
End-to-end performance guarantees for multipath flows

Anne Bouillard, Laurent Jouhet, Eric Thierry

To cite this version:

Anne Bouillard, Laurent Jouhet, Eric Thierry. End-to-end performance guarantees for multi-
path flows. 2008. <hal-00289106>

HAL Id: hal-00289106

https://hal.archives-ouvertes.fr/hal-00289106

Submitted on 19 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52327174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00289106

End-to-end performance guarantees for multipath flows

Anne Bouillard
ENS Cachan / IRISA
Campus de Beaulieu

35000 Rennes, France
Anne.Bouillard@irisa.fr

Laurent Jouhet
ENS Lyon / IXXI
46 Allée d’ Italie

69007 Lyon, France
Laurent.Jouhet@ens-lyon.fr

Eric Thierry
ENS Lyon / IXXI
46 Allée d’ Italie

69007 Lyon, France
Eric.Thierry@ens-lyon.fr

ABSTRACT
When routing data across a network from one source to one
destination, instead of following a fixed path, one can choose
to spread data on several routes in order to use all poten-
tial ressources of the network. This issue has been studied
for many models of networks with various objectives to opti-
mize. In this paper we investigate how to route a flow across
a network of servers with end-to-end performance guarantees
in the framework of Network Calculus. We discuss stability
issues (i.e. whether we can ensure that end-to-end delays
are bounded) for arbitrary networks, and how to compute
bounds on worst-case end-to-end delays and backlogs. The
tightness issues are discussed on a small but challenging toy
example.

1. INTRODUCTION
Finding good ways to route data across networks is a major
issue in computer science and it has lead to a considerable
amount of work. It has been studied with many variations
depending on the modelling of the network, on the type of
routing that is sought, and on the optimization objectives
that are wished. It is not possible to provide here an exten-
sive list of all those studies (see some reference books like [1,
13]). However as far as we know, the routing problem has
not been yet much investigated in the framework of Network
Calculus.

Network Calculus can be presented as a deterministic queu-
ing theory based on the (min, +) semi-ring, and aimed at
worst-case performance analysis in communication networks.
From a mathematical point of view, it consists in combining
curves which locally describe the shape of the traffic and
the services, with (min, +) or (max, +) operations in order
to predict the global behavior of the networks, and in par-
ticular end-to-end measures like delays or backlogs. Given a
network modelled by a graph with servers on the arcs (or on
the nodes) and a flow to route with its specifications (start-
ing point, destination, arrival curve), the authors of [4, 5]
raised the question of computing an “optimal” routing, i.e.

which achieves the smallest bound on the worst case end-
to-end delay or backlog. They provided efficient algorithms
based on classical shortest path algorithms in the absence of
cross-traffic. They also considered models with cross-traffic
that may interfer with the routed flow, but such models
are much more difficult to analyze in the framework of Net-
work Calculus [15, 17] and in this context, optimal routing
algorithms could be presented only for very specific config-
urations.

Rather than routing a flow on a single fixed path, one can
hope that distributing data among several path will achieve
better performance guarantees. In this paper we investigate
this approach in the Network Calculus context. The network
is modelled by a directed graph and the servers are located
on the arcs (an easy transformation enables to translate such
a model into a graph with servers at the nodes [5]). Each
server is FIFO and is characterized by a minimum service
curve which corresponds to a lower bound on its capacity
to serve data (note that we will not require service curve
to be strict [3]). The specifications of the flow we wish to
route are its source in the network, its destination and its
arrival curve, i.e. a function setting an upper bound on the
amount of data that may arrive during any fixed duration.
We work with a fluid model where data can be divided into
arbitrarily small packets (we will use the term“bit”only as a
divisible unit for data). Then we choose to focus on a rout-
ing scheme which distributes data along fixed proportions: at
each node, the data that leaves the node is divided among
the output arcs with fixed proportions (like 50%,20%,30%
for three output arcs). Choosing a fluid model and a rout-
ing that strongly relies on this model may be questionable
with regard to application. We do not discuss in this pa-
per how to adapt the scheme to a discrete model (e.g. it
is still possible to use a scheduling process which follows
the fixed proportions, up to rounding effects) and whether
it jeopardizes all the results. Fluid models are quite often
good approximations of discrete models and in our case it
appears as a good start to design multipath routing schemes
and analyze them.

The Network Calculus notation and basic results are pre-
sented in Section 2, as well as our model of network and
of routing scheme. Then we investigate in Section 3 the
first main issue: we provide a necessary and sufficient con-
dition in order to guarantees that one can route the flow
across the network with fixed proportions while preserving
its stability (i.e. ensuring that the amount of data in the net-

work remains bounded). This result is intimately linked to
the max-flow/min-cut Ford-Fulkerson theorem of graph the-
ory [1, 9]. In case stability can be achieved, we study more
precisely the end-to-end performance measures by focusing
one simple but challenging toy example. We show how one
can obtain interesting bounds on the worst-case backlog in
the whole network, but as discussed in Section 3.2 tightness
is lost during the computation. Bounding the worst-case
end-to-end delay for the routed flow is more involved due to
possible permutations of the order of data during its propa-
gation along several paths. Section 4 is devoted to this issue:
we indicate how to compute a bound which is not tight and
we discuss those tightness issues.

2. NETWORK CALCULUS FRAMEWORK
AND THE NETWORK MODEL

2.1 Network Calculus operators
Network Calculus is based on the (min, +) semi-ring, it is
sometimes presented as a (min, +) analogue of the classical
(+,×) filtering theory. Formally, the (min, +) semi-ring con-
sists in the set Rmin = R ∪ {+∞} equipped with operations
min and + which provide a semi-ring structure.

Flows and services in the network are modeled by non-
decreasing functions t 7→ f(t) where t is time and f(t) an
amount of data. There are different models depending on
whether t (resp. f(t)) takes discrete or continuous values,
e.g. in N or R+. In this paper, we consider continuous
time and data which can be arbitrarily divided. We call bit
the data unit (divisible). Nevertheless, we do not require
our functions to be continuous and authorize bursts of data.
Consider the set F of functions from R+ into Rmin. Be-
yond usual operations like the minimum or the addition of
functions, Network Calculus makes use of several classical
operations [2] which are the translations of (+,×) filtering
operations into the (min, +) setting. The convolution, de-
noted ∗, and the deconvolution, denoted ⊘, are defined as:
for all f, g in F , ∀t ∈ R+,

• Convolution: (f ∗ g)(t) = inf0≤s≤t(f(s) + g(t − s)).

• Deconvolution: (f ⊘ g)(t) = supu≥0(f(t + u) − g(u)).

The convolution is associative, commutative and distributive
w.r.t. the minimum. The deconvolution also has interesting
algebraic properties (see [3] for a survey on such properties).
Using such operations, Network Calculus formulas combine
the constraints on the traffic and the services in the network
in order to output worst-case performance bounds.

2.2 Arrival and service curves
Let A be an arrival process, that is, A(t) is the amount
of data that arrives until time t. We say that α is an ar-
rival curve for A (or that A is upper-constrained by α) if
∀s, t ∈ R+, A(t + s) − A(t) ≤ α(s). This means that the
amount of data arriving between time t and t + s is never
above α(s). An important particular case of arrival curve
is the affine functions: α(t) = σ + ρt. Then σ represents
the maximal burst that can arrive simultaneously and ρ the
maximal average rate of arrivals.

Consider A an arrival process into a system and B the corre-
sponding departure process. Given A, the system provides a
(minimum) service curve β if B ≥ A ∗ β. Particular cases of
service curves are the peak rate functions with rate r (the sys-
tem can serve r packets per unit of time and β(t) = rt) and
the pure delay service curves with delay δ: β(t) = 0 if t < δ
and β(t) = ∞ otherwise. The combination of those two ser-
vice curves gives a rate-latency function β : t 7→ R(t − T)+.
In the examples of the paper, we will mainly study servers
with rate-latency service curves, with piecewise affine ar-
rival processes. The next lemma states that the convolution
of such functions is simple to compute.

Lemma 1. Let f be a non-decreasing piecewise affine func-
tion and g : t 7→ ρ(t− T)+. Then, f ∗ g is ℓ ∗ h where ℓ is a
pure delay service curve with delay T and h the greatest con-
tinuous piecewise affine function h such that every slope of
segment is less than ρ (∀t ∈ R+, h′(t+) ≤ ρ and h′(t−) ≤ ρ)
and h ≤ f .

Proof. First assume that T = 0. From [6], the convo-
lution of piecewise affine functions can be computed by cal-
culating the minimum of the convolutions of each segment
composing the function f by the line t 7→ ρt. For a segment
s : t 7→ a + bt, ∀t ∈ [u, v], one have s ∗ g = g if b ≥ ρ and
s ∗ g|[u,v] = s and ∀t ≥ v, s ∗ g(t) = a + b(v − u) + ρ(t − v).
The minimum of such convolution gives the desired result
for T = 0. Now, if T > 0, Let f ∗ g = f ∗ g(. + T) ∗ ℓ, so the
result is straightforward.

2.3 Performance characteristics and bounds
There are two performance characteristics that can be com-
puted with network calculus, that are the backlog and the
delay.

Definition 1. Let A be an arrival flow through a system
and B be the corresponding departure process. Then, backlog
of the flow at time t is

b(t) = A(t) − B(t)

and the delay (assuming FIFO order for serving packets of
the flow) at time t is

d(t) = inf{s ≥ 0 | A(t) ≤ B(t + s)}.

Given an arrival curve and a service curve, it is possible to
compute, with the network calculus operations, the maximal
backlog (amount of data in the system) and delay. More-
over, one can also compute the arrival curve of the departure
process.

Theorem 1 ([7], Theorem 2.3.4). Let A be an arrival
process with an arrival curve α entering a system with ser-
vice curve β. Let denote by D the departure process. Then,

1. B has an arrival curve α′ = α ⊘ β.

2. b(t) ≤ α ⊘ β(0).

3. δ(t) ≤ sup{δ ≥ 0 | β ⊘ α(δ) ≤ 0}.

The maximal queue length is the maximal vertical distance
between α and β while the maximal virtual delay is given
by the maximal horizontal distance between those two func-
tions. Figure 1 illustrates this fact.

δmax

bmax

α

β

Figure 1: Guaranties bounds.

2.4 Model
In this paper, we study systems where servers are linked
to form an acyclic network. There is a flow crossing that
network from a source to a destination and that flow can
split, so that data can take different paths. Formally, we
will consider a connected directed acyclic network that is
modeled by a directed acyclic graph G = (N, A), with |N |
nodes and |A| arcs. There are two distinguished nodes: a
source node s and a destination d. Without loss of generality,
as the network in acyclic, one can suppose that there is no
input arc in s and no output arc from d and that every node
is on a path from s to d. Each arc a is a server for which a
non-negative service curve βa is known. The service policy
for each server is assumed to be FIFO (in a server, packets
are served in the order of their arrival in this server).

The traffic in the network is as follows: a flow, with cumula-
tive arrival curve As, arrives at node s and is transferred into
the rest of the network, so that the total flow is directed to-
ward d. The flow can be split and take several paths. When
the flow is split, one assumes that it is done in a regular
way. More precisely, one have the following notations and
assumptions.

1. For every node n ∈ N , n− is the set of input arcs of n
and n+ in the set of the output arcs of n.

2. For every arc a ∈ A, a− is the origin node of a and a+

is the destination node of a. These notations allow the
use of multiple arcs between a pair of nodes.

3. For every output arc a from a node n, there exists pa ∈
[0, 1], with

P

a∈n+ pa = 1 such that the cumulative
arrival process in a is Aa = paAn.

4. For every arc a, the cumulative departure process from
the server, with service curve βa is denoted by Ba.

5. For every node n, the cumulative arrival process in n
is An =

P

a∈n− Ba.

Moreover, for every arc a ∈ A, from the definition of a ser-
vice curve, Ba ≥ Aa ∗ βa.

Figure 2 illustrates the different relations between cumula-
tive arrival curves for one server.

Bb

Bc

Bd

Ba ≥ Aa ∗ βaAa = paAn
n βa

An = Bb + Bc + Bd

Figure 2: Flow model. At each node, the flows from
the input arcs are aggregated and then split among
the output arcs before being served by the server of
the arc a.

In the following of the paper, we will need to propagate
constraints and values from s to d. We then need to consider
the nodes in a compatible order with the propagation. Then,
each time we consider an order on the node, we will consider
a topological order: m ≤ n if an only if there is a path from
m to n. This order is not total, but any linearization of it
will be suitable.

3. THE GLOBAL SYSTEM
In this section, we analyze the global system properties. The
first important property for a system is its stability, and we
will give a necessary and sufficient condition for the stability
of such a system. The second point concerns the departure
process. With the network calculus operators, we will see
that one can give an upper bound for the departure process
and for the backlog of the system. This can be of interest
for studying properties that do not concern the order of ar-
rival/departure of the data. But we will see that as far as
the delay is concerned, this formula is of no use (and can be
mistaking).

First, let us state a preliminary lemma concerning the de-
parture process at a node.

Lemma 2. For every node n ∈ N \ {s}, the following in-
equation holds:

An ≥
X

a∈n−

βa ∗ (paAa−
), (1)

with the convention β(m,n) = 0 and p(m,n) = 0 if (m, n) /∈ A.

Proof. This is a direct consequence of the definition of
our model: ∀n ∈ N ,

An =
X

a∈n−

Ba

≥
X

a∈n−

βa ∗ Aa

≥
X

a∈n−

βa ∗ (paAa−
).

This lemma will be useful to study our system.

Example 1. Consider the network in Figure 3, with s =
1 and d = 6. the topological order on the nodes corresponds
to the natural order of the numbering of the nodes. The
following equations hold :

A6 = Bg + Bh ≥ βg ∗ Ag + βh ∗ Ah = βg ∗ pgA4 + βh ∗ A5

A5 = Bc + Bf ≥ βc ∗ Ac + βf ∗ Af = βc ∗ pcA2 + βf ∗ pfA4

A4 = Bd + Be ≥ βd ∗ Ad + βe ∗ Ae = βd ∗ pdA2 + βe ∗ A3

A3 = Bb ≥ βb ∗ Ab = βb ∗ pbA1

A2 = Ba ≥ βa ∗ Aa = βa ∗ paA1.

1

3

a

b

d

c

e
g

f h

2

4

5

6

Figure 3: Example of a network.

3.1 Stability of the network
In this section, we give a necessary and sufficient condition
for the stability of the system. The proof of this result is
based on the Max Flow-Min Cut (or Ford-Fulkerson) theo-
rem, that gives a method to compute a maximal flow in a
network with constant capacities. Before this, we investigate
the case when the routing proportions are fixed.

3.1.1 Stability for fixed routing proportions
Let α be an arrival curve for the cumulative arrival pro-
cess As. As stated in [7, 3], one can suppose that α is
sub-additive. Then, from Kingman theorem, limt→∞ α(t)/t
exists. Let us denote by ρ this limit. This value represents
the long-range maximal arrival rate for the flow.

We now suppose that for every a ∈ A, limt→∞ βa(t)/t exists
and that this limit is ra. This represents the long-range
service rate of server a.

Lemma 3. Let α the arrival curve of a flow crossing a
server with a service curve β. Pose limt→∞ α(t)/t = ρ and
limt→∞ β(t)/t = r. In addition, suppose that there exist two
constants c and c′ such that α(t) ≤ c + ρt and β(t) ≥ c′ + rt
∀t ∈ R+. Then the amount of data in the server is bounded
and the output arrival curve limt→∞ α ⊘ β(t)/t = ρ if and
only if ρ ≤ r.

Note that since in our model the servers are FIFO, if the
number of packets in the server is bounded, so is the maximal
delay for a packet. Then, this system is stable.

Proof. The quantity supt∈R+
α(t) − β(t) is finite if and

only if ρ ≤ r. Indeed ∀t ∈ R+, α(t)−β(t) ≤ c−c′+(ρ−r)t ≤
c − c′.

But,

α ⊘ β(t) = sup
s≥0

α(t + s) − β(s)

≤ sup
s≥0

α(t) + α(s) − β(s)

≤ α(t) + α ⊘ β(0).

Then limt→∞ α ⊘ β(t)/t ≤ ρ. Moreover, as the departure
process B is such that B(t) ≤ α ⊘ β(t) and for A = α (this
is always possible as α is sub-additive), if the server serves
the data immediately (which is always possible as we only
gave a lower bound for the service, B = α). Then one has
α ⊘ β(t) ≥ α and limt→∞ α ⊘ β(t)/t ≥ ρ.

Remark 1. The assumption of the existence of c and c′

is necessary: With α : t 7→ ln t and β : t 7→ 0, one has r = ρ
but α − β is not bounded. This assumption becomes useless
as soon as ρ < r.

For given routing proportions in the network, one can deduce
from Lemma 3 the long-range arrival rate in each node if
every node preceding it is stable: under this assumption of
stability, given a node a ∈ A, the long-range rate for Aa and
Ba is the same. Let us denote it by ρa, and denote by ρn

the long-range rate arriving at node n. Then, for every arc
a ∈ A,

ρa = paρa−
and ρn =

X

a∈n−

ρa. (2)

From Equation (2), one can easily deduce, as the network
is acyclic, the proportion of the flow arriving at each server,
by propagating the arrival rates in the server according to a
topological order on the nodes.

Example 2. Consider again the network of Figure 3. The
proportion of flow arriving at server f is:

ρf = pfρ4 = pf (ρd + ρe) = pf (pdρ2 + ρ3)

= pf (pdpaρ + pbρ) = pf (pdpa + pb)ρ.

A direct consequence of Lemma 3 is:

Proposition 1. The network is stable if and only if for
every arc a ∈ A, ρa ≤ ra.

As explained it is easy to check, when the proportions pa are
given, whether the network is stable. Now, we address the
problem of deciding whether there exist proportions such
that the system can be made stable.

3.1.2 Stability of the network
In this section, we use a transformation of the network into a
network with constant capacities in order to decide whether
there exist routing proportions that make the network sta-
ble, and compute such proportions in case of stability.

A flow network with constant capacities is a 5-tuple (N, A, s, d, c)
where (N, A) is a directed graph with two distinguished
nodes s, the source, and d, the destination, and where c :
A 7→ R+ is a capacity function on the arcs. We first trans-
form our network with functional capacities βa, a ∈ A into
a flow network in the following way:

• the structure of the network remains the same G =
(N, A) as well as the two distinguished nodes s and d;

• for each arc a ∈ A, the capacity of a is c(a) = ra.

A flow on a flow network is a function φ : A → R+ such
that:

• ∀a ∈ A, φ(a) ≤ c(a) (capacity constraint);

• ∀n ∈ N \ {s, d},
P

a∈n− φ(a) =
P

a∈n+ φ(a) (conser-
vation of the flow).

The value of the flow is |φ| =
P

a∈s+ φ(a). A cut C =
(E, N −E)of the network is a partition of N in E and N −E
such that s ∈ E and d ∈ N − E. The capacity of the cut
(E, N − E) is

P

a∈A|a−∈E,a+∈N−R ra.

The Max Flow-Min Cut theorem (see [8] for more details)
establishes a link between the maximum value of a flow and
the capacity of the cuts of the network:

Theorem 2 (max-flow/min-cut). Let (N, A, s, d, c) be
a flow network. The maximum value of a flow is equal to
the minimal capacity of cut.

It is possible to effectively build a flow of maximal capacity,
thanks to the Ford-Fulkerson algorithm. We will use this
theorem to build routing proportions that make our network
stable.

Suppose that in the flow network corresponding to our net-
work, there exists a flow φ of value |φ| ≥ ρ. The routing
proportions are defined as follow:

pa =
φ(a)

P

b∈(a−)− φ(b)
if a− 6= s, and pa =

φ(a)

|φ|
if a− = s

(3)

Lemma 4. The network G with routing proportions de-
fined above is stable.

Proof. We just need to prove that the routing propor-
tions make the system stable for every server. Let us inspect
every node and arc in the topological order.

For every output arc a of s, the long-range arrival rate is at
most paρ. From Equation (3),

paρ =
φ(a)

|φ|
ρ ≤ φ(a) ≤ c(a) = ra.

Hence, those servers are stable. Now, suppose that for every
server on each input arc a of node n, the inequality ρa ≤ φ(a)
holds. Let b be an output arc of n. Then, from Equations (2)
and (3), the following inequality holds:

ρb = pbρn = pb

X

a∈n−

ρa ≤
φ(b)

P

a∈n− φ(a)

X

a∈n−

φ(a) = φ(b).

Then ρb ≤ φ(b) ≤ c(b) = rb and the server of arc b is
stable.

We just exhibit a sufficient condition for the stability. We
now establish that this condition is also necessary.

Lemma 5. If for every flow φ, |φ| < ρ, then for every
routing proportions (pa)a∈A, there exists an unstable server.

Proof. We proceed by the contrapositive. Suppose that
there are proportions pa, a ∈ A such that every server is
stable (i.e. the system is stable). Consider the function
φ : a 7→ ρa, where ρa is defined in Equation (3). It is enough
to check that φ is a flow:

• ∀a ∈ A, φ(a) ≤ ra by construction;

• ∀n ∈ N \ {s, d},
P

a∈n− φ(a) =
P

a∈n− ρa = ρn =
P

b∈n+ pbρn =
P

b∈n+ ρb.

The function φ is a flow and has value |φ| =
P

a∈s+ φ(a) =
P

a∈s+ paρ = ρ.

Lemmas 4 and 5 yield the following theorem.

Theorem 3. There exists routing proportions that make
the network stable if and only if the flow network with con-
stant capacities on the arcs (ra)a∈A has a capacity at least
ρ.

About networks with cycles.The assumption about acyclic-
ity of the network can be relaxed for the latter theorem. In-
deed, this assumption is stated only to insure the stability
of the network for arbitrary networks, the case of network
with cycles remaining open. But, when computing a max-
imal flow in an arbitrary network, the arcs crossed by the
flow always form an acyclic network. Then, the stability of
the network is ensured.

3.2 Global departure process
From Lemma 2, given a network, we can deduce a formula to
compute Ad in function of the parameters of the network and
As: as the network is acyclic, the inequalities of Equation (1)
can be applied on every node in a topological order.

Example 3. Consider the network of Figure 3. Combin-
ing the inequalities of Example 1, one can express A6 as:

A6 ≥ βg ∗ pg(βd ∗ pd(βa ∗ paA1) + βe ∗ (βb ∗ pbA1))+

βh ∗ [βc ∗ pc(βa ∗ paA1)+

βf ∗ pf (βd ∗ pd(βa ∗ paA1) + βe ∗ (βb ∗ pbA1))].

Note that this formula is tight: if the servers are all exact
servers, that is, for every a ∈ A, Ba = βa∗Aa, then equalities
are propagated instead of equalities.

It would be nice to deduce performance bounds from this
global departure process. There are two main obstacles for
this. First, the convolution is not distributive over the ad-
dition, so the formula cannot be developed and simplified.
Second, the order of arrival of data is forgotten. The first
obstacle can be overcome by loosing the tightness, as we
will see in the next paragraph. The second one is an obsta-
cle only for properties that are dependent of the data order.
we first deal with properties that are independent of the or-
dering of data, namely, the backlog and the constraints for
the departure process. Let set out a preliminary result.

Lemma 6. Let f , g and h be functions from R+ to R
+
min.

For any p ∈ [0, 1], the following inequality holds.

f ∗ (g + h) ≥ (pf) ∗ g + ((1 − p)f) ∗ h. (4)

Proof. Let t ∈ R+.

f ∗ (g + h)(t) = min
s∈[0,t]

[f(s) + g(t − s) + h(t − s)]

= min
s∈[0,t]

[pf(s) + (1 − p)f(s)

+g(t− s) + h(t − s)]

≥ min
s∈[0,t]

[pf(s) + g(t − s)]

+ min
s∈[0,t]

[(1 − p)f(s) + h(t − s)]

≥ (pf) ∗ g(t) + ((1 − p)f) ∗ h(t).

In the rest of the paper, we will study extensively the follow-
ing toy example represented in Figure 4. We first show on
this example how to compute an upper bound for the back-
log and an arrival curve for the departure process. It should
be clear from Lemma 6 that this can be easily generalized,
but as this is not our main concern, we will not prove this
here.

1 2 3

b

a

c

Figure 4: Toy example.

From Lemma 2, one gets the formula:

A3 ≥ βc ∗ [(βa ∗ pA1) + (βb ∗ (1 − p)A1)].

From Lemma 6, one has:

A3 ≥ pβc ∗ βa ∗ pA1 + (1 − p)βc ∗ βb ∗ (1 − p)A1. (5)

The maximum backlog bmax satisfies the inequality (with
q = 1 − p):

bmax ≤ sup
t∈R+

[A1 − pβc ∗ βa ∗ pA1 − qβc ∗ βb ∗ qA1](t)

≤ sup
t∈R+

[pA1(t) − pβc ∗ βa ∗ pA1(t)]

+ sup
t∈R+

[qA1(t) − qβc ∗ βb ∗ qA1(t)]

≤ pα ⊘ pβc ∗ βa(0) + (1 − p)α ⊘ qβc ∗ βb(0).

The arrival curve for the departure process is:

A3(t) − A3(s) ≤ A1(t) − pβc ∗ βa ∗ pA1(s) − qβc ∗ βb ∗ qA1(s)

≤ pα ⊘ (pβc ∗ βa) + qα ⊘ (qβc ∗ βb).

Note that the tightness is lost when the formula is developed
in Lemma 6. The loss of the tightness can be explained dif-
ferently: the possible bursts in the arrival processes arriving
from server a and server b into server c are dependent from
each other, as they split at node 1. Then, the worst-cases
in servers a and b may not always happen at the same time,
whereas the upper bound is computed as if they were syn-
chronized.

3.3 Global maximum delay?
The third performance parameter we are interested in is the
maximum delay. Here, the global method we used until now
cannot be applied. Let first give an example, based on our
toy example, where the delay cannot be computed with the
formula.

From the usual Network Calculus formula, the delay can be
computed as the smallest δ such that ∀t ∈ R+, A3(t + δ) ≥
A1(t).

∀t ∈ R+, A3(t + δ) − A1(t) ≥ 0 ⇐

∀t ∈ R+, pβc∗βa∗pA1(t+δ)+qβc∗βb∗qA1(t+δ)−A1(t) ≥ 0 ⇐

∀t ∈ R+, pβc ∗ βa ∗ pA1(t + δ) − pA1(t) ≥ 0 and

∀t ∈ R+, qβc ∗ βb ∗ qA1(t + δ) − qA1(t) ≥ 0.

Let δ1 (resp. δ2) be the maximal delay for an arrival pro-
cess pα (resp. qα) constrained in a server with a service
curve pβc ∗ βa (resp. qβc ∗ βb ∗ qA1). Then one can choose
δ = max(δ1, δ2). The delay obtained is a worst-case average
delay: as the data can follow different paths, the FIFO or-
der in the system is lost. Then, there could exist some data
that have a delay greater than the one computed, as shown
in the following example.

Example 4. Suppose that α : 0 7→ 0; t 7→ 2σ + 2ρt, pa =
1/2, βa = βb : t 7→ R(t − T)+ and βc : t 7→ 2Rc(t − Tc)+.

Then, the delay computed with this method is δ = T + Tc +
σ

min(Rc,R)
. Now, we build an admissible evolution for the

system with some data having delays greater than δ.

The arrival process is exactly α: A1(0) = 0 and otherwise
A1(t) = 2σ+2ρt. Server a and c are exact servers. Server b
is an exact server in the interval [0, T] and then is an infinite
server.

The output process of server a is Ba(t) = A1/2∗βa(t). More
precisely, it is a continuous piecewise-affine function with
three different slopes: Ba(0) = 0, Ba has slope 0 on the
interval [0, T], slope R on [T, T + σ/(R− ρ)] and slope ρ on
[T + σ/(R − ρ),∞[. The last bit of the burst at time 0 exits
server a at time T + σ/R. The output process of server b
is α(t − T) if t > T and 0 otherwise. At time T + σ/R,
σ(R + ρ)/R bits have been served. In server c, the arrival
process until the arrival of the last bit of the initial burst is
A2(t) = 0, ∀t ∈ [0, T], A2(t) = σ+(R+ρ)(t−T), ∀t ∈]T, T +
σ/R]. Then, A3(t) = A2 ∗ βc(t). The last bit of the burst
is served at time T ′ = β−1(2σ + (R + ρ)/R). Computations
show that T ′ = T + Tc + (2σ + (R + ρ)/R)/2Rc > δ. The
computations can be followed on Figure 5

T

R

Tc

Rc

Bb
A3

A2

Ba

A1
delay

δ

Figure 5: The worst-case delay cannot be computed
with the global formula. The delay of the bit of data
marked by a dot is greater than δ.

4. DELAY OF DATA IN THE SYSTEM
As seen in the previous paragraph, the maximum delay can-
not be easily bounded by a global function describing the
system. The main goal of this section is to give means for
computing upper bounds of the worst-case delay. But before
doing this, we need to precise the notion of delay we con-
sider. Indeed, as the model we study is fluid and the traffic
is split, the delay cannot be defined in terms of packets and
by the difference between the departure and arrival time.

4.1 Maximum delay in the network
For a single FIFO server, with a single arrival process A
and a service curve β, the departure process is B ≥ A ∗ β.
Since B in non-decreasing, one can define its pseudo-inverse
B−1 : x 7→ sup{t ∈ R+ | B(t) ≤ x}. The maximal delay
of a bit that arrives at time t is B−1(A(t)) − t. Then, the
maximal delay is

δA,B = max
t∈R+

B−1(A(t)) − t = max
x∈R+

B−1(x) − A−1(x).

The maximal delay, if the arrival process is α-upper con-
strained for the server is then

δ = max
A α-uc

max
B≥A∗β

δA,B.

This formula is proved to coincide with the well-known for-
mula given in Theorem 1.

This formula can be easily extended to servers in tandems
when only considering one flow that follows only one path:
assuming that every bit of data follows the same path, that
the servers are FIFO, and (implicitly) that there is no over-
taking of bits in the links, the data exit the system in the
same order that they entered it. In our model, this is not
the case anymore.

Now, consider a FIFO server with cross-traffic: the server
has a service curve β and there are two arrival processes,
A and A′. The two flows merge in the server so that the
departure process is the departure process of the aggregate
flow A+A′. The departure process is then B such that B ≥
(A+A′)∗β.For data arriving at time t in the process A, the
quantity of data that arrived between 0 and t is A(t)+A′(t).
Those data will leave at time t′ such that B(t′) = A(t) +
A′(t). Then, the delay is B−1(A(t) + A′(t)) − t and the
maximum delay is:

δ = sup
A,A′,B

sup
t∈R+

B−1(A(t) + A′(t)) − t.

Note that there can be conditions on the possible A and A′

depending on the topology of the system (for example, they
can depend from each other or not).

There is no well-known formula for this type of server and
this case may be difficult to solve with no further assump-
tion. A simple case that can be computed is when the two
arrival processes A and A′ are independent and respectively
α and α′ upper-constrained. If α and α′ are affine, and β is
rate-latency, then δ = T + (σ + σ′)/R.

That notion of delay can be generalized to our network
model: for the different servers, arrival and departure pro-
cesses can be computed with the formulas describing the
model. Then, for any time t, the delay for the data arrived
until time t can be computed node per node according to
the following algorithm:

1. ts = t; Take nodes n in a topological order;

2. if n 6= s, then tn = maxa∈n− ta;

3. ∀a ∈ n+, ta = B−1
a (Aa(ta));

4. return td − ts.

The value td − ts returned is the delay for given arrival and
departure processes. The maximal delay is the the maxi-
mum delay for all t, and all possible arrival and departure
processes.

It seems from this definition that exact bounds may be very
difficult to obtain, as the optimization has to be taken over
an infinite range of functions. We next give an upper bound
for the delay.

4.2 Upper bound for the maximal delay
Here again, we use the acyclicity of the network and the
topological order on the nodes. For each server a, one can
compute an upper bound for the delay for each bit of data
entering the server and an arrival curve for the departure
process, in function of αa−

, an arrival curve for Aa−
, and of

βa, according to Theorem 1.

1. αs = α;

2. ∀m ∈ N, ∀a ∈ m+, αa = paαm;

3. ∀a ∈ A, δa = sup{δ ≥ 0 | β ⊘ α(δ) ≤ 0}... and
α′

a = αa ⊘ βa;

4. ∀n ∈ N − {s}, αn =
P

a∈n− α′
a.

Any bit of data that follows a path p = (a1, . . . , ak) will

have a delay less than
Pk

i=1 δai
. Then an upper bound on

the delay corresponds to the length of a longest path from s
to d in the graph G where the length of each arc a is δa. As
the graph is acyclic, this length can be computed in linear
time (in the size of the graph).

Example 5. To illustrate this method, consider the toy-
example in Figure 4 The respective worst-case delays δa and
δb for servers a and b can be easily computed from α, p, β1

and β2. An arrival curve for the arrival process in server c
is α′ = pα ⊘ βa + (1 − p)α ⊘ βb and the worst-case delay δc

for such an arrival curve in βc can also be easily computed.
An upper bound for the delay is then max(δa, δb) + δc.

If α is affine and the service curves are rate-latency (with
the same notations as above), we get:

δa = Ta +
pσ

Ra

δb = Tb +
(1 − p)σ

Rb

α′(t) = σ + Tapρ + Tb(1 − p)ρ + ρt

δc = Tc +
σ + Tapρ + Tb(1 − p)ρ

Rc
.

This method is similar to per-node analysis discussed in [14,
5]. It is well-known that this method is not optimal and
that the delay can be arbitrary smaller than the bound com-
puted. However, in absence of general means to compute an
exact bound, it is shown that it is not worse than any other
method : in [14], there are examples such that the bound
computed this way is better than a bound computed by the
other tractable approximation methods known up to now.

4.3 A tight bound?
An other way to compute the delay of data when the arrival
and departure processes are known is to observe the possible
paths for a bit of data. The delay on a path corresponds to
the delay of the bit of data that follows that path. Then, as
our model is fluid, one has to take the maximum on every
possible path of the delays of that bit of data.

In this section, we try to give an exact bound for our toy
example. The idea here is to compute worst-case trajectories
of the system for each of the two paths. Let us take any bit
of data arriving at time t directed to server a and see what
is the latest time it can be served. We call this bit the
bit under observation, or b.u.o., similarly to what is done in
[14]. Here, the main difference is that the trajectories are far
more difficult to find, because of the dependence between the
arrival flows in servers a and b. Moreover, we do not assume
the servers to have strict service curves.

We have the following monotony properties for single servers.

Proposition 2. Consider a FIFO server with a service
curve β, two different possible arrival process A and A′ and
two possible cross-traffic (that cross the server), C and C′.
Pose B1 = (A + C) ∗ β, B2 = (A′ + C) ∗ β and B3 =
(A + C′) ∗ β.

1. The delay of bits of A when C is fixed is maximized if
the server is an exact server.

2. If the server is exact, if C is fixed and if A ≤ A′,
the delay for transferring the x first bits of data of the
process A is greater than the one to transfer the same
amount of data of A′:

B−1
1 (A + C)(A−1(x)) ≥ B−1

2 (A′ + C)(A′−1(x)).

3. If the server is exact, if A is fixed and if C ≤ C′ and
C(t) = C(t′), then the delay of a bit of data of A
arriving at date t is greater with cross-traffic C than
with C′:

B−1
1 ((A + C)(t)) ≥ B−1

3 ((A + C′)(t)).

Proof. 1. Trivial

2. Since A ≤ A′, B1 ≤ B2, B−1
1 ≥ B−1

2 and A−1(x) ≥
A′−1(x).

3. Since C ≤ C′, B1 ≤ B3 and B−1
1 ≥ B−1

2 . Since C(t) =
C′(t), (A + C)(t) = (A′ + C)(t).

Proposition 2 has the following consequences:

• server c should be exact (1.);

• server a should also be exact (2.);

• server b should be exact while the b.u.o. is in server
a and become an infinite server at the time the b.u.o.
exits from server a (3.).

Now, the service policies are fixed for every server. The only
other parameter to fix is the arrival process, and find the one
that enables the worst-case delay. Against the intuition, and
to what the worst-case is in tandem networks, we will not

take A1 = α, the maximal arrival curve, but we will build a
little more bursty process.

Consider that the b.u.o. arrives in the system at time t0.
The bit of interest is divided in two, one part of it going
to server a and the other part to server b. The delay of
that bit will be given by the path where it departs the latest
among server a and b. Until the b.u.o. exits servers a and b,
both servers are exact servers, as explained before. Without
loss of generality, suppose that the b.u.o. last exits from a.
Then, at time it exits from a, server b is an infinite server,
and all the data that where in the buffer of b arrive just
before the b.u.o.

First, we show that the arrival process before the arrival
of the b.u.o. is of the form A1(t) = ρ(t − t−1)+ if 0 ≤
t < t0, and A1(t0) = x + ρt0, with x ≤ σ: let u0 ∈ [0, t0]
such that ρu0 − A1(u0) = inft∈[0,t0](ρt − A1(t)) (or ρu0 −

A1(u
+
0) or ρu0 − A1(u

−
0) if A1 is not continuous at u0. The

(σ, ρ) constraint on A1 is given at that point and the arrival
process A such that

• A(u0) = min(A1(u0), A1(u
+
0), A1(u

−
0)),

• A(t0) = A1(t0),

• A is affine of slope ρ on [u0 − A(u0)/ρ, t0[

satisfies exactly the same constraint. From Proposition 2.2
and .3, the delay of the b.u.o. is maximized when the arrival
curve (and cross-traffic) is minimized. This is the case of
the function described above. Now, remark that we could
arbitrary make data arrive before t0, so that those data do
not interfere with the original process. It is enough to make
those data arrive long before t−1, satisfying the same (σ, ρ)
constraint given at point u0: let a period of time more than
the delay bound obtained in Section 4.2 with no arrival. As
a consequence, one can suppose t0 − t−1 is big enough for
the further calculations without adding any constraint on
the flow.

The b.u.o exits from server a at time t0+Ta+xσ/Ra (where
x = A(t0) − A(t−0)) and from server b at time t0 + Tb +
(1 − p)x/Rb. Suppose without loss of generality that Ta +
px/Ra ≥ Tb + (1 − p)x/Rb.

Between time t0 and t1, one has to find the arrival process
that will maximize the delay of the b.u.o. in server c. The
maximal quantity of data that can arrive in server b between
t0 and t1 is (1− p)(ρ(Ta + px/Ra) + σ − x). If less than this
quantity arrives, then the delay will not be maximal. From
3., the cross-traffic in b must arrive late and must satisfy
the constrained on the arrival process. The smallest arrival
process that meets the constraints is: A1(t) = A1(t0) if
t ≤ t2, A(t) = A(t2) + ρ(t − t2) if t ∈ [t2, t1[and A(t1) =
A(t−1) + min(σ, ρ(Ta + px/Ra) + σ − x), with t2 = t1 −

(ρ(Ta+px/Ra)−x
ρ

)+. Figure 6 explicits the two different cases
that can occur, if t1 = t2 or not.

For any fixed parameter, one has exhibited the arrival pro-
cess that maximizes the delay. In order to compute the
delay, one just need to apply Lemma 1 for the parts of the

A1 A1

t

t

t−1 t−1t0 t0

σ
σ

x x

t1 t1t2

Figure 6: Worst arrival processes. There are two
possible processes: t1 > t2 (left) or t1 = t2 (right).

process obtained with exact servers (the only other service
policy used in the infinite server). Figure 7 shows graphi-
cally such a computation.

Bb

Ba

A1 A2 A3

delay

Figure 7: Input process in server c for the arrival
process of Figure 6(a).

It seems very difficult to generalize such a process to any
acyclic network. Here, the principle is to generate bursts of
maximal possible size that are synchronized to the output
dates of the b.u.o. in the server it crosses.

5. CONCLUSION
In this paper we have investigated how Network Calculus
lends itself to the performance evaluation of multipath rout-
ing schemes. In a fluid model and for a routing scheme
distributing data with respect to fixed proportions, we have
shown that one can provide efficiently some qualitative guar-
antees like the ability to route data so that the network re-
mains stable. When it comes to computing tight bounds on
the worst-case end-to-end delay or backlog, our toy exam-
ple shows that the analysis may be much more difficult. It
does not mean that routing in models with Network Calcu-
lus constraints can not be evaluated tightly, but just that
new reasonings and tools are required to achieve this goal.
As a matter of fact, the difficulties encountered in the anal-
ysis of our routing scheme are strongly linked to the difficul-
ties raised in the analysis of models with aggregate schedul-
ing [15, 16, 17, 5, 11, 10, 12, 3]. It is likely that further work
about multipath routing will use some results from those
later studies.

6. REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.

Network Flows. Prentice Hall, 1993.

[2] F. Baccelli, G. Cohen, G.Y. Olsder, and J.P. Quadrat.
Synchronization and linearity. Wiley, 1992.

[3] J.-Y. Le Boudec and P. Thiran. Network Calculus: A
Theory of Deterministic Queuing Systems for the
Internet, volume LNCS 2050. Springer-Verlag, 2001.

[4] A. Bouillard, B. Gaujal, S. Lagrange, and E. Thierry.
Optimal routing for end-to-end guarantees: the price
of multiplexing. In Proceedings of Valuetools’07, 2007.

[5] A. Bouillard, B. Gaujal, S. Lagrange, and E. Thierry.
Optimal routing for end-to-end guarantees using
network calculus. Technical report, INRIA, 2008.

[6] A. Bouillard and E. Thierry. An algorithmic toolbox
for network calculus. Discrete Event Dynamic
Systems, 18(1):3–49, 2008.

[7] C. S. Chang. Performance Guarantees in
Communication Networks. TNCS, 2000.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press, 2001.

[9] L. R. Ford and D. R. Fulkerson. Flows in Networks.
Princeton University Press, 1962.

[10] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea. A
novel approach to scalable cac for real-time traffic in
sink-tree networks with aggregate scheduling. In
Proceedings of Valuetools’06, 2006.

[11] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea.
Tight end-to-end per-flow delay bounds in fifo
multiplexing sink-tree networks. Performance
Evaluation, 63(9-10):956–987, 2006.

[12] L. Lenzini, E. Mingozzi, and G. Stea. End-to-end
delay bounds in fifo-multiplexing tandems. In
Proceedings of Valuetools’07, 2007.

[13] D. Medhi and K. Ramasamy. Network Routing:
Algorithms, Protocols, and Architectures. Morgan
Kaufmann, 2007.

[14] J. Schmitt, F. Zdarsky, and M. Fidler. Delay bounds
under arbitrary multiplexing: When network calculus
leaves you on the lurch... In INFOCOM, 2008.

[15] J. B. Schmitt and F. A. Zdarsky. The disco network
calculator: a toolbox for worst case analysis. In
Proceedings of Valuetools’06, 2006.

[16] J. B. Schmitt, F. A. Zdarsky, and M. Fidler. Delay
bounds under arbitrary multiplexing. Technical
report, University of Kaiserslautern, 2007.

[17] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic.
Performance bounds in feed-forward networks under
blind multiplexing. Technical Report 349/06,
University of Kaiserslautern, Germany, 2006.

