
SPH simulations of grain growth in protoplanetary disks

Guillaume Laibe, Jean-François Gonzalez, Laure Fouchet, Sarah T. Maddison

To cite this version:

Guillaume Laibe, Jean-François Gonzalez, Laure Fouchet, Sarah T. Maddison. SPH simulations
of grain growth in protoplanetary disks. Astronomy and Astrophysics - A&A, EDP Sciences,
2008, 487, pp.265. <hal-00286405>

HAL Id: hal-00286405

https://hal.archives-ouvertes.fr/hal-00286405

Submitted on 9 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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ABSTRACT

Aims. In order to understand the first stages of planet formation, when tiny grains aggregate to form planetesimals, one needs to
simultaneously model grain growth, vertical settling and radial migration of dust in protoplanetary disks. In this study, we implement
an analytical prescription for grain growth into a 3D two-phase hydrodynamics code to understand its effects on the dust distribution
in disks.
Methods. Following the analytic derivation of Stepinski & Valageas (1997), which assumes that grains stick perfectly upon collision,
we implement a convenient and fast method of following graingrowth in our 3D, two-phase (gas+dust) SPH code. We then follow
the evolution of the size and spatial distribution of a dust population in a classical T Tauri star disk.
Results. We find that the grains go through various stages of growth dueto the complex interplay between gas drag, dust dynamics, and
growth. Grains initially grow rapidly as they settle to the mid-plane, then experience a fast radial migration with little growth through
the bulk of the disk, and finally pile-up in the inner disk where they grow more efficiently. This results in a bimodal distribution of
grain sizes. Using this simple prescription of grain growth, we find that grains reach decimetric sizes in 105 years in the inner disk
and survive the fast migration phase.
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1. Introduction

The first steps of planet formation are governed by the build-up
of planetesimals due to the dust coagulation in protoplanetary
disks (Dominik et al. 2007). Observational evidence for grain
growth in disks is now common (Apai et al. 2004; Rodmann
et al. 2006; Muzerolle et al. 2006; Lommen et al. 2007; Graham
et al. 2007). Grains must grow from sub-µm sizes to planetesimal
scale (kilometer size) objects in a fraction of the lifetimeof the
disk, which is estimated to be a few 107 years (Haisch et al. 2001;
Carpenter et al. 2005). The timescales of grain growth, however,
are unclear: some young disks show signatures of grain growth
while old disks can show signatures of unprocessed grains and
coeval disks can show a range of grain sizes and dust processing
(Kessler-Silacci et al. 2006).

Grains can grow via collisions and depending on their rel-
ative velocity and on their chemical and physical properties
(Chokshi et al. 1993; Blum 2006), colliding grains can rebound,
shatter or stick. Grains will settle vertically and migrateradially
at different rates according to their size (Weidenschilling 1977;
Garaud et al. 2004; Barrière-Fouchet et al. 2005), leadingto lo-
cal density enhancements in the disk. Since grain growth is de-
pendent on density, changes in the dust distribution will affect
growth rates, which in turn will affect the dynamics of the dust
(Weidenschilling 1980; Haghighipour 2005). Therefore, growth,
settling and migration need to be simulated together.

Various models have been developed to describe the grain
growth process. One approach is to use the time-dependent
Smoluchowski coagulation equation (Weidenschilling 1980,

1997; Suttner & Yorke 2001; Dullemond & Dominik 2005;
Tanaka et al. 2005; Nomura & Nakagawa 2006; Ciesla 2007)
which describes the number density evolution of particles of a
given mass range. The numerical solution of the Smoluchowski
equation is challenging. Another approach is to use an analytic
expression for the grain growth rate as a function of local disk
conditions (Stepinski & Valageas 1997; Haghighipour 2005). In
this study, we use this second approach and implement the an-
alytical prescription of Stepinski & Valageas (1997, hereafter
SV97) in our 3D, two-phase (gas+dust) hydrodynamics code
and follow the evolution of the grain size distribution in a proto-
planetary disk. We validate our method on an axisymmetric disk
here, before applying it to non-axisymmetric complex problems
in future work.

2. An analytical grain growth model

SV97 modeled the radial evolution of solid particles made ofwa-
ter ice in geometrically thin, turbulent, vertically isothermal pro-
toplanetary disks. They described the gas and solid particle com-
ponents as two separate phases coupled by aerodynamic forces
(in the Epstein regime), and assumed that the evolution of the gas
is unaffected by that of the solids. The particles can grow by co-
agulation (they stick perfectly upon collision and therefore never
shatter into smaller grains), evaporate or condense from vapor.
Their size distribution at any radius and time is supposed tobe
narrowly peaked around a local mean values(r, t). Self-gravity
is neglected.
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They obtained an analytic expression for the evolution of the
particle sizes given by

ds
dt
=

√

23/2 Roα
ρ̂d

ρd
Cs

√
Sc− 1
Sc

, (1)

where Ro is the Rossby number for turbulent motions,α the
Shakura & Sunyaev (1973) viscosity parameter, ˆρd the density
of matter concentrated into solid particles,ρd the bulk density
of the grains,Cs the local gas sound speed, and Sc the Schmidt
number of the flow which estimates the effect of gas turbulence
on the grains. They defined Sc as

Sc= (1+ ΩK ts)

√

1+
v̄2

V2
t

, (2)

whereΩK is the local keplerian velocity,ts the dust stopping
time, v̄ the mean relative velocity between gas and dust, andVt a
turbulent velocity. Note that Youdin & Lithwick (2007) recently
suggested that one should use Sc≃ 1+(ΩK ts)2 instead. However
it is not clear how this approximate value follows from their
more complex exact expression (1+ (ΩK ts)2)2/(1+4(ΩKts)2). In
this paper, we keep the formulation used by SV97 for the sake
of self-consistency.

The growth rate
ds
dt

depends ons via the stopping time

ts =
ρd s
ρg Cs

, (3)

whereρg is the gas density.
SV97 were mostly interested in the radial distribution of

solid particles and their sizes. However, in order to interpret
observations of disks showing evidence of grain settling and
growth, as well as to provide initial conditions for planet for-
mation models, which are normally axisymmetric situations, one
needs to know both the radial and vertical size and density distri-
butions of grains. The complex interplay between the drag force,
which causes solids to migrate radially and settle vertically, and
the growth process makes a full numerical treatment of this prob-
lem necessary.

3. Grain growth in a 3D SPH code

We have developed a 3D, two-phase (gas+dust) Smoothed
Particles Hydrodynamics (SPH) code to model vertically
isothermal, non self-gravitating protoplanetary disks. The two
inter-penetrating phases representing gas and dust interact via
aerodynamic drag. Barrière-Fouchet et al. (2005, hereafter
BF05) describe the code and its limitations, and present thespa-
tial distribution of dust grains ranging from 1µm to 10 m in size
resulting from radial migration and vertical settling. In this work,
our aim is to implement the grain growth algorithm of SV97 into
our code and see how this simple prescription of grain growthaf-
fects the dust dynamics by comparing with the results of BF05.
While this could adequately be tested in 2D, our ultimate goal
is to study the observational signatures of grain growth in proto-
planetary disks and apply the code to various non-axisymmetric
problems, like disks with embedded planets. Thus we will be
able to extend our previous work on the formation of planetary
gaps in the dust layers of protoplanetary disks (Maddison etal.
2007; Fouchet et al. 2007) to include grain growth, and study
the stratification of growing dust grains in disks (see, e.g., Pinte
et al. 2007).

SPH is very well suited to the SV97 implementation of grain
growth. As we do in our code, SV97 describe gas and dust
as two fluids, their disk configuration and thermodynamics are
very similar to ours, and our SPH viscosity can be related to a
Shakura-Sunyaevα viscosity (Fouchet et al. 2007). Our test sim-
ulations show that the gas disk is little affected by the evolution
of the dust, as assumed by SV97. Therefore, it is straightforward
to implement the SV97 prescription of grain growth, given by
Eq. (1), in our code.

Following the work of SV97, all the dust particles must have
the same initial size,s0. The sizes is then evolved using Eq. (1)
evaluated at the location of each SPH particle. We assume that
the sizes assigned to each SPH particle represents the typi-
cal size of physical dust grains at its location in the disk, at a
given time. Again, this is very similar to the assumption of SV97
for their local mean values(r, t). Contrary to their work, we do
not take evaporation into account: for our disk conditions (see
Sect. 4.1), SV97 show that the evaporation radius is locatedbe-
tween 1 and 2 AU from the star and that after a million years only
a small fraction of the total solid material is evaporated due to
migration. Similar to SV97, our implementation of grain growth
does not include the fragmentation of grains, even though itis
likely to play an important role (see Sect. 6).

The mass of each SPH particle is kept constant to ensure
kinetic energy and momentum conservation. Ass can only in-
crease, this implies that, over time, SPH dust particles repre-
sent fewer but larger physical dust grains. However, even for
km-sized planetesimals, each SPH particle still represents a very
large number of physical particles, maintaining the validity of
the numerical scheme.

4. Simulations

4.1. Setup

We study grain growth in the typical T Tauri disk modeled in
BF05 with Mdisk = 0.02 M⊙, composed of 99% gas and 1%
dust by mass and orbiting a 1M⊙ star. The dust grains have
an intrinsic densityρd = 1 g cm−3. We choose an initial state
for a gas disk near equilibrium conditions. Following Hayashi
et al. (1985), we take the parameters of the Minimum Mass Solar
Nebula for the radial dependence of the temperature (T ∝ r3/4)
and initial surface density (Σ ∝ r−3/2). The disk is locally isother-
mal, i.e. the temperature follows a radial power law but is verti-
cally constant. The sound speed then varies asCs ∝ r−3/8 and,
given thatH = Cs/ΩK, H/r varies asr1/8. The disk is slightly
flared withH/r = 0.05 at 100 AU.

The smoothing length is computed byhi ∝ (mi/ρi)1/3, where
mi andρi are the mass and density of an SPH particle (see BF05).
The code will not be able to resolve a dust disk for which the
semi-thickness is less than the smoothing length. However,tur-
bulence in real disks stirs the solid particles and preventsthe for-
mation of such a thin dust layer. Indeed, the dust disk thickness
reaches a steady state when the settling and turbulent mixing
are in equilibrium (see, e.g., Dubrulle et al. 1995; Dullemond
& Dominik 2004; Schräpler & Henning 2004). Our code does
not yet include turbulent mixing and therefore can not reproduce
this steady state. The SPH artificial viscosity terms are given by
αSPH = 0.1 andβSPH = 0.0, which ensures the corresponding
Shakura & Sunyaev (1973) viscosity parameterα ∼ 0.01 (as in-
dicated by observations of protoplanetary disks — see Hartmann
et al. 1998; King et al. 2007).

We start with 200 000 gas particles that are distributed radi-
ally so as to retrieve the expected power law for surface density
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Fig. 1. Initial (top) and final (middle) dust density and final grain
size distribution (bottom) in a meridian plane cut of the disk for
s0 = 10µm.

and randomly in the vertical direction because hydrostaticequi-
librium is rapidly reached. The initial velocity of the gas parti-
cles is Keplerian. Starting from this initial distribution, we allow
the gas disk to relax for almost 8 000 years, which allows the
pressure and artificial viscosity to smooth out the velocityfield.
Once the gas disk has relaxed, we then add an equal number of
dust particles on top of the gas particles with the same velocity
and allow the system to evolve.

The disk extends initially from 20 to 300 AU. During the
evolution, particles are removed from the simulation if they mi-
grate inside of 20 AU and are assumed to be accreted by the
star. The outer boundary is free and particles are only removed
if they go beyond 400 AU. The viscous evolution of the disk is so
slow that the gas surface density profile stays almost unchanged
although the disk expands radially up to 400 AU.

We ran a series of simulations with 400,000 SPH particles
and initial grain sizess0 ranging from 1µm to 1 mm, in which
the system is evolved for a total of 105 yr. The results presented
in the next sections are time snapshots of the ongoing disk evo-
lution.

4.2. Results

Figure 1 shows the density of the solid phase at dust injection
(top) and at the end of the simulation (middle), along with the
resulting size distribution (bottom) in a meridian plane cut of the
disk for s0 = 10 µm. The vertical profiles of the gas and dust
densities at the end of the simulation are shown in more detail
in Fig. 2. The very efficient settling produces a thin dust disk,
whereas the gas disk does not evolve on this timescale.

Grain growth occurs very quickly: a few hundred years af-
ter dust injection, the innermost grains have almost reached mm
sizes (Fig. 3a), and a few thousand years later (Fig. 3b), grain
growth is visible over the entire disk, with sizes of a few cm in
the inner region. This fast evolution leads to a radial size distri-
bution showing a regular increase of grain size with decreasing
distance from the star. At later times (Fig. 3c and d), we see a
change in the profile shape due to differences in migration effi-
ciency in different parts of the disk. The overall distribution then

Fig. 2. Vertical (azimuthally averaged) profiles of the gas (thin
lines) and dust (thick lines) densities at selected radii inthe disk.

Fig. 3. Evolution of the radial grain size distribution fors0 =

10µm.

evolves more slowly and shifts to larger sizes while keepinga
roughly constant average slope.

In Fig. 4, we show the trajectories of seven individual parti-
cles in ther − z plane for thes0 = 10 µm case. The top panel
shows the particles settling to the mid-plane followed by their
radial migration and the bottom panel shows the grain growth
during this process. We see three stages: particles grow as they
settle to the mid-plane and then start their radial migration (this
behaviour, seen for all particles in Fig. 4, was also reported by
Haghighipour (2005)), they then rapidly migrate inwards while
growing very little (seen for P2, P3, P4, P5), and finally grow
again while migrating very little (see for P1, P2, P3). The sec-
ond stage of fast radial migration corresponds to the low slope
seen in the central parts of the disk in Fig. 3c and d: grains spend
less time there and accumulate in the inner disk, where they grow
more efficiently due to the higher density.

The final size distribution (Fig. 3d) shows a population of
large grains over 10 cm in the inner disk, whereas the grains stay
well below mm sizes in the outer disk. The histogram of final
grain sizes for thes0 = 10µm model (Fig. 5d) shows a bimodal
distribution. The first peak corresponds to the end of the first
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Fig. 4. Trajectories of individual particles fors0 = 10µm.

Fig. 5. Evolution of the histogram of grain sizes fors0 = 10µm.

growth stage identified in Fig. 4 where grains reach a size of
about 3 mm. The minimum around 8 mm is explained by the
rapid migration of the second stage for grains of that size, which
transports them to the very efficient growth region of the inner
disk where they will populate the second peak around 10 cm. As
is to be expected from Eq. (1), the larger grains are found in the
denser zones (see Fig. 1).

The histograms of grain sizes at different times displayed in
Fig. 5 show that the signature of the rapid migration stage asa
minimum around 8 mm appears only a few thousand years after
the dust injection (Fig. 5b), as soon as the larger grains reach that
size. It is visible thoughout the disk evolution, with a remarkably
stable position (Fig. 5c and d).

Changings0 from 1 µm to 1 mm only has an effect on the
size distribution in the outer disk, where grains do not growbe-
yond a few mm. In the rest of the disk, whatever their initial
size, particles quickly reach the second stage and their subse-
quent evolution is similar to thes0 = 10µm case, leading to the
same grain size distribution.

In this paper, we have restricted our study to disks with a
large inner radius ofrin = 20 AU. For lower values, simulations
are much slower due to the smaller drag timestep in the central
higher density regions. Simulations withrin = 3 AU were run

for t = 20 000 yr and show the same size distribution outside of
20 AU, with s continuing to increase asr decreases to 3 AU.

5. Discussion

Our results are in good agreement with those of SV97. Indeed,
with a disk of comparable mass to ours and anα viscosity pa-
rameter of 10−2, they found that grain growth is more efficient in
the inner disk, where grains reach sizes of 1 cm at 20 AU after
3× 105 years. They explain their results by the combined action
of both growth and migration: grains grow, reach sizes where
they decouple from the gas and then migrate, thereby altering
the dust surface density and grain size. Equilibrium occurswhen
the global flux of migrating particles at a given radius vanishes.
However, they do not resolve the change of slope in the grain
size distribution between 50 and 150 AU. Further, their inter-
pretation remains qualitative and does not recover the different
growth stages we observe.

In order to interpret our results in a more quantitative way,
we compare our simulations to an analytic expression of the re-
sulting grain sizes derived under simplifying hypotheses.We
first assume that ¯v ≪ Vt, i.e. that Sc is dominated by the ef-
fect of gas-dust coupling, determined by the value of the non-
dimensional stopping timeTs = ΩK ts. We introduce the non-
dimensional grain sizeS = s/sopt, where

sopt =
Csρg

ΩK ρd
(4)

is the optimal grain size for radial migration (for details see
Fouchet et al. 2007), in order to write Sc≃ 1+ S . Interestingly,
S = Ts and the three drag regimes identified by BF05 are de-
fined byS ≪ 1 (dust strongly coupled to the gas),S ∼ 1 (most
efficient dust settling and migration) andS ≫ 1 (dust decoupled
from the gas).

To obtain an analytic solution for Eq. (1), we then neglect the
temporal variation of all quantities excepts. Since SV97 used
constant values for Ro andα, the only remaining variables are
ΩK , ρg, ρ̂d andCs, which vary both in space and time. Assuming
they are constant when following the evolution of the size ofone
particle amounts to assuming that, while it grows, the particle
stays in the same position in the disk (therefore does not set-
tle nor migrate) and that the disk structure does not evolve with
time. While crude, this approximation is nonetheless useful in
understanding the growth process and disentangling its effects
from the complex interaction of those of the drag force. We de-
fine the dimensionless time

T =
t
τ
+ 2

√

S 0

(

1+
S 0

3

)

, with τ =
1

√
23/2 RoαΩK

ρg

ρ̂d
, (5)

to rewrite Eq. (1) as

dS
dT
=

√
S

1+ S
. (6)

Its solution is

S=

(

8+9T 2+3T
√

16+9T 2
)1/3

2
+

2
(

8+9T 2+3T
√

16+9T 2
)1/3
−2. (7)
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Fig. 6. Radial grain size distribution computed from Eq. (7) at
the end time of our simulations, fors0 = 10 µm (black) and
optimal size for radial migrationsopt (grey).

Three regimes can be isolated:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣
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1
4

T 2

S ∼ 1 ⇔ T ∼
8
3

: S =
T
2
−

1
3

S ≫ 1 ⇔ T ≫ 1 : S ∼
(

3
2

T

)2/3

,

(8)

showing a fast growth for small sizes and a slower growth for
larger sizes, consistent with what was seen in Fig. 3.

Although Eq. (7) associates one value ofS to a given value
of T , the set of normalization quantities (sopt, τ) defining the non
dimensionalS andT is unique for each particle, and is computed
with the disk parameters corresponding to its initial location. The
resulting values ofs will therefore be different for all particles.

Starting from the same initial positions of dust particles of
size s0, this simple model allows us, instead of evolving their
size with the code, to directly compute with Eq. (7) the resulting
size (i.e. the size computed for the end time of our simulations)
of each particle in the approximation of a fixed position during
growth. The resulting grain size distribution is shown in Fig. 6
for s0 = 10µm. As s is proportional toρg via sopt, the observed
spread in resulting grain size at a givenr is caused by the spread
in gas density for particles at different heights above the mid-
plane. The resulting distribution reproduces the same grain size
range as obtained at the end of the simulation, with decimetric
grains in the inner disk, and has a slope close to that of the dis-
tribution in Fig. 3b. Of course, in that approximation, Eq. (7)
cannot reproduce the effect of migration and therefore does not
show the changes in slope that it causes, which were seen in
Fig. 3c and d.

The understanding of the growth process in the framework
of our approximation which leads to Eq. (6) now allows us to
reinterpret the results of grain growth in the presence of vertical
settling and radial migration. For the range ofs0 values used in
our simulations,s0 < sopt over most of the disk (see Fig. 6), and
the grains are initially in the first regime of fast growth (S ≪
1) identified in Sect. 4.2, and found in Eq. (8), corresponding
to the strongly coupled drag regime, with very little migration.
Outside of∼ 150 AU, resulting grain sizes stay belowsopt in the
simulated timescale and grains do not reach the rapid migration
stage. Indeed, the growth timescaleτ ∝ Ω−1

K ∝ r
3/2 is longer in

the outer disk. Inside of this radius, sizes do reachsopt (i.e.S ∼ 1,
corresponding to the intermediate drag regime) and grains go
through a phase of fast inwards migration, explaining the low
slope in the central region of Fig. 3d and the stable locationof the
minimum in the histograms of grain sizes (Fig. 5b–d). Indeed,

sopt depends on variables describing the gas disk, which does
not evolve in the timescale of our simulations. Once they have
grown to sizes greater thansopt, the migration efficiency drops
as dust starts to decouple from the gas (in the weak drag regime,
defined byS ≫ 1) and grains pile up inside of∼ 50 AU and
continue to grow there, more slowly.

This result differs from that of Weidenschilling (1977), who
models the particular case of the Minimum Mass Solar Nebula.
With his disk parameters, he found that the grains with the
largest radial migration velocity were meter-sized and that their
consequent survival time in the nebula was much shorter than
the disk lifetime. This led to the persisting (see, e.g., Natta et al.
2007) idea that growing grains which reached meter sizes rapidly
fall onto the star (or more likely are evaporated in the innerdisk),
thus resulting in a potential problem for the planet formation
process. This so-called “meter-size barrier” could be overcome
if grains could grow to larger sizes within only a few hundred
years, which would be very difficult according to the current
understanding of solid particle aggregation (Blum 2006). Our
simulations show that, in our slightly more massive nebula rep-
resentative of many observed T Tauri disks, growing grains can
survive the fast migration stage (occurring for∼ 8 mm grains in
our disk conditions) and reach larger sizes with longer survival
times, allowing for the possibility of planet formation inside of
∼ 50 AU.

6. Conclusion

We have implemented a mechanism able to treat grain growth in
protoplanetary disks via the analytical expression of SV97into
our two-phase SPH code. We simulated for the first time the full
3D evolution of a typical T Tauri disk, following the simultane-
ous radial migration, vertical settling, and growth of solid parti-
cles. Their interplay is complex: dynamics affects grain growth
by modifying local physical quantities such as density or relative
velocity. Conversely, grain growth also acts on dust dynamics:
where non-growing grains would either stay well mixed with
the gas or settle and migrate according to their sizes (BF05),
growing grains will go through various stages and produce to-
tally different spatial distributions. They initially grow rapidly
as they settle to the mid-plane, then experience a fast radial mi-
gration with little growth through the bulk of the disk, and finally
pile-up in the inner disk where they grow more efficiently. This
results in a bimodal distribution of grain sizes, with the largest
grains found in the denser inner disk, where growth is most ef-
ficient. The survival times of the solid particles are longerthan
previously found, which has an implication on planet formation.

We find that grains grow very quickly: they reach decimet-
ric size in 105 yr. This is in general agreement with the results
of Dullemond & Dominik (2005) where shattering is neglected.
They used the different approach of solving the Smoluchowski
equation to study the growth of settling, but non-migrating, dust
and in 105 yr formed grains of maximum sizes ranging from
1 cm to over 1 m depending on their model parameters. Similar
to them, we also find that the small grains only survive in the
very outer disk and are depleted too rapidly elsewhere to be con-
sistent with infrared observations of disks, highlightingthe im-
portance of shattering.

In order to compute synthetic images from our simulations
and compare them to the observations, one would have to as-
sume that the collisional cascade resulting from the inclusion of
shattering would produce a whole particle distribution from the
maximum size at a given radius shown in Fig. 3d down to sub-
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µm size, described by a quasi-steady power law as argued by
Garaud (2007).

The method we used to treat grain growth can easily be ap-
plied to other analytical prescriptions. The development of a
more detailed model is necessary for a realistic description of
grain growth in protoplanetary disks. In addition to shattering,
one needs to take into account other processes such as micro-
scopic interactions between the grains, kinetic energy dissipation
and grain porosity. This is the subject of a forthcoming paper.

Acknowledgements. We thank Yann Alibert for suggesting the use of the
Stepinski & Valageas (1997) approach. This research was partially supported
by the Programme National de Physique Stellaire of CNRS/INSU, France, the
Programme International de Coopération Scientifique (PICS) France-Australia
in Astrophysics (Formation and Evolution of Structures), and the Swinburne
University Research Development Grant Scheme. Simulations presented in this
work were run on the Swinburne Supercomputer1. Images in Fig. 1 were made
with SPLASH (Price 2007).

References
Apai, D., Pascucci, I., Sterzik, M. F., et al. 2004, A&A, 426,L53
Barrière-Fouchet, L., Gonzalez, J.-F., Murray, J. R., Humble, R. J., & Maddison,

S. T. 2005, A&A, 443, 185
Blum, J. 2006, Advances in Physics, 55, 881
Carpenter, J. M., Wolf, S., Schreyer, K., Launhardt, R., & Henning, T. 2005, AJ,

129, 1049
Chokshi, A., Tielens, A. G. G. M., & Hollenbach, D. 1993, ApJ,407, 806
Ciesla, F. J. 2007, ApJ, 654, L159
Dominik, C., Blum, J., Cuzzi, J. N., & Wurm, G. 2007, in Protostars and Planets

V, ed. B. Reipurth, D. Jewitt, & K. Keil, 783–800
Dubrulle, B., Morfill, G., & Sterzik, M. 1995, Icarus, 114, 237
Dullemond, C. P. & Dominik, C. 2004, A&A, 421, 1075
Dullemond, C. P. & Dominik, C. 2005, A&A, 434, 971
Fouchet, L., Maddison, S. T., Gonzalez, J.-F., & Murray, J. R. 2007, A&A, 474,

1037
Garaud, P. 2007, ApJ, 671, 2091
Garaud, P., Barrière-Fouchet, L., & Lin, D. N. C. 2004, ApJ,603, 292
Graham, J. R., Kalas, P. G., & Matthews, B. C. 2007, ApJ, 654, 595
Haghighipour, N. 2005, MNRAS, 362, 1015
Haisch, Jr., K. E., Lada, E. A., & Lada, C. J. 2001, ApJ, 553, L153
Hartmann, L., Calvet, N., Gullbring, E., & D’Alessio, P. 1998, ApJ, 495, 385
Hayashi, C., Nakazawa, K., & Nakagawa, Y. 1985, in Protostars and Planets II,

ed. D. C. Black & M. S. Matthews, 1100–1153
Kessler-Silacci, J., Augereau, J.-C., Dullemond, C. P., etal. 2006, ApJ, 639, 275
King, A. R., Pringle, J. E., & Livio, M. 2007, MNRAS, 376, 1740
Lommen, D., Wright, C. M., Maddison, S. T., et al. 2007, A&A, 462, 211
Maddison, S. T., Fouchet, L., & Gonzalez, J.-F. 2007, Ap&SS,311, 3
Muzerolle, J., Adame, L., D’Alessio, P., et al. 2006, ApJ, 643, 1003
Natta, A., Testi, L., Calvet, N., et al. 2007, in Protostars and Planets V, ed.

B. Reipurth, D. Jewitt, & K. Keil, 767–781
Nomura, H. & Nakagawa, Y. 2006, ApJ, 640, 1099
Pinte, C., Fouchet, L., Ménard, F., Gonzalez, J.-F., & Duchêne, G. 2007, A&A,
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