InfraRed Sensor (TIRS) band has a spatial resolution of 100 m and can be 

resampled to 30 m to match multispectral bands. However, it has a long revisit period of about 16 days, 

and is greatly affected by weather [8,9]. On the contrary, MODIS, with the resolution of 1 km can 

obtain images four times per day. Thus, the fusion of multi-source remote sensing data based on their 

respective resolution advantages to obtain images with both high spatial resolution and high temporal 

resolution is a popular research topic in LST inversion and application. 

LST downscaling, which create a composite of remote sensing images information with various 

spatial resolution, involves lowering the detail of high-resolution data to that of low-resolution data. 

Scholars have proposed a variety of downscaling methods, mainly divided into thermal sharpening 

(TSP) and temperature unmixing (TUM) [10]. The TSP method can improve the spatial resolution of 

thermal infrared band images, and the TUM method can obtain the LST information of different 

components in the same pixel. Kustas et al. [11] proposed a DisTrad method, which constructed a 

linear regression between LST and the normalized difference vegetation index (NDVI). This method 

achieved downscaling of LST from the kilometer level to the hundred-meter level. Based on the 

DisTrad method, Agam et al. [12] suggested the thermal sharpen (TsHARP) method, which used the 

NDVI as the regression kernel. Essa et al. [13] calculated the correlation between LST and remote 

sensing of various land use and land cover types, and then improved the DisTrad method based on this 

information. Weng et al. [14] further considered the LST trend and landscape heterogeneity, and 
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implemented the spatial-temporal fusion of LST based on radiance, proposing the spatial-temporal 

adaptive data fusion algorithm for temperature mapping (SAFAT) method, and successfully verifying 

the approach in Los Angeles, California.  

The simple single-factor and multi-factor regression methods mentioned above cannot completely 

summarize the complex relationships between different scale factors and LST. Hutengs et al. [15] used 

the random forest (RF) model to downscale MODIS products from 1000 m to 250 m for the vegetation 

coverage area around the Jordan Valley. However, in this section, the land cover type in the study area 

was mainly vegetation, and mostly comprised a single type. Extension of the RF model to urban areas 

with complex underlying types needs further study. Generally, the most popular downscaling methods 

apply the NDVI, which, however, cannot solely explain the variation in LST in urban areas with 

complex surface types. Bonafoni et al. [16] proposed a traditional downscaling method combining 

both built-up and vegetation spectral indices that was demonstrated in Milan, Italy.  

In validation processing, Govil et al. [17] used 30-m retrieved LST to validate 30-m downscaled 

LST of a humid tropical city. Hua et al. [18] verified a downscaling model based on retrieved LST and 

determined that the downscaling effects of various land cover types are different. Hutengs et al. [15] 

used a 240-m Enhanced Thematic Mapper Plus (ETM+)/LST map as a direct reference to evaluate 

downscaling results. Standard LST products inversed from ETM+/LST based on a mono-window 

algorithm were introduced to confirm the accuracy of the downscaling method in the research of Zhan 

et al. [19] Combined with the previous research on LST downscaling, most of these studies validated 

downscaling methods based on special time nodes, in which the scan time between several remote 

sensing products was the same or similar to existing high-resolution LST product correlations. 

 

2.2.1. Downscaling Models and Accuracy Evaluation 

We defined a rectangular area in Hangzhou with a side length of 25 km as the study area. Landsat 

8 OLI/TIRS with a resolution of 30 m and MODIS/LST products with a resolution of 1 km were used 

as the original data for this section. These data comprised a digital elevation model (DEM), which 

only represents height information without any further definition about the surface [20], the 

normalized difference vegetation index (NDVI) and the normalized difference built-up index (NDBI), 

calculated from Landsat 8 OLI [21] and other bands in Landsat 8 OLI, as independent variables. The 

dependent variable was pre-processed MODIS/LST products. The objective was to achieve LST 

downscaling from 1 km to 100 m to analyze SUHI during the day and night in four seasons, based on 

three different models, MLR, TsHARP and RF models. MLR and RF models are multivariate models 

with several independent variables, while the TsHARP model has only one independent variable. From 

another perspective, the RF model is a nonlinear regression model, the MLR model is a linear 

regression model, and the TsHARP model includes both linear regression and nonlinear regression 

models. The coefficient of determination (R2) and root mean square error (RMSE) were used to 



CHAPTER TWO  

DOWNSCALE AIR TEMPERATURE PREDICTION BASED ON MACHINE LEARNING MODEL 

 

2-4 

evaluate the accuracy of the downscaling models. According to high-resolution LST data, we analyzed 

the SUHI of Hangzhou during day and night throughout the year. Finally, combined with the retrieved 

LST computed from Landsat 8 TIRS with a resolution of 30 m, the downscaling results showed little 

error, that is, the RF model is a feasible method to downscale LST in highly heterogeneous areas. 

 

⚫ Downscaling Models 

The thermal sharpen (TsHARP) model employs NDVI in a regression model to sharpen LST. It 

assumes that the relationship between LST and NDVI is the same at all scales [22]. Correlations 

between LST and NDVI are established [22], caused by shadows and evapotranspiration which make 

vegetation surface cooler than bare soil [23]. The building process is shown in Figure 2.1. 

 

 

Figure 2.1. Building process of the thermal sharpen (TsHARP) model. 

 

The key to the TsHARP model is determination of the most appropriate relationship between LST 

and NDVI through regression analysis. In this section, three regression models—linear regression, 

nonlinear binary curve regression and nonlinear ternary curve regression model—were used to fit the 

scatter distribution of LST and NDVI at a scale of 1 km. The fitting function is as shown in the 

following equation. From these three regression models, by comparing the R2 and RMSE, the best-

fitting regression model can be used to predict the LST distribution at a scale of 100 m. 

 

𝑓(𝑁) = {

𝑎0 + 𝑎1𝑁 (linear regression model)

𝑎0 + 𝑎1𝑁 + 𝑎2𝑁2 (nonlinear regression model)

𝑎0 + 𝑎1𝑁 + 𝑎2𝑁2 + 𝑎3𝑁3 (nonlinear regression model)

 

(2-3) 
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where 𝑎0, 𝑎1, 𝑎2 and 𝑎3 represent regression coefficients, and 𝑁 represents NDVI. 

The multiple linear regression (MLR) model, shown in Figure 2.2, is based on multiple linear 

regression [24]. In downscaling low-resolution remote sensing products, additional high-resolution 

remote sensing information needs to be introduced to achieve downscaling conversion. 

 

 

Figure 2.2. Building process of the multiple linear regression (MLR) model. 

 

In the following building process, low-resolution parameters comprised two parts, namely, 

dependent and independent variables. LST was set as the dependent variable, and independent 

variables consisted of DEM, NDVI, NDBI, and band 2 to band 7 of Landsat 8. According to the low-

resolution variables, we used the least squares method to build a MLR model, as shown in Equations 

(2-4) and (2-5) [25]. The LST at high-resolution was estimated based on the p corresponding 

independent variable and multiple regression models. 

 

𝐿𝑆𝑇𝐿𝑅 = 𝑓𝑀𝐿𝑅(𝑆𝑃𝐿𝑅) 

(2-4) 

 

𝐿𝑆𝑇𝐿𝑅 = 𝑎0 + 𝑎1 ∙ 𝑖𝑠1 + 𝑎2 ∙ 𝑖𝑠1 + ⋯ + 𝑎𝑛 ∙ 𝑖𝑠𝑛𝐿𝑆𝑇𝐿𝑅 = 𝑓𝑀𝐿𝑅(𝑆𝑃𝐿𝑅) 

(2-5) 

where 𝐿𝑆𝑇𝐿𝑅  is the LST from low-resolution remote sensing products, 𝑆𝑃𝐿𝑅 (𝑖𝑠1 , 𝑖𝑠2 ,…, 𝑖𝑠𝑛 ) are 

several parameters which are DEM, NDVI, NDBI and Landsat 8 OLI band 2 to band 7 at low-
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resolution, 𝑓𝑀𝐿𝑅  is the multiple linear regression model, 𝑎0 , 𝑎1 , 𝑎2 , … ,  𝑎𝑛  are regression 

coefficients. 

The random forest (RF) model is a machine learning model which prevents overfitting, and was 

proposed by Breimans [26] in 2001. The term “random forest” was derived from the random decision 

forest proposed by Tin Kam Ho [27] in 1995. RF is a non-linear statistical ensemble method [28]. It 

uses bootstrap resampling technology to merge multiple samples extracted from the original training 

samples to generate a new series of training samples, then creates decision trees based on these training 

samples and establishes an RF model [15]. The RF model is not sensitive to multicollinearity, which 

can effectively prevent overfitting during the downscaling process [18]. The current research used 

Python 3.8 and the scikit-learn third-party open-source machine learning algorithm library, which is 

one of the most popular machine learning libraries [29]. 

Figure 2.3 shows the building process of the RF model. The training samples were remote sensing 

images with low resolution (1 km), and selection of dependent and independent variable was the same 

as that in the MLR model. In order to verify the accuracy of the models, we divided the sample into 

training samples and test samples according to a 6:4 ratio. The RF model was created by n decision 

trees generated by training samples. In the process of creating the model, several parameters needed 

to be adjusted, namely: n_estimators, bootstrap, and oob_score of the RF framework parameters and 

max_features, max_depth, min_samples_leaf, min_samples_split, max_leaf_nodes, 

min_impurity_decrease, criterion and min_samples_leaf of the RF decision tree parameters [30]. 

Among these, n_estimators, max_depth, and max_features were the three that most affect the 

downscaling result. In order to prevent the model from underfitting, we tuned these three parameters 

for fitting to achieve the optimal model. Then, we used the previously divided training samples for 

cross-validation based on the cross_val_score module in the scikit-learn libraries to determine the 

feasibility of the model. 
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Figure 2.3. Building process of the random forest (RF) model. 

 

⚫ Accuracy Evaluation and Fit Residual 

Traditional quantitative evaluation usually uses one evaluation indicator. In order to compare the 

accuracy of the three downscaling models for each day and night during four seasons more objectively, 

this section used two evaluation indicators for comprehensive evaluation and analysis, R2 (coefficient 

of determination) and RMSE (root mean square error). 

R2 (coefficient of determination) is an important statistic to reflect the model fit. In statistics, it is 

used to measure the proportion of dependent variables that can be explained by independent variables 

to determine the explanatory power of the regression model [31]. R2 takes values between 0 and 1 

with no units. It is the most commonly used index to evaluate the pros or cons of regression models. 

The larger the value of R2 (closer to 1), the better the regression model is fitted. 

RMSE (root mean square error) is a commonly used measure of the similarity between two vectors 

in n-dimensional space [32]. RMSE can test the consistency of real images and simulation images, 

and thus be used to judge the effect of different downscaling models. The RMSE calculation is shown 

in Equation (2-6). Larger errors have a disproportionately greater effect on RMSE. Consequently, 

RMSE is sensitive to outliers [32]. RMSE is non-negative. A lower RMSE means higher consistency 

between simulation images and real images. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
⋅ ∑(𝐿𝑆𝑇𝐿𝑅 − 𝐿𝑆𝑇𝐿𝑅𝑆)2

𝑛

𝑖=1

 

(2-6) 
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where the 𝑅𝑀𝑆𝐸 represents root mean square error, 𝐿𝑆𝑇𝐿𝑅 represents the low-resolution real images 

to reflect LST, 𝐿𝑆𝑇𝐿𝑅𝑆 represents the low-resolution simulation images to reflect LST, and 𝑛 is the 

total number of pixels in the low-resolution real images or simulation images. 

In the process of establishing a correlation model at a low resolution, a residual exists between the 

real and simulation images. In order to improve the accuracy of the simulation of high-resolution LST 

images, this section fitted the residual to the simulation of high-resolution images. The flow chart is 

shown in Figure 2.4. A spline was used to interpolate adjacent cells to downscale the LST residual. 

The last step was to fit the high-resolution residual to the high-resolution simulation images, finally 

resulting in high-resolution land surface temperature images. 

 

 

Figure 2.4. Fit residual flow chart. 

 

 

⚫ Downscaling Result Validation based on Retrieved LST 

To provide further confirmation of the approach, this section verified the downscaling accuracy 

using retrieved LST values from Landsat 8 TIRS with similar time and weather conditions as those of 

MODIS/LST. The single-channel algorithm proposed by Giannini et al. [33] and Dissanayake et al. 

[34] for LST retrieval of Landsat 8 TIRS has high accuracy and sensitivity.  

Firstly, the proportion of vegetation was calculated using Equation (2-7) [35]: 

 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)

2

 

(2-7) 

where 𝑃𝑣  represents the proportion of vegetation; 𝑁𝐷𝑉𝐼  represents the normalized difference 

vegetation index (explained in Equation (2-10)); 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 represent the minimum 

and maximum value of NDVI, respectively. 
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Secondly, land surface emissivity was computed using Equation (2-8) [36]:  

𝐸 = 0.004𝑃𝑣 + 0.986 

(2-8) 

where 𝐸 represents land surface emissivity; 𝑃𝑣 represents the proportion of vegetation. 

Finally, LST corrected for spectral emissivity was computed using Equation (2-9): 

𝐿𝑆𝑇 =
𝑇𝑏

1 + (
𝜆 ∙ 𝑇𝑏

𝜌
) ∙ ln (𝐸)

 

(2-9) 

where 𝐿𝑆𝑇 represents land surface temperature; 𝑇𝑏 represents the at-satellite brightness temperature 

[37]; 𝜆 represents the band 10 wavelength in Landsat 8 TIRS (10.8 μm); 𝜌 is 1.438×10-2 mK; 𝐸 

represents land surface emissivity. 

Due to the difference between Terra satellite and Landsat 8 orbits, the revisit period of MOD11A2 

is 8 days and that of Landsat 8 is 16 days, meaning that the images cannot be obtained in the same day. 

In addition, there is also an error of several minutes in the scanning time. In order to solve the 

contradiction in temporal resolution, we introduced meteorological conditions, including maximum 

and minimum air temperature, relative humidity, wind speed [38], and solar radiation [39] on the basis 

of selecting two adjacent dates as much as possible. Finally, we selected a set of downscaling LSTs 

and retrieved LSTs with the closest time and the most similar meteorological conditions to verify the 

downscaling method accuracy. 

 

2.2.2. Case Study 

⚫ Study Area 

The study area is located in the center of Hangzhou, as shown in Figure 2.5. This section selected a 

square urban area with a side length of 25 km. Hangzhou is located in the central and southern areas 

of the Yangtze River Delta. Hangzhou's climate is humid subtropical with four distinct seasons. 

The study area includes various land use and land cover. Qiantang River runs through this area. 

West Lake is located on the west side. To the southwest of West Lake is a forest area. The urban area 

is mainly concentrated in areas to the north, east, and northeast of West Lake. As an important part of 

the urban agglomeration in the Yangtze River Delta, Hangzhou developed with rapid urbanization 

from the end of the previous century. Due to urban expansion and population growth, the urban 

structure has changed significantly. This has also led to climate change in this area, particularly in 

terms of SUHI. Previous research shows that SUHI is a significant contributor to regional warming in 

this area [40]. 
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Figure 2.5. Study area (a) Location of the study area in the Yangtze River Delta; (b) Landsat 8 

composite of study area. 

 

⚫ Data Source and Preprocessing 

In this section, MODIS/LST products and Landsat 8 OLI were obtained from summer 2013 to spring 

2014. Landsat 8 OLI provides seasonal coverage of global land images with nine bands. These remote 

sensing images use the World Reference System (WRS) to enable users to search for images from any 

part of the world using path and row numbers [41]. In Landsat 8 OLI, the coastal aerosol band (band 

1) focuses on aerosols research in coastal areas; the panchromatic band (band 8) produces black and 

white images with a resolution of 15 m used to enhance and improve resolution; and the cirrus band 

(band 9) is designed for clouds, particularly for cirrus clouds [42]. These three bands were not useful 

for the downscaling of this section. In contrast to these bands, the visible blue band (band 2), green 

band (band 3) and red band (band 4) can help identify various land uses and land covers; the near 

infrared band (band 5) provides vegetation indexes, such as NDVI, which allow measurement of plant 

health in combination with other bands; and the shortwave infrared bands (bands 6 and 7) are 

particularly useful for distinguishing wet from dry earth, and for geology. Thus, we only selected bands 

2 to 7 from Landsat 8 OLI as the data source. Landsat 8 OLI is greatly influenced by clouds and 

weather. Accordingly, several sunny days without any clouds above the study area were chosen April 

14, July 19, November 8 in 2013 and January 27 in 2014. We selected Landsat 8 Level-1 Data Products 

after system radiation correction and geometric correction [37]. The WRS path and row were 119 and 

039, respectively. The Landsat data we chose are shown in Table 2-1. The additional parameters at 

high-resolution extracted from Landsat 8 OLI were pre-processed according to Equations (2-10) and 

(2-11) [43,44]. Meanwhile, DEM data with a resolution of 30 m, which reflect the altitude situation, 

were also used in the RF model and the MLR model as independent variables. In order to downscale 
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from 1 km to 100 m, this section resampled these parameters at a scale of 100 m and 1 km. 

 

NDVI =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

(2-10) 

 

NDBI =
𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅
 

(2-11) 

where RED, NIR and SWIR1 represent band 4, band 5, and band 6 in Landsat 8 OLI, respectively [37]. 

 

Table 2-1. The dates and remote sensing images IDs of data source. 

Landsat 8 OLI/TIRS MOD11A2/LST 

Date Landsat scene ID Date  MODIS/LST ID 

2013.04.14 LC81190392013104LGN02 2013.04.07 

A2013097.h28v05.006.2016156021756 

A2013097.h28v06.006.2016156021753 

2013.07.19 LC81190392013200LGN01 2013.07.20 

A2013201.h28v05.006.2016166200144 

A2013201.h28v06.006.2016166200148 

2013.11.08 LC81190392013312LGN02 2013.11.09 

A2013313.h28v05.006.2016173161718 

A2013313.h28v06.006.2016173161720 

2014.01.27 LC81190392014027LGN01 2014.01.17 

A2014017.h28v05.006.2016197155044 

A2014017.h28v06.006.2016197155043 

 

 

MOD11A2/LST products with a resolution of 1 km were selected as the low-resolution LST data 

with a temporal resolution of 8 days, including day data (10:30 a.m.) and night data (10:30 p.m.). 

MOD11A2 products were retrieved based on the split channel algorithm [45]. The path and row were 

28/05 and 28/06, respectively. The imaging dates, shown in Table 2-1, were April 7, July 20, November 

9 in 2013 and January 17 in 2014, similar to the Landsat 8 OLI dates. Then, the MODIS Tools called 

MRT were used for reprocessing tasks, such as creating a mosaic and resampling. 
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2.2.3. Model Selection and Precision Analysis 

Based on SPSS and Python, we constructed correlation models for statistical low-resolution data. 

Downscaling based on the TsHARP and MLR models was run on SPSS, and the RF model was run 

using Python. 

After statistical calculation, the TsHARP model with the best fitting was the third of three equations, 

the unary cubic model. Table 2-2 shows the regression coefficients of the TsHARP model during day 

and night in four seasons. According to theses regression coefficients, we formed the corresponding 

downscaling models and thereby predicted low-resolution LST. Among the regression coefficients, a0 

has high significance for the models regardless of the seasons or whether day or night; a2 and a3 have 

low significance, especially in autumn and winter daytime. Figure 2.6 shows the scatter plot of 

predicted LST data based on the TsHARP models versus MODIS LST data. The x-axis represents the 

MODIS/LST product values, which are the true LST (1 km level); the y-axis represents the predicted 

LST from the TsHARP model (1 km level). 

 

Table 2-2. The regression coefficients of the TsHARP models during day and night in four seasons. 

season day or night 
Regression coefficients 

a0 a1 a2 a3 

spring 
day 22.672*** 48.924*** -290.510*** 373.146*** 

night 12.887*** 5.591** -110.425*** 239.119*** 

summer 
day 37.672*** 48.924*** -290.510*** 373.146*** 

night 28.351*** 15.334*** -151.171*** 273.468*** 

autumn 
day 19.222*** 12.474* 35.560 -591.507** 

night 14.234*** 26.034*** 77.402** 110.314 

winter 
day 9.952*** 13.535*** -288.013** 764.451* 

night 3.323*** -26.812*** -280.854*** 3898.314*** 

Note: * - p < 0.1; ** - p < 0.05; *** - p < 0.01 
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Figure 2.6. Scatter diagrams of predicted land surface temperature (LST) data based on the TsHARP 

models (y-axis) versus MODIS LST data (x-axis). (The black dashed lines represent the 1:1 line, that 

is, the predicated LST and MODIS LST of the scattered points falling on this line are equal). 
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Scatter points were not distributed near the 1:1 line, which meant that this model was poor and could 

not be used in downscaling research in this section area. The TsHARP model is based on the correlation 

between LST and NDVI. Due to shadows and transpiration, the vegetation surface is usually cooler 

than that of other landscapes[46]. This theoretical basis had considerable errors because of the strong 

spatial heterogeneity of the study area [47–49], and the predicted LST had an obvious boundary value. 

Therefore, the TsHARP model was not suitable for this section. 

In order to solve the problem of the sharp drop in the correlation between LST and NDVI due to 

spatial heterogeneity, we introduced more independent variables to build the MLR model based on 

NDVI, including DEM, NDBI, and Landsat B2 to B7. According to the independent and dependent 

variables, we calculated the regression coefficients (a0, a1, a2…an) using the least squares method. 

Table 2-3 shows the regression coefficients of the MLR models. Overall, CT, DEM, NDVI, B2, B3, 

B4, and B7 have high significance, compared with other variables. The significance of NDBI during 

the day is generally higher than that at night. Scatter diagrams comparisons of MODIS LST and 

predicted LST (Figure 2.7) show that the predictive capabilities of the MLR model are improved 

compared with the TsHARP model. However, since the MLR model is a linear model, which cannot 

easily characterize the complex nonlinear regression between LST and independent variables, there 

are a large number of outliers. Thus, the MLR model is not a perfect downscaling model in this section. 
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Figure 2.7. Scatter diagrams of predicted LST data based on the MLR models (y-axis) versus 

MODIS LST data (x-axis). (The black dashed lines represent the 1:1 line, that is, the predicated LST 

and MODIS LST of the scattered points falling on this line are equal). 



CHAPTER TWO  

DOWNSCALE AIR TEMPERATURE PREDICTION BASED ON MACHINE LEARNING MODEL 

2-17

The simple single-factor and multi-factor regression models cannot completely summarize the 

complex relationship between different factors and LST. Under the premise that the physical 

mechanism is still unclear, a better choice is to build a downscaling model with the help of machine 

learning methods. Compared with some other machine learning methods, such as artificial neural 

networks and support vector machines, the RF model has the advantages of low computation needs 

and a large number of samples, which are appropriate for downscaling research. The training process 

of the RF model mainly comprises the process of adjusting hyperparameters, which is generally called 

parameter tuning. Various parameters combinations will have different predicted results. Therefore, 

there is no single set of parameters that can optimize the various models. Optimization requires 

continuous training and adjustment to achieve the optimal combination for a certain type of problem 

[50]. We tuned parameters according to the importance of the three most significant parameters, which 

are n_estimators, max_depth, and max_features. Due to the small number of samples in this section, 

the division depth was not constrained, that is, max_depth was set to “None”. Thus, this section only 

tuned n_estimators and max_features. Other parameters were set to default values. Figure 2.8 shows 

the changes of the model’s obb score, that is R2 when tuning n_estimators and max_features in three 

parts: Figure 2.8(a) represents the changes with n_estimators ranging from 1 to 200; Figure 2.8(b) 

represents the partial enlarged detail with n_estimators ranging from 1 to 40; and Figure 2.8(c) 

represents the range from 30 to 200. 

Figure 2.8. The changes of model Out Of Bag (OOB) scores (y-axis) when tuning n_estimators (x-

axis) and max_features (blue line and orange line):(a) the changes with n_estimators ranging from 1 

to 200; (b) the partial enlarged detail with n_estimators ranging from 1 to 40; (c) the partial enlarged 

detail with n_estimators ranging from 30 to 200. 
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In order to prevent underfitting of the RF model, in the tuning process we increased n_estimators to 

improve the model’s fitting ability; when the Out Of Bag (OOB) scores did not significantly improve 

for the first time, the value of n_estimators was optimal (Point A and B in Figure 2.8). Meanwhile, we 

adjusted max_features, and set it to None (blue line in Figure 2.8, max_features are the square root of 

the sample features) and Auto (orange line in Figure 2.8, max_features are the sample features).  

Combining the predicted results of the above two models, the fitting degree of winter night was the 

highest. Thus, we took winter night as an example of parameter tuning. When all parameters were set 

to default values, the OOB score was 0.9621. When n_estimators increased from 1 to 7, OOB scores 

rose rapidly, then tended to be flat. According to the Figure 2.8(c), the orange line reached the first 

maximum OOB scores (OOB score = 0.9719), Point A, when n_estimators was 41. When n_estimators 

was 71, the first maximum OOB score of the blue line was 0.9740, Point B. Consequently, Point B 

was the best parameter combination as shown in Table 2-4. After parameter tuning, we obtained the 

optimal combination corresponding to an OOB score of 0.9740, which was 0.0119 higher than the 

original OOB score. Then, we combined the training samples and test samples to perform a total of 10 

cross-validation on the optimal model based on the cross_val_score module to verify whether the 

model was good fitting. The 10-fold cross-validation results are shown in Figure 2.9. The mean of 

accuracy was about 0.9625. The fourth cross-validation had the highest accuracy, of about 0.9834, and 

the lowest was the ninth, of about 0.9396. The mean squared error (MSE) of the training sample was 

about 0.025 ℃ and that of test sample was about 0.053 ℃. The MSE of test samples was slightly 

higher than that of training samples, indicating that the model was not overfitting. Overall, the cross-

validation results meet the requirements, that is, the optimal RF model could be used in the subsequent 

downscaling research. 

 

Table 2-4. RF model parameter list and main optimal combination of this model. 

Parameter Name Parameter Description Ranges Optimal Value 

n_estimators The number of trees in the forest. 1,3,5,7…199 71 

max_depth The maximum depth of the tree. None,1,2…100 None 

max_features 

The number of features to consider when 

looking for the best split 

None, Auto None 

oob_score 

Whether to use out-of-bag samples to 

estimate the generalization accuracy. 

True, False True 
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Figure 2.9. Cross-validation results of the optimal model (x-axis represents the cross-validation 

times; y-axis represents the model accuracy; the black dashed line represents the mean of cross-

validation results). 

 

Through the above method, we tuned the parameters of the RF models for different dates so that 

their accuracy complied with the requirement based on cross validation, we then predicted low-

resolution LST based on these RF models and compared results with MODIS/LST products to verify 

model accuracy. The scatter diagrams are shown in Figure 2.10. The scatterplot comparisons of 

MODIS LST and predicted LST show the improved predictive capabilities of the RF model in 

comparison to the TsHARP and MLR models, with almost all scatter points clustered around the 1:1 

line and fewer outliers. Compared with the earlier two models, the RF model is more suitable for 

downscaling in this highly heterogeneous research region. Furthermore, the error histograms (Figure 

2.11) show that the prediction errors of the RF model approximately obeyed the normal distribution; 

the peak value appeared around 0 ℃, and values gradually decreased on both sides. Peaks at night 

were generally higher than those during the daytime. The prediction errors in summer and winter were 

significantly less than those in spring and autumn, especially during daytime. The daytime errors in 

autumn were more discrete than those during other seasons. Compared to the minimum value, the 

value of winter night was closest to 0 ℃, respectively, -0.7 ℃ and 0.5 ℃. However, 1% of values 

were less than -2 ℃ and 0.2% of values were more than 2 ℃. 
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Figure 2.10. Scatter diagrams of predicted LST data based on the RF models (y-axis) versus MODIS 

LST data (x-axis). (The black dashed lines represent the 1:1 line, that is, the predicated LST and 

MODIS LST of the scattered points falling on this line are equal). 
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Figure 2.11. Error histogram of RF models. (x-axis represents the prediction error/℃; y-axis 

represents percentage of total pixels of study area/%). 

 

 

To sum marize, R2 and RMSE were calculated for MODIS/LST products and predicted LST, as 

shown in Figure 2.12. The histogram shows R2, and line chart shows RMSE, of various models. Blue, 

orange, and gray represent the TsHARP, MLR, and RF models, respectively. The results clearly show 

that the RF model was more suitable for this section than the TsHARP and MLR models. This is 

evident in the significantly higher R2 and lower RMSE of the RF model compared to the other two 

models. For the RF model, the prediction effect at night was better than that during the daytime, and 

that at winter night was the best, with R2 of 0.9740 and RMSE of 0.1678. The worst effect was for 

autumn daytime: R2 was 0.9286 and RMSE was 0.7556. However, even the worst RF model performed 

better than the other two models. From a seasonal perspective, R2 values in summer and winter were 

higher than those in spring and autumn. From low to high, RMSE values were winter, spring, summer, 

and autumn. By comparison with the single-factor TsHARP model, the prediction improvement of the 

MLR model with more independent variables was limited due to the simple linear regression. The 

application of the RF model greatly enhanced the model’s predictive capabilities, because, under the 

premise of multiple-factors, machine learning could perform complex nonlinear regression. According 

to the above model selection and precision analysis, we only selected the RF model to undertaken 

downscaling of MODIS/LST products from 1 km to 100 m.  
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Figure 2.12. Prediction precision for TsHARP, MLR, and RF models of low-resolution LST for the 

entire research region. (Histogram represents R2; line chart represents RMSE). 

 

2.2.4. Downscaling Results and Surface Urban Heat Island 

During the construction of nonlinear regression models, the RF model was able to provide feature 

importance based on randomized variable selection. The importance scores were presented in mean 

squared error (MSE). The larger the MSE of an independent variable, the more important that variable 

is to a model [51]. Figure 2.13 shows the independent variable importance scores from all research 

data; the x-axis represents MSE and the y-axis represents the independent variables. Among the 

independent variables, b2 to b7 represent Band 2 to Band 7 from Landsat 8 OLI. During daytime, the 

importance scores of various factors were relatively balanced, and the difference between high and 

low score factors was large at night, especially at winter night. The b6 score reached 43.2%; in 

comparison, the highest score in daytime was 30%, for NDBI in winter. At night, b5 and b6 were the 

most important, with high scores. Meanwhile, DEM played a major role in the RF models at night. 

Contrary to nighttime, DEM scores in daytime were not large. According to the Environmental Lapse 

Rate [52], high-altitude areas usually received more solar radiation with more xeric and warmer 

conditions, particularly north-facing slopes. In the current research, different orientations resulted in a 

significant difference of LST. Therefore, the effect of DEM is weak when receiving solar radiation 

[53]. NDBI during daytime played a key role in the RF models, with the highest scores in summer, 

autumn and winter, and the second highest in spring. This meant that buildings heated by solar 
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radiation had a significant influence on LST. By contrast, at night without solar radiation. NDBI had 

lower importance scores than DEM. 

 

 

Figure 2.13. The independent variable importance scores across all research date for RF model. (x-

axis: MSE/%, represents importance scores; y-axis: independent variables). 

The intention of a LST downscaling model is to overcome the contradiction between the spatial-

temporal resolutions of various remote sensing images to obtain LST products with high spatial-

temporal resolution. According to the RF models constructed in Section 2.2.3, we downscaled 

MODIS/LST from 1 km to 100 m, that is, independent variables with a scale of 100 m were used to 

predict the corresponding LST. In order to improve prediction accuracy and reduce errors, we used a 

spline method to fit residuals, as introduced in Section 2.2.1. Due to some restrictions of the study 

area, MODIS/LST products could not provide high-resolution LST of Qiantang River, which crosses 

the urban area, mostly resulting in a lack of water surface temperature data. The data were unable to 

provide enough training samples for the RF model. Therefore, the downscaling accuracy based on the 

RF model of water surfaces will be greatly reduced. The average annual sediment discharge was 6.68 

million tons [54]. The tidal bore is one of the symbolic features of the Qiantang River. The effect of 

tidal bores causes abrupt changes of the riverbed, thus changing the land cover, which in turn 

influences LST [55]. Hence, we eliminated the LST downscaling of large areas of water, such as 

Qiantang River and West Lake. 
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Figure 2.14. Predicted and downscaling results during daytime at different scales in various seasons 

from MODIS/LST products 

Figures 2.14 and 2.15 show LST distribution during day and night, respectively, including the 

MODIS/LST products, predicted LST with a scale of 1km, and predicted LST with a resolution of 100 

m; the latter two represent the downscaling results. LST changes from blue to red. Blue regions 

represent low temperature areas, and red regions represent high temperature areas. Comparing 

MODIS/LST products and predicted LST with a scale of 1 km, the similarity of each pair of images 

is extremely high, whether during the day or at night, which also shows that the RF model is suitable 

for future downscaling research in this section area. The following prediction results, with a scale of 

100 m, are the downscaling results after the fitting of residuals. The distribution of downscaled LST 

is basically consistent with the distribution of MODIS/LST products.  
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Figure 2.15. Predicted and downscaling results at night at different scale in various seasons from 

MODIS/LST products. 

 

With the exception of autumn, the SUHI distribution during the day is similar across the seasons. 

On the north bank of the river and the northeast side of the lake, a large number of high temperature 

areas are generally distributed. The LST of the southwest area of the lake is lower than that of the other 

areas. Compared with spring and summer, there are more high temperature areas in the northeast 

corner of the region and the north bank of the river. However, the low temperature areas in the southern 

part of the river are more than those in spring and summer. In contrast to spring, summer, and winter, 

the high temperature areas in autumn are obviously fewer. Red areas mainly appear on the north bank 

of the river and near the east side of the research region. Similar to the other three seasons, the low 

temperature areas are also located at the southwest of the lake. 

At night, high temperature areas are mainly concentrated around the lake in low-resolution 

MODIS/LST products. However, SUHI in autumn is obviously different from other seasons. Several 

small areas with extremely high temperatures can be found in MODIS/LST products. Through 

downscaling and excluding large water areas including West Lake and Qiantang River, the 
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corresponding high-resolution LST shows that the SUHI distributions at night are similar in all seasons. 

The blue areas are located in the northeast of the study area and the south bank of river. The 

dissimilarity in the four seasons lies in the relative differences of LST in high temperature areas. The 

red area is larger in winter than in other seasons. 

From the downscaling results, we found that there are significantly more high temperature areas 

during the day than at night. This means that the distribution range of SUHI is wider during the day 

than at night. During the daytime, SUHI spreads throughout the research region but at night SUHI 

shrinks towards the West Lake and the south of the study area. Two obvious SUHI area are distributed 

on both sides of Qiantang River. The LST of SUHI on the north bank is higher than that on the south 

bank. In daytime, the urban center, which is to the northeast of West Lake, is not clearly the warmest 

area; however, at night the urban center became the core zone of SUHI irrespective of the season.  

Ranges of LST during daytime (Figure 2.14) and at night (Figure 12.5) are shown in Table 2-5. 

Comparing MODIS/LST and predicted LST with a scale of 1 km, we found that the average LSTs 

were almost equal, with differences less than 0.02 ℃. However, the ranges were smaller. Comparing 

MODIS/LST and predicted LST with a scale of 100 m, the mean LST difference showed improvement 

compared with the former, but within the allowable range. Furthermore, the LST ranges were close to 

those of MODIS/LST. The predicted LST (100 m) difference was largest in autumn during both day 

and night, that is, SUHI in autumn is the most serious. The difference in winter was the smallest. 

Generally speaking, differences during the day were always greater than those at night, and differences 

ranged of 2 ℃ and 5 ℃, except in winter. In winter, the difference at night was 0.39 ℃ higher than 

that during the day. From the mean LST throughout the year, LST rose sharply to reach 38.42 ℃ in 

the daytime and 27.56 ℃ at night from spring to summer, then gradually decreased to 9.91 ℃ during 

the day and 1.98 ℃ at night in winter. 
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Table 2-5. Ranges of LST during daytime (Figure 2.14) and at night (Figure 2.15) of all research dates. 

Season 

day  

or 

night 

MODIS LST/℃ 
Predicted LST 

(1000m)/℃ 

Predicted LST  

(100m)/℃ 

max mean min max mean min max mean min Δ 

spring 
day 28.37 24.49 19.15 27.48 24.48 19.75 27.97 24.34 20.49 7.48  

night 15.05 12.15 10.15 14.81 12.15 10.40 15.10 12.08 9.72 5.38  

summer 
day 43.15 38.51 32.81 42.50 38.52 33.92 42.82 38.42 33.18 9.64  

night 30.41 27.69 24.85 30.09 27.70 25.78 30.43 27.56 25.32 5.11  

autumn 
day 28.03 19.88 15.69 25.43 19.86 16.33 26.74 19.91 15.96 10.78  

night 19.51 12.89 8.77 18.71 12.87 10.35 16.20 12.75 10.03 6.17  

winter 
day 12.13 9.89 7.43 11.72 9.89 7.59 11.94 9.91 7.49 4.45  

night 4.33 2.13 -0.51 4.03 2.13 0.12 4.32 1.98 -0.52 4.84  

Note: Δ  - The predicted LST difference with a resolution of 100m between the maximum and 

minimum 

 

2.2.5. Validation Results comparing Downscaling LST and Retrieved LST 

Due to satellite orbit restrictions, we could not obtain MODIS/LST products and Landsat 8 

OLI/TIRS to retrieve LST with high-resolution with the same scan time. We referred to historical 

meteorological dates from Greenhouse Data [56] as shown in Table 2-6. According to the date, we 

preliminarily excluded spring and winter, because the acquisition dates of Landsat 8 OLI/TIRS and 

MOD11A2 were too far apart. Compared with spring and winter, the dates in summer and autumn 

were adjacent. The scan times [8,57] of the two remote sensing types was similar, concentrated around 

10:30 a.m., and only 2 or 3 minutes apart. Then, we organized and analyzed the obtained 

meteorological data. The smallest difference was in summer (with an asterisk in Table 2-6). The 

maximum and minimum air temperatures differed by only 1 ℃; the difference in relative humidity 

was 1%; the wind speed difference was 0.1 m/s; and the solar radiation difference was about 0.4 MJ/m2. 

Compared with other sets of data, we selected the Landsat 8 TIRS on July 19, 2013 to retrieve LST, 

and combined with MOD11A2 on July 20 to verify downscaling accuracy. 
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Table 2-6. RF model parameter list and the optimal combination of this model. 

Season Spring Summer* Autumn Winter 

RS type  LC08 MOD LC08 MOD LC08 MOD LC08 MOD 

Date 04.14 04.07 07.19 07.20 11.08 11.09 01.27 01.17 

Scan Time (a.m.) 10:33 10:30 10:33 10:30 10:33 10:30 10:32 10:30 

ATmax/℃ 28 17 37 36 25 28 11 12 

ATmin/℃ 15 5 27 28 13 16 2 0 

RH/% 33 39 49 50 69 67 35 34 

Wind Speed/m/s 4.0 1.6 2.7 2.8 1.8 2.0 1.9 1.2 

SR/MJ/m2  31.6 34.6 35.6 36.0 12.6 13.4 11.1 10.9 

Note: LC08 – Landsat 8 OLI/TIRS; MOD – MOD11A2; AT – air temperature; RH - relative humidity; 

SR – Solar Radiation; * - the season selected for validation 

 

Using the single channel algorithm, the retrieved LST (that is, the real LST) with a resolution of 30 

m is shown in Figure 2.16(b). Figure 2.16(a) shows the downscaled LST with a resolution of 100 m. 

The differences in the LST ranges of the two figures is small: the real LST ranges from 34.89 ℃ to 

41.62 ℃, while the other ranges from 33.18 ℃ to 42.82 ℃. According to the LST distribution, the 

high-temperature areas (red areas) and low-temperature areas (blue areas) are basically similar. From 

the comparison of the downscaled and real LST, we present the error distribution histogram as shown 

in Figure 2.16(c). The x-axis represents the error between the two types of LST, and the y-axis 

represents the number of pixels. The error is approximately normally distributed. The peak value of 

the error is around 0.3 ℃, the mean of errors is about 0.2617 ℃, the median is about 0.3 ℃, and the 

standard deviation is about 1.56 ℃. Since the scan times and scan methods of Landsat 8 TIRS and 

MODIS/LST are different, as mentioned above, and the meteorological conditions at the two time 

were not exactly the same, a few errors between the downscaled and real LST. This small number of 

errors meets the research requirement, that is, the downscaled LST based on the RF model meets the 

accuracy requirement and the RF model can be used in downscaling research. 
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Figure 2.16. Validation results during summer daytime: (a) downscaled LST with a resolution of 

100 m; (b) retrieved LST with a resolution of 30 m; (c) error distribution histogram between 

downscaling LST and real LST. (the black dashed line represents the mean value). 

c 
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2.2.6. Summary 

This section used three different models (TsHARP, MLR and RF models) to downscale 

MODIS/LST products from 1 km to 100 m based on Landsat 8 OLI and a DEM with high-resolution 

data, and selected the highly heterogeneous Hangzhou urban area as the research region. Of the three 

model types examined, the TsHARP model was a single-factor regression model that favors 

nonlinearity based on the correlation between LST and NDVI. The MLR model was a multi-factor 

linear regression model, which introduced more independent variables compared to the TsHARP 

model, including DEM, NDBI, and Landsat 8 OLI Band 2 to Band 7. The RF model was used as a 

multi-factor nonlinear regression model based on machine learning to predict LST. Then, we used R2 

and RMSE to evaluate the prediction effect of these three models. According to the evaluation 

comparison, the suitable model—that is, the RF model—was selected for the subsequent downscaling 

study. After parameter tuning, we built the optimal RF model to downscale the LST products obtained 

from MODIS for four seasons during day and night, and analyzed SUHI based on the high-resolution 

LST. Finally, we selected similar retrieved LST based on Landsat 8 TIRS to verify the feasibility of 

the RF model. 

However, the choice of independent variables in this section was flawed. This section selected DEM, 

NDVI, NDBI, and Landsat 8 OLI Band 2 to Band 7, thus including only two topography derived 

variables, NDVI and NDBI. In other studies, Hamid and Mohsen [58] selected ratio vegetation index 

(RVI), difference vegetation index (DVI), renormalized difference vegetation index (RDVI), NDVI, 

soil adjusted vegetation index (SAVI) and modified soil-adjusted vegetation index (MSAVI), while 

Wei Z. et al. [59] chose NDVI, enhanced vegetation index (EVI), normalized difference vegetation 

index (NDWI), leaf area index (LAI), surface albedo (ALB), surface elevation (ELV) and surface slope 

(SLP). In precision evaluation, we were unable retrieve high-resolution LST based on Landsat 8 TIRS 

for the same periods to verify downscaling accuracy because the Terra Satellite, which provides 

MODIS/LST products, and Landsat 8 OLI/TIRS are not synchronized. We were only able to select a 

few high-resolution LST data at particular times to verify the downscaling accuracy.  

We concluded that the proposed RF model downscaling method, based on the multi-factor nonlinear 

regression of LST and DEM, NDVI, NDBI, and Landsat 8 OLI Band 2 to Band 7, was proven to be 

effective and flexible in downscaling the LST spatial resolution from 1 km to 100 m for various 

seasons in the research region. Compared to the downscaling methods based on the TsHARP model 

with single-factor nonlinear regression and the MLR model with multi-factor linear regression, both 

statistics and visual analysis supported this conclusion. According to the prediction precision, the RF 

model effects in winter and summer were slightly better than those in spring and autumn, and those at 

night were better than those during the day. Combined with high-resolution LST, we concluded that 

SUHI was spread throughout the city across a large area, with the exception of the hills to the southwest 

of West Lake. At night, SUHI shrank sharply in the urban center around West Lake and the low 
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temperature area increased. According to the LST difference across the four seasons, we found that 

SUHI was the most obvious in autumn and the weakest in winter. Finally, the error distribution 

histogram between the downscaled and real LST supported the conclusion that the RF model can be 

applied to downscaling research in highly heterogeneous regions. 
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2.3. Air Temperature Downscaling for Atmosphere Urban Heat Island Analysis 

UHIs refers to the phenomenon that the air temperature in the urban center is almost always higher 

than that in the surrounding areas due to the continuous urbanization process, the closer to the urban 

center, the higher the air temperature [3]. Rapid urbanization has led to urban population explosion. 

More than 50% population lives in urban around the world, however the proportion of urban areas is 

only less than 3% in the global land area. Urban have provided the main driving force of global climate 

change [60]. 

UHIs, as an emergent property of a metropolitan area [61], are distinguish between surface UHI 

(SUHI) and atmosphere UHI (AUHI) [62]. Although this two UHI types are formed in different ways, 

they may be related to the exchange of energy between the land surface and the atmosphere [63]. SUHI 

can be directly monitored by infrared thermography mounted on satellite and airplanes. Remote 

sensing can provide regular and fixed-site observation of land surface temperature (LST), which 

greatly promoted the SUHI research [64–66]. AUHI is mainly detected surface air temperature above 

the city. It is the earliest research on UHI. Howard reported the first study on UHI in 1818 [67]. AUHI 

is usually conducted by simultaneous measuring the air temperature at meteorological station in urban 

areas and suburban areas. As a result, AUHI can only analyze the air temperature of the observation 

points where the meteorological stations are located. However, the fixed-point measured air 

temperature date cannot reveal the temperature of entire urban and surrounding areas like SUHI based 

on remote sensing [68]. This chapter considered the latter, this is AUHI. In order to analyze the climate 

issue closely related to national life, the Ministry of Land, Infrastructure, Transport and Tourism 

(MLIT) of Japan released detail grid data of the 2010 climate (including air temperature and 

precipitation) with a spatial resolution of only 1 km throughout Japan in 2012. Take the Kanto Major 

Metropolitan Area as an example, it has a large population and dense street blocks. The low-resolution 

climate raster data cannot accurately describe the climate conditions. In order to meet the local 

application of air temperature data, we downscaled the air temperature data from 1 km to 250 m.  

According to Section 2.2, the comparative study found that the machine learning model has higher 

accuracy than the traditional TsHARP model and MLR model. Against this background, the main 

purpose is to indicate that the AT obtained from MLIT can be downscaled from 1 km to 250 m, which 

makes it a detailed data for analyzing the high-resolution AUHI of metropolitan areas in Japan. DEM 

and urban structure which identified by maximum likelihood classification method from remote 

sensing were selected as independent variables, and the 2010 annual average air temperature data as 

dependent variable. We established the regression relationship between dependent and resampled 

independent variables at low resolution by using extra trees (ET) model and used K-fold cross-

validation (CV) to check the precision of the downscaling model to confirm whether it was overfitting 

or underfitting. Using tested model, we predicted the air temperature result with a spatial resolution of 

250 m. Finally, we fitted residuals of the high-resolution predicted air temperature based on the low-
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resolution original air temperature and the predicted air temperature to obtain the downscaled air 

temperature result. 
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2.4. Comparison and Selection of Machine Learning Model 

The downscaling results in Section 2.3 show that the RF model which belongs to machine learning 

model, has higher accuracy that the traditional TsHARP and MLR models. Machine learning is the 

study of computer algorithms that improve automatically through experience and by the use of data. 

It builds a model based on sample data, known as "training data", in order to make predictions or 

decisions without being explicitly programmed to do so [69]. Machine learning is mainly divided into 

supervised learning and unsupervised learning. The difference between them is whether the target of 

the training samples is labeled by manual. This research mainly uses supervised learning.  

Supervised learning learns a function from a given training samples When new data inputs, it can 

predict the result based on this function. The training samples requirements for supervised learning 

include input and output, which can also be said to be features and targets. 

In this section, we selected five supervised learning models for screening and comparison, including 

support vector regression model, K-nearest neighbors model, decision trees model, random forest 

model, and extra trees model, so as to select the optimal model for the next downscaling. The results 

are as follows. 

 

2.4.1. Support Vector Regression Model 

Support vector is supervised learning models with associated learning algorithms that analyze data 

for classification and regression analysis. This section mainly used the regression version of the 

support vector machine algorithms. The regression version was proposed in 1996 by Harris Drucker 

et al. [70]. The support vector regression model is not only suitable for linear but also for nonlinear 

regression. But the traditional support vector machine algorithm is only appropriate for dichotomous 

classification models. Although this problem can be solved by a combination of multiple support 

vector regression, the accuracy will be affected. 

Figure 2.17 shows the scatter plot of real air temperature versus predicted air temperature based on 

support vector regression model. The dotted line is the 1:1 line, color bar represents the frequency of 

scatter. The R2 is about 0.738. The results show that support vector regression model has a poor 

prediction accuracy for the area whose air temperatures are below 11 ℃, and there is a clear dividing 

line around 11 ℃, which is obviously very unfavorable for the air temperature downscaling. So the 

support vector regression model is not suitable for air temperature downscaling. 
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Figure 2.17. Scatter plot of real air temperature (x-axis) versus predicted air temperature (y-axis) 

based on support vector regression model 

 

2.4.2. K-nearest Neighbors Model 

The k -nearest neighbors algorithm is a non-parametric classification method first developed by 

Evelyn Fix and Joseph Hodges in 1951 [71], and later expanded by Thomas Cover [72]. The basic 

principle of k-nearest neighbors is very simple. It is to calculate the K data points closest to the target 

point, and then predict this target point. In k -nearest neighbors regression, the k -nearest neighbors 

algorithm is used for estimating continuous variables. One such algorithm uses a weighted average of 

the k nearest neighbors, weighted by the inverse of their distance. 

Figure 2.18 shows the scatter plot of real air temperature versus predicted air temperature predicted 

by k-nearest neighbors model. Compared to the prediction result by support vector regression model, 

the prediction accuracy of this model is much higher, R2 is about 0.792. And there is no obvious data 

dividing line in the whole range, but there are still many abnormal points, so k-nearest neighbors model 

cannot be used for air temperature downscaling. 
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Figure 2.18. Scatter plot of real air temperature (x-axis) versus predicted air temperature (y-axis) 

based on k-nearest neighbors model 

 

2.4.3. Decision Trees Model 

Decision trees are a parametric supervised learning method used for classification and regression. 

The goal is to create a model that predicts the value of a target variable by learning simple decision 

rules inferred from the data features. Decision trees are simple to understand and interpret. But they 

are often relatively inaccurate. Many other predictors perform better with similar data. This can be 

remedied by replacing a single decision tree with a random forest of decision trees, but a random forest 

is not as easy to interpret as a single decision tree. And They are unstable, meaning that a small change 

in the data can lead to a large change in the structure of the optimal decision tree. 

Figure 2.19 shows scatter plot of real air temperature versus predicted air temperature based on 

decision trees. As mentioned above, it is relatively inaccurate. Although, the R2 reached 0.847, which 

is much higher than support vector regression model and k-nearest neighbors model, we found that 

there are many points on the 1:1 line, which indicates that this model is overfitting seriously.  

In addition, a line composed of many scattered points located near 11 ℃. And there were more 

outliers in the mid-air temperature area. Therefore, this model cannot be used for air temperature 

downscaling either. 
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Figure 2.19. Scatter plot of real air temperature (x-axis) versus predicted air temperature (y-axis) 

based on decision trees model 

 

2.4.4. Random Forest Model  

Random forest model has been verified in Section 2.2 that it can be used to downscale the land 

surface temperature. In order to further compare with other machine learning models and select the 

most suitable model for air temperature downscaling, we set the default values as each parameter to 

predict air temperature on the study area. 

The comparison result is shown in Figure 2.20. the scatter plot indicates that the prediction accuracy 

of the random forest model is significantly higher than the above three machine learning models. The 

R2 is about 0.882, and the random forest model is not overfitting obviously. In summary, random forest 

model can provide technology for the next air temperature downscaling. But in order to improve the 

prediction accuracy, we also verified the extra trees model. 
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Figure 2.20. Scatter plot of real air temperature (x-axis) versus predicted air temperature (y-axis) 

based on random forest model 

 

2.4.5. Extra Trees Model 

Random forest model adds a further step of randomization yield extra trees model. Similarly to 

ordinary random forest models, they are an integration of single decision trees. First, each decision 

tree is trained using the whole training sample, and second, the top-down splitting in the tree learner 

is randomized. Instead of computing the locally optimal cut-point for each feature under consideration, 

a random cut-point is selected. This value is selected from a uniform distribution within the feature's 

empirical range. Then, of all the randomly generated splits, the split that yields the highest score is 

chosen to split the node. Similar to ordinary random forests, the number of randomly selected features 

to be considered at each node can be specified [73].  

Comparing to the prediction results of random forest model, R2 of extra trees model is about 0.912, 

which is significantly higher than the prediction accuracy of the random forest model. And extra trees 

model is not overfitting. Therefore, we selected the extra trees model which is one of the most popular 

machine learning model as the further air temperature downscaling model. 
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Figure 2.20. Scatter plot of real air temperature (x-axis) versus predicted air temperature (y-axis) 

based on random forest model 
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2.5. Extra Trees Model for Air Temperature Downscaling 

Combining the previous sections and some other previous studies, we found that compared with 

other downscaling methods, the downscaling accuracy of the extra trees model is significantly higher 

than that of other models. [15,74]. This section selected ET model as the downscaling model. ET 

model, also known as extremely randomized trees, is a relatively recent machine learning model used 

to perform classification and regression tasks [75], which is an extension of random forest model [76]. 

This model belongs to the class of ensemble learning methods based on decision trees model[77], and 

unlikely to be overfitting [73]. Decision tree is a basic regression model, the structure is shown in 

Figure 2.22. Decision tree is a typical binary tree structure, the value of internal node characteristics 

is “Yes” or “No”. The tree is to divide the feature space into several units, and each divided unit has a 

specific output, that is the “c” in the decision tree structure. According to the input variables, the feature 

space is divided. The process of division is the process of building a tree. Each time it is divided, one 

more node is added. When the division is stopped, the final output of each unit is determined, thereby 

establishing the entire decision tree. ET model is an algorithm that integrates multiple trees through 

ensemble learning. The structure of ET model is shown in Figure 2.23. The model randomly sampling 

samples from the input variables based on the bootstrap algorithm, and then building N corresponding 

decision trees based on these samples. In the process of building a decision tree, different from the RF 

model, the feature of each node of each decision tree in RF model is fixed, and only the input sample 

of each decision tree is random. However, in ET model, the feature of each node of each decision tree 

are also random. Then, vote according to the generated decision tree to select an optimal tree as the 

regression model. 

 

 

Figure 2.22. The structure of a single decision tree. 
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Figure 2.23. The structure of extra trees model. 

 

ET model has the similar principle as random forest model. It uses bootstrap resampling technology 

to extract from initial samples based on the randomly selected best feature to establish a new series of 

training samples, and then create decision trees and establishes an ET model. Compared with the 

random forest model, ET model uses the whole samples to train each regression trees [76]. 

In the following establishing process (shown in Figure 2.24), low resolution parameters at a spatial 

resolution of 1 km included two types: dependent variables (AT from NLNI) and independent variables 

(DEM, and urban structure). In order to test the model precision, we divided the sample into ten folds 

equally based on K-fold CV [78], and randomly extract one fold as the test sample, and the other nine 

fold (train sample) were used to train ET model. We used scikit-learn open-source machine learning 

libraries based on Python 3.8, which is the most famous machine learning libraries [29], to train and 

test the ET model. In the establishing process, several parameters needed to be tuned, including two 

parts: ET framework parameters, namely n_estimators, oob_score, and criterion; and ET decision trees 

parameters, namely max_features, max_depth, min_samples_split, min_samples_leaf, 

min_weight_fraction_leaf, max_leaf_nodes, and min_impurity_split [79]. Among them, n_estimators, 

max_features, max_depth, and min_samples_leaf are the four most important parameters that 

influence the downscaling accuracy. For preventing overfitting and underfitting in ET model, we 

adjusted these four parameters for the good fitting state to establish the ideal model according to model 

score, train and test mean square error (MSE). Finally, based on previous training and test samples, K-

fold cross validation was used to determine the feasibility of the ET model. 
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Figure 2.24. Establishing process of the extra trees model. 
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2.6. Residual Fitting 

In this section, we used the same method as introduced in Section 2.2.1 to fit the residuals. In the 

establishing process for a low-resolution ET model, there were residuals between the real image and 

the predicted image. We fitted residual to high-resolution predicted results in order improve 

downscaling accuracy. Residuals were downscaled by spline interpolator [80]. Figure 2.25 shows the 

flow chart of residual fitting. The last step was to fit the residual with high resolution to the predicted 

results with high resolution, finally resulting in AT data with high resolution. 

 

Figure 2.25. Residual fitting flow chart in air temperature downscaling 
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2.7. Summary 

This chapter is the core of this study. In this chapter, we introduced the detailed downscaling method. 

The principle of temperature downscaling is that under different scales, the regression between the 

underlying surface characteristics and temperature remains unchanged. Firstly, we selected Hangzhou, 

China as a case study to compare three downscaling models, including thermal sharpen model, 

multiple linear regression model, and random forest model. The result shows that the random forest 

model has the highest downscaling accuracy. Next, according to the above results, we selected five 

models based on machine learning algorithm, and selected the optimal model for air temperature 

downscaling. The result shows that extra trees model is the most suitable compared with other 

downscaling models based on machine learning algorithm. Then, we introduced the parameters tuning 

method to establish the optimal model. Finally, through the residual fitting, we can obtain the high-

resolution air temperature.  
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3.1. Introduction  
Rapid urbanization has greatly changed urban structures, thereby impacting the urban climate and 

associated phenomena, such as, urban heat stress in particular [1–3]. Built-up and urban areas are 

characterized by less vegetation and a large number of impervious surfaces, which leads to low evaporation 

heat flux; high urban surface roughness, which reduces wind speed; and increase radiation absorption due 

to urban structures. These factors explain the primary reasons that urban climates differ from rural climates 

[4]. With the transformation of natural landscapes into impermeable surfaces, changes in land use and land 

cover have a profound impact on urban structure and urban heat stress [5]. During the past few decades, a 

large number of research methods have been developed to study urban structure. Scholars began to study 

the internal spatial structure of urban area and explore models related to these spaces before the 1950s [6]. 

As the world entered the post-modernization era in the 21st century, scholars focused more on the spatial 

structure of urban land use and land cover; For example, Inostroza et al [7]vv. studied the scale and spatial 

form of urban land from a static perspective, and Burgalassi and Luzzati [8] researched the efficiency of 

urban spatial structures. Currently, single/multi-center forms are one of the most important dimensions, 

representing a current hotspot and future development direction for urban spatial structure research [9,10]. 

The urban spatial structure is used to characterize areas with similar building types, open spaces, and land 

use [11]. Combined with research on urban heat islands (UHIs), Stewart et al. [12] proposed a new low-

scale urban structure model called the local climate zone (LCZ) classification. This system could better 

characterize the urban structure, especially with respect to buildings of various heights and densities. The 

LCZ model divided the urban structure into 17 categories, including ten building types and seven land cover 

types.  

The extraction of urban structures has become an important link in urban ecology and urban climate 

research. Traditional urban structure classification is mainly based on manual interpretation of the urban 

functional zoning map. For example, Wilson et al. [13] used extremely detailed urban functional zoning 

maps for evaluating urban vegetation and the urban thermal environment. Scholars have also begun to use 

high-resolution remote sensing data to distinguish urban structures. Puissant and Weber [14] analyzed the 

effect of high-resolution remote sensing data on urban structure monitoring and management and defined 

four types of urban structures that can be classified from remote sensing data: urban structures with 

continuous residential buildings, sparse urban structures with discontinuous residential buildings, low-rise 

urban structures with discontinuous residential buildings, and high-rise urban structures with continuous 

residential buildings. Herold et al. [15] characterized various types of urban structures and used high-

resolution remote sensing data to realize the classification. Banzhaf and Hofer [11] defined the spatial 

distribution of land use and land cover in different urban structures based on grid units to construct a large-

scale urban structure classification. Similarly, Montanges et al. [16] used multi-source data (land cover, 

building height, remote sensing data, etc.) to express the characteristics of urban structures, and used 

multiple classifiers to experiment with the urban structure functional area classification. High-resolution 
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remote sensing data provide a basis for realizing the urban structure classification, promoting the 

application of remote sensing technology in urban ecological environments, and planning management 

directly. This study combined the LCZ classification system and high-resolution remote sensing data to 

identify urban structures for further urban climate research. 

Urban expansion has intensified UHIs [17,18]. The global climate change caused by UHIs has a huge 

impact on urban residents’ health, causing human discomfort and even mortality [19,20]. Those who attend 

outdoor activities need a comfortable outdoor thermal environment [21]. Meanwhile, an uncomfortable 

outdoor thermal environment may affect social activities and even economic activities in an urban area [22]. 

Owing to the large amount of building materials, especially concrete and asphalt, huge quantities of solar 

radiation are stored and then released into the urban environment. This phenomenon, called the “canyon 

effect”, combined with anthropogenic heat from air conditioning, vehicles, etc. [23], are all contributing to 

the UHI intensification [24]. Urban design strategies, such as urban structure adjustment, can be exploited 

to mitigate this phenomenon and the consequent negative impact on human health [25]. Urban morphology, 

building density, and building plot ratio affect the air temperature distribution, thereby influencing the urban 

thermal environment [26,27]. 

Urban structure planning requires a reliable method to ensure urban thermal comfort from the 

perspective of the urban microclimate [28], with the main goal of verifying whether the adopted structure 

is effective for optimizing the urban thermal environment [29]. In the past two decades, the evaluation of 

outdoor thermal comfort through numerical simulation modeling or field measurements has become 

popular. Although field measurements can provide highly accurate data, they are expensive and time-

consuming tasks that can only show the thermal environment at designated locations and times [30]. 

Moreover, the urban microclimate is a complex system based on various parameters, involving countless 

natural and urban processes. Natural parameters such as air temperature, humidity, wind speed, and solar 

radiation are very sensitive to the 3D urban microclimate model [31]. Owing to the various processes that 

lead to different thermal environments, the most feasible method for urban microclimate simulation is 

numerical modeling [32]. Given the advantages of numerical modeling and the increasing computing power 

advances in personal computers, some simulation tools have emerged to help assess the impact of various 

urban structures on microclimate and human thermal comfort [33–36].  

This study selected ENVI-met as the simulation software. ENVI-met can be considered one of the most 

commonly used software options for determining the impact of architectural design and urban planning on 

the microclimate [37,38]. Although there are several microclimate simulation tools, such as RayMan [35], 

Townscope [39] and SOLWEIG [40], ENVI-met is particularly popular because of its extremely high 

spatiotemporal resolution, advanced 3D interactive interface and modeling technology, and ability to adjust 

air temperature and humidity [31]. Through the overall analysis of this software, the air temperature, mean 

radiation temperature (MRT), relative humidity, wind speed, solar radiation, and other parameters can be 
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obtained as well as higher-order predicted mean vote (PMV) and physiological equivalent temperature 

(PET) values [29]. 

Several previous studies have shown that numerical simulation modeling can evaluate the impact of 

urban structure on the microclimate and outdoor thermal comfort. Ketterer and Matzarakis [41] studied the 

impact of urban canyons on urban thermal stress, and found that the heat stress can be reduced with a 

northwest–southeast orientation and an aspect ratio of at least 1.5. Krüger et al. [37] observed and evaluated 

the relationship between urban structure and urban microclimate changes, and Ali-Toudert and Mayer [42] 

used ENVI-met to analyze the relationship between outdoor thermal comfort and urban street design. They 

found that streets in different directions will have a moderate impact on the air temperature and have a 

strong impact on the heat generated by humans: the greater the openness of the urban canyon to the sky, 

the higher the heat stress during the daytime. Middel et al. [43] studied the outdoor thermal environment of 

the three main residential landscape types in different LCZs in the Phoenix metropolitan area in the United 

States, emphasizing how the dense urban structure determines the urban cool island effect. Johansson et al. 

[44] considered a typical summer in São Paulo, Brazil and analyzed the changes in the microclimate in six 

different types of urban structures. Wang et al. [45] compared the MRTs of different urban densities in 

Toronto, Canada based on ENVI-met simulation modeling to reflect the outdoor thermal environment; they 

evaluated the urban microclimate based on urban density, and the results showed that the duration of direct 

sunlight and MRT will greatly affect the thermal comfort of the city. After sunset, the MRT will drop and 

maintain balance with the air temperature. 

In the past, most of the urban thermal environment research based on ENVI-met used MRT [45,46], PET 

[47,48] and PMV [49]. In contrast, this study used the discomfort index of the wet-bulb globe temperature 

(WBGT) to measure the thermal comfort. WBGT is the most commonly used heat stress index [50]. WBGT 

mainly depends on three factors: the wet-bulb temperature, black-globe temperature and dry-bulb 

temperature (see Equation (3-7) in section 3.2.4). The WBGT can also be calculated based on empirical 

formulas (see Equation (3-8) in section 3.2.4) [51]. 

This study intends to introduce a classification system that can be used as a classification standard for 

urban structure identification. The study area is divided into 17 types of LCZs through the maximum 

likelihood classification (MLC) method. The accuracy of the results was validated using a confusion matrix, 

and the Kanto major metropolitan area (MMA) was chosen as the study area in this chapter to verify the 

feasibility of this identification. Combined with the WBGT, ENVI-met was used to simulate and evaluate 

the urban microclimate changes of some quintessential LCZs under three different urban structure 

conditions. Figure 3.1 demonstrates the structure of this study. First, the LCZ classification system and 

research methods are presented. Second, the results are shown in a case study. Third, idealized models were 

created to simulate the microclimate of each LCZ. Fourth, the WBGT was calculated to evaluate the urban 

microclimate. The discussion and conclusion summarize and close out the research. 
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Figure 3.1. A flow chart of this research process, including identification and simulation. 
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3.2. Research methods 
3.2.1. Study area and data source  

The Kanto MMA as the most populous metropolitan area in the world, consists of the Tokyo Metropolis 

and the prefectures of Kanagawa, Chiba, Saitama, Ibaraki, Tochigi, and Gunma. The mainland portion of 

Kanto MMA lies northwest of Tokyo Bay and measures about 170 km east to west and 160 km north to 

south. It has an area of about 13,500 km2 with a population of about 3.81 million in 2016 [52].  

The Kanto MMA has a subtropical monsoon climate with an annual average temperature of 15.6 °C. 

The four seasons are distinct, and precipitation is abundant. There is substantial precipitation in the summer, 

which is impacted by the southeastern monsoon, and there is little snowfall in the winter [53]. 

The study area is divided into a densely inhabited district (DID) and surrounding area (SA), as shown in 

Figure 3.2a. Figure 3.2b shows the Google Earth imagery of the study area. DID is a statistically defined 

area set in the Japan National Census in which the population density is over 4,000 people/km2, and the 

sum of the adjacent unit area population is more than 5,000. In 2010, the population of the Kanto MMA 

DID was about 1.11 million, with a total population of 2.97 million. Each LCZ was represented in the study 

area.  

 

 
（a） 

 

(b) 

Figure 3.2. (a) Location of the study area in Japan. (b) Google Earth imagery of the study area. 

https://www.weblio.jp/content/census
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Remote sensing data are greatly influenced by clouds and weather. Accordingly, a sunny day 

without any cloud cover was chosen: November 5, 2019. Multiple remote sensing images needed to 

be merged given the size of the study area. Table 3-1 shows the research data and some basic 

information, including the Landsat scene identifier, The worldwide reference system (WRS) path and 

row, date, start and stop time, land and scene cloud cover, and sun elevation [54]. 

 
Table 3-1. Basic information of study area remote sensing data 

Location Kanto Major Metropolitan Area 

Landsat Scene Identifier LC81070352019309LGN00/LC81070362019309LGN00 

WRS Path, WRS Row 107, 035/107, 036 

Date 2019-11-05 

Start Time 10:15:56/10:16:20 

Stop Time 10:16:28/10:16:52 

Land Cloud Cover 0.64/2.06 

Scene Cloud Cover 0.49/6.85 

Sun Elevation 36.06°/37.31° 

 

 
3.2.2. Urban structure classification 

Urban structures are mainly classified by manual sampling methods, classification methods based 

on geographic information systems (GIS) and classification method based on remote sensing. The 

manual sampling method, which requires field measurements, is the most basic method. However, it 

is time-consuming, laborious, and unsuitable for large-scale urban structure classification. A 

classification method based on GIS is commonly used currently (e.g., Lelovics et al. (Hungary) [55] 

and Zheng et al. (China) [56]). This method can achieve high accuracy using high-precision GIS data 

for urban planning and architectural form, but it is difficult to obtain urban GIS data in some regions 

which limits the application of this method. The classification method based on remote sensing is 

automatically divided into different types of LCZs by analyzing the spatial and spectra remote sensing 

information. Gamba et al. [57], for example, developed an LCZ classification method based on high-

resolution remote sensing data and applied it to Heraklion, Greece. Although these approaches 

improve the classification accuracy, high-resolution remote sensing images also increase the 
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acquisition cost. Overall, combining the classification methods based on remote sensing and Landsat 

series images can improve identification accuracy and solve the shortcomings of high-resolution 

remote sensing’s acquisition cost to classify urban structures based on the LCZ classification system. 

Figure 3.3 shows the detailed steps of urban structure identification, including the four main steps. 

The first step is pre-processing Landsat 8 OLI imagery, in which the raw data consist of two series of 

Landsat 8 data points with various WRS Raw data. We corrected and merged these data to obtain a 

series of remote sensing images that can cover the entire study area as much as possible and then 

composited and extracted the imagery by research region. Second, we used ArcGIS 10.5 to select the 

training area in Google Earth imagery. Table 3-2 [58] below shows the training area of the Google 

Earth imagery and Landsat 8 OLI imagery of some of the typical LCZs. We selected 250 training areas 

for later urban structure identification. Among them, there are 10 training areas for each type of LCZ 

(from LCZ-1 1 to LCZ- 6) and 15 training areas (for LCZ-7 to LCZ-10 and LCZ-A to LCZ-G. The 

next step is to import selected training areas into remote sensing data to create signature file [59]. Then, 

urban structures are identified using MLC based on the signature files. 

 

 

Figure 3.3. Detailed steps of urban structure identification 
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Table 3-2. The training area of Google Earth Imagery and Landsat 8 OLI/TIRS of some typical Local 

Climate Zones. (The data to create the sketch comes from) 

LCZ ID LCZ-1 LCZ-2 LCZ-3 LCZ-4 LCZ-5 

Sketch 
 

    

Google 

Earth 

Imagery 
  

 

  

Landsat 

8 OLI 

Imagery  
  

 

  

Street 

view 
     

LCZ ID LCZ-A LCZ-B LCZ-C LCZ-E LCZ-F 

Sketch 
     

Google 

Earth 

Imagery 
     

Landsat 

8 OLI 

Imagery 
     

 

MLC assumes that all the distribution functions are normal distributions, selects training areas, and 

sets up a set of nonlinear discriminant functions to calculate the attribution probability of each area to 

be classified by statistical methods based on Bayes’ theorem [60]. This classification method is a 

nonlinear classification, and its failure probability is the smallest; it is also a widely used and 
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sophisticated supervised classification method [61]. In Figure 3.4, according to Bayes’ theorem, the 

posterior probability that Type xi belongs to Area A or Area B is represented by the following equation: 

 

𝑃𝑃(𝑋𝑋𝑋𝑋) = 𝑃𝑃(𝑋𝑋) × 𝑃𝑃(𝑋𝑋|𝑋𝑋) = 𝑃𝑃(𝑋𝑋) × 𝑃𝑃(𝑋𝑋|𝑋𝑋) 

(3-1) 

where 𝑃𝑃(𝑋𝑋)  represents the prior probability of Type a; 𝑃𝑃(𝑋𝑋|𝑋𝑋)  represents the prior conditional 

probability of Type xi appearing in Area A (known); 𝑃𝑃(𝑋𝑋) represents the prior probability of Type xi; 

and 𝑃𝑃(𝑋𝑋|𝑋𝑋) represents the posterior probability of Type xi belonging to Area A. 𝑃𝑃(𝑋𝑋), 𝑃𝑃(𝑋𝑋|𝑋𝑋), and 

𝑃𝑃(𝑋𝑋) were obtained from signature files created in the previous step. 

 

 

Figure 3-4. Two-dimensional space image classification (Area A represents the area consisting of 

Type a; Area B represents the area consisting of Type b; Area X represents the area consisting of 

Type xi. Among them, Area A and B are known areas, Type xi in Area X is the type need to be 

identified) 

 

The posterior probability that Type xi belongs to Area B, 𝑃𝑃(𝐵𝐵|𝑋𝑋), could be calculated using the 

same method. When 𝑃𝑃(𝑋𝑋|𝑋𝑋) > 𝑃𝑃(𝐵𝐵|𝑋𝑋), then Type xi belongs to Area A; otherwise, Type xi belongs 

to Area B. When the area type covers two types, the largest posterior probability is taken as the 

identification result. 

Through the above three steps, we identified the urban structure. To validate the accuracy of the 

MLC, we randomly selected 1000 test points in the research region [62]. By combining them with the 

Google Earth imagery, we can determine whether the LCZs that are classified by MLC conform to 

reality.  

This validation method is called a confusion matrix or error matrix. It is a standard format for 

accuracy evaluation, represented by a matrix with k rows and k columns [63], as shown below: 
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 A B … K ni+ 

A N11 N12 … N1k N1+ 
B N21 N22 … N2k N2+ 
… … … … … … 
K Nk1 Nk2 … Nkk Nk+ 
n+j N+1 N+2 … N+k n 

where n is the total number of samples in the remote sensing classification accuracy evaluation, and 

k is the total number of classified categories. Nij is the number of samples that are classified as i in 

remote sensing and belong to j in the reference category. Row data indicate the LCZ type of test points 

in the identification results, and the column data are from the Google Earth images. 

The specific evaluation index includes the producer’s accuracy (PA), the user’s accuracy (UA), 

overall accuracy, and Kappa index. Based on the confusion matrix, the PA and UA can be calculated 

using Equations (3-2) and (3-3): 

𝑃𝑃𝑋𝑋𝑗𝑗 =
𝑁𝑁𝑗𝑗𝑗𝑗
𝑁𝑁+𝑗𝑗

=
𝑁𝑁𝑗𝑗𝑗𝑗

∑𝑁𝑁𝑖𝑖𝑗𝑗  (𝑗𝑗 = 1~𝑘𝑘)
 

(3-2) 

𝑈𝑈𝑋𝑋𝑖𝑖 =
𝑁𝑁𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖+

=
𝑁𝑁𝑖𝑖𝑖𝑖

∑𝑁𝑁𝑖𝑖𝑗𝑗  (𝑖𝑖 = 1~𝑘𝑘)
 

(3-3) 

According to 𝑃𝑃𝑋𝑋𝑗𝑗 and 𝑈𝑈𝑋𝑋𝑖𝑖, the overall accuracy and Kappa index (𝑘𝑘) can be obtained by Equations 

(3-4) and (3-5): 

𝑂𝑂𝑋𝑋 =
∑𝑁𝑁𝑖𝑖𝑖𝑖
𝑛𝑛

 (𝑖𝑖 = 1~𝑘𝑘) =
∑𝑁𝑁𝑗𝑗𝑗𝑗
𝑛𝑛

 (𝑗𝑗 = 1~𝑘𝑘) 

(3-4) 

𝑘𝑘 =
𝑝𝑝0 − 𝑝𝑝𝑒𝑒
1 − 𝑝𝑝𝑒𝑒

 

(3-5) 

where 𝑝𝑝0 is the overall accuracy calculated by Equation (3-4), and 𝑝𝑝𝑒𝑒 is calculated by the following 

equation: 

𝑝𝑝𝑒𝑒 =
∑�𝑁𝑁𝑖𝑖+ × 𝑁𝑁+𝑗𝑗�

𝑛𝑛 × 𝑛𝑛
 

(3-6) 

Furthermore, the overall accuracy and Kappa index were obtained [64]. The result of Kappa is 

between -1 and 1, but Kappa usually falls between 0 and 1, and it can be divided into five groups to 

represent different levels of consistency: 0.0–0.20 is slight, 0.21–0.40 is fair, 0.41–0.60 is moderate, 

0.61–0.80 is substantial, and 0.81–1.0 is almost perfect [65,66]. 
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3.2.3. Microclimate simulation 

In the simulation six typical LCZs were selected to verify different local climates in different LCZs. 

This study selected ENVI-met as the simulation software, LCZ-1 to LCZ-5 as typical LCZs, and an 

additional model with mid-building height and mid-building density.  

ENVI-met is suitable for mesoscale models, especially for microclimate simulations of urban block 

sizes. It includes four modules: modelling (SPACES), programming (ConfigWizard), simulation (Run), 

and results (LEONARDO) [67]. It is widely used in the analysis of urban microclimate and thermal 

environments [68,69]. 

For the present research, the selected LCZs were divided into two categories: compact buildings 

and open buildings. These two categories include high-rise buildings, mid-rise buildings, and low-rise 

buildings. To observe the climate differences of various LCZs, three qualifications were set: the same 

building density, building height, and plot ratio. Figure 3-5 shows a typical simulation model [70]. 

According to the demand, the grid size of the simulation space is determined as 100 × 100 × 35, and 

the size of the grid is dx = 1, dy = 1, dz = 2 [71]. Table 3-3 shows the characteristics of the various 

models.  

 

 

Figure 3-5. The idealized model of the urban structure and calculation method of several key 

parameters. 

 

In Table 3-3, LCZ-1 represents a high-density high-rise model, LCZ-2 represents a high-density 

mid-rise model, LCZ-3 represents a high-density low-rise model, Mid represents a mid-density mid-

rise model, LCZ-4 represents a low-density high-rise model, and LCZ-5 represents the low-density 

mid-rise model. 
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Table 3-3. Model characteristic of various LCZs. (Note: *same density, **same height, ***same plot 

ratio.) 

LCZ ID 
Floor 

area 

Width of 

Green Space 

Width of 

Road 

Site 

area 

Floor 

Number 
Height 

Building 

Density 

Plot 

Ratio 

LCZ-1 100 2 4 324 11 33 0.31* 3.40 

LCZ-2 100 2 4 324 7 21** 0.31* 2.16 

LCZ-3 100 2 4 324 4 12 0.31* 1.22*** 

Mid 100 5 4 576 7 21** 0.17 1.22*** 

LCZ-4 100 8 4 900 11 33 0.11 1.22*** 

LCZ-5 100 8 4 900 7 21** 0.11 0.78 

 

To better analyze and compare the microclimate changes in the simulation space under the same 

meteorological conditions, June 20th, was selected as the simulation day since June 21st is the summer 

solstice with the longest sunshine time and the largest solar zenith. The simulation time ran from 00:00 

Local Time on June 20th to 00:00 Local Time on June 22nd, 48 hours in total (all times listed hereafter 

are in Local Time). The same meteorological data that were used for the initial data were input into 

the configuration files. Table 3-4 shows the input configuration used in the simulation for Tokyo. By 

combining the date, meteorological data, and location, the solar radiation details could be determined, 

including the solar elevation angle and building shadow. According to the historical meteorological 

data of the Japan Meteorological Agency [72], the average air temperature in June 2019 was 

approximately 21.8 °C, so the initial temperature of the atmosphere was set to 295 K. Due to software 

limitations, only the average wind speed and primary wind directions were selected for the initial wind 

velocity [73]; this has been recognized as a major limitation to this approach [48]. We set the initial 

wind speed to 5m/s and the wind direction southerly [72]. 
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Table 3-4. Input configuration used in simulation with ENVI-met 

Start Date (DD.MM) 20.06 

Start Time (HH:MM:SS) 00:00:00 

Total Simulation Time (h) 48 

Wind Speed in 10m height (m/s) 5 

Wind Direction (0=from North…180=from South) 180 

Initial Temperature of Atmospheric (K) 295 

Special Humidity at model top (g/kg) 7 

Relative Humidity in 2m (%) 75 

 
3.2.4. Heat stress assessment 

The outputs of the simulation were air temperature, mean radiant temperature, solar radiation 

intensity, relative humidity, and wind speed simulation data during the study period at 1.5 m above the 

ground. In the first 24 h, the thermal interactions and physical processes that take place are entirely 

used to the environmental components are more balanced in the second 24 h. As a result, the simulation 

results are more accurate [74]. 

In outdoor thermal environment research, a comprehensive indicator is necessary for a complex and 

variable environmental situation, to evaluate the outdoor thermal environment. The WBGT is 

proposed as a simple, purely physical heat stress indicator [75]. Traditionally, WBGT has been 

obtained mainly from three indicators: wet-bulb temperature (Tw), black-globe temperature (Tg) and 

dry-bulb temperature (Ta), as shown in Equation (3-7) [76,77]: 

 

𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 0.7𝑇𝑇𝑤𝑤 + 0.2𝑇𝑇𝑔𝑔 + 0.1𝑇𝑇𝑎𝑎 , 

(3-7) 

However, WBGT has the following deficiency in numerical simulation forecasts: Tw, Tg and Ta are 

not directly obtained by the simulation, but, the air temperature, relative humidity, wind speed, and 

solar radiation can be simulated directly. 

Ono and Tonouchi [51] established a heat balance equation for the three parameters in the WBGT 

calculation formula based on the climate characteristics of Japan. By solving the heat balance equation, 

the WBGT calculation formula is obtained using air temperature, relative humidity, solar radiation 

intensity, and wind speed, which are the ENVI-met simulation results. After verification, the average 

estimation errors average is ~0.11°C, and the WBGT can be estimated using Equation (3-8): 
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𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 0.735𝑇𝑇𝑎𝑎 + 0.0374𝑅𝑅𝑅𝑅 + 0.00292 × 𝑇𝑇𝑎𝑎 × 𝑅𝑅𝑅𝑅 + 7.619 × 10−3𝑆𝑆𝑅𝑅 − 4.557 × 10−3𝑆𝑆𝑅𝑅2

− 0.0572𝑣𝑣 − 0.4064 

(3-8) 

where Ta represents air temperature, SR represents solar radiation intensity, RH represents relative 

humidity, and v represents wind speed. 
  



CHAPTER THREE  
URBAN STRUCTURE IDENTIFICATION AND ITS IMPLICATION OF URBAN CLIMATE 

 

3-15 

3.3. Results 
3.3.1. LCZ classification results 

The distribution of LCZs is shown in Figure 3.6a, which includes two parts: the DID (Figure 3.6b) 

and SA (Figure 3.6c). With the help of the pie chart and histogram in Figure 3.7, we can obtain the 

specific urban structure cluster in Kanto MMA. Figure 3.7a shows the percentage of each LCZ in the 

whole region (WR), DID, and SA. The innermost pie chart represents WR, the middle is the DID, and 

the outermost ring is the SA. The part of the chart with a black frame indicates the building type and 

the other island cover type. Figure 3.7b shows the proportion of each LCZ in the DID and SA. 

 

Figure 3.6. Distribution of Local Climate Zones: (a) Distribution of LCZs of the whole region 

(WR); (b) Distribution of LCZs of the densely inhabited district (DID); (c) Distribution of LCZs of 

the surrounding area (SA). 
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(a) 

 
(b) 

Figure 3.7. Graph showing the distribution of each LCZ in the WR, DID, and SA: (a)Pie chart 

showing the percentage of each LCZ in the WR, DID, and SA; (b) Histogram representing the 

proportion of each LCZ in WR, DID, and SA. 
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DIDs are distributed along the coast of Tokyo Bay and are mainly composed of building types (LCZ-

1 to LCZ-10). There is a small component of LCZ-E (bare rock or paved) in the DID, which is largely 

in the surrounding area of the urban center and near the southern coast. From Central Tokyo to the 

suburban areas, the pixel color changes from dark red to orange, indicating that the building density 

and building height gradually drop. In the SA, the west side and southeast corners are mostly LCZ-A 

(dense trees) and LCZ-B (scattered trees), and the north side is covered with LCZ-D (low plants). 

There is a large area of LCZ-G (water) in the northeast corner. 

Figure 3.7a shows that building types represent about 70% of the land cover, much more than that 

of other land cover types. Among them, LCZ-3 (compact low-rise) and LCZ-6 (open low-rise) are the 

top two building types, representing 21.63% and 12.90% of the buildings, respectively. LCZ-8 (large 

low-rise) has the smallest representation at only ~0.83%. Among the LCZ of the land cover types, 

LCZ-E was greatest. In contrast to the DID, the ratio of land cover types in the SA is about 68%, which 

is higher than that of the building types. The first is LCZ-A, the second is LCZ-B, and the third is 

LCZ-D. LCZ-9 (sparsely built) accounts for 12.81% of building types, which represents the majority. 

According to Figure 3.7b, LCZ-1, LCZ-2, LCZ-3, LCZ-6, and LCZ-E had larger proportions in the 

DID than they did in the SA. Conversely, the percentages of LCZ-4, LCZ-5, LCZ-7, LCZ-8, LCZ-9, 

LCZ-A, LCZ-B, LCZ-C, LCZ-D, LCZ-F, and LCZ-G in the SA were higher than those in the DID. 

The proportions of LCZ-5 and LCZ-10 in the DID and SA were similar. 

The confusion matrix can be obtained mathematically. In Table 3-5, the bold data indicate that the 

selected test point has the same LCZ in both the Google Earth images and identification results, 

meaning that these test points were correctly identified. Among all the LCZs, the identification 

accuracy of LCZ-8 (large low-rise) is the lowest. A large number of LCZ-8 building types are identified 

as LCZ-10 (heavy industry) because there are quite a few factory buildings similar to LCZ-8 in the 

factories representing LCZ-10. After further calculation, the overall accuracy was ~80.2%, and the 

Kappa index reached 0.7798. This meets our precision requirements. 
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Table 3-5. Confusion matrix of identification results 
LCZ 1 2 3 4 5 6 7 8 9 10 A B C D E F G Sum UA 

1 4 1  1              6 66.7 

2 2 13 1  2             18 72.2 

3  2 55   4 1 1          63 87.3 

4 2 1  19  2            24 79.2 

5  3  1 13  1  1         19 68.4 

6 1  2  1 37 4 1 1         47 78.7 

7  2 1   6 78 3          9 86.7 

8      1 1 3  3     1   9 33.3 

9   1  3 5  3 87 2      2  103 84.5 

10      1  11 1 21     1   35 60.0 

A         3  167 13 3 1    187 89.3 

B      1 3  2  11 127 6     150 84.7 

C      1  3 1  4 7 27     43 62.8 

D        2 5   3 10 93 1   114 81.6 

E        2  3    5 37 12  59 62.7 

F        1  3    1 3 10  18 55.6 

G              3  1 11 15 73.3 

Sum 9 22 60 21 19 58 88 30 101 32 182 150 46 103 43 25 11 1000  

PA 44.4 59.1 91.7 90.5 68.4 63.8 88.6 10.0 86.1 65.6 91.8 84.7 58.7 90.3 86.0 40.0 100   

Overall Accuracy/%: 80.20 Kappa index: 0.7798 

 

In order to study the relationship between the air temperature of different LCZs in the DID and SA, 

we retrieved the land surface temperature on November 15, 2019, whose data were the same as those 

in Table 3-1. The land surface temperature in June is shown in Figure 3.8, and the statistical data of 

each LCZ in the DID and SA are shown in Figure 3.9. Thus, it can be seen that, for the same building 

type, the air temperature varies considerably with location. The value of each building type in the DID 

is generally higher than that in the SA. The difference in LCZ-10 was the largest, and the differences 

among LCZ-2, LCZ-3 and LCZ-9 were relatively small. Combining the temperature difference data 

from LCZ-1 to LCZ-6, we found that, as the building height decreases, the value rises significantly, 

but it is minimally affected by building density changes. 
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Figure 3.8. Land surface temperature of study area on 15th November 2019: (a) Air temperature 

of the WR; (b) Air temperature of the DID; (c) Air temperature of the SA. 

Figure 3.9. Land surface temperature of each LCZ in DID and SA. 

3.3.2. Simulation results 

The WBGT clearly reflects the local climate of each LCZ. Figure 3.10 shows the WBGT changes 

in the open space between buildings of each idealized model for one day. This figure is divided into 

three parts, where the WBGT changes under the same density, height, and plot ratio. Daytime is active 

from 05:00 to 19:00, while nighttime occurs between 19:00 and 05:00. The WBGT is very different 

between the daytime and nighttime, exhibiting a Kuznets curve in the daytime and decreasing linearly 

at night. The WBGT reaches its highest value around 15:00 and approaches its lowest value around 

05:00. The WBGT difference among the various models during the daytime is significantly greater 

than that at night. 
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Figure 3.10. WBGT changes of each idealized model during one day: (a)WBGT changes with 

different height and plot ratios when the density is the same; (b) WBGT changes with different 

density and plot ratios when the height is the same; (c) WBGT changes with different density and 

height when the plot ratio is the same; 

 

From three different constraints, this research compared the WBGT changes. The left figure shows 

the WBGT when the density is the same, as the height and plot ratio increasing. Overall, the WBGT 

of LCZ-3 was the highest, and that of LCZ-1 was the lowest. This phenomenon is particularly 

pronounced during the daytime, especially at 12:00; however, at other times, the WBGT values of 

LCZ-1 and LCZ-2 are mostly the same. The situation at the same height as shown in the middle figure 

of Figure 3.10. The WBGT decreases as the building height increases, and the WBGT change curve is 

mostly consistent when the density is the same. At 12:00, the values of Mid and LCZ-2 are almost the 

same and are lower than those of LCZ-5. When the plot ratio is the same, the WBGT difference is 

smaller than in the other two cases. Similarly, the WBGT of Mid was only slightly smaller than that 

of LCZ-4 (basically the same) and much larger than that of LCZ-3. The WBGT maximum difference 

occurred at 15:00 under the same plot ratio, height, and density, this occurs at 12:00 under the same 

density. 

Four typical time points were selected—06:00, 12:00, 18:00, and 24:00—to analyze the WBGT 

spatial distribution. The noon WBGT results are shown in Figure 3.11, the midnight results are shown 

in Figure 3.13, and those at 06:00 and 18:00 are shown in Figures 3.15. The WBGT spatial 

distributions are also shown in Figures 3.11 (12:00), 3.13 (24:00), and 3.16 (06:00 and 18:00). The 

color changes from blue to yellow as the WBGT rises, as shown in the legend. The three columns 

represent the distribution under the same density, same height, and same plot ratio. The value along 

the x-axis increases in the east direction, and that along with the y-axis increases in the north direction. 

Figures 3.12, 3.14, and 3.16 represent the maximum, minimum, and average WBGT at different times. 

As Figure 3.11 shows, the peaks and valleys of the WBGT are all surrounding areas of the buildings, 

with the peaks to the south of the buildings, the valleys mainly on the northern sides, and some peaks 

in the northeastern direction. The largest WBGT difference is between two adjacent buildings in the 
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north–south direction because of the peaks to the north of buildings and the valleys to the south of 

buildings. In comparison, the change in the WBGT is relatively gentle between two buildings in the 

east–west direction. Under the same density, the mid-rise models differ from the high-rise and low-

rise models. There is a particularly high peak in the mid-rise models, and the peaks of the high-rise 

and low-rise models are more balanced. When comparing the peaks, the valleys of an idealized model 

are the same. When the height is the same, as the density decreases, the WBGT is slower, and the 

peaks are more average. The higher the height is and the lower the density is, the lower the WBGT 

peak is under the same plot ratio. 

 

 

Figure 3.11. WBGT spatial distribution at 12:00 of each idealized model (black blocks indicate 

buildings). 

 

According to Figure 3.12, under the three model conditions, the trends of the maximum, minimum, 

and average are similar. When the building density is the same, as the density increases, the WBGT 



CHAPTER THREE  
URBAN STRUCTURE IDENTIFICATION AND ITS IMPLICATION OF URBAN CLIMATE 

 

3-22 

gradually increases. In the case of the same building height, the changing trend of the average value 

is similar to that of the previous case, but the maximum and minimum values are the minima of the 

Mid model. When the floor area ratio does not change, the Mid model has a significant decrease 

compared with the LCZ-3 model, but the Mid and LCZ-4 models are the same. 

 

 

Figure 3.12. The maximum, minimum and average of WBGT at 12:00 of each idealized model 

 

Figure 3.13 shows the spatial distribution at 24:00. At night, the WBGT has little data, which means 

that the WBGT is generally low and there are almost no valleys. In contrast, the peaks are obvious, 

and they are all north of the buildings. When the building density is the same, there is a prominent 

peak in LCZ-2 that is similar to that during daytime. The peaks in LCZ-1 were higher than those in 

LCZ-3; at the same height, the peaks of LCZ-2 are higher than those of Mid and LCZ-5. The single 

peak area of LCZ-5 is higher than the Mid peak. In the last case, the WBGT distribution around each 

building was similar between Mid and LCZ-4. 
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Figure 3.13. WBGT spatial distribution at 24:00 of each idealized model (black blocks indicate 

buildings). 

 

Unlike the daytime, the average WBGT at night is generally closer to the maximum, as shown in 

Figure 3.14. The minimum of each model is different, and the maximum is almost similar. In particular, 

when the building height and plot ratio are the same, the minimum value of the Mid model is 

significantly smaller than that of the other two models. In both cases, WBGT is inversely proportional 

to the building density. When the building density is the same, WBGT decreases as the building height 

increases. 
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Figure 3.14. The maximum, minimum and average of WBGT at 24:00 of each idealized model 

 

Comparing the WBGT distribution during the day and at night, there are more data available during 

the daytime than at night-time. The peak position was reversed during the day and night. It is mostly 

concentrated on the south side of the buildings in the daytime but on the north side at night. The peak 

height is also larger at night. The valley’s position during the day is on the north side, but the valleys 

at night are difficult to discern. According to the two tables above, it is obvious that the WBGT 

maximum, minimum, and average at night are much lower than they are during the day. Moreover, the 

difference at night is also much less. Under the three conditions, the changes in the WBGT were the 

same during the day and night. 

Compared to the results at 12:00 and 24:00, the WBGT spatial distribution at 06:00 and 18:00 

(shown in Figure 3.15) are significantly different. In contrast to the above two cases at specific times, 

the distribution in the early morning and at nightfall depends on the building shadow due to sunrise 

and sunset. The difference between the WBGT in the shadows and in the sunlight is not obvious. 

Comparisons of the maximum, minimum, and average WBGT between 06:00 and 18:00 (shown in 

Figure 3.16), demonstrate that the WBGT in the afternoon was significantly higher than that in the 

morning. The change curve at the two time points is basically the same when the building density, 

height, and plot ratio are the same, especially for the average WBGT. There will be some places with 

lower WBGTs in Mid and LCZ-4. 
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(a) 

 

(b) 

Figure 3.15. WBGT spatial distribution at 06:00 (a) and 18:00 (b) of each idealized model (black 

blocks indicate buildings) 
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Figure 3.16. The maximum, minimum and average of WBGT at 06:00 (a) and 18:00 (b) of each 

idealized model 
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3.4. Discussion 

A Each type of LCZ has corresponding microclimate characteristics through the ENVI-met 

simulation. WBGT was introduced to evaluate urban outdoor heat stress; the calculation results 

demonstrate that there is a significant relationship between the WBGT and LCZs throughout the day. 

This means that the proposed LCZ classification system could be used to identify urban structures, 

and urban structures can affect urban heat stress. 

 
3.4.1. Application of remote sensing in urban structure classification 

This classification system divided the urban structures into more detailed categories based on local 

characteristics [78]. The MLC method used in this research is a reliable and fully developed method, 

according to previous research [79]. This research combined the classification system with a method 

to identify urban structures, and a confusion matrix was selected to validate the accuracy of the results. 

In the case study, which looked at urban structures in the Kanto MMA, Japan, the land use and land 

cover in the study region were identified. The identification results show that the building types in the 

DID of the Kanto MMA are significantly larger than the land cover types, and, in the SA, the results 

are opposite, with the proportion of land cover types being higher than that of building types.  

In the DID, compact low-rise buildings constitute the most prevalent type and are located around 

the urban area. Large low-rise buildings are the least prevalent. In the urban surrounding area not far 

from the urban center, there are also several compact high-rise cluster areas. This fits the characteristics 

of a “satellite city” in the five urban expansion models proposed by Camagni et al. [80] Seven auxiliary 

city centers are distributed around the urban center as satellite cities [81]. In the SA, vegetation 

occupies the most area, including dense trees, scattered trees, and low-lying plants. Agricultural land 

is the most important component of low-lying plants and is widely distributed in the northern part of 

the Kanto MMA. Sparsely built-in agricultural land represents a large proportion of building types. 

Combined with the air temperature of the research region, the same building type has different urban 

microclimate in the DID and SA. The air temperature on the southwest side of the study area, 

consisting of dense trees and scattered trees, is significantly lower than elsewhere. The SA, in which 

vegetation accounts for a large proportion of land cover types is obviously cooler than the DID, which 

means that the vegetation has a significant impact on air temperature. 

This research only identifies urban structures in a qualitative manner, however, not a quantitative 

one. For example, in the process of selecting the training area, this research was based only on our 

subjective perspective, especially with respect to the LCZ types. In our future work, each LCZ will 

have its own characteristics, such as a specific sky view factor, aspect ratio, building surface fraction, 

impervious surface fraction, pervious surface fraction, building height, and terrain roughness class. 

According to these indexes, the training area will be selected more scientifically, which will produce 

results closer to reality. 
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3.4.2. The influence of urban structure on urban thermal stress 

There is a connection between urban heat stress and urban structures [82]. In this research, urban 

microclimate simulations were performed based on idealized models under specific meteorological 

conditions and dates, without considering human activities. By calculating and analyzing WBGT, this 

study evaluates the urban heat stress. Evaluations of heat stress need to consider multiple factors, 

including air temperature, humidity, wind speed and solar radiation [83]. During the day, building 

shadows can effectively reduce the WBGT, resulting in WBGT valleys on the northern side of 

buildings. Considering the effects of wind velocity, according to a study on the wind environment of 

cubic buildings [84,85], the wind speed in the north-south direction is much higher than that in the 

east–west direction. This causes the WBGT on the south side of buildings to be significantly higher 

than on the east and west sides. Similarly, as building height increases, the shadow area increases. 

When the height and density rise, the wind speed increases. At night, without solar radiation, wind 

becomes a major factor affecting the WBGT. The wind environment, such as wind speed and direction, 

is similar to that during the daytime, so this situation leads to a WBGT peak on the north side of 

buildings. 

In the microclimate simulation, owing to the limitations of the simulation model, it is difficult to 

simulate the impact of human social activities, such as vehicles, air conditioning, and population 

movement, on air temperature. It is also arduous to simulate the microclimate of land cover LCZs. At 

the same time, because only a few idealized models were established for the simulation, we did not 

evaluate the urban microclimate in all cases, such as for different building layouts and combinations. 

In the future, we will build more varieties of idealized models to simulate and analyze the possible 

variations of future urban microclimates. 

With the rapid development of remote sensing, more advanced remote sensing images provide more 

powerful data support for the LCZ classification system. This research combined the new classification 

system and ready-made developed methods to identify the urban microclimate structure of the Kanto 

MMA and validate the identification accuracy. Then, according to the land surface temperature 

retrieved with the same remote sensing data, we found that the temperatures of the same building types 

in the DID and SA are also quite different. ENVI-met was used in this research to simulate 

microclimates of some idealized LCZ models to verify that various urban structures have different 

impacts on urban heat stress. 

 
3.4.3. Limitations of the current research 

We found that the LCZ classification system has some shortcomings in the research process. As a 

land use and land cover classification system, the “climate” component of the “local climate zone” is 

misleading. Through this study, we found that various urban structures will affect the urban 

microclimate and urban heat stress when all external conditions are the same; however, the urban 
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environment is also disturbed by many other factors, such as the location, landscape, and distance 

from the ocean [86,87]. This study confirms that location also has an impact on the local climate. In 

addition, the LCZ classification system cannot accurately divide the combined urban structure; for 

example, compact high-rise buildings can contain compact mid-rise or low-rise buildings. 

Because idealized models were used to simulate the microclimate, it is difficult to verify the 

accuracy of the simulation through measured data. Previous studies have shown that ENVI-met is a 

robust and reliable simulation method, and the results were verified by measured data [88–92]. We 

plan to verify the accuracy of ENVI-met in further studies of urban structure and urban microclimate. 
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3.5. Summary 

This research analyzed the feasibility of a new urban structure classification system, the LCZ 

classification system, and combined it with the ENVI-met simulation model to confirm the 

implications of urban structure on heat stress. Taking the Kanto MMA in Japan, as a case study, we 

used the LCZ classification system to identify urban structures based on Google Earth imagery and 

Landsat 8 OLI with the help of the MLC method. Through accuracy validation, we confirmed that the 

MLC method can identify each LCZ with high accuracy. Combined with the temperature distribution 

in the research region, we found that the same LCZ in the DID and SA differed substantially. In 

addition, the ENVI-met simulation model can be used to simulate urban microclimates. This study 

also used WBGT to evaluate and verify the impact of various urban structures on urban heat stress. 

Based on the reflectance differences in each land use and land cover type for various bands with 

different wavelengths, urban structures were identified with the MLC method, according to the LCZ 

classification system, and the identification accuracy met the precision requirements for the process. 

The same urban structure types in the DID and SA have different microclimates. By combining the 

ENVI-met simulation tool with the WBGT, this study evaluated the urban microclimate. Under 

idealized conditions (including idealized simulation models and specific weather conditions), without 

considering the impact of human activities, it is clear that urban structures have a substantial impact 

on urban heat stress. When high-rise buildings have a moderate building density, it is beneficial to 

improve the comfort and safety of the microclimate for human beings. Under the same plot ratio, the 

temperature density and height or high-rise/mid-density can effectively reduce the WBGT. In summary, 

urban structures have a significant influence on urban heat stress. 
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4.1. Study Area 

Kanto Major Metropolitan Area (shown in Figure 4.1) is the most populous metropolitan area 

around the world, which located at the Tokyo Bay. It mainly comprises the Tokyo, Kanagawa, Chiba, 

and Saitama, and some other cities of Ibaraki, Tochigi, Gunma, and Yamanashi. In light of the Statistics 

Bureau of Japan, the population was about 37.27 million [1]. It has an area of about 17,808 square 

kilometers and a population density of 2,093 people per square kilometers. 

 

(a) 

 
(b) 

Figure 4.1. The position (a) and satellite image (b) of the research region. 
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The center of the Kanto Major Metropolitan Area are the 23 special wards, contains several 

commercial centers including Shinjuku, Shibuya, Ikebukuro, and Ginza. The 23 special wards are 

surrounded by numerous suburban cities, which are seamlessly merged into one continuous built-up 

area. Many rivers flow through the area, and the majors are Ara River and Tama River. 

The Kanto Major Metropolitan Area is located in a subtropical humid climate zone [2] with hot and 

humid summers and cold winters. August is the hottest month of all year, the temperature can reach 

25.53 °C, on the contrary, January is the coldest month with only 3.50 °C [3]. The average annual 

rainfall is nearly 1,530 millimeters, wet in summer and dry in winter [4]. 
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4.2. Data Source and Preprocessing 

We used multiple remote sensing data. First, the Landsat 8 OLI/TIRS products in 2010 with a 

resolution of  30 meters were collected from the NSGS EarthExplorer website [5]. Clouds have a 

great impact on the accuracy of remote sensing data such as Landsat. Accordingly, we chose a sunny 

day as research date: October 11, 2010. These Landsat 8 OLI/TIRS data needed to be merged to the 

size of research region. Table 4-1 shows some Landsat 8 OLI/TIRS data basic information used in this 

study, including the scene identifier, the worldwide reference system path and row (WRS Path, Row), 

date, and land cover ratio. Based on remote sensing data, we used the maximum likelihood 

classification to classify the urban structure combined with satellite images. Previous study results 

proved that the accuracy of urban structure obtained by this method met the requirements [6]. 

According to local climate zone (LCZ), the urban structure at 30 m spatial resolution (shown in Figure 

4.2) includes two categories: built-up area (10 types) and land cover area (7 types), and built-up area 

was divided into 10 types: compact high-rise buildings (LCZ 1), compact mid-rise buildings (LCZ 2), 

compact low-rise buildings (LCZ 3), open high-rise buildings (LCAZ 4), open mid-rise buildings 

(LCZ 5), open low-rise buildings (LCZ 6), lightweight low-rise buildings (LCZ 7), large low-rise 

buildings (LCZ 8), sparsely built (LCZ 9), and heavy industry (LCZ 10); similarly, land cover area 

was divided into 7 types: dense trees (LCZ A), scattered trees (LCZ B), bush and scrub (LCZ C), low 

plants (LCZ D), bare rock or paved (LCZ E), bare soil or sand (LCZ F), and water (LCZ G) [7]. 

 

Table 4-1. Basic information of research region Landsat 8 OLI/TIRS data. 

Location Kanto Major Metropolitan Area 

Scene Identifier LC81070352013260LGN02/ 

LC81070362013260LGN02 

WRS Path, Row 107, 035/107, 036 

Date 2013-09-17 

Land Cloud Cover 0.05%/2.88% 
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Figure 4.2. The urban structure of the research region obtained from remote sensing data though 

the maximum likelihood classification method. 

 

Since the urban structure was only qualitative data, that is, it could only indicate which type it was, 

so how to quantify the urban structure was the key to this study. We calculated the area proportion of 

each types in various grids in both high and low resolution according to the urban structure with the 

spatial resolution of 30 m. Then, the urban structure of each grids was determined based on the area 

proportion of each types. 

Second, we downloaded the DEM data with 30 meters spatial resolution (shown in Figure 4.3.) 

obtained by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global 

Digital Elevation Model Version 2 (GDEM V2) from the NASA Earthdata website [8]. This model 

only represented altitude information, without and further definition about the land surface [9]. 
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Figure 4.3. The digital elevation model of the research region. 

 

Third, the 2010 annual average air temperature data of Kanto Major Metropolitan Area at 1 km 

spatial resolution were downloaded from the Japan National Land Numerical Information (NLNI) 

website [10] which was provided by MLIT. air temperature data was rasterized using a fishnet with a 

resolution of 1 km (shown in Figure 4.4.). 

 

 

Figure 4.4. The annual average air temperature of the research region at a 1 km spatial resolution. 
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So as to downscale air temperature from 1 km to 250 m, we resampled the independent and 

dependent variables with the resolution of both 1 km and 250 m. Then we could statistics the air 

temperature and urban structure at different resolutions for the next step of downscaling. 
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4.3. Accuracy Evaluation 
4.3.1. Accuracy Verification by Using K-fold Cross-validation 

There were multiple mechanisms to avoid underfitting and overfitting, to build an optimal model 

[11]. A commonly used method is to separate the sample out two parts, one is training sample for 

model fitting and the other is test sample for verifying the accuracy. The verification method include 

leave-one-out CV, and k-fold CV [12]. The k-fold (k=10) CV method was used to calculated precision. 

The principle of 10-fold cross-validation is shown in Figure 4.5. This method randomly divided the 

whole samples into ten equally sized sub samples. Then, one of the ten sub samples is reserved to 

verify the ET model established by the other nine sub samples. The validation process was repeated 

ten times until each sub sample is used as a test sample. The overall accuracy is the mean of the 

accuracy of all ten sub samples [13]. 

 

 
Figure 4.5. The principle of 10-fold cross-validation 

 
4.3.2. Accuracy Verification by Combining with the Meteorological Station Data 

To provide further confirmation of this method accuracy, we introduced the air temperature data 

from meteorological station. A total of 37 meteorological station that can provide annual average air 

temperature data in 2010 were located in the research region (shown in Figure 4.6). The meteorological 

station was evenly distributed in the research region. We count the annual average air temperature of 

each meteorological station in 2010 and compared with the air temperature after downscaling to verify 

the accuracy. 

 



CHAPTER FOUR  
CASE STUDY AND PRECISION EVALUATION  

 

4-8 

 

Figure 4.6. The location of meteorological station 
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4.4. Parameters tuning of Extra Trees Model for Case Study 

Parameters tuning was an indispensable step to modify the model parameters and to find the optimal 

model [14]. ET model had the same principle as RF model as mentioned above. The parameter tuning 

method was similar to RF model. Various parameters combination would lead to different prediction 

results. Therefore, the single parameters tuning could not optimize the various models [15]. Since 

n_estimators, max_features, max_depth, and min_samples_leaf were the four most important 

parameters that could affect the predicted results [16], we tuned the above four parameters and set the 

other parameters as default values. Figure 4.7 shows the model scores changes when adjusting above 

four main parameters. Among them, Figure 4.7a shows the change of model scores when n_estimators 

ranges from 1 to 100 and when max_features is set as None or sqrt; Figure 4.7b shows the partial 

enlarged detail of score changes when n_estimators ranges from 10 to 50; Figure 4.7c shows the partial 

enlarged detail of score changes when max_depth ranges from 10 to 20; Figure 4.7d represents the 

changes of  model score , train MSE, and test MSE when min_samples_leaf ranges from 1 to 30. 

In order to prevent underfitting, we added n_estimators to improve the fitting ability of ET model 

in the tuning process. The value of n_estimators was the ideal value (point A and point B in Figure 

4.7b) when the model scores dropped for the first time. At the same time, we set max_features as to 

None (blue line in Figure 4.7a and 4.9b) and sqrt (orange line in Figure 4.7a and 4.9b). Similarly, when 

the model scores did not rise significantly for the first time, the value of max_depth was the suitable 

value (point C in Figure 4.7c). Affected by several parameters tuning, the ET model might also be 

overfitting[17]. Since the increase of n_estimators and max_depth would cause the model to be 

complicated and overfitting, it was necessary to rise the value of min_samples_leaf to prevent 

overfitting and improve the accuracy of model prediction. When train MSE was slightly lower than 

test MSE, the model was good fitting [18]. Therefore, we introduced Δ to indicate the difference 

between train and test MSE. When the Δ no longer decreased significantly, it was the optimal set of 

min_samples_leaf (point D in Figure 4.7d). 
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Figure 4.7. The model scores changes (y-axis) when adjusting n_estimators, max_depth, 

min_samples_leaf (x-axis), and set max_features as None (blue line) or sqrt (orange line): (a) the 

score changes when n_estimators ranges from 1 to 100 and when max_features is set as None or 

sqrt; (b) the partial enlarged detail when n_estimators ranges from 10 to 50; (c) the partial enlarged 

scores when max_depth ranges from 10 to 20; (d) the changes of model score, train MSE, test MSE, 

and △ (difference between train and test MSE) with min_samples_leaf ranging from 1 to 30. 

 

If we set all the parameters as default values, the model score was 0.912. The model score rose 

rapidly while n_estimators raised from 1 to 6, then trend to be flat. Due to Figure 4.7b, the orange line 

reached the first maximum scores (scores = 0.923, point A), when n_estimators was 39. And the first 

maximum score of blue line was 0.935 (point B), when n_estimators was 41. Thus, point A was the 

best parameters combination of n_estimators and max_features. In the same way, the first maximum 

value of max_depth was the optimal solution. Consequently, the max_depth was set as 17, and the 

score was 0.934. According to Figure 4.7d, when min_samples_leaf exceeded 10, Δ, that is, the 

difference between train and test MSE did not reduce significantly. When the min_samples_leaf was 

10, the score was 0.927 (point D). Currently, the train MSE was 0.106 °C, which was slightly lower 

than the test MSE with a value of 0.136 °C. Therefore, the ET model was good fitting as 

min_samples_leaf was 10. After parameters tunning, we obtained the optimal combination (shown in 
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Table 4-2) corresponding to the model score of 0.927, that was 0.015 higher than the original model 

score.  

 

Table 4-2. The optimal combination of the four main parameters of the ET model in this study. 

Parameter Name in scikit-learn Ranges Optimal Value 

n_estimators 1,3,5,7…99 41 

max_features None, Auto None 

max_depth 0,1,2,3…30 17 

min_samples_leaf 0,1,2,3…30 10 
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4.5. Precision results of Extra Trees model by using K-fold cross-validation 

We used the cross_val_score module in the scikit-learn libraries to combine the previously divided 

training samples and test samples and conduct 10-fold CV on the optimal model to verify whether the 

ET model fits well. The results of 10-fold CV are shown in Figure 4.8. Overall, the ET model showed 

good fitting that the average of scores was about 0.926, ranging from 0.903 to 0.941. The validation 

results met the requirements. Based on the optimal ET model, we predicted air temperature with low-

resolution, and compared between real air temperature and predicted air temperature as shown in 

Figure 4.9. The predicted air temperature and real air temperature of the scatters falling on the 1:1 line 

was equal. Most of the scattered points were clustered around the 1:1 line with R2 of 0.927, that 

confirmed the ET model have good performance in regression. In summary, this ET model established 

in section 3.1 can be applied for following downscaling studies. 

 

 

Figure 4.8. 10-fold cross-validation results of the ET model established in section 3.1 (x-axis is the 

fold number as the test sample; y-axis is the model scores; the black dotted line is the mean of 

validation results) 
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Figure 4.9. Scatter plot of predicted air temperature (y-axis) versus real air temperature (x-axis) (the 

black dotted line is the 1:1 line; color bar represents the frequency of scatters) 
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4.6. Air Temperature Downscaling Results 

While constructing the downscaling model, the ET model was able to provide the variable 

importance by observing how much predicted error increased when the train samples of this variable 

was replaced while those of all other variables remain unchanged [19]. The importance scores were 

expressed in MSE. The variable importance of the independent variables rose with the increase of 

MSE [20]. Figure 4.10 shows the importance score of independent variables for the ET model. The x-

axis is the MSE, or importance score, and the y-axis is the independent variable. Compared with other 

variables, DEM scores significantly higher in importance, that is, DEM plays an important part in ET 

models. The next was LCZ A representing dense trees, which was significantly higher than other urban 

structure types. However, LCZ 1, LCZ G, LCZ F, and LCZ 8 reflected the lowest importance in this 

ET model, and their importance scores were less than 0.05. 

 

 

Figure 4.10. Importance score of independent variables (x-axis is MSE, which represents 

importance scores; y-axis is independent variables) 

 

The purpose of the air temperature downscaling model was to overcome the low-resolution of air 

temperature data provided by NLNI, so as to furtherly research on the urban thermal environment 

accurately in Japan. According to the ET model built in Section 4.4, we improved the resolution of air 

temperature from 1 km to 250 m, namely, we predicted the corresponding air temperature by using 

independent variables with high resolution. In order to improve the downscaling effect and reduce 

errors, spline method was used to fit residual, which was introduced in Section 2.6. Figure 4.11 shows 

the air temperature distribution including the air temperature products from NLNI, low-resolution 

predicted air temperature (1 km), and high-resolution downscaled air temperature (250m); the latter 
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two represent the predicted air temperature distribution. The color band of air temperature was 

represented as green to yellow to red. Green areas are low-temperature area, and red areas are high-

temperature area. Comparing low-resolution NLNI/AT and predicted AT, the similarity of high-

temperature and low-temperature area distribution was extremely high. The predicted air temperature 

was more sharpen than air temperature products from NLNI. The results showed that the ET model is 

fitting for following air temperature downloaded in the Kanto Major Metropolitan Area. Figure 4.11c 

shows the high-resolution air temperature after residuals fitting. And the air temperature distribution 

was basically consistent with that of air temperature products from NLNI. Downscaled air temperature 

ranged from 7.1 ℃ to 16.9 ℃, and the temperature difference was smaller than air temperature 

products of NLNI which ranged from 6.4 ℃ to 17.0 ℃. From the downscaled results, we found that 

there was a large piece of red area throughout the Kanto Major Metropolitan Area , which were mainly 

distributed along the Tokyo Bay. The low-temperature area represented by green mostly covered the 

west side of the study area. And the downscaled air temperature was generally slightly higher than air 

temperature products from NLNI. Combined with urban structure, this indicated that the downscaling 

effect in low-temperature area (mainly mountain areas with high vegetation coverage) is poor. A long 

and narrow yellow area, that is, the mid-temperature area, lain between the mountain area and the 

urban area on the west side. Compared with east side, red area on the north side is deeper into the land. 

The area of the mid-temperature zone in the north and west was basically the same. Based on the high-

resolution air temperature, several yellow lines, which were Ara River, Edo River, and Tama River, 

with mid-temperature passed through the urban center. Meanwhile, there was a small conspicuous 

orange area, that is, Tokyo Imperial Palace with a lot of vegetation space, in the red area on the 

northwest bank of Tokyo Bay, and the air temperature was slightly lower than the surrounding area.  
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Figure 4.11. Predicted and downscaled results at different resolution from air temperature products 

from NLNI: (a) low-resolution air temperature products from NLNI (1km); (b) low-resolution 

predicted AT (1 km); (c) high-resolution downscaled air temperature (250 m). 

 

  



CHAPTER FOUR  
CASE STUDY AND PRECISION EVALUATION  

 

4-17 

4.7. Validation Results Comparing Downscaled Result and Meteorological Station Data 

According to the measured air temperature from 37 meteorological stations mentioned in Section 

2.4.2, we collected the annual average air temperature data of 2010 from Japan Meteorological Agency 

[3]. Then, we used the location information of the meteorological station to extract the corresponding 

downscaled air temperature data from the downscaling results in Figure 11c. Finally, we integrated the 

two set of air temperature data, and the result is shown in Figure 12. The x-axis is the downscaled air 

temperature, and the y-axis is the measured air temperature. It is obvious that the scatters were 

distributed near the blue dashed line. The R2 was about 0.9542. The error did not exceed plus or minus 

0.4 ℃. The difference of most data sets was less than or equal 0.1 ℃, and only the two sets differed 

by 0.4 ℃. A small amount of errors can meet the research requirements, that is, the ET model-based 

air temperature downscaling method meets the precision requirements and can be applied in air 

temperature downscaling research. 

 

 
Figure 4.12. Comparison of downscaled (x-axis) and measured (y-axis) air temperature of 

meteorological station. (the blue dotted line is the 1:1 line) 
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4.8. Discussion 

The objective of this study was to evaluate the effectiveness of extra tree regressor model to 

downscale air temperature based on urban structure and DEM. The results of the air temperature 

downscaling experiment in Kanto Major Metropolitan Area demonstrated that usefulness of this 

method. 

 
4.8.1. Accuracy analysis of the downscaling results in Kanto Major Metropolitan Area. 

According to the downscaling accuracy validation of Section 3.2 and 3.4, the downscaling results 

could generally reflect the accurate high-resolution air temperature. It was important to point out that 

the precision validation of the first meteorological station with high vegetation and water coverage, 

that is, Tokyo meteorological observation point, which located in Tokyo Imperial Palace. Tokyo 

Imperial Palace, which could be equated to a large-scale urban park, usually exerted a cooling effect 

in warm areas and played an important part in reducing the air temperature of downtown areas [21,22], 

that has been confirmed in different region across the globe [23–27]. Similarly, Tokyo Imperial Palace 

located in the urban center is also surely helpful to reduce air temperature of the urban center, that is, 

the air temperature here was lower than that in the surrounding areas. Through prediction and residual 

fitting, the downscaled air temperature of Tokyo meteorological observation point was 16.3 ℃, which 

was the same as the measured data at this point. The value was lower than the surround areas with 

17.0 ℃ (before downscaling) and 16.9 ℃ (after downscaling). However, based on high-resolution air 

temperature products from NLNI, the air temperature at this point reached 16.8 ℃, because this area 

had a smaller size than the resolution (1 km), or was between several grids. The downscaling results 

with a resolution of 250 m provided an accurate description of air temperature at this point. This was 

the purpose of air temperature downscaling. 

However, downscaled air temperature trended to produce deviations in extreme temperature ranges, 

including high-temperature in downtown and low-temperature areas in mountain region. As mentioned 

in Section 3.3, the air temperature ranges from 6.4 ℃ to 17.0 ℃ before downscaling to 7.1 ℃ to 

16.9 ℃ after downscaling. The range was significantly reduced, especially at low temperatures. Figure 

4.11 also shows that in low-temperature area (air temperature was less than 8 ℃), the scatters had a 

larger deviation from the black dashed line than the other ranges. We thought that this was caused by 

two reasons. The first is that the number of training samples in these extreme temperature ranges is 

insufficient to calibrate the ET downscaling model [28]. Secondly, for extremely low-temperature 

areas, namely mountain areas, the urban structure in this area is relatively simple, mainly LCZ A (dense 

trees), and even some grids with a resolution of 1 km were all of the same urban structure types. This 

caused that the urban structure could not fit the ET downscaling model, the air temperature prediction 

in these areas depended entirely on the independent variable of DEM. This indicates that the accuracy 

of the air temperature downscaling method based on machine learning model is higher in the area with 
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high heterogeneity than in the space with homogeneous urban structure. This conclusion had also been 

confirmed in previous studies [29–31]. 

 
4.8.2. Variables’ importance analysis 

The variables importance could also reflect the impact of urban structure and altitude on air 

temperature to a certain extent. According to Figure 4.12, it was obvious that DEM was extremely 

important in the ET model establishment, that is, altitude had a great influence on temperature. Based 

on the environmental lapse rate, the air temperature at high altitudes were generally lower than those 

at low altitude [32,33].  

Excluding DEM, in the urban structure types, LCZ A had the greatest impact on temperature on air 

temperature. This was well understood that vegetation areas, especially dense trees, had a good cooling 

effect on the urban environment, which corresponds to results of other studies [34–36]. However, we 

turned up that the importance of LCZ 1 (compact high-rise building), which could also affect the urban 

thermal environment [37,38], was the lowest. We inferred that the variable importance was also related 

to the number of variable samples. Therefore, we counted the proportion of each urban structure types. 

The results showed that the lowest four variables were LCZ 1, LCZ G, LCZ F, and LCZ 8 in the 

importance ranking. Their corresponding area ratios were 0.4%, 1.1%, 1.9%, and 0.8% respectively. 

In the urban structure types, the area proportion of the highest importance, namely LCZ A, was 19.3%, 

which is the largest. Similarly, because DEM existed in the entire study area, it could participate in the 

model establishing fully, it had the highest importance.  

Consequently, it should be advised that the importance score of the independent variables depended 

not only on the influence of the independent variables on the dependent variable, but also on count 

and size of variables. For example, removing or replacing independent variables might change the 

variable importance because different interrelated variables might be act as surrogates [28]. 

 
4.8.3. Limitations of the current research 

We found that the ET method has some defects in the research process. It was undeniable that the 

air temperature downscaling method based on machine learning algorithm and the correlation between 

urban structure and air temperature had a high accuracy. We used the ET model, set DEM, NDVI, 

NDBI, and the reflectance of band 1 to band 5 and band 7 in Landsat 8 OLI/TIRS as the independent 

variables, and performed the similar parameters tuning, then predicted the air temperature in the same 

study area. It turned out that CV score was about 0.886, which was smaller than the CV results of this 

study. Obviously, the independent variables choice was more conducive to the model establishing. 

However, according to the aforementioned, this independent variable combination was more suitable 

for high heterogeneous areas, and the downscaling accuracy for high homogeneous areas of this 

combination was not satisfactory, especially in mountain areas in this study. In this study, even if we 
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added DEM to the independent variable to improve the downscaling effect of high homogeneous 

regions, the results were still undesirable.  

In the measured air temperature verification section, since NLNI provided the annual average air 

temperature in 2010, we only could use the corresponding meteorological station measured air 

temperature data to verify the downscaling results. But the location of meteorological station was 

limited. For example, in this study, there were densely distributed meteorological stations in plain area 

which could provide measured data. On the contrary, there were no meteorological stations in 

mountain areas. So, we were hard to verify the accuracy of mountain areas. Meanwhile, remote sensing 

data could not provide accurate air temperature data for precision verification. 
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4.9. Summary 

In this chapter, we presented an air temperature downscaling method that can be applied for AUHI 

analysis. Taking the Kanto Major Metropolitan Area, Japan, as a case study, we establish an ET model, 

a machine learning model, to assist in downscaling research. The basic principle of downscaling was 

that the regression of air temperature, as dependent variable, and independent variables, including 

DEM and urban structure remained unchanged at different scale. Based on the resampled low-

resolution air temperature that obtained from NLNI, DEM and urban structure data which identified 

by maximum likelihood classification method from Landsat 8 OLI/TIRS data, we built an optimal ET 

model by parameters tuning, and the model passed the CV. Then, we inputted DEM and urban structure 

with a scale of 250 m into the ET model to predict the high-resolution air temperature data. Finally, 

we fitted the residual to obtain the downscaling air temperature data of study area and compared with 

measured air temperature from meteorological station to check the downscaling precision. 

We concluded that the proposed ET downscaling method for low-resolution air temperature 

according to DEM, urban structure, was confirmed to be flexible and efficient in downscaling air 

temperature spatial resolution from 1 km to 250 m in this study area. In accordance with prediction 

accuracy analysis, 10-fold CV score was sufficient to support the subsequent downscaling. Combining 

DEM and the urban structure with a resolution of 250 m, we could obtain high-resolution air 

temperature data through the previous ET model. Finally, the comparison between downscaled air 

temperature and measured air temperature supported the conclusion that the ET model and the 

independent variables combination, including DEM and the urban structure, can be used to downscale 

low-resolution air temperature, especially in high heterogeneity regions. 

Although it is not within the scope of this study, the ET model may also be applicable to other 

regions or other spatial scales and should be further validated. By way of illustration, downscaling the 

air temperature to a smaller resolution with 100 m, and in other regions in various continents around 

the world. Meanwhile, how to improve the downscaling precision in high homogeneous areas also 

needs to be further studied attention in future research.  



CHAPTER FOUR  

CASE STUDY AND PRECISION EVALUATION  

 

4-22 

Reference 

1.  Bureau, S. Statistical handbook of Japan 2015. 2015. 

2.  Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate 

classification. Hydrol. earth Syst. Sci. 2007, 11, 1633–1644. 

3.  Japan Meteorological Agency Available online: http://www.jma.go.jp/jma/index.html (accessed 

on Apr 29, 2021). 

4.  Matsumoto, J.; Fujibe, F.; Takahashi, H. Urban climate in the Tokyo metropolitan area in Japan. 

J. Environ. Sci. (China) 2017, 59, 54–62, doi:10.1016/j.jes.2017.04.012. 

5.  EarthExplorer Available online: https://earthexplorer.usgs.gov/ (accessed on Jan 31, 2021). 

6.  Wang, R.; Gao, W.; Zhou, N.; Kammen, D.M.; Peng, W. Urban structure and its implication of 

heat stress by using remote sensing and simulation tool. Sustain. Cities Soc. 2021, 65, 102632, 

doi:10.1016/j.scs.2020.102632. 

7.  Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. 

Soc. 2012, 93, 1879–1900. 

8.  Earthdata Search Available online: https://search.earthdata.nasa.gov/search (accessed on Jan 31, 

2021). 

9.  Peckham, R.J.; Gyozo, J. Development and Applications in a Policy Support Environment Series: 

Lecture Notes in Geoinformation and Cartography. Heidelberg, Ger. 2007. 

10.  National Land Numerical Information Available online: https://nlftp.mlit.go.jp/ksj/ (accessed on 

Jan 31, 2021). 

11.  Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. 

Importance of sample size, data type and prediction method for remote sensing-based estimations 

of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114, 

doi:10.1016/j.rse.2014.07.028. 

12.  Kuhn, M.; Johnson, K. Over-Fitting and Model Tuning. In Applied Predictive Modeling; Springer 

New York, 2013; pp. 61–92. 

13.  Wu, Y.; Duguay, C.R.; Xu, L. Assessment of machine learning classifiers for global lake ice 

cover mapping from MODIS TOA reflectance data. Remote Sens. Environ. 2021, 253, 112206, 

doi:10.1016/j.rse.2020.112206. 

14.  Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227, doi:10.1007/s11749-

016-0481-7. 

15.  Probst, P.; Boulesteix, A.-L. To Tune or Not to Tune the Number of Trees in Random Forest. J. 

Mach. Learn. Res. 2017, 18, 6673–6690. 

16.  Srivastava, T. Tuning the parameters of your random forest model. Anal. Vidhya 2015, 9. 

17.  Bishop, C.M. Pattern recognition and machine learning; springer, 2006; ISBN 1493938436. 

18.  Ballabio, C. Spatial prediction of soil properties in temperate mountain regions using support 



CHAPTER FOUR  

CASE STUDY AND PRECISION EVALUATION  

 

4-23 

vector regression. Geoderma 2009, 151, 338–350, doi:10.1016/j.geoderma.2009.04.022. 

19.  Liaw, A.; Wiener, M. Classification and Regression by RandomForest; 2001; 

20.  Zhao, W.; Sánchez, N.; Lu, H.; Li, A. A spatial downscaling approach for the SMAP passive 

surface soil moisture product using random forest regression. J. Hydrol. 2018, 563, 1009–1024, 

doi:10.1016/j.jhydrol.2018.06.081. 

21.  Guo, S.; Yang, G.; Pei, T.; Ma, T.; Song, C.; Shu, H.; Du, Y.; Zhou, C. Analysis of factors 

affecting urban park service area in Beijing: Perspectives from multi-source geographic data. 

Landsc. Urban Plan. 2019, 181, 103–117, doi:10.1016/j.landurbplan.2018.09.016. 

22.  Peng, J.; Dan, Y.; Qiao, R.; Liu, Y.; Dong, J.; Wu, J. How to quantify the cooling effect of urban 

parks? Linking maximum and accumulation perspectives. Remote Sens. Environ. 2021, 252, 

112135, doi:10.1016/j.rse.2020.112135. 

23.  Chen, X.; Su, Y.; Li, D.; Huang, G.; Chen, W.; Chen, S. Study on the cooling effects of urban 

parks on surrounding environments using Landsat TM data: A case study in Guangzhou, southern 

China. Int. J. Remote Sens. 2012, 33, 5889–5914, doi:10.1080/01431161.2012.676743. 

24.  Yang, C.; He, X.; Yu, L.; Yang, J.; Yan, F.; Bu, K.; Chang, L.; Zhang, S. The Cooling Effect of 

Urban Parks and Its Monthly Variations in a Snow Climate City. Remote Sens. 2017, 9, 1066, 

doi:10.3390/rs9101066. 

25.  Algretawee, H.; Rayburg, S.; Neave, M. Estimating the effect of park proximity to the central of 

Melbourne city on Urban Heat Island (UHI) relative to Land Surface Temperature (LST). Ecol. 

Eng. 2019, 138, 374–390, doi:10.1016/j.ecoleng.2019.07.034. 

26.  Skoulika, F.; Santamouris, M.; Kolokotsa, D.; Boemi, N. On the thermal characteristics and the 

mitigation potential of a medium size urban park in Athens, Greece. Landsc. Urban Plan. 2014, 

123, 73–86, doi:10.1016/j.landurbplan.2013.11.002. 

27.  Sugawara, H.; Shimizu, S.; Takahashi, H.; Hagiwara, S.; Narita, K.; Mikami, T.; Hirano, T. 

Thermal Influence of a Large Green Space on a Hot Urban Environment. J. Environ. Qual. 2016, 

45, 125–133, doi:10.2134/jeq2015.01.0049. 

28.  Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random 

forest regression. Remote Sens. Environ. 2016, 178, 127–141, doi:10.1016/j.rse.2016.03.006. 

29.  Ebrahimy, H.; Azadbakht, M. Downscaling MODIS land surface temperature over a 

heterogeneous area: An investigation of machine learning techniques, feature selection, and 

impacts of mixed pixels. Comput. Geosci. 2019, 124, 93–102, doi:10.1016/j.cageo.2019.01.004. 

30.  Gao, F.; Kustas, W.; Anderson, M. A Data Mining Approach for Sharpening Thermal Satellite 

Imagery over Land. Remote Sens. 2012, 4, 3287–3319, doi:10.3390/rs4113287. 

31.  Wang, R.; Gao, W.; Peng, W. Downscale MODIS Land Surface Temperature Based on Three 

Different Models to Analyze Surface Urban Heat Island: A Case Study of Hangzhou. Remote 

Sens. 2020, 12, 2134, doi:10.3390/rs12132134. 



CHAPTER FOUR  

CASE STUDY AND PRECISION EVALUATION  

 

4-24 

32.  Jingchao, J.; Junzhi, L.; Chengzhi, Q.; Yamin, M.; A-Xing, Z. Near-surface air temperature lapse 

rates and seasonal and type differences in China. Prog. Geogr. 2016, 35, 1538–1548, 

doi:10.18306/dlkxjz.2016.12.010. 

33.  Lookingbill, T.R.; Urban, D.L. Spatial estimation of air temperature differences for landscape-

scale studies in montane environments. Agric. For. Meteorol. 2003, 114, 141–151, 

doi:10.1016/S0168-1923(02)00196-X. 

34.  Shiflett, S.A.; Liang, L.L.; Crum, S.M.; Feyisa, G.L.; Wang, J.; Jenerette, G.D. Variation in the 

urban vegetation, surface temperature, air temperature nexus. Sci. Total Environ. 2017, 579, 495–

505, doi:10.1016/j.scitotenv.2016.11.069. 

35.  Davis, A.Y.; Jung, J.; Pijanowski, B.C.; Minor, E.S. Combined vegetation volume and 

“greenness” affect urban air temperature. Appl. Geogr. 2016, 71, 106–114, 

doi:10.1016/j.apgeog.2016.04.010. 

36.  Skelhorn, C.; Lindley, S.; Levermore, G. The impact of vegetation types on air and surface 

temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc. Urban 

Plan. 2014, 121, 129–140, doi:10.1016/j.landurbplan.2013.09.012. 

37.  Alexander, C. Influence of the proportion, height and proximity of vegetation and buildings on 

urban land surface temperature. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102265, 

doi:10.1016/j.jag.2020.102265. 

38.  Cao, Q.; Luan, Q.; Liu, Y.; Wang, R. The effects of 2D and 3D building morphology on urban 

environments: A multi-scale analysis in the Beijing metropolitan region. Build. Environ. 2021, 

192, 107635, doi:10.1016/j.buildenv.2021.107635. 

 



 

Chapter 5. Downscale Air Temperature Prediction of 

Metropolitan Area by Extra Trees Model 

 

 

 

 

5.1. Study Area Introduction ............................................................................................................... 1 

5.1.1. Japan Climate Zones ........................................................................................................... 1 

5.1.2. Selection of Metropolitan Area as Study Area .................................................................... 3 

5.1.3. Urban Climate of Study Area .............................................................................................. 8 

5.2. Data Source and Research Data ................................................................................................ 10 

5.2.1. Data Source ....................................................................................................................... 10 

5.2.2. Research Data .................................................................................................................... 11 

5.3. Urban Structure Identification of Study Area ............................................................................ 23 

5.4. Downscale Air Temperature based on Extra Trees Model ......................................................... 28 

5.4.1. Accuracy Analysis of Extra Trees Model .......................................................................... 28 

5.4.2. Downscaled Air Temperature from 1 km to 250 m ........................................................... 30 

5.5. Summary .................................................................................................................................... 35 

Reference ................................................................................................................................................ 36 

 

 

 

  

 

 

 

 

 

 



CHAPTER FIVE  

DOWNSCALE AIR TEMPERATURE PREDICTION OF METROPOLITAN AREA  

BY EXTRA TREES MODEL  

 

5-1 

5.1. Study Area Introduction 

Japan is an island country, centered on the Japanese archipelago, including four major islands of 

Hokkaido, Honshu, Shikoku, and Kyushu. It consists of about 6,800 islands, with a total land area of 

about 377,950 square kilometers. It is the 4th largest island country in the world and the largest island 

country in East Asia [1]. It is located at the junction of the four plates of the Eurasian plate, the North 

American plate, the Pacific plate, and the Philippines plate. 

Approximately 75% of Japan’s land is mountainous and hilly areas. Small-scale mountain basins 

and plains are scattered throughout the country, becoming a concentration of residential, farming, and 

economic activities. The mountainous area accounts for the largest land area in the four countries at 

79.9%, followed by Kyushu at 64.8%, Honshu at 63.6%, and Hokkaido the lowest at 49%. The plains 

in Japan are not large, and most of them are small-scale alluvial plains, coastal plains, and alluvial 

platforms. 

Due to the large latitude of Japan, the air temperature difference between north and south is very 

significant; and the continuous mountain peaks running through the center of the Japanese archipelago 

make the climate difference between the Pacific coast and the Japan Sea coast. Because Japan is 

located on the east coast of the mid-latitude mainland, Japan's climate is obviously affected by the 

confluence of monsoons and ocean currents. Japan is an island country with small annual temperature 

differences and abundant precipitation, with obvious maritime climate characteristics. 

 

5.1.1. Japan Climate Zones 

Japan's climate characteristics are affected by ocean currents and seasonal winds, with four distinct 

seasons. Summer is the season of high temperature, high humidity and rain, and winter is low 

temperature and low precipitation. Japan can be divided into six climate zones, namely Hokkaido Zone, 

Sea of Japan Zone, Central Highland Zone, Pacific Coast Zone, Inland Sea Zone, and Ryukyu Zone, 

as shown in Figure 5.1. Since the Ryukyu Islands are far away from the Japanese archipelago, this 

study does not include the Ryukyu Zone. 

 

⚫ Hokkaido Zone 

Hokkaido is the northernmost island in Japan, located at the mid-latitude of northern hemisphere 

and the eastern edge of northeast Asia, and is surrounded by Sea of Japan, the Pacific Ocean, and the 

Sea of Okhotsk. The climate of Hokkaido is affected by the currents around the island. Summers are 

cool, winters are harsh, and there is a large air temperature difference between summer and winter. As 

it is not affected by East Asian rainy season and typhoon, the weather is very dry. The entire area of 

Hokkaido is heavily snowed. The northern region and the eastern region of Hokkaido are very cold. 

Except for the coastal areas, the average temperature of the coldest month in almost all areas is -8 ℃ 

or lower, and usually dropship to -30 ℃. 
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⚫ Sea of Japan Zone 

Sea of Japan Zone is the characteristic of the winter climate. Its scope is the western coastal area of 

Honshu Island. In winter, it is controlled by high air pressure in Siberia, blowing northwest wind. At 

the same time, there is often heavy snow because the warm Tsushima Sea current passes through the 

Sea of Japan in winter and brings a lot of water vapor. There is less precipitation in summer and 

sometimes abnormally high temperatures occur. 

 

⚫ Central Highland Zone 

Central Highland Zone is the climate of a basin surrounded by high-altitude mountainside. It is a 

typical inland climate with low precipitation. Cold in winter and cool in summer. In Japan, which is 

largely affected by the warm and moist winds from the Pacific Ocean side in summer and the cold and 

moist winds that cross the Sea of Japan from mainland China in winter, these seasonal winds are 

blocked by the surrounding high-altitude mountains. Since it is not affected, the humidity is low and 

stable throughout the year, and the annual rainfall is low, about 1000 mm. The number of days of 

precipitation, which is the number of days when precipitation of 1 mm or more is observed, is also 

small except for the rainy season (including meteorological phenomena similar to the rainy season). 

Also, in winter, the temperature in the morning and evening is often quite low due to the radiative 

cooling phenomenon. 

 

⚫ Pacific Coast Zone 

Pacific Coast Zone refers to the regional climate characteristics of the Japanese archipelago on the 

Pacific coast, including the east coast of Honshu, Southern Shikoku, and most of Kyushu. Affected by 

the southeastern monsoon, there are many strong typhoons in the rainy season in summer. In winter, 

there is less snow. 

 

⚫ Inland Sea Zone 

Inland Sea Zone includes parts of Sanyo, Kita-Shikoku, Kinki, and Kyushu. The weather here is 

often sunny, with little rainfall, and suffering from drought from time to time. The summer monsoon 

is blocked by the Shikoku Mountains, and the winter monsoon is blocked by the Chugoku Mountains. 

For this reason, the weather and humidity are stable throughout the year, and the precipitation months 

are bimodal in May, June, July (rainy season) and September (autumn rain / typhoon), and 8 between 

the two peaks. The number of precipitation days throughout the year (the number of days when 

precipitation of 1 mm or more is observed) is also small except for the rainy season (including 

meteorological phenomena similar to the rainy season). The situation is different from the area with 

the climate on the Sea of Japan side. Precipitation is around 1000 to 1600 mm per year. 
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Figure 5.1. Japan Climatic Zones 

 

5.1.2. Selection of Metropolitan Area as Study Area 

Metropolitan Area refers to a region with metropolis as the core and radiating to the surroundings 

to build a city. The characteristics of the metropolitan area are reflected in the economic ties between 

nearby cities, the division of labor and cooperation of industries, the mutual influence of transportation 

and social life, urban planning and infrastructure construction [2]. With the development of social, 

economic and political systems, the metropolitan areas have become the key regions [3]. Metropolitan 

areas include satellite cities, towns, and intermediate rural areas. These areas are economically linked 

to urban core areas and are usually connected by commuting [4]. Most metropolitan areas are based 

on a core city, but in some cases, metropolitan areas have multiple centers with almost equal 

importance.  

The Statistics Bureau of Japan defines the metropolitan area as one or more central cities and their 

related outlying cities. There must be at least 1.5% of the permanent population aged 15 or over 

commuting to school or working in one of the cities to become an outlying municipality. To qualify as 

a central city, a city must either be a designated city of any population or a non-designated city with a 
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city proper population of at least 500,000. There are a total of 14 metropolitan areas in Japan, including 

11 major metropolitan area as shown in Table 5-1 [5]. 

 

Table 5-1 List of Metropolitan Areas in Japan 

Climate Zone Metropolitan Name Population Area Population Density 

Pacific Coast Zone 

Kanto MMA 37,273,866 14,034 2,656 

Chukyo MMA 9,363,221 7,266 1,289 

Kitakyushu-Fukuoka MMA 5,538,142 5,731 966 

Shizuoka-Hamamatsu MMA 2,842,151 5,494 517 

Sendai MMA 2,256,964 6,506 347 

Kumamoto MMA 1,492,975 4,251 351 

Kagoshima MA 1126639 3458 326 

Inland Sea Zone 

Kinki MMA 19,302,746 13,033 1,481 

Hiroshima MMA 2,096,745 5,048 415 

Okayama MMA 1,639,414 3,637 446 

Matsuyama MA 706,883 2,272 311 

Hokkaido Zone Sapporo MMA 2636254 4514 584 

Sea of Japan Zone Niigata MMA 1395612 5345 261 

Central Highland Zone Utsunomiya MA 1655673 5455 304 

 

According to Table 5-1, there are the most metropolitan areas located in Pacific Coast Zone, with a 

total of seven, including Kanto Major Metropolitan Area, Chukyo Major Metropolitan Area, 

Kitakyushu-Fukuoka Major Metropolitan Area, Shizuoka-Hamamatsu Major Metropolitan Area, 

Sendai Major Metropolitan Area, Kumamoto Major Metropolitan Area, and Kagoshima Metropolitan 

Area. Followed by Inland Sea Zone, with a total of four, including Kinki Major Metropolitan Area, 

Hiroshima Major Metropolitan Area, Okayama Major Metropolitan Area, and Matsuyama 

Metropolitan Area. Each of the other three climatic zone has only one metropolitan area, which is the 
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Sapporo Major Metropolitan Area of Hokkaido Zone, Niigata Major Metropolitan Area of Sea of 

Japan Zone, and Utsunomiya Metropolitan Area of Central Highland Zone. It can be seen that the 

metropolitan area of Japan is mainly concentrated on the Pacific coast and the Set Inland Sea area. 

We selected the largest metropolitan area whose population is most from each climatic zone as the 

research objects, namely Kanto Major Metropolitan Area, Kinki Major Metropolitan Area, Sapporo 

Major Metropolitan Area, Niigata Major Metropolitan Area, and Utsunomiya Metropolitan Area. 

⚫ Kanto Major Metropolitan Area  

The Kanto Major Metropolitan Area is the most populous metropolitan area around the world. And 

at the same time, Tokyo has the largest metropolitan economy in the world. According to a study 

conducted, the Tokyo urban area had a total GDP of $2 trillion in 2012, that topped in the list. Tokyo 

is also a major international finance center. About the transportation, Tokyo is Japan's largest domestic 

and international hub for rail, ground, and air transportation. The population density is about 2,656 

people/km2. Tokyo is a subtropical monsoon climate with an annual average air-temperature of 15.6 

degrees. It has 4 distinctive seasons with abundant precipitation. There is more precipitation in summer 

because of the southeastern monsoon. There is less snow in winter.  

More detailed information about the Kanto Metropolitan Area has been introduced in Section 4.1, 

and the study area is also the same as the case study in Chapter 4, as shown in Figure 5.2. The central 

cities include 23 special wards area (Tokyo), Yokohama, Sagamihara, Kawasaki, Chiba, Saitama. 

 

 

Figure 5.2. The location of Kanto Major Metropolitan Area in Japan  
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⚫ Kinki Major Metropolitan Area  

Kinki (shown in Figure 1) is a metropolitan region in the Kansai region of Japan encompassing the 

metropolitan areas of the cities of Kyoto in Kyoto Prefecture, Osaka in Osaka Prefecture and Kobe in 

Hyōgo Prefecture. It is the second-most-populated urban region in Japan (after the Kanto Major 

Metropolitan Area), containing approximately 15% of Japan's population. The entire region has a 

population (as of 2010) of 19 million over an area of 13,033 km2.  

The location of Kinki Major Metropolitan Area is shown in Figure 5.3. The central cities are mainly 

composed of Kyoto, Osaka, Kobe, and Sakai. 

 

 

Figure 5.3. The location of Kinki Major Metropolitan Area in Japan  

 

⚫ Sapporo Major Metropolitan Area  

Sapporo Metropolitan Area is located in the southwest of the Ishikari Plain, with a municipal area 

of 4,514 square kilometers. With a population of more than 2.63 million, it is the largest city in 

Hokkaido and the fifth most populous city in Japan [6]. It contains about half of Hokkaido’s population. 

Although it is located in the western part of Hokkaido, it is the radiating point of Hokkaido’s railways, 

highways, and air routes, so it is also the center of Hokkaido in terms of traffic. In 2014, the GDP of 

Sapporo Major Metropolitan Area was 6,547.8 billion Japanese yen, and the per capita income of 

citizens was 2.612 million yen [7]. One of the characteristics of Sapporo's economy is that the 

proportion of the secondary industry is very low, accounting for only 10.7% of the total economy. The 

tertiary industry has a very important position, accounting for 88% of the total economy. 

Figure 5.4 shows the location of Sapporo Major Metropolitan Area in Japan. Sapporo City is the 

central city of Sapporo Major Metropolitan Area. 
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Figure 5.4. The location of Sapporo Major Metropolitan Area in Japan  

 

⚫ Niigata Major Metropolitan Area  

Niigata Major Metropolitan Area is located in the northeastern part of Niigata Prefecture, Japan, at 

the estuary of the Shinano River, which is the longest river in Japan, and is the largest city on the coast 

in Honshu. It covers an area of 5,345 square kilometers and has a population of nearly 1.4 million. 

Figure 5.5 shows the location of Niigata Major Metropolitan Area in Japan, and the central city is 

Niigata City. 

 

 

Figure 5.5. The location of Niigata Major Metropolitan Area in Japan  
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⚫ Utsunomiya Metropolitan Area  

Utsunomiya Metropolitan Area is located in the central part of Tochigi Prefecture and is the largest 

city in the North Kanto with a population of approximately 1.65 million, and a population density of 

304 persons per square kilometers [8]. Most commercial and business activities in Utsunomiya take 

place around the Utsunomiya train station [9].  

Figure 5.6 shows the location of Utsunomiya Metropolitan Area whose the central city is 

Utsunomiya. 

 

 

Figure 5.6. The location of Utsunomiya Major Metropolitan Area in Japan 

 

5.1.3. Urban Climate of Study Area 

According to the meteorological data from Japan Meteorological Agency [10], we separated 

counted the monthly average of air temperature and precipitation of each metropolitan areas in 2010, 

as shown in Figure 5.7. The histogram represents the changes of air temperature of each metropolitan 

areas during 2010, and the line chart represents the changes of precipitation. The air temperature 

changes trends of study area are similar. The highest temperature is August, and the lowest temperature 

is January. Therefore, we selected monthly average air temperature of January and August, and annual 

average air temperature as the research object. Different from air temperature, the precipitation curve 

of each metropolitan area can be roughly divided into two categories: the same periods of high 

temperature and rainy season (Kanto Major Metropolitan Area, Kinki Major Metropolitan Area, and 

Utsunomiya Metropolitan Area) and different periods of high temperature and rainy season (Sapporo 

Major Metropolitan Area and Niigata Major Metropolitan Area). 
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Figure 5.7. The climate characteristics of each metropolitan areas  
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5.2. Data Source and Research Data  

5.2.1. Data Source 

According to the ET model establishment process provided in Figure 2.22, in order to build the 

regression model between surface parameters (including DEM and urban structure) and air 

temperature, we need low-resolution independent variables after resampling from high-resolution 

independent variables and low-resolution air temperature data. The data source for air temperature 

downscaling is shown in Figure 5.8. 

 

 

Figure 5.8. The data source of ET model establishing 

 

As shown in Figure 5.8, the green box represents the high-resolution data with a spatial resolution 

of 30 m, and the orange box represents the low-resolution data with a spatial of 1 km. Data source are 

mainly divided into two categories, namely dependent variables, and independent variables. The 

independent variables are air temperature data in 2010, which can be obtained from National Land 

Numerical Information. And dependent variables consist of DEM and urban structure. DEM data is 

provided from Shuttle Radar Topography Mission (SRTM). The urban structure was classified based 

on remote sensing data with the help of maximum likelihood classification method introduced in 

Chapter 3. 

In order to obtain high-resolution urban structure, and minimize the impact of time on urban 

structure, we need remote sensing data around 2010 to classify the urban structure. After entering the 

21st century, Japan’s urbanization process has slowed down, we assumed that the urban structure has 

not undergone major changes over time in recent years. For improving the identification accuracy of 

urban structure, we used Landsat 8 Operational Land Imager (OLI) and the Thermal Infrared Sensor 
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(TIRS) data with 11 bands. In summary, the remote sensing data provided by Landsat 8 OLI/TIRS 

satellite is the best choice. Landsat 8 OLI/TIRS is a low earth orbit satellite launched in February of 

2013 to collect images of the earth surface [11]. The satellite collects images of the Earth with a 16-

day repeat cycle. And the approximate scene size is 170 kilometers north-south by 183 kilometers 

east-west. Landsat 8 OLI/TIRS image data files consist of seven spectral bands [12]. Table 5-2 shows 

the Spectral Bands of Landsat 8 OLI/TIRS. 

 

Table 5-2 The Spectral Bands of Landsat 8 OLI/TIRS 

Sensor Band No. Band Wavelength /μm Resolution/m 

OLI 

1 Ultra-Blue (coastal/aerosol) 0.43-0.45 30 

2 Blue 0.45-0.51 30 

3 Green 0.53-0.59 30 

4 Red 0.64-0.67 30 

5 Near Infrared (NIR) 0.85-0.88 30 

6 Shortwave Infrared (SWIR) 1 1.57-1.65 30  

7 Shortwave Infrared (SWIR) 2 2.11-2.29 30 

8 Panchromatic 0.50-0.68 15 

9 Cirrus 1.36-1.38 30 

TIRS 
10 Thermal Infrared (TIRS) 1 10.60-11.19 100 

11 Thermal Infrared (TIRS) 2 11.50-12.51 100 

 

5.2.2. Research Data 

⚫ Digital Elevation Model Data 

A digital elevation model (DEM) is a 3D computer graphics representation of altitude data to 

represent terrain. The Dem data used in this study is obtained from Shuttle Radar Topography Mission 

(SRTM). The spatial resolution of SRTM is about only 1 arc-second for global coverage (~30 meters) 

[13]. The DEM data of each metropolitan area is shown in Figure 5.9. 
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(a)  (b) 

(c)  (d) 

(e) 

Figure 5.9. The DEM data of each metropolitan area  

(a: Kanto Major Metropolitan Area; b: Kinki Major Metropolitan Area; c: Sapporo Major 

Metropolitan Area; d: Niigata Major Metropolitan Area; e: Utsunomiya Metropolitan Area) 
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⚫ Landsat 8 OLI/TIRS Data 

The remote sensing data are greatly influenced by clouds and weather. And we choose sunny days 

without clouds above the research region. Table 5-3 shows the basic information of Landsat 8 

OLI/TIRS data. Meanwhile, in order to reduce the impact of snow on the top of the mountain on the 

accuracy of urban structure classification, we chose the date without snow as the original data. Then, 

we also need to merge and clip the original image before it can be used in the next research. 

 

Table 5-3 Basic information of Landsat 8 OLI/TIRS data of each metropolitan area 

Location Kanto Major Metropolitan Area 

Landsat Scene Identifier LC81070352013260LGN02, 

LC81070362013260LGN02 

WRS Path/ WRS Row 107/035,107/036 

Date 2013-09-17 

Land Cloud Cover 0.05%, 2.88% 

Sun Elevation 51.88°, 52.95° 

Sun Azimuth 148.06°, 146.60° 

  

Location Kinki Major Metropolitan Area 

Landsat Scene Identifier LC81100352014076LGN01, 

LC81100362014076LGN01 

WRS Path/ WRS Row 110/035,110/036 

Date 2014-03-17 

Land Cloud Cover 7.46%, 2.20% 

Sun Elevation 46.85°, 47.87° 

Sun Azimuth 145.26°, 143.96° 
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Location Sapporo Major Metropolitan Area 

Landsat Scene Identifier LC81080302015193LGN02 

WRS Path/ WRS Row 108/030 

Date 2015-07-12 

Land Cloud Cover 4.47% 

Sun Elevation 62.76° 

Sun Azimuth 134.38° 

  

Location Niigata Major Metropolitan Area 

Landsat Scene Identifier LC81080332013155LGN01, 

LC81080342013155LGN01 

WRS Path/ WRS Row 108/033,108/034 

Date 2013-06-04 

Land Cloud Cover 3.22%, 2.05% 

Sun Elevation 66.69°, 67.36° 

Sun Azimuth 129.34°, 126.09° 

  

Location Utsunomiya Metropolitan Area 

Landsat Scene Identifier LC81070342013260LGN02, 

LC81070352013260LGN02 

WRS Path/ WRS Row 107/034,107/035 

Date 2013-09-17 

Land Cloud Cover 2.71%, 0.05% 

Sun Elevation 50.79°, 51.88° 

Sun Azimuth 149.45°, 148.06° 
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Location Kanto Major Metropolitan Area 

Landsat Scene Identifier LC81070352013260LGN02, 

LC81070362013260LGN02 

WRS Path/ WRS Row 107/035,107/036 

Date 2013-09-17 

Land Cloud Cover 0.05%, 2.88% 

Sun Elevation 51.88°, 52.95° 

Sun Azimuth 148.06°, 146.60° 

  

Location Kinki Major Metropolitan Area 

Landsat Scene Identifier LC81100352014076LGN01, 

LC81100362014076LGN01 

WRS Path/ WRS Row 110/035,110/036 

Date 2014-03-17 

Land Cloud Cover 7.46%, 2.20% 

Sun Elevation 46.85°, 47.87° 

Sun Azimuth 145.26°, 143.96° 

  

Location Sapporo Major Metropolitan Area 

Landsat Scene Identifier LC81080302015193LGN02 

WRS Path/ WRS Row 108/030 

Date 2015-07-12 

Land Cloud Cover 4.47% 

Sun Elevation 62.76° 

Sun Azimuth 134.38° 
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Location Niigata Major Metropolitan Area 

Landsat Scene Identifier LC81080332013155LGN01, 

LC81080342013155LGN01 

WRS Path/ WRS Row 108/033,108/034 

Date 2013-06-04 

Land Cloud Cover 3.22%, 2.05% 

Sun Elevation 66.69°, 67.36° 

Sun Azimuth 129.34°, 126.09° 

  

Location Utsunomiya Metropolitan Area 

Landsat Scene Identifier LC81070342013260LGN02, 

LC81070352013260LGN02 

WRS Path/ WRS Row 107/034,107/035 

Date 2013-09-17 

Land Cloud Cover 2.71%, 0.05% 

Sun Elevation 50.79°, 51.88° 

Sun Azimuth 149.45°, 148.06° 

 

⚫ Air Temperature Data 

Air temperature data of 2010 with a spatial resolution of 1 km was downloaded from Japan National 

Land Numerical Information (NLNI) website [14] which was provided by Ministry of Land, 

Infrastructure, Transport and Tourism (MLIT). The downloaded air temperature data is the shapefile 

of a fishnet with a side length of 1km. In order to process the air temperature data efficiently, we need 

to covert the polygon file to low-resolution raster data with a spatial resolution of 1 km. The processed 

air temperature data is shown below, including than annual average air temperature and the monthly 

average air temperature of January and August in 2010. 
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(a) (b) 

(c) 

Figure 5.10. Air temperature of Kanto Major Metropolitan Area. (a) Monthly average air 

temperature in January; (b) Monthly average air temperature in August; (c) Annual average air 

temperature 

Figure 5.10 shows the air temperature of Kanto Metropolitan Area. The red area represents high-

temperature area, yellow area represents mid-temperature area, and blue area represents low-

temperature area. The annual average temperature ranges from 6.4 °C to 16.3 °C. the high-temperature 

areas are mainly concentrated in the Tokyo Bay. And the air temperature ranges of monthly average 

air temperature in January and August are from -4.9 °C to 7.2 °C and from 18.0 °C to 27.5 °C. The 

high-temperature area in January is significantly smaller than that in August. The area of the low-

temperature zone is roughly the same. 
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(a) (b) 

(c) 

Figure 5.11. Air temperature of Kinki Major Metropolitan Area. (a) Monthly average air temperature 

in January; (b) Monthly average air temperature in August; (c) Annual average air temperature 

 

Figure 5.11 shows the air temperature of Kinki Major Metropolitan Area. And the Figure 5.11a 

represents the annual average air temperature, Figure 5.11b and 5.11c represent the monthly average 

air temperature in January and August. The air temperature ranges of annual averages and monthly 

average in January and August are from 5.7 °C to 16.9 °C, from -5.5 °C to 6.6 °C and from 16.9 °C to 

28.8 °C. Unlike the Kanto Major Metropolitan Area, the distribution of high-temperature, mid-

temperature and low-temperature areas is almost similar in January and August. But the color in the 

high-temperature areas is obviously darker, that is, atmosphere urban heat island in August is serious. 
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(a) (b) 

(c) 

Figure 5.12. Air temperature of Sapporo Major Metropolitan Area. (a) Monthly average air 

temperature in January; (b) Monthly average air temperature in August; (c) Annual average air 

temperature 

Figure 5.12 shows the air temperature distribution of Sapporo Major Metropolitan Area. The air 

temperature is significantly lower than that of other metropolitan areas. The annual air temperature is 

only from 1.0 °C to 8.8 °C, and the range in January is even lower than -11.5 °C to -3.0 °C. Compared 

to the others, the air temperature in August is similar with a range from 14.7 °C to 22.2 °C. And there 

are obviously more high-temperature areas in August than in January. The air temperature in the urban 

center in January is higher than that in the surround suburb plains. 
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(a) (b) 

(c) 

Figure 5.13. Air temperature of Niigata Major Metropolitan Area. (a) Monthly average air 

temperature in January; (b) Monthly average air temperature in August; (c) Annual average air 

temperature 

 

Figure 5.13 represents the air temperature of Niigata Major Metropolitan Area. The ranges of annual 

average is from 0.7 °C to 14 °C, and the ranges in January and August are from -11.5 °C to 3.0 °C and 

from 19.0 °C to 31.5 °C. 
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(a) (b) 

(c) 

Figure 5.14. Air temperature of Utsunomiya Metropolitan Area. (a) Monthly average air temperature 

in January; (b) Monthly average air temperature in August; (c) Annual average air temperature 

 

Figure 5.14 shows the air temperature of Utsunomiya Metropolitan Area. The maximum, minimum, 

average air temperature and difference of each metropolitan area are shown in Table 5-4. The air 

temperature difference in January is higher than that in August. And the difference of Utsunomiya 

Metropolitan Area is the largest and of Sapporo Major Metropolitan Area is the smallest.  
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Table 5-4 The maximum, minimum, average air temperature, and air temperature difference of each 

metropolitan area 

Location Period Min Max Average Difference 

Kanto 

Annual 6.4 16.3 14.2 9.9 

January -4.9 7.2 3.5 12.1 

August 18.0 27.5 25.6 9.5 

Kinki 

Annual 5.7 16.9 13.7 11.2 

January -5.5 6.6 2.6 12.1 

August 16.9 28.8 25.6 11.9 

Sapporo 

Annual 1.0 8.8 6.5 7.8 

January -11.5 -3.0 -6.3 8.5 

August 14.7 22.2 20.0 7.5 

Niigata 

Annual 0.7 14.0 10.7 13.3 

January -11.5 3.0 -0.7 14.5 

August 19.0 31.5 29.0 12.5 

Utsunomiya 

Annual 4.8 20.0 16.2 15.2 

January -8.6 9.3 4.9 17.9 

August 17.7 31.6 27.8 13.9 
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5.3. Urban Structure Identification of Study Area  

We used the method introduced in Chapter 3 to identify the urban structure of the five metropolitan 

areas based on remote sensing data. The verification of the error matrix shows that the maximum 

likelihood classification method can be applied in urban structure identification with high accuracy, 

which can be used in this section. 

In this section, combining with the Landsat 8 OLI/TIRS data mentioned in Section 5.2.2, we 

identified the urban structure of each metropolitan area. As in Chapter 3, we still used the local climate 

zone to divide the urban structure. Metropolitan areas will be divided into two types, including the 

built types and land cover types [15]. Built types include ten parts, namely compact high-rise buildings 

(LCZ 1), compact mid-rise buildings (LCZ 2), compact low-rise buildings (LCZ 3), open high-rise 

buildings (LCZ 4), open mid-rise buildings (LCZ 5), open low-rise buildings (LCZ 6), lightweight 

low-rise buildings (LCZ 7), large low-rise buildings (LCZ 8), sparsely built (LCZ 9), and heavy 

industry (LCZ 10); land cover types consist of seven parts, namely dense trees (LCZ A), scattered 

trees (LCZ B), bush and scrub (LCZ C), low plants (LCZ D), bare rock or paved (LCZ E), bare soil 

or sand (LCZ F), and water (LCZ G). The urban structure identification results are shown in the figure 

below. 

 

 

Figure 5.15. The urban structure of Kanto Major Metropolitan Area 

 

Figure 5.15 shows the urban structure of Kanto Major Metropolitan Area. The urban area, that is, 
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the built type, are almost concentrated on the coast of Tokyo Bay, especially on the west coast of Tokyo 

Bay. And on the west side of the metropolitan area and the south side of Boso Peninsula is mainly 

vegetation area. There are large tracts of plains with few houses on the surrounding area of the urban 

area. Overall, the urban area of the Kanto Metropolitan Area obviously occupies a large part.  

 

 

Figure 5.16. The urban structure of Kinki Major Metropolitan Area 

 

Figure 5.16 shows the urban structure of Kinki Major Metropolitan Area. Similar to the Kanto 

Metropolitan Area, the urban is mainly concentrated along the bay, which is Osaka Bay, but the urban 

area of Kinki Major Metropolitan Area is more concentrated, mainly on the northeastern coast of 

Osaka Bay. There is also a relatively concentrated and obvious urban area on the southwest side of 

Biwa Lake (which is a large area of water surface on the northeast side of the Kinki Major Metropolitan 

Area), that is Kyoto City. Compared to Kanto Major Metropolitan Area, Kinki Metropolitan Area has 

significantly more vegetation areas. 

Figure 5.17 shows the urban structure of Sapporo Major Metropolitan Area. The main urban area is 

located between Ishikari River and Mount Moiwa. According to that scale bar, the area of the Sapporo 

Major Metropolitan Area is much smaller than the Kanto Major Metropolitan and Kinki Metropolitan 

Area, and is similar to the Niigata Major Metropolitan Area, and slightly larger than the Utsunomiya 

Metropolitan Area. The Ishikari Plain occupies a large area of the entire metropolitan area. Surrounded 

by vegetation. 
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Figure 5.17. The urban structure of Sapporo Major Metropolitan Area 

 

 

Figure 5.18. The urban structure of Niigata Major Metropolitan Area 
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Figure 5.18 shows the urban structure of Niigata Major Metropolitan Area. It can be clearly found 

the vegetation covers more than half of the metropolitan area. And the urban area only occupies a 

small part.  

Figure 5.19 shows the urban structure of Utsunomiya Metropolitan Area. The vegetation covers a 

large area, and the urban area is also small. According to the results of urban identification, we have 

calculated the proportion of each urban structure in different metropolitan areas, as shown in Table 5-

5. Blue represents the lowest ratio, and the red represents the highest proportion. 

 

 

Figure 5.19. The urban structure of Utsunomiya Metropolitan Area 

 

Table 5-5 The proportion of each urban structure types in different metropolitan areas (%) 

LCZ ID 1 2 3 4 5 6 7 8 9 10 A B C D E F G 

Kanto 0.4  2.3  5.8  2.6  2.5  4.6  8.8  0.6  9.9  3.7  19.0  14.7  4.8  11.4  5.5  2.2  1.3  

Kinki 0.4  1.8  3.2  1.8  3.5  5.1  4.0  1.8  3.2  1.0  44.2  8.1  3.3  6.9  1.8  4.3  5.5  

Sapporo  0.1  0.3  0.7  0.6  1.0  4.7  3.7  0.3  4.8  1.0  59.9  5.0  10.5  3.7  0.3  1.3  2.1  

Niigata 0.2  0.5  1.8  0.4  1.2  2.8  3.0  0.4  10.4  3.6  32.4  14.0  13.6  10.2  0.9  1.6  3.4  

Utsunomiya  0.1  0.1  0.4  0.9  1.5  1.6  4.5  0.2  8.8  0.6  36.0  33.0  4.2  5.5  0.8  1.9  0.2  



CHAPTER FIVE  

DOWNSCALE AIR TEMPERATURE PREDICTION OF METROPOLITAN AREA  

BY EXTRA TREES MODEL  

 

5-27 

As the Table 5-5 shows that LCZ A is the largest in each metropolitan area. Among them, in Sapporo 

Major Metropolitan Area, LCZ A accounts for nearly 60%, while the Kanto Major Metropolitan Area, 

which has the least ratio, accounted for 19%. For all urban structures, the proportion of LCZ 1 is 

almost the least among all metropolitan areas, accounting for only 0.1% to 0.4%. Comparing LCZ 1 

to LCZ 6, no matter which metropolitan area, the proportion decreases with the increase of building 

height, and decreases with the increase of building density. 

Based on the urban structure of each metropolitan area obtained in this section, combined with the 

DEM data in Section 5.2.2, we used the extra trees model (mentioned in Chapter 2) to downscale the 

low-resolution air temperature data from 1km to 250 m. The results are shown in the next section. 
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5.4. Downscale Air Temperature based on Extra Trees Model 

5.4.1. Accuracy Analysis of Extra Trees Model 

According to the method of air temperature downscaling introduced in Chapter 2, the core of 

downscaling is to establish a regression model between the independent variables (DEM and urban 

structure) and the dependent variable (air temperature). In order to be able to establish a regression 

model, we created the fishnet with a side length of 1 km according to the scope of each metropolitan 

area. Then, we separately counted the value of annual average air temperature of 2010, monthly 

average air temperature of January and August in 2010, and the average value of DEM in each grid, 

and calculated the area proportion of each LCZ types in each grid. With the help of statistical data ode 

independent variables and dependent variable, we used the scikit learning model libraries based on 

Python 3.8 to establish Extra Trees Model for each metropolitan area and various period. Through 

parameter tunning we have establish the optimal model for air temperature downscaling. The 

parameters settings are shown in Table 5-6. 

 

Table 5-6 The parameters settings of each optimal models for each metropolitan area and various 

period. 

Location Period 
Parameter Name 

n_estimators max_features max_depth min_samples_leaf 

Range 1,3,5,7…99 None, Auto 0,1,2,3…30 0,1,2,3…30 

Kanto 

Annual 30 None 19 9 

January 38 None 20 7 

August 21 None 14 8 

Kinki 

Annual 41 None 15 10 

January 63 None 17 11 

August 71 None 13 8 

Sapporo 

Annual 31 None 14 7 

January 21 None 13 6 

August 37 None 13 9 

Niigata 

Annual 31 None 9 7 

January 21 None 10 8 

August 27 None 10 7 

Utsunomiya 

Annual 29 None 11 7 

January 17 None 11 8 

August 21 None 10 6 
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Through the optimal Extra Trees Models, we predicted the low-resolution air temperature data with 

a spatial resolution of 1 km. This step can detect the accuracy of downscaling model while preparing 

for the high-resolution residual fitting. The cross-validation scores of each optimal model for each 

metropolitan area and various period is shown in Figure 5.20. The green bar chart represents the cross-

validation scores of annual average air temperature in 2010; the blue bar chart represents the January; 

and red bar chart represents the August.  

 

 

Figure 5.20. The cross-validation scores of each optimal model for each metropolitan area and 

various period 

 

As shown in Figure 5.20, the cross-validation scores are all higher than 0.82, which meets the 

accuracy for air temperature downscaling. It is obvious that the prediction accuracy of the regression 

model in January is significantly lower than that in August. The cross-validation scores of the 

prediction models in August are all over 0.9. For comparison, only three metropolitan areas with cross-

validation scores higher than 0.9 in January area 0.9038 for Niigata Major Metropolitan Area and 

0.9713 for Utsunomiya Metropolitan Area. The Sapporo Major Metropolitan Area has the lowest 

cross-validation score in January, only 0.8126. In general, the prediction effect of the Extra Trees 

Models for Sapporo Major Metropolitan Area is the worst among the five metropolitan areas, while 

the prediction accuracy of the Extra Model for Utsunomiya Metropolitan Area is the highest, with all 

three values exceeding 0.97. 

Using the above optimal models, combined with high-resolution DEM and urban structure data with 

a spatial resolution of 250 m, we predicted high-resolution air temperature data, and then after residual 

fitting, the downscaled air temperature data with a resolution of 250 m is as follows. 
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5.4.2. Downscaled Air Temperature from 1 km to 250 m 

Figure 5.20 shows the downscaled air temperature of Kanto Major Metropolitan Area with a spatial 

resolution of 250 m. Compared to the original air temperature with a spatial resolution of 1 km, the 

ranges of downscaled air temperature are larger. Among them, the air temperature difference in 

January changed more, from 12.1 ℃ to 13.3 ℃, while in August, it only increases from 9.5 ℃ to 

10 ℃. The air temperature distribution is basically the same as that of the low-resolution data, but the 

air temperature of the river in urban center is significantly lower than that of surrounding area. 

 

(a) (b) 

(c) 

Figure 5.21. Downloaded air temperature data of Kanto Major Metropolitan Area. (a) Monthly 

average air temperature in January; (b) Monthly average air temperature in August; (c) Annual 

average air temperature 
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(a) (b) 

(c) 

Figure 5.22. Downscaled air temperature of Kinki Major Metropolitan Area. (a) Monthly average air 

temperature in January; (b) Monthly average air temperature in August; (c) Annual average air 

temperature 

 

Figure 5.22 shows the downscaled air temperature of Kinki Major Metropolitan Area. Similar to 

Kanto Major Metropolitan Area, the difference of downloaded air temperature is slightly larger than 

that of original air temperature. The changes between January and August are similar. The air 

temperature difference in January increases from 12.1 ℃ to 13.6 ℃, and in August it increases from 

11.9 ℃ to 13.1 ℃. And the change of air temperature difference of annual average value is 1.5 ℃, 

from 11.2 ℃ to 12.7 ℃. From the perspective of air temperature distribution, high-resolution air 

temperature data can more accurately show the air temperature distribution. 
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(a) (b) 

(c) 

Figure 5.23. Downscaled air temperature of Sapporo Major Metropolitan Area. (a) Monthly average 

air temperature in January; (b) Monthly average air temperature in August; (c) Annual average air 

temperature 

 

Figure 5.23 shows the downloaded air temperature of Sapporo Major Metropolitan Area. According 

to Figure 5.23a and Figure 5.23b, the urban heat island in January is more obvious than that in August. 

Compared to August, the air temperature difference in January is also larger, at 10 ℃, while the air 

temperature difference in August is only 7.7 ℃. And no matter in January or August, compared with 

Kanto Major Metropolitan Area and Kinki Major Metropolitan Area, the cooling effect of the river is 

not so obvious. There is no clear low temperature zone at the river location.  
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(a) (b) 

(c) 

Figure 5.24. Downscaled air temperature of Niigata Major Metropolitan Area. (a) Monthly average 

air temperature in January; (b) Monthly average air temperature in August; (c) Annual average air 

temperature 

 

Figure 5.24 shows the downscaled air temperature of Niigata Major Metropolitan Area. Based on 

the high-resolution air temperature data, it can be clearly seen that the air temperature distribution 

between January and August is various. The high temperature area in January is distributed along the 

coast of the Sea of Japan, while the high temperature area in August is distributed in the urban areas 

in the plain. In addition, the air temperature difference in the Niigata Major Metropolitan Area in 

January is 15.4 ℃, which is significantly higher than that in August. The air temperature difference in 

August is only 12.5 ℃. 
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(a) (b) 

(c) 

Figure 5.25. Downscaled air temperature of Utsunomiya Metropolitan Area. (a) Monthly average air 

temperature in January; (b) Monthly average air temperature in August; (c) Annual average air 

temperature 

 

Figure 5.25 shows the downscaled air temperature of Utsunomiya Metropolitan Area. Since the 

southern side of Utsunomiya Metropolitan Area is adjacent to Kanto Major Metropolitan Area, the air 

temperature on the south side is significantly higher than the other areas. 
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5.5. Summary 

In this chapter, we selected the five metropolitan areas which is the largest in each climatic zone in 

Japan. The downscaling method introduced in the previous chapter was applied to downscaled air 

temperature, including the monthly average in January and August, and the annual average in 2010, 

which downloaded from Japan National Land Numerical Information, from 1 km to 250 m. After 

cross-validation, we concluded that the downscaling accuracy meet the requirements, and the 

downscaled high-resolution air temperature can be used for the further atmosphere urban heat island 

analysis. 
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In order to be able to reflect the characteristic of urban heat islands in various metropolitan area and 

different periods objectively and quantitatively, we introduced urban heat island intensity and urban 

heat island ratio index to compare, analyze and evaluate the urban heat islands in each maximum area 

of different periods. 

 
6.1. The Calculation of Urban Heat Island Intensity 

Atmosphere urban heat island intensity is generally considered to the air temperature differences 

between the urban and suburbs, and it is calculated from the air temperature differences between them 

[1–4]. However, due to the ambiguity of the definition between urban and suburb areas, it is difficult 

to determine the intensity of the urban heat island.  

Therefore, in this section, the densely inhabited districts and the surrounding area are used as the 

boundary, the densely inhabited districts are defined as the urban area, and other areas are regarded as 

the suburb area, and the study area is divided between urban and suburb on this basis, using both 

average air temperature difference as the urban heat island intensity. The equation is as follows: 

 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑇𝑇𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

(6-1) 

where UHII represents the urban heat island intensity; Turban represents the average air temperature of 

urban area; and Tsuburb represents the average air temperature of suburb area. 

(a) (b) (c) 

(d) (e) (c) 

Figure 6.1. The distribution of densely inhabited districts of each metropolitan area:  

(a) Kanto ;(b) Kinki ;(c) Sapporo ;(d) Niigata :(e) Utsunomiya 
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The densely inhabited districts were downloaded from Japan National Land Numerical Information 

[5] as shown in Figure 6.1. The red grid represents the densely inhabited districts. There is a large area 

of densely inhabited districts in Kanto Major Metropolitan Area, followed by the Kinki Major 

Metropolitan Area, and then is the Sapporo Major Metropolitan Area. The smallest proportions are the 

Niigata Major Metropolitan Area and Utsunomiya Metropolitan Area. 

After statistics, we obtained the average air temperature of the urban areas and suburb areas of each 

metropolitan area in different periods. Based on the statistics results, we calculated the urban heat 

island intensity, the results are shown in Table 6-1. 

 

Table 6-1 The urban heat island intensity  

 
 

According to Table 6-1, the urban heat island intensity in January is generally higher than that in 

August. Among them, the urban heat island intensity in Kanto Major Metropolitan Area and Niigata 

Major Metropolitan Area is relatively weak. The value of them is only from 1.3 ℃ to 1.5 ℃. And their 

difference in urban heat island intensity between January and August is also the smallest, only 0.11 ℃ 

and 0.15 ℃. In contrast, the urban heat island intensity of Utsunomiya Metropolitan Area is higher 

than the other metropolitan areas. The value in January reaches 3.17 ℃. And the value in August is 

2.64 ℃, which is significantly higher than the August value of other metropolitan area, the second-

ranked, Sapporo Major Metropolitan Area is only 1.80 ℃, and all others are below 1.5 ℃. However, 

Area Period Urban Suburb Urban Heat Island Intensity 

January 4.7515 3.3028 1.4486

August 26.5900 25.2519 1.3381

Annual 15.2560 13.9393 1.3167

January 4.6955 2.3603 2.3352

August 26.6307 25.1982 1.4325

Annual 15.6676 13.3712 2.2964

January 2.1060 -0.7541 2.8602

August 30.7647 28.9641 1.8006

Annual 13.3082 10.6546 2.6536

January -4.9347 -6.4214 1.4867

August 21.2726 19.9442 1.3284

Annual 7.8723 6.4005 1.4718

January 8.2105 5.0402 3.1703

August 30.4433 27.8046 2.6387

Annual 18.9705 16.2409 2.7296

Kanto

Kinki

Sapporo

Niigata

Utsunomiya
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the difference of Utsunomiya Metropolitan Area between January and August is only 0.5 ℃. The 

difference between January and August of Kinki Major Metropolitan Area and Sapporo Major 

Metropolitan is the largest, reaching 0.9 ℃ and 1.0 ℃ respectively. According to the annual average 

data, Utsunomiya Metropolitan Area has the highest heat island intensity at 2.73 ℃, followed by 

Sapporo Major Metropolitan Area at 2.65 ℃, then the urban heat island intensity of Kinki Major 

Metropolitan Area is 2.30 ℃. The smallest are the Niigata Major Metropolitan Area and Kanto Major 

Metropolitan Area, with 1.47 ℃ and 1.32 ℃ respectively. 
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6.2. The Calculation of Urban Heat Island Ratio Index 

In the last section, we obtained high-resolution air temperature data of different metropolitan areas 

in various periods. We aimed to study the temporal and spatial changes of atmosphere urban heat 

island in various metropolitan areas by using high-resolution air temperature data downscaled from 

air temperature data obtained from Japan Nation Land Numerical Information with a spatial resolution 

of 1 km. Then, based on the normalization of air temperature data, we introduced urban heat island 

ratio index to quantify the distribution of urban heat islands, specifically the area ratio of urban heat 

island, which can also reflect whether the urban heat island zone is concentrated or not [6,7]. 

However, due to the differences in the periods of the downscaled air temperature images, it is 

difficult to directly use the air temperature data to compare the urban heat island in different periods. 

In order to be able to use the air temperature in different periods to compare the urban heat islands in 

various metropolitan areas, we adopted the method of normalizing the air temperature and calculated 

the urban heat island ratio index. 

Therefore, in order to avoid the error caused by the differences of periods, we normalized the 

downscaled air temperature, and the range of air temperature is controlled between 0 and 1. The 

equation is as follow: 

 

𝑇𝑇𝑁𝑁 =
𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑚𝑚𝑖𝑖𝑢𝑢

𝑇𝑇𝑚𝑚𝑢𝑢𝑚𝑚 − 𝑇𝑇𝑚𝑚𝑖𝑖𝑢𝑢
 

(6-2) 

 

where 𝑇𝑇𝑁𝑁 represents the normalized values of air temperature; 𝑇𝑇𝑖𝑖 represents the air temperature of 

pixel i; 𝑇𝑇𝑚𝑚𝑢𝑢𝑚𝑚  represents the maximum air temperature; and 𝑇𝑇𝑚𝑚𝑖𝑖𝑢𝑢  represents the minimum air 

temperature. 

Through the above normalization, we used Jenks natural breaks classification method to classify 

the downscaled air temperature. Jenks natural breaks classification method is based on the inherent 

natural grouping in the original data [8,9]. The classification interval is identified, and similar values 

can be classified appropriately, and the difference between each group can be maximized. In other 

words, this method tries to reduce the variance in the groups and maximize the variance between 

groups [10]. This method requires an iterative process. In other words, the calculation must be repeated 

using different interrupts in the original data to determine which group interrupts have the smallest 

variance [11]. With the help of Jenks natural breaks classification method, we divided the downscaled 

air temperature into 7 grades, which are low temperature zone, sub low temperature zone, sub mid 

temperature zone, mid temperature zone, sub high temperature zone, high temperature zone, and 

extremely high temperature zone.  
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Finally, we introduced the urban heat island ratio index to indicate the intensity of the urban heat 

island: 

 

𝑈𝑈𝑈𝑈𝑈𝑈 =
1

100𝑚𝑚
�𝑤𝑤𝑖𝑖𝑝𝑝𝑖𝑖

𝑢𝑢

𝑖𝑖=1

 

(6-2) 

 

where URI represents urban heat island ratio index; m represents the number of normalized 

downscaled air temperature levels; i represents the level of high temperatures zones and extremely 

high temperature zones; n represents the number of higher temperature zone levels, including high 

temperature zone and extremely high temperature zone; w represents the weightd value, takes the level 

value of level i; p represents the area ratio of the level i. 

Essentially, urban heat island ratio index is obtained by calculating the ratio of urban heat island 

zone to urban total area considering the weighted value of each level and reflects the development of 

urban heat island. The larger the urban heat island ratio index is, the more serious the urban heat island 

is. 

 
6.2.1. Normalize the Downscaled Air Temperature 

Before the Jenks natural breaks classification, we first needed to normalize downscaled air 

temperature, so that the data ranges of each periods and each metropolitan area is unified between 0 

and 1. 

Based on the above the Jenks natural breaks classification method, the downscaled air temperature 

has been scaled to the range of 0 to 1. The results are shown in Figure 6.2. In Figure 6.2a, 6.2b, 6.2c, 

and 6.2d, the upper figure represents the normalized air temperature in January, the mid figure 

represents that in August; and the bottom figure represents that through the year. And in Figure 6.1e, 

the upper left figure represents the normalized air temperature in January; the upper right figure 

represents that in August; and the bottom figure represents that through the year. The color bar is from 

blue to yellow to red. The blue area is 0; the yellow area is 0.5; and the red area is 1. The normalized 

air temperature data is similar to the downscaled air temperature. Based on the normalized air 

temperature data, we used Jenks natural breaks classification to divide the metropolitan area into seven 

levels. 
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(a) (b) 
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(c) (d) 
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(e) 

 

Figure 6.2. The Normalized Air Temperature of each metropolitan area and each period 

 

6.2.2. Jenks Natural Breaks Classification of Normalized Air Temperature 

Based on the above normalized air temperature, the study areas are divided into seven levels by the 

Jenks natural breaks classification method. Table 6-2 shows the thresholds of each normalized air 

temperature level. We set the same threshold for different periods of the same metropolitan area. 
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According to the thresholds of each normalized air temperature level in Table 6-1, the normalized 

air temperature classification results of each metropolitan areas in different periods are shown in 

Figure 6.3, 6.4, 6.5, 6.6, and 6.7. 

(a) (b) 

(c) 
Figure 6.3. The normalized air temperature classification results of Kanto Major Metropolitan Area 

(a) January; (b) August; (c) Annual.

Figure 6.3 shows the normalized air temperature classification results of Kanto Major Metropolitan 

Area. From blue to red respectively represent from the low temperature zone to the extremely high 

temperature zone. The urban heat island zones are concentrated on the coast and extend to the 

northwest of metropolitan area. And the urban heat island zone in January is significantly smaller and 

more concentrated, and it in August basically covers the entire plain. 
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(a) (b) 

 
(c)  

Figure 6.4. The normalized air temperature classification results of Kinki Major Metropolitan Area 

(a) January; (b) August; (c) Annual. 

 

Figure 6.4 shows the normalized air temperature classification of Kinki Major Metropolitan Area. 

Similar to the Kanto Major Metropolitan Area, the urban heat island zone is also concentrated along 

the coast. And the urban heat island zone in January is also smaller than that in August. And the area 

of the relatively extremely high temperature area in January is also very small. 
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(a) (b) 

 
(c)  

Figure 6.5. The normalized air temperature classification results of Sapporo Major Metropolitan 

Area (a) January; (b) August; (c) Annual. 

 

Figure 6.5 shows the normalized air temperature classification results of Sapporo Major 

Metropolitan Area. The results show that the urban heat island zone is basically concentrated in the 

Sapporo city. In January, the normalized air temperature of the plain area around the Sapporo city is 

significantly lower than that in the urban center, so it is only a sub mid temperature zone. In contrast, 

the normalized air temperature of the surrounding area in August is not much lower than that of the 

urban center, so there is a large area of urban heat island zone. According to the annual average data, 

it is between January and August, and in the plain area, there is a large sub high temperature and mid 

temperature zone. 
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(a) (b) 

 
(c)  

Figure 6.6. The normalized air temperature classification results of Niigata Major Metropolitan Area 

(a) January; (b) August; (c) Annual. 

 

Figure 6.6 shows the normalized air temperature classification results of Niigata Major Metropolitan 

Area. Unlike other metropolitan areas, the classification results of the Niigata Major Metropolitan 

Area in January and August are quite different. The urban heat island zone in January is obviously 

more concentrated near the coastline. In contrast, the urban heat island zone in August is concentrated 

in the plain area. In January, with the deepening of the inland plains, the extremely high temperature 

zone gradually becomes the high temperature zone, then is sub high temperature zone, and the finally 

is mid temperature zone. In August, it is not affected by the distance from the sea. The entire plain is 

basically covered by extremely high temperature zone and high temperature zone. According to the 
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annual average data, the distribution of urban heat islands is more similar to that in January, which is 

greatly affected by the distance from the sea. 

(a) (b) 

(c) 
Figure 6.7. The normalized air temperature classification results of Utsunomiya Metropolitan Area 

(a) January; (b) August; (c) Annual.

Figure 6.7 shows the normalized air temperature classification results of Utsunomiya Metropolitan 

Area. Unlike other metropolitan areas, the urban heat island zone in August is smaller than in January. 

Affected by the Kanto Major Metropolitan Area on the south side, the urban heat island zone is always 

on the south side of the metropolitan area regardless of the periods. 
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6.2.3. Calculate the Urban Heat Island Ratio Index 

According to the downscaled air temperature level distribution map obtained in the previous section, 

we counted the area of each level and calculate the corresponding ratio of each level. The statistical 

results are shown in Table 6-3. 

The results show that the ratio of urban heat island zones (that is, the sum of extremely high 

temperature zone and high temperature zone) in January is significantly lower than in August. The 

Kanto Major Metropolitan Area in August accounted for 55.36 % of the urban heat island zone, which 

is 43.34 % higher than January. For comparison, the urban heat island ratio in Sapporo Major 

Metropolitan Area in January only accounted for 4.32 %, that is 32.75 % less than that in August. The 

difference between the urban heat island ratio in Niigata Major Metropolitan Area and Kinki Major 

Metropolitan Area in January and August is almost the same with about 20 %. Specifically, the ratio 

of Kinki Major Metropolitan Area is 30.72 % in August and 10.08 % January; and in Niigata Major 

Metropolitan Area, the ratio in August is 40.51 %, and in January is 20.11 %. The Utsunomiya 

Metropolitan Area is different from the other metropolitan areas, the ratio of urban heat islands in 

January is larger than that in August, which is 40.48 % in January and 27.43 % in August.  

Based on the area ratio of each level of the normalized air temperature, combined with the urban 

heat island classification standard, we calculated the urban heat island ratio index with the help of 

Equation 6.2. We took Kanto Major Metropolitan Area as an example to introduce the whole 

calculation process. 

In this section, the normalized air temperature of Kanto Major Metropolitan Area was divided into 

7 levels, including low temperature zone, sub low temperature zone, sub mid temperature zone, mid 

temperature zone, sub high temperature zone, high temperature zone, and extremely high temperature 

zone, so m in Equation 6.2 is 7. We set the extremely high temperature zone and the high temperature 

zone as the urban heat island zone, so n is 2. The level values of the extremely high temperature zone 

and high temperature zone are 7 and 6, respectively. Combining with the area ratio of each temperature 

zone in Table 6-3, the urban heat island ratio area of Kanto Major Metropolitan Area can be calculated 

as follows: 

In January 

𝑈𝑈𝑈𝑈𝑈𝑈𝐽𝐽𝑢𝑢𝑢𝑢 =
1

100 × 7
(7 × 0.65 + 6 × 11.37) = 0.10 

(6-3) 

In August 

𝑈𝑈𝑈𝑈𝑈𝑈𝐴𝐴𝑢𝑢𝐴𝐴 =
1

100 × 7
(7 × 17.34 + 6 × 38.03) = 0.50 

(6-4)
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Annual 

𝑈𝑈𝑈𝑈𝑈𝑈𝐴𝐴𝑢𝑢𝑢𝑢 =
1

100 × 7
(7 × 10.52 + 6 × 31.97) = 0.38 

(6-5) 

 

Using the same method, we calculated the urban heat island ratio index in different periods of each 

metropolitan area. The results are shown in Figure 6.8. The blue, red and green histograms represent 

the urban heat island ratio index for January, August, and the whole year respectively. Urban heat 

island ratio index can intuitively indicate the ratio of the urban heat island zone in each metropolitan 

area in different periods. 

 

 
Figure 6.8. The urban heat island ratio index of each metropolitan area in different periods 

 

As the Figure 6.8 shows, the urban heat island ratio indexes of Kanto Major Metropolitan Area, 

Kinki Major Metropolitan Area, Sapporo Major Metropolitan Area, and Niigata Major Metropolitan 

Area in January are lower than that in August. Among them, Kanto Major Metropolitan Area has the 

largest difference between January and August, reaching 0.4. The exception is the Utsunomiya 

Metropolitan Area, where the urban heat island ratio index in January is larger than that in August, and 

the difference is the smallest among the five metropolitan areas, which is only 0.13. The lowest urban 

heat island ratio index is in January in Sapporo Major Metropolitan Area, only 0.04. From the annual 
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average value, the urban heat island ratio index of Kanto Major Metropolitan Area is the largest, 

reaching 0.38; followed by the Utsunomiya Metropolitan Area, which has a slightly smaller value than 

Kanto Major Metropolitan Area at 0.37. The next are Niigata Major Metropolitan Area and Kinki 

Major Metropolitan Area with 0.27 and 0.25, respectively. The final is Sapporo Major Metropolitan 

Area at 0.11. 
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6.3. Atmosphere Urban Heat Island Analysis based on UHII and URI 

According to the urban heat island intensity results and urban heat island ratio index calculated in 

Section 6.1 and 6.2, we collected the values of each metropolitan areas in different, and compared and 

analyzed the results. The statistical results are shown in Figure 6.9. The line chart represents urban 

heat island intensity, and the histogram chart represents the urban heat island ratio index. 

 

 

Figure 6.9. The urban heat island intensity and urban heat island ratio index of each metropolitan 

area in different periods 

 

By comparing the situation of urban heat island intensity and urban heat island ratio index in 

different periods of the five metropolitan areas, we can find the following summaries. 

The first is about the urban heat island intensity. The urban heat island intensity in January is 

stronger than that in August. The difference between January and August in Sapporo Major 

Metropolitan Area located in Hokkaido Zone and Kinki Major Metropolitan Area located in Inland 

Sea Zone is the largest. And Kanto Major Metropolitan Area and Niigata Major Metropolitan has the 

lowest urban heat island intensity and difference. Both metropolitan areas are located in the climatic 

zones facing the ocean. Kanto Major Metropolitan Area is located Pacific Coast Zone, and Niigata 

Major Metropolitan Area is located Sea of Japan Zone. The only metropolitan area located inland 
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which is Central Highland Zone, Utsunomiya Metropolitan Area has the highest urban heat island 

intensity and is greatly influenced by Kanto Major Metropolitan Area. The annual average data is 

similar. Utsunomiya Metropolitan Area has the highest urban heat island intensity, the next are 

Sapporo Major Metropolitan Area and Kinki Major Metropolitan Area, and the lowest is Niigata Major 

Metropolitan Area and Kanto Major Metropolitan Area. 

Regarding urban heat island ratio index, Utsunomiya Metropolitan Area is different from the other 

four metropolitan area. The value in January is higher than that in August, while in other metropolitan 

areas, the urban heat island ratio index in August is higher than that in January. And the value of Kanto 

Metropolitan Area in August is much larger than that in January. 

Combined with the urban heat island intensity and urban heat island ratio index, the five 

metropolitan areas can be roughly divided into three categories. The Utsunomiya Metropolitan Area 

is one type, which is characterized by the strong urban heat island intensity, and the urban heat island 

in January is higher than that in August, that is, the urban heat islands are more concentrated in August, 

but is not much different from that in January. Then, the Kanto Major Metropolitan Area and Niigata 

Major Metropolitan Area belong to one type. The characteristic of this type is that the urban heat island 

is very weak, but the urban heat island zone accounts for Table large ratio in August, which shows that 

most metropolitan areas are in urban heat island zone in August. However, in January, the urban heat 

island ratio index is low. This indicates that the urban heat island zone is small in January, and 

combined with Figure 6.3 and 6.6, we can find that the urban heat island zone in January is greatly 

affected by the distance from the sea. Finally, the last type includes Sapporo Major Metropolitan Area 

and Kinki Major Metropolitan Area. In this category, the urban heat island intensity in January and 

August is large, and the annual average is relatively medium compared to the other two types. However, 

the regional distribution of urban heat islands is also quite different between January and August. And 

the urban heat island zone is less affected by the distance from the sea, and more affected by the urban 

contour. 
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6.4. Summary 

In this chapter, we calculated the urban heat island intensity and urban heat island ratio index. The 

urban heat island intensity can indicate the strength and weakness of the urban heat island in this area. 

The larger the value, the more serious this area. On the contrary, it shows that the urban heat island in 

this area is weak, and even there is no urban heat island. The urban heat island indicates the coverage 

and concentration of the urban heat island area. The larger the value, the more the urban heat island 

area is covered, and the wider the coverage of urban heat island is. The smaller the value, the more 

concentrated the urban heat island and the smaller the area of urban heat island zone. 

The urban heat island intensity in the winter in January is generally higher than that in summer in 

August. However, the regional distribution of urban heat island zone is the opposite. Expect for the 

Utsunomiya Metropolitan Area, the urban heat island zone of the other four metropolitan area is more 

concentrated in the winter in January. The urban heat island zones of the Kanto Major Metropolitan 

Area and Niigata Major Metropolitan Areas area greatly affected by the distribution from the sea, 

while the urban heat island zones of Sapporo Major Metropolitan Area and Kinki Major Metropolitan 

Area are mainly concentrated in the center of the metropolitan area. The urban heat island zone of 

Utsunomiya Metropolitan Area is affected by Kanto Major Metropolitan Area and is concentrated in 

Utsunomiya city and the southern part of the metropolitan area. 
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7.1. Introduction 

With the development of urban around the word, urban heat island is the main subject of urban 

climate research. It mainly occurs on the surface and in the atmosphere. Based on this, urban heat 

islands can be divided into two types: atmosphere urban heat island and surface urban heat island. 

Although these two urban heat island types are formed in different ways, they can be related to the 

energy exchange between surface and atmosphere [1].  

Atmosphere urban heat island refers the difference in air temperature between urban area and suburb 

area, is the result of direct contact between the heat detector and the air. Atmosphere urban heat island 

is generally divided into urban canopy layer heat island and urban boundary layer heat island according 

to the air temperature at different heights [2]. Urban canopy layer heat island is the earliest and most 

common urban heat island to be studied [3]. It is usually studied based on the air temperature measured 

at meteorological station and meteorological observation points in urban area and suburb area. The air 

temperature data used in this study was downscaled from the Japan National Land Numerical 

Information. According to the product specification [4], the air temperature grid data comes from the 

data of various meteorological station and meteorological observation points. Therefore, the 

atmosphere urban heat island studied in this article refers to urban canopy layer heat island.  

Surface urban heat island can be represented based on the land surface temperature difference 

between urban area and suburbs observed directly from the infrared thermography from satellites and 

aircraft [5]. For a long time, satellite thermal infrared remote sensing data has greatly promoted the 

surface urban heat island research on the regional or larger scales [2,6–8], and aircraft remote sensing 

is relatively rare. This is since satellites remote sensing data have periodic observations on a large area 

and relatively uniform data processing standard. However, it is very expensive to obtain aircraft remote 

sensing data with periodic and large area observation [9]. In this section, we mainly use satellite 

thermal infrared remote sensing data, namely Landsat 4-5 Thematic Mapper (TM) data, to retrieve 

land surface temperature for surface urban heat island research. Based on the limitation of Landsat 4-

5 TM on natural factors such as weather and clouds, we only selected Kanto Major Metropolitan Area 

and Kinki Major Metropolitan Area as the research object to compare the atmosphere urban heat island 

and surface urban heat island.  

In order to compare atmosphere urban heat island and surface urban heat island, we introduced some 

landscape pattern metrics to compare and analyze the regression relationship between urban structure 

and urban heat islands.  

In this section, we mainly used two landscape patter metrics, that is Percentage of landscape 

(PLAND) and Aggregation index (AI), to characterize the urban landscape. PLAND represents the 

percentage of a certain patch type total area to the landscape total area. The larger the PLAND is, the 

richer coverage of this kind of patch is [10,11]. AI reflects the degree of patch aggregation, and a large 

value indicated that the landscape is composed of a few large patches that are clustered together [11,12]. 
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We calculated these two metrics and established regression models with land surface temperature and 

air temperature to compare the relationship between different urban structure on atmosphere urban 

heat islands and surface urban heat islands. 

To sum up, in this chapter, we first used Landsat 4-5 TM remote sensing data to retrieve the land 

surface temperature, and then analyze the surface urban heat island, and compared it with the 

atmosphere urban heat island based on the high-resolution downscaled air temperature data obtained 

in the previous chapters. Meanwhile, we also introduced two landscape pattern metrics to establish the 

regression relationship between urban structure and urban heat island, so as to compare and analyze 

the impact of various urban structures on atmosphere urban heat island and surface urban heat island. 
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7.2. Comparison of AUHI and SUHI: Case Study of Kanto MMA and Kinki MMA 
7.2.1. The Retrieval of Land Surface Temperature from Landsat 4-5 TM 

The most important data basis for surface urban heat islands is the land surface temperature. 

Therefore, the acquisition of land surface temperature is the core of this section.  

Land surface temperature is the radiant surface temperature of land derived from solar radiation 

[13]. Land surface temperature and air temperature are essentially different, and they are 

complementary, because the temperature difference between the surface and the air above determines 

the sensible heat flux, and the correlation between them is caused by the surface heat balance [14]. 

With the continuous development of remote sensing technology, there are many ways to obtain land 

surface temperature. And the most important and common including two ways. The first is to 

download land surface temperature products from Moderate Resolution Imaging Spectroradiometer 

(MODIS). MODIS land surface temperature products are the one of most reliable [15–19]. However, 

the MODIS land surface temperature products also have some shortcomings, the most notable is the 

low spatial resolution, which is only about 1 km [20–22]. It is difficult to meet the accuracy 

requirements of surface urban heat island analysis based on the high-resolution land surface 

temperature in this section. For comparison, another commonly used method for obtaining land surface 

temperature is to retrieve from thermal infrared remote sensing. Among them, the most widely used is 

to retrieve the land surface temperature based on the remote sensing data from the Landsat series 

satellites. The land surface temperature retrieved based on thermal infrared remote sensing data has 

relatively high spatial resolution and high retrieval accuracy. But the main problem is that it cannot 

penetrate the clouds, which limits their practical applications [23]. According to the high-resolution 

characteristics, we still use the land surface temperature retrieved from thermal infrared remote 

sensing data as the research object. 

What this section needs is the land surface temperature data in 2010. The launch time of Landsat 8 

TIRS is 2013 [24]. The scan line corrector in the ETM+ instrument of Landsat 7 failed. The result is 

that approximately 22% of the data is lost in the Landsat 7 ETM+ when collecting without the scan 

line corrector [25]. Therefore, we selected Landsat 4-5 TM as the data source to retrieve the land 

surface temperature. 

Landsat 4-5 TM consist seven spectral bands, six bands are in the visible and near infrared bands, 

and only one band is in the thermal infrared [26]. Band 1 (blue) with a wavelength of 0.45-0.52 μm is 

used for the coastal water research. Band 2 (green) with a wavelength of 0.52-0.60 μm is used for the 

identification of crops and vegetation. Band 3 (red, with a wavelength of 0.63-0.69 μm) and Band 4 

(near infrared, with a wavelength of 0.77-0.90 μm) are used for the vegetation indexes calculation, for 

example normalized difference vegetation index (NDVI). Band 5 (short wave infrared, with a 

wavelength of 1.55-1.75 μm) and Band 7(short wave infrared, with a wavelength of 2.09-2.35 μm) are 

used for cloud, ice, snow, and geological structure discrimination. Final, Band 6 (thermal infrared, 
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with a wavelength of 10.40-12.50 μm) is used for the land surface temperature retrieval [27]. In order 

to retrieve land surface temperature, since Landsat 4-5 TM has only one thermal infrared band, it is 

not allowed the application of split-window method to retrieve the land surface temperature [28]. 

Finally, we used single-channel method for retrieving land surface temperature from Landsat 4-5 TM 

remote sensing data. 

Single-channel method consists of 3 separate steps, namely, NDVI Thresholds, Thermal Band 

Digital Numbers to Brightness Temperature and Retrieve Land Surface Temperature [29]. 

 

l NDVI Thresholds 

This step estimates land surface emissivity employing Normalized Difference Vegetation Index 

Thresholds Method (NDVITHM) to distinguish between soil pixels (NDVI < NDVIS), full vegetation 

pixels (NDVI > NDVIV) and mixed pixels (NDVIS ≤ NDVI ≤ NDVIV). And the threshold values of 

NDVIS = 0.2 and NDVIV = 0.5 make the method applicable for global conditions. The NDVI can be 

calculated from LANDSAT 4-5 TM by Equation 7-1. And then NDVI are converted to Land Surface 

Emissivity (LSE) using modified NDVITHM. 

 

!"#$ = &'()	4 − &'()	3
&'()	4 + &'()	3 

(7-1) 

 

In the conversion, the emissivity (ε) of soil and full vegetation pixels should be used. And the 

emissivity can be defined by user. In general, the default emissivity values are: 

 

soil pixels: 

/ = /!" = 0.96 

 

full vegetation pixels: 

/ = /#" + 4" = 0.985 + 0.05 = 0.99 

 

The emissivity of mixed pixels is calculated by Equation 7-2. The proportion of vegetation (PV) of 

each pixel is calculated by Equation 7-3 considering the proportion of vegetation. And the cavity effect 

(Cλ) that due to surface roughness is calculated by Equation 7-4. In this equation, the geometrical 

factor (F’) is the mean value 0.55. 
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7 = 7!" × 9! + 7#" × (1 − 9!) + 4" 

(7-2) 

9! = = !"#$ − !"#$#!"#$! −!"#$#>
$
 

(7-3) 

4" = (1 − 7#") × /#" × ?’ × (1 − 9!) 

(7-3) 

 

Additionally, this step allows the user to define the emissivity for the surface water. Normally, the 

default emissivity is 0.99. Before then, water bodies mask and the subset area (polygon feature layer) 

must be defined. 

 

l Thermal Band Digital Numbers to Brightness Temperature 

The next step is using appropriate conversion coefficients to convert pixel values of thermal infrared 

band (band 6) in Landsat 4-5 TM to at-sensor spectral radiance in A ⋅ C%$ ⋅ DE%& ⋅ FC%& according 

to Equation 7-4 and then transforming LS to at-sensor brightness temperature (TS) applying inverted 

Planck's Law and specific calibration constants (K1 and K2) as in the Equation 7-5. And this step can 

only work with LPGS (Level-1 Product Generation System) data [30]. 

 

G# = H' × "! + I' 

(7-4) 

 

where LS represents top of atmosphere spectral radiance (A/(C$ ⋅ DE') ⋅ FC)); ML represents band-

specific multiplicative rescaling factor from the metadata, which can be obtained from Landsat 

Metadata (MTL) file; AL represents band-specific additive rescaling factor from the metadata, which 

can be obtained from Landsat Metadata (MTL) file; DN represents quantized and calibrated standard 

product pixel values. 

 

K# =
L$

ln	 OL&G# + 1P
 

(7-5) 

 

where TS represents top of atmosphere brightness temperature (K); K1 and K2 are band-specific thermal 
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conversion constant from the metadata, which can be obtained from Landsat Metadata (MTL) file. 

 

l Retrieve Land Surface Temperature 

This step estimates land surface temperature (LST) with single-channel algorithm according to 

Equation 7-6a, 6b and 6c. 

 

GQK = R S1/ (T&G# +T$) + T(U + V 

(7-6a) 

 

R = WX$G#K#$
YZ

)G#
X& + 1Z[\

%&
 

(7-6b) 

 

V = −R × G# + K# 

(7-6c) 

 

In these Equations, the necessary data are the calculated brightness temperature (K!) and the land 

surface emissivity (/) datasets as well as some specific atmospheric functions (IF). The AF’s (T1, T2 
and T3) are used for correction of the atmosphere influence which is very important part of the land 

surface temperature retrieval algorithm. The AF’s are computed from atmospheric parameter with 

Equation 7-7a, 7b and 7c. 

 

T& =
1
^ 

(7-7a) 

 

T$ = −G↓ − G
↑

^  

(7-7b) 

 

T( = G↓ 
(7-7c) 
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where ^ represents atmospheric transmissivity, is set to 0.93; G↑ represents up-welling atmospheric 

radiance, is set to 0.5; G↓ represents down-welling atmospheric radiance, is set to 0.84. 

These three steps are the whole procedure of land surface temperature retrieval from Landsat 4-5 

TM remote sensing data. 

 
7.2.2. Data Source for Land Surface Temperature Retrieval 

Because the satellite thermal infrared remote sensing imagery is greatly affected by the weather, in 

order to obtain the remote sensing data of the cloudless days in January and August, we only selected 

two metropolitan areas as the research objects, namely the Kanto Major Metropolitan Area and Kinki 

Major Metropolitan Area. And the revisit period of the Landsat satellite is only 16 days, which is 

difficult to obtain satisfactory data in a month. So we chose the data range to be plus or minus one 

month and one year. The basic information of Landsat 4-5 TM data is shown in Table 7-1. 

 

Table 7-1 The basic information of Landsat 4-5 TM data 

Location Kanto Major Metropolitan Area 

Month January August 

Landsat Scene Identifier LT51070352009025BJC00, 

LT51070362009025BJC00 

LT51070352010204HAJ00, 

LT51070362010204HAJ00 

WRS Path/ WRS Row 107/035,107/036 107/035,107/036 

Date 2009-01-25 2010-07-23 

Land Cloud Cover 5%,2% 7%, 11% 

   

Location Kinki Major Metropolitan Area 

Month January August 

Landsat Scene Identifier LT51100352011052BJC00, 

LT51100362011052BJC00 

LT51100352011196BJC00, 

LT51100362011196BJC00 

WRS Path/ WRS Row 110/035,110/036 110/035,110/036 

Date 2011-02-21 2011-07-15 

Land Cloud Cover 9%,8% 7%, 10% 
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7.2.3. The Retrieval Result and Surface Urban Heat Island Analysis 

We retrieved the land surface temperature by the method mentioned in Section 7.2.1, and obtain the 

following results of Kanto Major Metropolitan Area and Kinki Major Metropolitan Area. In order to 

distinguish the land surface temperature of January and August, we defined January and February as 

winter, and July and August as summer. The following figures show the land surface temperature of 

Kanto Major Metropolitan Area and Kinki Major Metropolitan Area in winter and summer. 

 
(a) 

 
(b) 

Figure 7.1 The Land surface temperature of Kanto Major Metropolitan Area  

in winter (a) and summer (b) 
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(a) 

 
(b) 

Figure 7.2 Land Surface Temperature of Kinki Major Metropolitan Area 

in winter (a) and summer (b) 

 

During the land surface temperature retrieval, there will be some extremely maximum or minimum 

values, so we set a confidence interval with 95% to obtain the range of the land surface temperature, 

as shown in Table 7-2. 

The results shows that the land surface temperature distribution and range of Kanto Major 

Metropolitan Area and Kinki Major Metropolitan Area. The Kanto Major Metropolitan Area has 
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significantly more red areas in winter than that in summer. For Kinki Major Metropolitan Area, the 

red area range is similar in winter and in summer, but the color in summer is darker, that is, the land 

surface temperature of urban area in summer is higher. It can be seen from Table 7-2 that the land 

surface temperature difference of Kanto Major Metropolitan Area and Kinki Major Metropolitan Area 

in summer is obviously higher than that in winter. However, because the date values are different of 

two metropolitan area, they cannot be compared horizontally. 

 

Table 7-2 The ranges of land surface temperature 

Area Period Maximum Minimum Difference 

Kanto 
Winter 10.6 0.7 9.9 

Summer 32.7 20.3 12.4 

Kinki 
Winter 16.1 7.1 9 

Summer 31 14.2 16.8 

 
7.2.4. Comparative Study of Atmosphere Urban Heat Islands and Surface Urban Heat Island 

Because the land surface temperature retrieved from Landsat 4-5 TM is a specific value at a certain 

moment, for example, the satellite thermal infrared remote sensing data of Kanto Major Metropolitan 

Area in winter was scanned at 10:01 on January 25, 2009, Tokyo Time. For comparison, the air 

temperature data downscaled from Japan National Land Numerical Information are monthly average 

data or annual average data. The two sets of temperature data have completely different time 

dimensions, so land surface temperature data and air temperature data cannot be used directly to 

compare the difference between atmosphere urban heat island and surface urban heat island in the 

Kanto Major Metropolitan Area and Kinki Major Metropolitan Area in different seasons. Therefore, 

we first need to normalize the land surface temperature and air temperature before the further 

comparison and analysis.  

In this section, we used feature scaling method to normalize the land surface temperature and air 

temperature. Feature scaling method is used to standardize the range of variables or features [31]. Min-

max normalization is the simplest method in feature scaling, and used in this section. It rescaled the 

range of feature to scale the range in [0,1]. The equation is as follows: 

 

_, = _ −min	(_)
max(_) − min(_) 

(7-8) 
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where x represents the pixel values; x’ represents normalized values. 

Through standardization, we obtained the normalized air temperature and land surface temperature 

ranging from 0 to 1 of Kanto Major Metropolitan Area and Kinki Major Metropolitan Area in winter 

and summer. Next, we divided the entire metropolitan area into urban areas and suburb areas according 

to the densely inhabit districts mentioned in the previous chapter. Then, we calculated the average 

normalized air temperature and land surface temperature of urban areas and suburb areas. Final, we 

compared atmosphere urban heat island intensity and surface urban heat island intensity based on the 

average normalized temperature. The results are shown in Table 7-3. 

 

Table 7-3 The comparison of atmosphere and surface urban heat island intensity  

 

 

The results show that the surface urban heat islands are significantly stronger than the atmosphere 

urban heat islands. The surface urban heat island intensity can reach a maximum of 0.45, and in 

contrast, the maximum of atmosphere urban heat island intensity is only 0.20.  

Comparing the surface urban heat island and the atmosphere urban heat island, the similarity is that 

the urban heat island intensity of Kinki Major Metropolitan Area is higher than that of the Kanto Major 

Metropolitan Area, and the difference of the urban heat island intensity of two metropolitan area is 

smaller in summer. The surface urban heat island intensity of Kinki Major Metropolitan Area in 

summer is only 0.01 higher than that of the Kanto Major Metropolitan Area. 

The differentiation is also obvious. In winter, the atmosphere urban heat island intensity is higher 

than in summer, and the difference is not large. The value in the Kinki Major Metropolitan Area is 

0.05, and that in the Kanto Major Metropolitan Area is only 0.02. However, the surface urban heat 

island intensity in winter is obviously lower than that in summer. The difference in Kanto Major 

Metropolitan Area is obvious. The surface urban heat island intensity in winter is 0.21, while in 

summer it can reach 0.44, and the difference is 0.23. In Kinki Major Metropolitan Area, the surface 

urban heat island is higher than that in Kanto Major Metropolitan Area. The value in winter is 0.35, 

and it is 0.45 in summer, which is 0.10 higher than that in winter. 

Combining the land surface temperature distribution of Figures 7.1 and 7.2, we can find that there 

Urban Suburb AUHII Urban Suburb SUHII

Winter 0.74 0.61 0.14 0.78 0.57 0.21

Summer 0.87 0.75 0.12 0.84 0.40 0.44

Winter 0.91 0.71 0.20 0.81 0.46 0.35

Summer 0.78 0.63 0.15 0.89 0.45 0.45

Atmosphere Urban Heat Island Surface Urban Heat Island
PeriodArea

Kanto

Kinki
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is a yellowish area in the urban centers of both Kanto Major Metropolitan Area and Kinki Major 

Metropolitan Area, that is, the land surface temperature in the urban center is lower than that in the 

surround area. This shows that there is a small surface urban cool island area in this area. But from a 

larger scale, the surface urban heat island still exists, that is, the land surface temperature of urban area 

is higher than that of suburb areas. To sum up, according to the land surface temperature, there is also 

a small cool island in the surface urban heat island, thus forming a structure similar to that of a volcano. 

But for atmosphere urban heat island, this phenomenon does not exist. 
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7.3. The Influence of Urban Structure on Two Kinks of Urban Heat Islands 
7.3.1. The Calculation of Landscape Pattern Metrics 

The landscape pattern metrics is a quantitative index that can reflect landscape composition and 

spatial configuration. According to the previous research [32–34], we used two widely used landscape 

pattern metrics: percentage of landscape area (PLAND), and the aggregation index (AI). In this section, 

FRAGSTATS was applied to calculated the landscape pattern metrics [35]. 

In order to determine the impact of urban structure on atmosphere urban heat island and surface 

urban heat island, we established the most commonly used multiple linear regression model for urban 

structure and urban heat island [36–38]. We created the grid data with a side length of 10 kilometers 

as shown in Figure 7.3 for an example in Kanto Major Metropolitan Area, and remove the grids that 

accounted for less than 70% of the study area through statistics.  

 

 
Figure 7.3 The grid data with a side length of 10 kilometers for multiple linear regression model 

establishment 
 

Then, we calculated the PLAND and AI, with the Equation 7.9 [39] and 7.10 [40], and counted the 

air temperature and land surface temperature for each grid for the further regression model 

establishment. 
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9GI!" = 9- =
∑ '-./
.0&
I (100) 

(7-9) 

where 9- represents the proportion of the landscape occupied by patch type i; '-. represents the area 

of patch ij; A represents the total landscape area. 

I$ = de= f--
C'_ → f-->

1

-0&
9-h (100)

(7-10) 

where f-- represents the number of like adjacencies between pixels of patch type i based on the single 

count method; C'_ → f-- represents the maximum number of the like adjacencies between pixels of 

patch type i based on the single count method; 9- represents the proportion of landscape comprised 

of patch type i. 

According to the PLAND and AI calculated by FRAGSTATS and the temperature of each pixel, we 

used SPSS to establish the multiple linear regression for analysis and comparison. 

7.3.2. The Regression Analysis of Urban Structure and Urban Heat Island 

The results of the multiple linear regression analysis of the urban structure and air temperature (AT) 

/ land surface temperature (LST) are shown in Table 7-4 and Table 7-5. They indicate the effect of 

urban structure composition and configuration on air temperature and land surface temperature. The 

variance inflation factor of each independent variable is less than 5, so there is no multicollinearity in 

all multiple linear regression model. 

The values in tables represent the standardized coefficients. AT represents air temperature and LST 

represents land surface temperature. The color represents the magnitude of the standardized 

coefficients, the redder the color, the stronger the positive affect of the independent variables on air 

temperature or land surface temperature, and the bluer the color, the stronger the negative affect of the 

independent variables on air temperature or land surface temperature. One asterisk represents the p-

value less than 0.05, and two asterisks represent the p-value less than 0.01. 

Combining with the last three rows, namely p-value, R2, and adjusted R2, the p-value of all multiple 

linear regression model are less than 0.01, it means that all model is statistically significant. Comparing 

the R2 and adjusted R2, in Kanto Major Metropolitan Area, the value in summer is larger than that in 

winter, and in Kinki Major Metropolitan Area, the difference between summer and winter is small. 

Adjusted R2, are all more than 0.5, it means that all models are good fitting.
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Table 7-5 M
ultiple linear regression analysis of urban structure and air tem

perature (A
T) / land surface tem

perature (LST) of K
inki M

ajor 
M

etropolitan A
rea. 
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0.033 
-0.029

LCZ8 
-0.057

-0.083*
-0.02

-0.093
0.017 

-0.01
0.043 

-0.035
LCZ9 

0.017 
0.038 

0.009 
0.088 

-0.002
0.108 

-0.095
0.106 

LCZ10 
-0.088

-0.055
0.294** 

0.123 
0.083 

0.092 
0.219** 
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-0.549**
-0.198**

-0.274**
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0.133* 
0.059 

0.029* 
0.031 

0.114** 
0.024** 

0.075** 
0.031* 

LCZC 
0.03 

0.062 
0.102 

0.096 
-0.225**

-0.114**
-0.126*

-0.053
LCZD

 
0.088 

0.127** 
0.026 

0.121* 
0.006 

0.125** 
-0.042

0.108* 
LCZE 

0.351** 
0.152* 

0.356** 
0.138* 

-0.02
-0.022

-0.008
-0.061

LCZF 
0.007 

0.021 
0.042 

0.03 
0.012 

0.017 
-0.085

0.022 
LCZG

 
0.101 

0.081 
0.133* 

0.068 
0.146** 

0.131** 
0.133** 

0.05 

p-value
<0.01 

<0.01 
<0.01 

<0.01 
<0.01 

<0.01 
<0.01 

<0.01 
R
2

0.843 
0.914 

0.866 
0.867 

0.842 
0.877 

0.789 
0.806 

A
djusted R

2
0.821 

0.901 
0.847 

0.848 
0.818 

0.858 
0.757 

0.777 
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According to Table 7-4 and 7-5, the most obvious is that no matter which metropolitan area, dense 

trees have a strong negative effect on both air temperature and land surface temperature, while bare 

rock and pave have a strong positive effect on these, that is, dense trees will decrease the temperature 

and bare rock and pave will increase the temperature. However, in Kinki Major Metropolitan Area in 

summer, the bare rock and pave have less obvious effect on increasing air temperature and land surface 

temperature. On the other hand, compact high-rise buildings have a positive effect on air temperature 

and a negative effect on land surface temperature in both Kanto Major Metropolitan Area and Kinki 

Major Metropolitan Area. Combining with the urban structure, most compact high-rise buildings are 

concentrated in the urban center, which explains why there is a small cool island in urban center 

mentioned in Section 7.2. 
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7.4. Summary 

In this chapter, we retrieved the land surface temperature of Kanto Major Metropolitan Area and 

Kinki Major Metropolitan Area based on the satellite thermal infrared remote sensing data of Landsat 

4-5 TM. Because the temporal dimension of land surface temperature is completely different from air 

temperature, we normalized the land surface temperature and air temperature, and then calculated the 

atmosphere urban heat island intensity and surface urban heat island intensity. Meanwhile, we 

introduced two landscape pattern metrics to indicate the spatial composition and configuration of 

urban structure. The multiple linear regression model is used to indicate the affect of urban structure 

on atmosphere urban heat island and surface urban heat island. 

The results show that there are some similarities and differentiation between atmosphere urban heat 

island and surface urban heat island. The similarity is that the urban heat island intensity of Kinki 

Major Metropolitan Area is always higher than that in Kanto Major Metropolitan Area, and the surface 

urban heat island intensity is always higher than the atmosphere urban heat island intensity. The first 

and most obvious differentiation is that the surface urban heat island intensity in summer is much 

higher than that in winter, in contrast, the atmosphere urban heat island intensity in summer is slightly 

lower than that in winter. The other differentiation is that there is a small cool island in the center of 

surface urban heat island, which does not exist in the atmosphere urban heat island. The multiple linear 

regression model in Section 7.3 also confirms this conclusion. The compact high-rise buildings in the 

urban center have a positive effect on the air temperature and a negative effect on the land surface 

temperature. Overall, dense trees have a strong negative impact on air temperature and land surface 

temperature, that is, dense trees can greatly reduce both air temperature and land surface temperature. 

On the contrary, bare rock and pave greatly increase the air temperature and land surface temperature, 

and enhance the urban heat island. 
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8.1. Conclusion 

With the development of urbanization, the urban environment is deteriorating. The most notable 

phenomenon is the formation and enhancement of urban heat island. Urban heat islands are ubiquitous 

in metropolitan area around the world. Japan, as a developed country, includes 14 metropolitan areas. 

Most of these metropolitan areas are also affected by urban heat islands  

This study introduced a temperature spatial downscaling method based on machine learning 

algorithm to downscale air temperature from 1 km to 250 m for high-resolution atmosphere urban heat 

island analysis. The core of this downscaling method is to establish the regression model between 

urban structure and temperature, and then we used the unchanged characteristics of regression models 

at different scale to predict high-resolution temperature data with high-resolution resolution urban 

structure, thereby analyzed atmosphere urban heat island. Finally, we compared the similarity and 

differentiation between atmosphere urban heat island and surface urban heat island. 

The main works and results can be summarized as follows: 

In Chapter One, PREVIOUS STUDY AND PURPOSE OF THE STUDY, this chapter introduce the 

research background and significance of urban heat island and the application of temperature spatial 

downscaling. In addition, we reviewed the previous studies of urban heat island and temperature 

spatial downscaling method. Finally, we elaborated on the purpose of this study. 

In Chapter Two, DOWNSCALE AIR TEMPERATURE PREDICTION BASED ON MACHINE 

LEARNING MODEL, this chapter is the core of this study, mainly about the detailed air temperature 

spatial downscaling process. Firstly, it is the basic principles of temperature spatial downscaling. This 

study used statistical downscaling, the principle of which is to use the same regression between local 

underlying surface features and temperature at different scales. Secondly, we compared three different 

three different types of spatial downscaling models, including thermal sharpen models, multiple linear 

regression models, and random forest models. By comparison, we found that the random forest model 

based on machine learning algorithm has the best downscaling effect. Thirdly, we selected the 

independent variables, namely the underlying surface characteristic. Based on the previous research, 

we Finally adopted the urban structure and digital elevation model (DEM) as the independent variables 

of the model. Fourthly, five models based on machine learning algorithm were chose to test 

downscaling accuracy by the last independent variables and air temperature. The results showed that 

the extra trees model has the highest prediction accuracy. Fifthly, we obtained the optimal models for 

air temperature downscaling prediction through parameters tuning. Finally, we use low-resolution real 

air temperature and predicted air temperature to fit the residuals to obtain the final air temperature 

downscaling results. 

In Chapter Three, URBAN STRUCTURE IDENTIFICATION AND ITS IMPLICATION OF 

URBAN CLIMATE, we selected Kanto Major Metropolitan Area as a case study to identify the urban 

structure by using maximum likelihood classification method based on remote sensing data and 
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satellite images. We divided the study area into 17 types, including 10 built types and 7 land cover 

types according to local climate zone system. Through accuracy validation based on the error matrix, 

we confirmed that the maximum likelihood classification method can identify each local climate zone 

with high accuracy. In addition, we used ENVI-met, a micro-climate simulation tools, to simulate 

urban micro-climate of some ideal models of different local climate zone types to evaluate and verify 

the impact of various urban structure on urban climate. The results showed that urban structure have 

a significant influence on urban climate, especially the air temperature, that is, there is a close 

relationship between the air temperature and urban structure. It provided the strong theoretical support 

for the downscaling models in Chapter 2. 

In Chapter Four, CASE STUDY AND PRECISION EVALUATION, we selected Kanto Major 

Metropolitan Area as a case study and establish the extra trees model to assist in air temperature spatial 

downscaling research. Based on the resampled low-resolution air temperature downloaded from Japan 

National Land Numerical Information, digital elevation model, and urban structure identified by 

method mentioned in Chapter three, we built an optimal extra trees model by parameters tuning. And 

then, we inputted digital evaluation model and urban structure with a spatial resolution of 250 m into 

the extra trees model to predict the high-resolution air temperature data. Finally, we fitted the residual 

to obtain the downscaling air temperature data of study area and compared with measured air 

temperature from meteorological station to check the downscaling precision. The results showed that 

the proposed extra trees model is confirmed to be flexible and efficient in downscaling air temperature 

spatial resolution from 1 km to 250 m. The results passed the 10-fold cross validation and the 

verification of the measured air temperature data from the meteorological station. 

In Chapter Five, DOWNSCALE AIR TEMPERATURE PREDICTION OF METROPOLITAN 

AREA BY EXTRA TREES MODEL, Japan is roughly divided into 5 climatic zones, and we selected 

the largest metropolitan area from each climatic zone as the research object, including Kanto Major 

Metropolitan Area, Kinki Major Metropolitan Area, Sapporo Major Metropolitan Area, Niigata Major 

Metropolitan Area, and Utsunomiya Metropolitan Area. With the help of the before introduced 

downscaling model, we selected the monthly average air temperature in January and August, and 

annual average air temperature in 2010 to downscale for the atmosphere urban heat island analysis in 

next chapters. Through cross-validation, we found that the downscaling results meet the accuracy 

requirements. The downscaling accuracy in August is generally higher than that in January. Among all 

metropolitan areas, Utsunomiya Metropolitan Area has the highest downscaling accuracy, and the 

downscaling accuracy of Sapporo Major Metropolitan Area in January is the lowest. 

In Chapter Six, ATMOSPHERE URBAN HEAT ISLAND ANALYSIS OF METROPOLITAN 

AREA BASED ON HIGH-RESOLUTION AIR TEMPERATURE, we calculated the urban heat island 

intensity and urban heat island ratio index for the urban heat island evaluation of each metropolitan 

area according to the high-resolution air temperature downscaled in Chapter Five. The results showed 
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that the urban heat island intensity in January is generally higher than that in August. However, the 

regional distribution of urban heat island zone is the opposite. Except for the Utsunomiya Metropolitan 

Area, the urban heat island zone of the other four metropolitan area is more concentrated in January. 

The urban heat island zones of the Kanto Major Metropolitan Area and Niigata Major Metropolitan 

Areas area greatly affected by the distribution from the sea, while the urban heat island zones of 

Sapporo Major Metropolitan Area and Kinki Major Metropolitan Area are mainly concentrated in the 

center of the metropolitan area. The urban heat island zone of Utsunomiya Metropolitan Area is 

affected by Kanto Major Metropolitan Area and is concentrated in Utsunomiya city and the southern 

part of the metropolitan area. 

In Chapter Seven, COMPARATIVE STUDY OF ATMOSPHERE URBAN HEAT ISLAND AND 

SURFACE URBAN HEAT ISLAND, we retrieved land surface temperature of Kanto Major 

Metropolitan Area and Kinki Major Metropolitan Area for surface urban heat island analysis. For 

comparing with atmosphere urban heat island with different temporal dimension, urban heat islands 

were normalized to the range between 0 and 1. Meanwhile, we introduced two landscape pattern 

metrics and used multiple linear regression model to indicate the affect of urban structure on urban 

heat island. The results showed urban heat island intensity of Kinki Major Metropolitan Area is always 

higher than that in Kanto Major Metropolitan Area, and the surface urban heat island intensity is 

always higher than the atmosphere urban heat island intensity. However, the surface urban heat island 

intensity in summer is much higher than that in winter, in contrast, the atmosphere urban heat island 

intensity in summer is slightly lower than that in winter. And there is a small cool island in the center 

of surface urban heat island, which does not exist in the atmosphere urban heat island. The multiple 

linear regression also proved this. And dense trees can greatly reduce both air temperature and land 

surface temperature, on the contrary, bare rock and pave greatly increase the air temperature and land 

surface temperature, and enhance the urban heat island. 

In Chapter Night, CONCLUSION, this chapter presented the whole summary of each chapter. 
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