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Abstract: Predictive maintenance on infrastructures is currently a hot topic. Its importance is
proportional to the damages resulting from the collapse of the infrastructure. Bridges, dams and
tunnels are placed on top on the scale of severity of potential damages due to the fact that they
can cause loss of lives. Traditional inspection methods are not objective, tied to the inspector’s
experience and require human presence on site. To overpass the limits of the current technologies
and methods, the authors of this paper developed a unique new concept: a remote visual inspection
system to perform predictive maintenance on infrastructures such as bridges. This is based on the
fusion between advanced robotic technologies and the Automated Visual Inspection that guarantees
objective results, high-level of safety and low processing time of the results.

Keywords: bridge monitoring; visual inspection; multi-camera system; autonomous robots;
artificial intelligence

1. Introduction

A bridge is an infrastructure built to overpass a physical obstacle, such as rivers or
valleys. It was, it is and it will be a key element in the development of humankind; thus,
nowadays there are millions of bridges around the world, which all need maintenance to
prevent collapse [1]. The key point for preventing a disaster is predictive maintenance.
Unfortunately, due to the large number of bridges around the world, the costs of the
maintenance operations are very high. In the case maintenance is performed too early with
respect to the infrastructure lifespan, the risk is to waste money and resources. Conversely,
in the case of late maintenance, disaster can strike. Consequently, it is clear that the solution
is a trade off between costs and safety [2–4]. One of the latest disaster in this field is the
one happened in Genova in 2018, sadly known for the Morandi Bridge collapse that took
43 lives away. After this tragedy, “why?” and especially “can this happen again?” were
the two questions that started spreading the most, frightening the Italian people; while
the former was matter of justice (and at the time this paper is being written, this is still
under investigation), the latter was immediately addressed by researchers and companies
in order to find reliable solutions.

In general, an inspector conducting a bridge inspection aims at detecting the presence
of flaws, defects or potential problem areas that may require maintenance. Conventionally,
it is done by bringing the inspector as close as possible to the bridge by using snooper
trucks (Figure 1a) or a man lift (Figure 1b).
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(a) (b)

Figure 1. (a) Snooper Truck (Source: [5]. Reprinted with permission from Ref. [5]. Copyright 2021
MDPI); (b) Man Lift.

The main limits/challenges posed by the traditional methods are related to the non-
objective results of the inspection, as they are heavily influenced by the inspector experi-
ence [6]. In addition, at least two people are needed to perform the inspection; a portion
of the bridge has to be closed to place the snooper truck; the locations to inspect are not
always easily reachable, and therefore, guaranteeing the safety of the human requires very
high costs [7]. Consequently, researchers have to propose solutions able to tackle all the
aforementioned limits [8]. Such solutions aim (i) to reduce the risks that a human faces
while suspended in the void many meters high, (ii) to reach narrow or hidden locations,
(iii) to avoid the huge amount of logistical planning for the inspection and the bridge
closure, and (iv) to obtain an inspection that is objective, automatic and repeatable [9].
Two of the most investigated fields focus on the substitution of the human on site, and
the objectification and repeatability of the inspection process. Several solutions have been
proposed to tackle the former problem, such as recurring to mobile inspection robots [9]
or Unmanned Aerial Vehicles [10,11]. However, the presence of the operator on site con-
tinues to play a fundamental role in the inspection task (e.g., pilot, co-pilot, expert in the
inspection domain to supervise the flight also stating the area of interest), and hence, it
still cannot be replaced. Furthermore, in order to obtain objective and repeatable analyses,
it is fundamental to remove the dependency of the inspection results from the inspector
experience, which unfortunately highly depends on physical aspects and the operator set
of skills [8]. However, the latest progress in the field of vision systems enabled a significant
leap towards the realization of support systems for the inspector, able to perform highly
safe, fast, and objective inspections [12].

Automated Visual Inspection (AVI) is a crucial operation in monitoring and inspecting
infrastructures (e.g., bridges), widely adopted to guarantee a high level of safety and re-
quiring low processing time. In order to design a methodology and to select the hardware
components necessary to perform AVI of bridges, an analysis of the state of the art was
conducted. The bridge inspection has to take place under various weather conditions and
during the night/day cycle, hence accounting for a wide spectrum of visibility conditions.
In order to meet these requirements, a system capable of performing a complete inspection
and detecting even micro flaws has to be developed. Consequently, a multi-technology
vision system using three different cameras is proposed. The adoption of RGB digital
cameras enabled the development of three different inspection methodologies: (i) raw
image inspection, (ii) image enhancement or (iii) autonomous image processing [13,14]. In
the case the analysis is based on raw images, the inspector manually processes the whole



Remote Sens. 2022, 14, 2248 3 of 17

collection of recorded images. Unfortunately, such an analysis is often time consuming
given the amount of data, and prone to inaccuracies or human errors. Thus, in order to
overcome these problems, image enhancement algorithms have been used to improve the
quality of the images, hence facilitating the identification of cracks. This task is typically
accomplished by using edge detection algorithms (e.g., Canny, Sobel, or Gaussian), segmen-
tation techniques (e.g., thresholding or Watershed), percolation algorithms and filtering
operations [12,15–17]. Consequently, the application of these techniques has the great ad-
vantage of mitigating the inspector fatigue. Conversely, autonomous image processing can
be performed via Artificial Intelligence (AI), in detail by applying Machine Learning (ML)
or Deep Learning (DL) techniques, which enable the automatic detection of flaws [18–21].

In the recent years, other types of cameras were developed and found potential
application in AVI. For instance, the multispectral cameras that are able to capture im-
age data at specific frequencies across the ultraviolet (UV)/visible (Vis)/near infrared
(NIR)/short-wave infrared (SWIR) electromagnetic spectrum, covering the 175 nm to
2500 nm wavelength range. The information at different wavelengths may be separated
by applying filters, or using instruments that are sensitive to specific values. Hence, it
is possible to retrieve image information out of frequencies beyond visible sight (such as
infrared), which the human eye fails to capture [22,23]. Different types of multispectral
systems have been developed over time, based mainly on three techniques: (i) multiple
cameras with different spectral range to a machine vision setup pointing at the target;
(ii) filter wheel camera capturing multi-channel spectral images by rotating filters in a filter
wheel mounted in front of the sensor or the lens; (iii) single sensor camera using Bayer
Color Filter Array (CFA) and demosaicing/debayering. The latter acquisition method is
also known as instantaneous mosaic imaging. Multispectral imaging has been employed
in various applications (such as agriculture [24–26], medicine [27] or industries [28,29]) by
using machine vision cameras to improve the inspection capabilities.

Furthermore, depth cameras, named RGB-D, have been widely used recently. These
devices transmit the three standard RGB channels along with depth information (related to
the distance to the sensor) on a per-pixel basis. Nowadays, this type of device is becoming
increasingly popular due to their capability of reconstructing in 3D the imaged scenes
at an affordable cost and in real time. These features make RGB-D cameras ideal for
capturing the 3D information needed to perform a bridge inspection [30,31]. Having a
highly accurate model in 3D of the cracks would enable their evaluation and quantification.
Hence, several contactless and nondestructive techniques have been developed [32]. The
Close-Range Photogrammetry (CRP) is a notable technique to obtain a point cloud by
using passive sensors, which enable 3D measurements and drawings. Among other non-
destructive techniques, Terrestrial Laser Scanning (TLS) and photogrammetry are used
to reduce the time required to obtain all the geometric data needed to build a detailed
3D finite element model [33,34]. All of these technologies implement dense point cloud
and image-based inspections that can be manned, unmanned or automated [13,35–38].
Typically, manned inspections are costly, time-consuming and in some cases inaccurate.
Conversely, unmanned or automated inspections reduce implementation costs and speed
up the image analysis phase.

In this scenario, the main objective of this work is to obtain a model of the bridge that
is accurate in all the details, and as close as possible to reality, by applying different vision
technologies. The combined use of these technologies improves the detection of various
types of damage, and increases the reliability of assessment results. Nonetheless, the
integration of multiple technologies within a single system, and thus, the synchronization
of hardware and data, is still an open challenge and a significant effort is necessary in
order to design effective integration strategies. For these reasons, the authors of this paper
proposed a solution that integrates robotics and vision to support an automated inspection.
The first proof of concept (p.o.c.) implementing the proposed solution was installed in the
new San Giorgio’s bridge in Genova. It has a monitoring system composed of 240 fixed
sensors for “standard measurements” of the structure parameters, and, above all, two
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robots (one for the north carriageway and the other for the south carriageway of the bridge,
respectively) named Robot Inspection Units (RIUs) for “non-standard measurement”. RIU
is equipped with sensors able to scan the lower surface of the deck to detect potential
anomalies. Moreover, the designed system has to perform the acquisition and analysis
of the pictures taken by the vision technologies in less than 15s, a time limit set by the
manufacturer in order to balance processing time and quality of the inspection. These
robots have been in charge of inspecting San Giorgio’s bridge since 2021. RIU is capable of
autonomously performing several tasks:

• Inspecting the lower surface of the deck;
• Collecting and processing the data to find any anomalies;
• Interrupting operations and safely reaching their charging stations in the event of

adverse environmental conditions.

Moreover, the design of the robot accounts for further implementations of novel
technologies in order to improve the anomalies’ detection and the scanning of the surfaces
with multispectral images.

In this paper, the main functions of the robots and the results of the preliminary
tests are described. Furthermore, speculations on the future enhancements of the Robot
Inspection (RI) and its vision system are discussed at the end of the paper, depending on
the versatility of the robot.

2. Materials and Methods

The system architecture presented in this paper is composed of two main functional
groups: (i) a multi-camera system (MCS) and (ii) a robotic platform RIU. These two groups
work in parallel, performing autonomous flaws detection, damage quantification and
producing a report of the results (Figure 2). In particular, the vision system installed on RIU
was responsible for taking pictures, while RIU moved along the bridge. Moreover, the RIU
platform was designed accounting for multiple replicas of the MCS, hence reducing the
time needed to scan the bridge. In fact, using several MCSs lowers also the time required
by the robot to cover all the locations of the bridge with the vision system. The RIU could
be operated trough three main control modes, such as:

A Commands from Human–Machine Interface (HMI) application of the PC Robot
Server in the control room (see Section 2.4);

B Local control on the robots themselves via push buttons;
C Controls from remote control room via Supervisory Control and Data Acquisition

(SCADA) (see Section 2.4).

Autonomous flaws detection
Damage quantification
Report

Results

User

Multi-Camera
System Robot Inspection

Control software 
system

Automated Visual Inspection

Figure 2. Schematic representation of the flowchart modeling the system architecture.
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The inspection routine includes RI scanning the underside of the bridge, by starting
from the base (the origin point of the relative coordinates frame) and moving towards
the end of the bridge. During the longitudinal movement of the robot along the z axis, a
retractable beam belonging to the robot is activated along the x axis. As a consequence, the
cameras acquire all the sub-areas of the bridge, thus producing a complete scan of a slice of
the lower surface of the deck. The cameras activity is synchronised with the movement of
the robot arm, which is triggered by the completion of the acquisition cycles of all the MCSs.
As soon as the robot reaches the end of the bridge in the z direction (i.e., the terminal point),
the inspection is considered as completed. As a result, a report on the state of the bridge
describing the anomalies detected with respect to the results of the previous inspection is
produced. All reports are searchable and accessible through the HMI application, in order
to monitor and control both the bridge and the AVI system. Moreover, such reports provide
the human inspector with the changes evaluation of the identified defects, hence assisting
the final decision about the severity and—if needed—the actions to take.

2.1. Multi-Camera System

The p.o.c of the robot developed for the San Giorgio’s bridge and presented in this
paper hosts three different MCSs. The RGB camera selected is a Basler ace acA4112-8gc
GigE [39], with a Sony global shutter IMX304 sensor that captures color images at 8 frames
per second (fps) with a 12.3 megapixel (MP) (4096 × 3000 pixels) resolution. In order to
capture a micro flaw on the bridge at an average distance of 0.8 m, an LM6FC f6.5 mm
manual zoom video lens manufactured by Kowa [40] was mounted on the camera. The
second camera for the development of the MCS is the FRAMOS depth camera D435E [41].
This device is composed of an active infrared (IR) and the RGB global shutter sensors
in stereo system mode. The on-board sensor acquires depth and color images at 30 fps,
with a resolution of 1280 × 720 pixels. Finally, the vision system is completed with the
multispectral Ximea SM4 × 4-VIS3 camera [42]. This multispectral camera mounts a
4 × 4 snapshot-mosaic sensor (16 interference filters) in the spectral range from 460 nm
to 600 nm, with a native resolution of 2048 × 1088 pixels, and spatial resolution of
512 × 272 pixels, with a temporal resolution of 170 fps. Figure 3 shows the multi-technology
camera system with the RGB, 3D and multispectral cameras. In order to manage the differ-
ent resolutions of the three cameras, cubic interpolation was applied; hence, the images
match the resolution of the multispectral camera, which is the one with the lowest resolu-
tion. Nevertheless, images are also stored in the raw format to perform also offline analysis.

(a) (b) (c)
Figure 3. The multi-camera system composed of (a) RGB, (b) 3D, and (c) multispectral cameras.

The entire vision system has been enclosed in a special protective cover [43], in
order to ensure IP67 standard (i.e., high resistance to dust and water). Such a feature is
necessary to guarantee a correct functioning of the MCS outdoor in all weather conditions.
Moreover, in order to produce high-quality results in different light conditions, two high-
efficiency LED strips were mounted over the vision system. These strips are driven by a
relay actuator and General-Purpose Input/Output (GPIO) module [44] to illuminate the
scene when the camera shutter command is sent. Consequently, the robot overcomes the
challenge of capturing images at night or in low-light conditions, and working during the
night/day cycle.
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Flaw Detection Algorithm

The data recorded by the MCSs are processed by a multi-step framework specifically
designed to perform pattern analysis. Each camera of the MCS captures an image, and
passes it to the visual inspection algorithm. In this first step, the Image Acquisition phase
saves in 3D (i.e., x, y, and z axes, respectively) the position of the robot beam, and the
corresponding temporal metadata for fast flaw retrieval after the post analysis. Moreover,
the position of the cameras is measured with respect to the sliding beam holding the MCS.
A schematic representation of the framework developed for pattern analysis is depicted in
Figure 4. The multispectral is a single channel, while RGB and 3D images are converted
to grayscale to reduce processing time, also enabling the performance of the Contour
Search and Hierarchy steps. This phase reduces the information of the images into a
single channel, hence resulting in a gain in terms of processing time. Similarly, scaling
down the resolution of both 3D and RGB images to the small size of the multispectral
camera benefits the processing time. The triplet of grayscale images are then passed to
the Blurring Filter. This filter implements the Gaussian blur (i.e., a nonuniform low-pass
filter) that preserves low spatial frequency and reduces noise and negligible details. From
a mathematical point of view, the Gaussian Filter convolves an image with a Gaussian
kernel. Optionally, a Bilateral Filter with logarithmic transformation can be used. The
Gaussian and the Bilateral filters share the same working principle, by scaling the values of
the neighbours of a specific central pixel. The Gaussian filter mitigates the intensity values
of the neighbours proportionally to the distance measured in terms of pixel coordinates.
Conversely, the Bilateral Filter mitigates the neighbours proportionally to the variations of
intensity with respect to the central pixel. Hence, the latter removes noise in flat areas, and
avoids blurring the imaged objects, hence preserving high-frequency details.

Blurring Filter

Morphological Operation

- Closing 
- Opening

Filtering

- Bounding-Box Aspect Ratio 
- Bounding-Box Angle 
- Defect Area

Image
Acquisition

Resizing Bilateral  
Filter

Gaussian
Filter

Adaptive 
Threshold

Flaws 
Detection

Contour Search 
 and 

Hierarchy

Grayscale
Conversion

Figure 4. Schematic representation of the workflow of the proposed system to perform pattern
analysis in the bridge inspection process.

In cascade to the image filtering, the Adaptive Threshold algorithm is performed in
order to separate the objects of interests (e.g., defects) from the background, according to
strong variations in the pixel intensity. Furthermore, nonlinear Morphological Operations
are used to enhance the images, by using a squared kernel 9 pixels wide. In particular,
Morphological Opening is an erosion process followed by dilation that removes small
objects, while Morphological Closing is a dilation process followed by an erosion that
is used to remove small holes. Moreover, the object Contour Search is performed. This
function detects objects in an image and states the Hierarchy relationship between them.
In particular, the Contour Search algorithm identifies the contours of the objects in the
images, and evaluates if some contours are inside some others. The inner objects are
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named children, while the outer ones are named parents. All the identified contours are
further processed by using a set of three filters in order to remove possible outliers: (i)
Bounding-Box Aspect Ratio, (ii) Bounding-Box Angle and (iii) Defect Area. The output of
processing pipeline is a set of regions / bounding boxes of objects that represent potential
defects. Bounding boxes and related parameters (e.g., area, orientation and aspect ratio) are
then used to provide a classification (e.g., flaws). In addition, binary images are generated
to highlight the detected flaws. These black and white images maps the pixels belonging to
a specific flaw to “1”, and the remaining pixels to “0”. Selecting an appropriate threshold
intensity is a critical step. If the threshold intensity is too high, flaws will not be detected.
Conversely, if it is too low, the image becomes noisy and it is difficult to differentiate flaws
from noise.

2.2. Robot Inspection Unit

RIU is a robotic structure able to autonomously scan the lower deck surface of a bridge
(Figure 5). It has 3 degrees of freedom (DOFs), as it is able to move along the z direction,
i.e., parallel to the longitudinal direction of the bridge, the x direction, i.e., parallel to the
cross section direction of the bridge, and the y direction, i.e., perpendicular to the lower
deck surface of the girder. The first two DOFs are always active, while the third one may
depend on the application. The motion along the z direction is enabled by the two rails
installed on the bridge, the one along the x direction is given by the retractable beam the
robot, while the y direction is inspected by an add-on mechanism used to perform close or
contact inspections.

x
y

Figure 5. Representation of Robot Inspection Unit (RIU), with the three directions of the motion
labeled with red boxes.

The RIU is composed of several sub-assemblies made of different materials, such as
carbon fiber, steel and aluminum. Fixed Beam and Moving Beam of the robot were built
in carbon fiber [45], in order to reduce the weight and the vibrations resulting from the
motion and the wind hitting the surface. The set of mechanisms is also composed of wheel
carriers and actuation systems that were manufactured in steel in order to guarantee high
performance with respect to the cyclic loads. The Upper Hanger and Lower Hanger are the
two largest welded components of RIU and were built in aluminum in order to reduce the
overall weight of the whole system.

RIU is connected to the two rails through the wheels carriers that in turn are connected
to the Upper Hanger and Lower Hanger. The wheels carriers rolling on the upper rail are
actuated, while the ones rolling on the lower rail are towed with an isostatic assembly. The
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Upper Hanger and Lower Hanger are connected through the Fixed Beam, which is bolted to
the Upper Hanger structure, and pinned to Lower Hanger. The Moving Beam can move along
the x direction, by sliding over the Fixed Beam. The top surface of Moving Beam is equipped
with three technological platforms that compose the multi-camera system, as described in
Section 2. Furthermore, RIU is equipped with a set of sensors that makes it fully energet-
ically autonomous, intelligent and correctly located with respect to the bridge geometry.
The autonomy is guaranteed by an on board set of commercial batteries that are charged
during the inspection. In particular, the bridge hosts several charging stations, enabling the
robot to recharge over the inspection. The robot uses batteries with a lightweight design,
with a very short charging time. Furthermore, these batteries perform consistently in a
wide temperature range, spanning from −40 ºC to +60 ºC, hence also enabling their use
in outdoor environments (such as a bridge). The intelligence is given by the presence of
a commercial ultrasound anemometer that estimates the suitability of the environmental
conditions. This ultrasound sensor is able to detect wind speed compared to the traditional
counterpart, and it requires less energy to work, thus making its use in “remote sites”
suitable. In the case the wind speed exceeds a predefined upper bound, the robot reaches a
safe position or assumes a safe configuration. This scenario, of course, is possible not only
thanks to the anemometer, but also to a proper control system. It is capable of detecting the
“not safe” conditions, and to properly drive the robot. Lastly, the localization with respect to
the bridge geometry was obtained through a proper set of commercial distance lasers and
encoders. Thus, the robot is self-aware of its position on the bridge, which is expressed in
terms of the distance traveled in z and in x directions. The distance values measured by
these two main groups of sensors have to match; otherwise, an input error is sent to the
control system and the robot goes into a safe configuration.

2.3. Data Structure and Processing

The Wi-Fi network suitable to control the position of the robot and to transfer the
image data is shown in Figure 6. The network is composed of three main cores: (i) PC Robot
Server, (ii) PLC Master Robot and (iii) RIUs. All the internal communications among the
three main cores take place through the Siemens proprietary bus, named PROFIBUS [46].
PROFIBUS is a protocol for field bus communication in automation technology that links
controller or control systems with decentralized field devices (i.e., sensors and actuators)
on the field level via a single bus cable. Moreover, it enables consistent data exchange with
higher ranking communication systems. There are two types of PROFIBUS: Decentralized
Peripherals (DP), when the Programmable Logic Controller (PLC) communicates with
a field device (sensors and actuators), and Process Automation (PA), used to interface
measuring instruments through a process control system. PROFIBUS has a very fast
filed bus (12 Mbps) and it can work on the master-slave scheme by using token passing
mechanism. A further reason for using this protocol is that its communication is specified in
IEC 61158 and IEC 61784 (i.e., the international standard of communication), hence meeting
the requirements for having a general purpose and scalable system. The communications
between the PC Robot Server and the master-slave robot are sent via the Wi-Fi network.
It uses a Siemens router device, which supports 2.4 GHz and 5 GHz transmissions with a
bit rate up to 1300 Mbit/s. From the PC Robot Server via Wi-Fi connection, the movement
commands are sent to the robots and the status and position of each robot on the bridge is
monitored. The command arrives via Wi-Fi to the single robot, while the PLC Master Robot
processes and sends the commands to all motor control drives, monitoring movement,
control and emergency sensors. In the same way, the images captured by the multi-vision
system are sent to the PC Robot Server to be processed with the flaw detection algorithm.
Each acquired image file is composed of the image itself, and the metadata that contain
additional information about (i) the relative position of the image acquisition (x, y and z
axes position), (ii) the results of image processing pipeline with the defect severity level
and (iii) the data from environmental sensors placed on the retractable beam. MQTTS and
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HTTPS protocols are used to send a JSON object containing these structured data. Each
acquisition stack contains about 40 MB of data.

Figure 6. Schematic representation of the designed architecture of the Wi-FI network system.

2.4. Control Software System

The PC Robot Server is based on Windows Server. Two services will be running
permanently: (i) a service for the communication between PLC Master and software
SCADA and (ii) a web server for the collection of the data from the PLC Master and the
computer vision system on the robot, which transfers them to the monitoring and control
software system. The software system overview is depicted in Figure 7. The first service
exposes to the SCADA system the data coming from the PLC Master and activates a
limited set of functions. This service acts as an Open Platform Communications/Unified
Architecture (OPC/UA) client connected to the PLC Master and as a Modbus TCP server to
the SCADA system, allowing the latter to have controlled access to the PLC. The expected
functionalities are: (i) read access to the state of a set of robot OPC/UA variables and (ii)
executing start/stop commands for scheduled inspections. The state of the variable values
is constantly updated through the OPC/UA subscription mechanism. Unfortunately, given
the large number of variables present in the PLC Master, not all of them can be updated
with the same frequency. Consequently, the priority is given to those variables considered
critical for the system, with less frequent updates for the ones of secondary relevance.
In order to meet the Modbus TCP specification, a set of registers was defined to which
data from the PLC are published. The data in the registers are updated by OPC/UA
subscriptions to the variables exposed by the PLC.
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Windows Service for  
HMI and Vision

Windows Service for
SCADA

PC Robot Server

HMI

SCADA

PLC  
Master

PLC 
R1

PC Vision 
R1

PLC 
R2

PC Vision 
R2

PLC 
R3

PC Vision 
R3

Figure 7. Schematic representation of the architecture of the software system.

Regarding the second service, the robot monitoring and control software are bootable
from the PC Robot Server itself, producing an HMI. The web server provides authenticated
APIs for accessing data from the PLC Master and collecting information from the computer
vision systems in the various robots. This service collects data from the PLC Master
via OPC/UA subscriptions, makes it available to the robot monitoring and controls the
HMI application. Moreover, it makes it possible to execute OPC/UA methods on the
PLC Master for robot control. The functionality of this service are: (i) read access to
the status of robot variables exposed by the PLC Master, (ii) start/stop functionality of
scheduled inspections, and (iii) control of individual robots as provided by the PLC Master.
Similarly to the SCADA service, the status of the variables is updated through the OPC/UA
subscription mechanism. The variables are divided into three different groups: General (for
variables on the general state of the system), Robot Inspection North and Robot Inspection
South. Furthermore, a set of authenticated REST APIs is used for communication with the
computer vision systems connected to each robot. The functionalities guaranteed by the
REST API consist of uploading in the PC Robot Server the photos acquired by the cameras
connected to the robot, sending the results of the analysis of the acquired images to the PC
Robot Server, reading the current position of the robot from the PC Vision and periodically
sending the status of the PC Vision to the PC Robot Server.

The HMI provides the user with an integrated interface to monitor and control the real-
time information related to the robot status obtained from the PLC Master and the vision
systems. The user can start the programmed inspections, control each robot (i.e., master-
slave) and give access to archived inspections. Interactive 3D models of the bridge and the
robots are displayed in HMI, with the possibility to access a series of information, such as
the status of the sensors, the captured photos and any detected anomalies or malfunctions.
The application developed with web technologies is accessible via browser from the PC of
the Robot Server itself. Each inspection robot has on board a PC to which all the cameras are
connected, which performs image analysis when required. The PC receives the commands
to start the photo capturing procedure from the robot PLC, performs its analysis and sends
photos and results to the PC Robot Server. It also periodically sends its status in order to
detect potential malfunctions, and obtains from the PC Robot Server information about
the robot status useful to the computer vision system. The communication between the
PC Vision on board the robots and the PC Robot Server has been implemented through
the bidirectional channel MQTTS. A client-server model infrastructure has been realized,
where PC Vision acts as a client, while PC Robot Server acts as a server. The PC Robot Server
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waits for client requests, and as soon as they arrive, it provides each PC Vision with the
configurations parameters and information related to the status of the robot. In turn, the
PC Vision sends information to the PC Robot Server about its status, the values detected
by the sensors and the events triggered by the image acquisitions. On the other hand, the
images acquired during the inspections are not be exchanged on the bidirectional channel,
but downloaded on request of the PC Robot Server. Information sent from PC Robot Server
to PC Vision includes:

• Real-time updates on the status of the robot;
• Current position of the robot along the bridge (z-axis);
• Current position of the beam (x-axis), robot inspection only;
• Current position of the additional sensor (y-axis), robot inspection only;
• Values of the distance sensors on the robot;
• Charge level of the robot batteries;
• Current status and position of the inspection cycle, if it is running;
• Possible error and warning states of the robot;
• Any activation of the robot emergency stop;
• General error status of the system;
• Any configuration parameters of PC Vision. They are sent at the moment of connection

and at the request of PC Vision

Conversely, information sent from PC Vision to PC Robot Server includes:

• Real-time updates on PC Vision status, such as possible camera and sensor malfunction
status or possible general error status of the PC;

• The readings of the connected sensors (such as the ultrasonic sensor);
• All the events triggered by the acquisition, including the metadata that will be useful

later to enrich the event (such as any URIs to find the photographs captured).

Finally, the PC Vision exposes a minimal web server where the acquired images are
published, available to the PC Robot Server. The PC Robot Server implements a scheduled
mechanism to copy the data present on the various PC Vision.

3. Results and Discussion
3.1. Flaw Detection Algorithm Results

The flaw detection algorithm was tested on RGB and 3D images, and the consequent
results are reported in Figures 8 and 9, respectively. In particular, Figure 8 shows three
different RGB images captured in different weather conditions: sunny (Figure 8a), night
(Figure 8b) and wet (Figure 8c). These images are further processed by the flaw detection
algorithm, and the consequent results are shown in the second column of Figure 8. The
detected flaws are encapsulated in the colored bounding boxes. Finally, to highlight the
flaw defects, binary images (Figure 8c,f,i) are generated from the processed images. These
images will be useful in the decision making process, in order to validate the goodness of
the identification, and the following actions are to be taken. Figure 8a,g show a portion of
the lower deck surface, where welds were used to join the different metal parts. Processing
these images shows several bounding boxes of different sizes, resulting from the size of
the kernels of the related filters defined for the flaw detection algorithm. These flaws are
considered as false negatives in the final decision-making step. Conversely, Figure 8d
shows an artificial defect (marker stroke) and a small hole. The analysis of this image shows
that the flaw detection algorithm is robust to color differences (even if artificial) and to the
detection of small defects.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 8. RGB images of part of the bridge under different weather conditions: sunny (a), night (d)
and wet (g). Processed images by the flaw detection algorithm (b,e,h) show the colored bounding
box encapsulates the flaws detected. Detected flaws are highlighted by binary images (c,f,i).

Figure 9 shows a 2D projection of a 3D image. The result of the flaw detection
algorithm plots circular and rectangular bounding boxes that surround the flaws. The
algorithm identified defects such as holes, bumps and color variation.

Figure 9. Result of the flaw detection algorithm performed on a 3D image.
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The acquisition and processing phases of each image triplet (i.e., RGB, 3D and multi-
spectral images) take less than 15 s that is an hard requirement. Such value was measured
while performing the inspection process on the onboard Hystou computer [47] with the fol-
lowing features: Intel i7-5500U processor, 8 GB RAM and 1 TB SSD with Ubuntu 20.40LTS.

3.2. Robots Performance

In this section, the preliminary tests run in order to evaluate the RI performances are
presented by analysing an example of the operative cycle. In this case, the robot moves
back and forth along the x axis three consecutive times, changing its z motion in every
iteration, in order to analyse different portions of the bridge. The actions performed by the
robot are reported in Algorithm 1.

Algorithm 1 RI performance example cycle

Starting position (x = 0 mm, z = 0 mm)
Movement along the x axis (x = +5800 mm), with z constant at 0 mm
Image capture
Movement along the x axis (x = −5800 mm), with z constant at 0 mm
Movement along the z axis (z = +600 mm), with x constant at 0 mm
Movement along the x axis (x = +5800 mm), with z constant at 600 mm
Pause for 20 s for vibration stabilization
Image capture
Movement along the x axis (x = −5800 mm), with z constant at 600 mm
Movement along the z axis (z = +2400 mm), with x constant at 0 mm
Pause for 10 s for vibration stabilization
Movement along the x axis (x = +5800 mm), with z constant at 2400 mm
Image capture
Movement along the x axis (x = −5800 mm), with z constant at 2400 mm
Movement along the z axis (z = +2400 mm), with x constant at 0 mm
Final position (x = 0 mm, z = 0 mm)

The trajectories along both the x and the z axes obtained while performing Algorithm 1
are depicted in Figure 10, represented in blue and orange, respectively.
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Figure 10. Schematic representation of the trajectories of the robot along the x (in blue) and the z (in
orange) axes.
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The cycle modeled by Algorithm 1 was designed as modular, ensuring the flexibility to
adapt the motion of the robots to the needs. In particular, the movements can be reversed,
and the distances can be modified. Unfortunately, in the specific case of the p.o.c. of the
robot presented in this paper, the motion along the x axis is limited to 4500mm, due to the
physical length of the prototype itself. Conversely, the z axis has no limitations; hence, the
trajectory can be freely decided according the desired path.

Furthermore, the consumption level of the battery of the robot has been monitored
and the results are displayed in Figure 11. The graph shows a linear dependency of the
consumption level on the elapsing time.

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 2,000 4,000 6,000 8,000 10,000

[%
 c

o
n

su
m

p
ti

o
n

]

Time [s]

Battery consumption

Figure 11. Schematic representation of the performance of the batteries consumption. The consump-
tion level shows a linear dependency to the elapsing time.

The test associated with the results in Figure 11 was conducted for 9000 s (i.e., ∼2.5 h),
in which the RIU performed inspection of the underside of the bridge. At the end of this
test, the average battery consumption resulted to be equal to the 75% of the total capacity.
The remaining 25% of the battery capacity was saved in order to make sure the RIU can get
to the nearest charging station and to account for possible different needs. Moreover, such
energy saving paves the way to further development of the robots, including additional
sensors to improve the accuracy of the inspection.

4. Conclusions

Monitoring the health of bridges is a pivotal element for scheduling the maintenance
operations, and ensuring the safety of the people passing close to or working on a bridge.
Unfortunately, traditional bridge inspection techniques struggle to achieve a well-rounded
inspection and to have ongoing monitoring of bridge health.

In this paper, a remote visual inspection system for bridge predictive maintenance is
proposed, integrating robotics and vision solutions. The design of the inspection robot was
not tailored on a specific application, but it actually was realised in a modular and flexible
fashion. In fact, the length of the Moving Beam, the amount of multispectral vision systems
and the Wi-Fi network can be declined to the different applications. The p.o.c. illustrated
in this paper was designed for the San Giorgio bridge in Genova and is represented by a
robotic platform, named RIU, able to scan the lower deck surface of a bridge by moving
continuously from beginning to end along the longitudinal direction of the infrastructure.
The robot is equipped with several different sensors such as ultrasound anemometer, lasers
and encoders together with a multispectral vision system. The set of sensors on the robot
is used to track the location of the robot along the bridge, while the vision system to



Remote Sens. 2022, 14, 2248 15 of 17

perform flaws detection on RGB, 3D and multispectral images. The use of single channel
images ensures compliance with the manufacturer time limit of 15 s for the acquisition and
processing phases of each image triplet. The design of RIU accounts for the presence of
multiple vision systems, and the p.o.c. discussed in this paper hosts three replicas, which
are installed in different strategic locations of the Moving Beam. The presence of several
vision systems on the same robotic platform dramatically reduces the time required to
scan the whole bridge. Moreover, the presence of a Moving Beam with its capability of
moving along the transverse direction of the bridge makes the robot adaptable to bridges of
different size and shape, or other type of “longitudinal” infrastructure (such as tunnels and
chimneys). Additionally, the robot is equipped with a modular and scalable Wi-Fi network
designed to handle data traffic, and to send the commands to all the motor control drives.
Furthermore, the robot mounts a set of batteries that guarantees power autonomy while
performing the scanning operations.

The flaw detection system proposed in this paper was proven to produce high-quality
and robust results. However, the identification task is still an open issue in the field of
computer vision, and the best performing ML and DL methods requires an incredibly large
amount of real data, which are often difficult to obtain. Consequently, the data recorded
by the developed p.o.c. will be used in the future to continuously update the system,
hence guaranteeing better and better performance. Furthermore, in the near future, the
possibility of using satellite imagery as an additional source of data will be considered. This
kind of image allows measurement results to be obtained over a long period, sometimes
over decades. These images also enable the detection of slow movements of various
structures, as well as the monitoring of the surrounding environment. In parallel, in the near
future, Generative Adversarial Networks (GAN) will be tested, exploiting their capabilities
to produce good results even in the case of partial amount of data [48]. Additionally,
further analysis will focus on the improvement of electrical efficiency, in order to reduce
consumption and achieve an AVI system with quasi-zero impact on the environment.

The designed robotic system produces the same high-quality performance regardless
of day or night or weather conditions. Moreover, it produces repeatable and consistent
results, hence improving the objectivity of the inspection and easing the dependence
on the human operators. Nevertheless, automating the identification process does not
aim at removing the role of human inspectors, but actually at facilitating their decision-
making process and increasing their safety. Moreover, the adoption of autonomous robots
significantly decreases the amount of time required to perform an inspection, and hence,
the necessary financial resources, both in terms of manpower and funds. It clearly emerges
how such technology can boost the inspection field, with robotic systems that may be easily
installed on a wide variety of infrastructures, continuously monitoring the health status,
and thus, preventing serious damages. Similar scenarios would remarkably and positively
affect the daily life of the society, and above all, the safety conditions of many people.
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