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Abstract—This paper focuses on the problem of determining
the most appropriate Two Degrees of Freedom (2DoF) control
architecture, when the FeedForward (FF) action is the result of
a stable model inversion procedure. The purpose is to define
a control scheme with enhanced tracking performance even in
the case of non minimum phase and/or non hyperbolic MIMO
plants affected by polytopic uncertainty. The new proposed 2DoF
control architecture is given by an optimal balance of the control
actions produced by FeedForward Plant Inversion (FFPI) and
FeedForward Closed Loop Inversion (FFCLI). This new architec-
ture is referred to as FeedForward Optimally Balanced Inversion
(FFOBI). Robustness with respect to polytopic uncertainty is
obtained using a min-max optimization approach. Numerical
results show that the FFOBI improves the tracking performances
of both FFPI and FFCLI.

Keywords: Output tracking, 2DoF control, model inversion,
parametric uncertainty.

I. INTRODUCTION

The well established theoretical framework of model inver-
sion [1]- [4] provides a powerful tool to define 2DoF control
schemes based on a FeedForward (FF) inverting control action.
This allows overcoming many limitations of classical 1DoF
control schemes. For practical applications to output tracking
problems, the most widely used 2DoF control architectures
based on inverse control can be classified into two main
categories: FeedForward Plant Inversion (FFPI) (see e.g. [5]
- [6]), and FeedForward Closed Loop Inversion (FFCLI) (see
e.g. [7]- [8]). In the FFPI methods the FF control is obtained
through a plant model inversion procedure, in the FFCLI
the FF input is obtained inverting the closed-loop system.
The performances of the two architectures are discussed
and compared in [9]- [10]. These papers evidence that the
achievable tracking accuracy of both control schemes depend
on the specific application and on the amount of uncertainty
affecting the plant. As each of the two architectures has
advantages over the other, it would be very useful to define a
more general 2DoF control architecture optimally combining
the FFPI and FFCLI control actions independently of the
particular application. This problem can not be solved with
the guidelines stated in the above papers because they refer to
some specific applications and their qualitative nature makes
it difficult any generalization. The problem considered in this
paper is precisely to define a systematic quantitative method to

obtain an FF control law such that: i) it is always given by an
optimal combination of the FFPI and FFCLI control actions
independently of the particular application, ii) it is robust with
respect to polytopic uncertainties affecting the MIMO plant to
be controlled. To the best authors knowledge, this is still an
open question.
The solution proposed in this paper consists of an FFOBI
control architecture where the two feedforward actions pro-
duced by FFPI and FFCLI are simultaneously acting and are
optimally fused together minimizing a ”worst case” quadratic
cost functional of the predicted tracking error. The proposed
approach can be framed in the context of pseudo-inversion
[4], [11]. The results of these references are here extended to
deal with a generalized robust inversion problem involving the
simultaneous pseudo inversion of a polytopic plant and of the
corresponding polytopic closed-loop system.
The design of the FFOBI architecture proposed in this paper
can be summarized in the two following steps.
Step 1). Given a (possibly non-minimum phase and/or non
hyperbolic) LTI polytopic plant Σp, an LTI dynamic output
feedback controller is designed to guarantee the robust stability
of the closed-loop system Σf . The controller is also endowed
with an internal model of the steady-state component of the
desired output yd(t) to be tracked.
Step 2). Σf is forced by two inputs r1(t) and r2(t) affinely
depending on the outputs s1(t) and s2(t) of two feedforward
input estimators IE1 and IE2 simultaneously operating ac-
cording to the FFCLI and FFPI schemes respectively. The two
signals s1(t) and s2(t) are searched in the linear space gener-
ated by B-spline basis functions of a fixed degree and are com-
puted so that the corresponding r1(t) and r2(t) solve a ”worst-
case” optimization problem. Parametrizing s1(t) and s2(t) as
B-splines involves significant advantages: B-spline functions
are continuously differentiable universal approximators which
admit a parsimonious parametric representation and belong
to the convex hull defined by the relative control points [12].
These properties significantly reduce the number of parameters
(the control points) with respect to which the quadratic cost
functional is minimized. They also allow the minimization
procedure to be formulated as a robust least square estimation
problem where both the design matrix and observations are
not exactly known due to plant uncertainty. The resulting



optimal feedforward action is given by the optimal balance
of the two contributions produced by FFPI and FFCLI control
scheme because the estimated control points univocally define
the corresponding B-splines and hence the corresponding r1(t)
and r2(t). The weights of the two contributions are given by
the 2-norms of the estimated B-splines. During the transient
period, the optimal inputs are applied to Σf according to a
Receding Horizon Control (RHC). This allows a continuous
adaptation of r1(t) and r2(t), on the basis of a continuous
upgrading of the state estimate.
The paper is organized in the following way. Some mathemati-
cal preliminaries are recalled in Section II. The FFOBI control
architecture and problem statement are given in Section III.
The solution of the problem is reported in Sections IV and V. A
numerical example is shown in Section VI. Some concluding
remarks are given in Section VII.

II. MATHEMATICAL BACKGROUND

A. B-spline functions [12]

A scalar B-spline time function is defined as a linear
combination of B-splines basis functions and control points:

s(t) =
∑̀
i=1

ciBi,d(t), t ∈ [t̂1, t̂`+d+1] ⊆ IR, (1)

where the ci’s are real numbers representing the control points
of s(t), the integer d is the degree of the B-spline, the
(t̂i)

`+d+1
i=1 are the non decreasing knot points and the Bi,d(t)

are the B-spline basis functions which can be computed
by the Cox-de Boor recursion formula, [12]. An equivalent
representation of s(t) in (1) is

s(t) = Bd(t)c, t ∈ [t̂1, t̂`+d+1] ⊆ IR, (2)

where c
4
= [c1, · · · , c`]T and Bd(t)

4
= [B1,d(t), · · · , B`,d(t)].

Convex hull property. Any value assumed by s(t), ∀t ∈
[t̂j , t̂j+1], j > d, lies in the convex hull of its d+ 1 control
points cj−d, · · · , cj . 4

For a q-component vector s(t) = [s1(t), · · · , sq(t)]T , a
compact B-spline representation can be used

s(t) = B̄d(t)c̄, t ∈ [t̂1, t̂`+d+1], (3)

where c̄
4
=

[
c1
T , · · · , cqT

]T
and B̄d(t)

4
=

diag [Bd(t), · · · ,Bd(t)]. Each ci
4
= [ci,1, · · · , ci,`]T ,

i = 1, · · · , q, is defined as in (2). The dimensions of c̄ are
(q`× 1). The dimensions of the block diagonal matrix B̄d(t)
are (q × q`).

Remark 1. From (2) it is apparent that, once the degree
d and the knot points t̂i have been fixed, the scalar B spline
function s(t), t ∈ [t̂1, t̂`+d+1], is completely determined by the
corresponding vector c of ` control points. 4

B. The robust least squares problem [13]

Given an overdetermined set of linear equations Df ≈ g,
with D ∈ IRr×m, g ∈ IRr, subject to unknown but bounded

errors: ‖δD‖s ≤ ρ and ‖δg‖s ≤ ξ, the robust least squares
estimate f̂ ∈ IRm is the value of f minimizing

min
f

max
‖δD‖s≤ρ, ‖δg‖s≤ξ

‖(D + δD)f − (g + δg)‖, (4)

where ‖ · ‖s denotes the spectral norm.
As shown in ( [13], p. 206), problem (4) is equivalent to
minimizing a sum of Euclidean norms

min
f
‖Df − g‖+ ρ‖f‖+ ξ (5)

Possible constraints on f of the kind

f ≤ f ≤ f̄ (6)

can be taken into account by imposing all the scalar linear
inequalities deriving from the above vector constraint.

III. THE FFOBI CONTROL SCHEME AND PROBLEM
STATEMENT
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Fig. 1. The FFOBI control scheme

The new 2DoF control scheme proposed in this paper is
shown in Fig. 1 where, without any loss of generality, a unitary
feedback is assumed. The two blocks IE1 and IE2 are two
feedforward input estimators operating according to the FFCLI
and FFPI schemes respectively. The inputs of both feedforward
filters are the desired output yd(t) to be tracked and the
estimated state x̂f (t) of Σf . The outputs of IE1 and IE2 are
the two B-splines s1(t) ∈ IRq and s2(t) ∈ IRm respectively.
The two scalars µ1 and µ2 are two binary variables. The
FFOBI control scheme optimally combining the FFCLI and
FFPI architectures corresponds to µ1 = µ2 = 1. If µ1 = 1
and µ2 = 0, then r1(t) = yd(t) + s1(t) and r2(t) = 0, so
that the FFCLI is obtained, while µ1 = 0 and µ2 = 1 give
r1(t) = yd(t) and r2(t) = s2(t), so that the FFPI is obtained.
For µ1 = µ2 = 0, the 2DoF control scheme reduces to the
usual 1DoF feedback control scheme with no feedforward
action.
The block Σf is the feedback connection of a (possibly non-
minimum phase and/or non hyperbolic) LTI polytopic plant
Σp with an LTI robustly stabilizing dynamic output feedback
controller. The plant Σp ≡ (Cp, Ap(α), Bp) is given by

ẋp(t) = Ap(α)xp(t) +Bpu(t), u(t) ∈ IRm, (7)
y(t) = Cpxp(t), y(t) ∈ IRq, (8)



where: xp(t) ∈ IRnp , Ap(α) ∈ A 4
= co{Api , · · · , Apl} =

{Ap(α) =
∑l
i=1 αiApi , α ∈ Λl}.

The following assumptions on Σp are made:
A1): Σp is robustly stabilizable by an LTI dynamic output
controller;
A2) let the steady state component ỹd(t) of the desired output
trajectory yd(t) be generated as the free output response of
an LTI unstable system Σy , then for no α ∈ Λl, Σp has
a transmission zero coinciding with an eigenvalue of the
dynamical matrix of Σy .
The dynamic output feedback controller includes the internal
model Σc of the steady state component of the desired output
trajectory yd(t), whose state-space has the form ẋc(t) =
Acxc(t) + Bc(r1(t) − y(t)) for suitably defined Ac and Bc
[14], and a full state observer Σo of the form

˙̂xp(t) = Āpx̂p(t) +Bpu(t) + L(y(t)− Cp x̂p(t)), (9)

where: Āp
4
= (
∑l
i=1Api)/l is the assumed nominal dynamical

matrix of the plant.
The input u(t) ∈ IRm forcing the polytopic plant Σp is given
by u(t) = −Kpx̂p(t) +Kcxc(t) + r2(t).
The state space (Cf , Af (α), Bf ) of the closed loop system Σf

with xf (t)
4
= [xTp (t), xTc (t), x̂Tp (t)]T ∈ IRn, n

4
= 2np + nc

and r(t)
4
= [rT1 (t), rT2 (t)]T ∈ IRq+m is

ẋf (t) =

 Ap(α) BpKc −BpKp

−BcCp Ac 0
LCp BpKc Āp − LCp −BpKp

xf (t)

+

 0 Bp
Bc 0
0 Bp

 r(t) (10)

y(t) =
[
Cp 0 0

]
xf (t) (11)

where, analogously to Ap(α), also Af (α) ∈ Af
4
=

co{Afi , · · · , Afl}.
The existence of matrices Kc, K and L such that Σf is
internally asymptotically stable ∀Af (α) ∈ Af , is guaran-
teed by assumption A1. These matrices can be computed
by any existing robust stabilizing technique. This problem
is not discussed here because the focus of the paper is on
computing an optimally balanced feedforward control action
r(t). The presence of the internal model Σc and A2 guarantees
robust exact asymptotic tracking even with no feedforward
action [14]. Hence, the problem of determining an optimally
combined feedforward action can be limited to a sufficiently
long but finite interval over which steady-state is practically
attained. This drastically reduces the computational burden
of the numerical procedure for the minimization of the cost
functional (see Section V).

For this reason the following signals are partitioned in a
transient and steady state component as follows:

yd(t) =

 yd,t(t) t ∈ [ 0, ty )
4
= Ty

ỹd(t) t ≥ ty
yd,t(t

−
y ) = ỹd(ty)

(12)

where yd,t(t) and ỹd(t) are smooth functions denoting the
transient and steady state components of yd(t), respectively, Ty
is the time interval over which yd,t(t) is required to converge
towards ỹd(t). According to assumption A2, the desired ỹd(t)
is any function generated as the free output response of an
unstable LTI system Σy .
Analogously:

si(t) =

 si,t(t) t ∈ [ 0, tr)
4
= Tr

s̃i(t) t ≥ tr
si,t(t

−
r ) = s̃i(tr)

i = 1, 2 (13)

r(t) =


rt(t)

4
=

[
yd(t) + µ1s1,t(t)

µ2s2,t(t)

]
t ∈ [ 0, tr)

4
= Tr

r̃(t)
4
=

[
ỹd(t) + µ1s̃1(t)

µ2s̃2(t)

]
t ≥ tr

rt(t
−
r ) = r̃(tr)

(14)

The time instant tr has to be sufficiently large to guarantee
that rt(t−r ) = r̃(tr) (namely si,t(t

−
r ) = s̃i(tr), i = 1, 2) and

the actual output y(t) under the action of rt(t) has almost
achieved the steady-state trajectory. A way to fix a lower bound
on tr is: tr ≥ tst, where tst is the settling time relative to the
output of the nominal Σ̄f

4
= (Cf , Āf , Bf ) forced by r(t) =

[yd(t) 0]T . Like Āp, also Āf is chosen as the centroid of Af :

Āf
4
=

∑l
i=1 Afi

l .
Definition. The optimal combination of FFPI and FFCLI is
the one giving a minimum 2-norm predicted transient tracking
error.

By the above definition, the problem of optimally balancing
FFPI and FFCLI can be restated as the following equivalent
Robust Almost Exact Output Tracking Problem.

(RAEOTP) Let Σf ≡ (Cf , Af (α), Bf ) be a robustly
asymptotically stable closed described by (10), (11) with
unknown initial state xf (0). Given a desired yd(t) defined
as in (12), it is required to find a feedforward control input
r(t) defined as in (14) satisfying the following conditions
∀Af (α) ∈ Af :
Transient conditions: i) rt(t) is converging to r̃(tr) over Tr,
ii) rt(t) is the result of an RHC strategy applied to the
minimization of a suitably defined ”worst case” quadratic cost
functional of the predicted transient tracking error (see (15)-
(17) of Section IV.B)
Steady-state condition: r̃(t) yields a steady-state tracking error
asymptotically converging to zero.
Boundedness condition: r(t) is uniformly bounded for any
uniformly bounded yd(t).

IV. COMPUTATION OF r(t)

In accordance with definition (14), this step is performed
through a separate computation of the steady state r̃(t) and
transient rt(t) components of r(t).

A. Computation of r̃(t)

As Σf is robustly asymptotically stable, then, by A2, the
steady-state condition is automatically satisfied endowing the



dynamic output feedback controller with the internal model of
ỹd(t) [14]. Recalling the assumption of a unitary feedback, it
is enough to choose s̃1(t) = s̃2(t) = 0, for t ≥ tr, which, by
(14), implies r̃(t) = [ỹTd (t) 0T ]T .

B. Computation of rt(t)

In the following, the explicit dependence on α of the pre-
dicted output and tracking error will be omitted for simplicity
of notation.
The robust optimization problem is numerically solved impos-
ing to r1,t(t) = yd(t) + µ1s1,t(t) and r2,t(t) = µ2s2,t(t) the
structure deriving from the assumption of modeling the tran-
sient components of s1(t) and s2(t) respectively as B-spline
functions given by (3). The parameter vector defining rt(t)
is computed as the solution of the constrained optimization
problem defined beneath.

Let T ′r
4
= [0, tr + tw) be partitioned as T ′r =

⋃nr−1
k=0 Tk,

where Tk
4
= [tk, tk + tw), k = 0, 1, · · · , nr− 1, with tk

4
= k∆

and ∆
4
= tr

nr
are disjoint sub-intervals such that: t0 = 0, tnr

=
nr∆ = tr. According to the RHC strategy, tw = w∆, denotes
the length of the moving window Tk, for a fixed w ∈ ∠Z+.
The transient rt(t) is determined from the minimization of
the following ”worst case” quadratic cost functional for any
fixed k = 0, 1, · · · , nr − 1:

max
α∈Λl

Jk,α
4
= max

α∈Λl

w−1∑
i=1

eT (tk+i|tk)Q(tk)e(tk+i|tk), (15)

where

e(tk+i|tk)
4
= yd(tk+i)− y(tk+i|tk), (16)

with

y(tk+i|tk)
4
= Cfe

Af (α)(tk+i−tk)x̂f (tk)

+

∫ tk+i

tk

Cfe
Af (α)(tk+i−τ)Bfrt(τ)dτ, (17)

is the predicted tracking error at time tk+i based on the state
estimate x̂f (tk).
By definition of rt(t) and according to (3) one has

rt(t) =

[
µ1B̄d1(t) 0

0 µ2B̄d2(t)

] [
c̄1
c̄2

]
+

[
yd(t)

0

]
4
= B̃(t)c̃ + yd(t) (18)

where the integer d1 (d2) indicates the degree of the scalar B
spline functions composing rt,1(t) ∈ IRq (rt,2(t) ∈ IRm). The
dimensions of c̃ are (q`1 +m`2)× 1. The dimensions of the
block diagonal matrix B̃(t) are (q +m)× (q`1 +m`2).
By (17),(18) and setting c̃ = c̃k, e(tk+i|tk) results to be given
by

e(tk+i|tk) = yd(tk+i)− CfeAf (α)(tk+i−tk)x̂f (tk)

−
∫ tk+i

tk

Cfe
Af (α)(tk+i−τ)Bf B̃(τ)dτ c̃k

−
∫ tk+i

tk

Cfe
Af (α)(tk+i−τ)Bfyd(t) (19)

The input function rt(t), t ∈ Tr, affinely dependent on
s1,t(t) and s2,t(t), is robustly estimated minimizing the worst
case error due to the parametric uncertainty. More precisely
rt(t), t ∈ Tr, is obtained solving the following sequence of
nr Min-Max Constrained Optimization Problems (MMCOP)

MMCOP: min
c̃k

max
α∈Λl

Jk,α, k = 0, · · · , nr − 1, (20)

subject to c̃k,min ≤ c̃k ≤ c̃k,max. (21)

At k = 0 (t0 = 0), the MMCOP is solved with reference to a
J0,α, which, by (15), is defined over [t0, t0+tw) = [0, tw) and
the corresponding minimizing c̃0 defines rt(t) over the same
interval. According to the RHC strategy only the restriction of
rt(t) to T0 = [t0, t1) is applied to Σf . Analogously, for k = 1,
(t1 = ∆), the minimizing c̃1 gives rt(t), t ∈ [t1, t1 + tw) but
only rt(t), t ∈ T1 = [t1, t2) is applied. The iterative procedure
stops at k = nr−1. The advantage of the above RHC policy is
the possibility of exploiting an updated state estimate x̂f (tk)
to improve the tracking error prediction. Over each moving
window [tk, tk + tw), the constraints (21) on c̃k are chosen
so as to impose the convergence of s1,t(t) and s2,t(t) to the
respective null steady state components within Tr according
to (13). Consequently the convergence of rt(t) towards r̃(t)
is guaranteed. This assures the continuity of r(t).

V. ROBUST ESTIMATION OF rt(t)

This section shows how the MMCOP stated in Section IV
can be reformulated as a robust least square problem. The
starting point is to rewrite the closed loop dynamical matrix
Af (α) as Af (α)

4
= Āf + δAf (α), α ∈ Λl where Āf is the

nominal plant. Using the matrix identity e(A+E)t = eAt +∫ t
0
eA(t−s)Ee(A+E)sds and replacing A and E with Āf and

δAf (α) respectively, one has

e(Āf+δAf (α))t = eĀf t +

∫ t

0

eĀf (t−s)δAf (α)eAf (α)sds (22)

Then for any fixed k = 0, 1, · · ·nr − 1, exploiting (22), the
predicted e(tk+i|tk) given by (19), can be rewritten as

e(tk+i|tk) = (b(tk+i|tk) + δbα(tk+i|tk))

− (D(tk+i|tk) + δDα(tk+i|tk))fk (23)

where fk = c̃k. The remaining terms (not explicitly reported
for page limits) can be easily derived taking into account
that only δbα(tk+i|tk) and δDα(tk+i|tk) are depending on α.
Defining augmented vectors and matrices, equation (23) for
i = 1, · · · , w − 1 can be expressed in the compact form

ek(α) = (bk + δbk(α))− (Dk + δDk(α))fk,

where ek(α)
4
= [eT (tk+1|tk), · · · , eT (tk+(w−1)|tk)]T . For

each k = 0, · · · , nr−1, functional Jk,α in (20) can be written
as Jk,α = e′k(α)

T
e′k(α), where e′k(α)

4
= Q1/2

k
ek(α) and

Q
k

4
= diag[Q(tk), · · · , Q(tk)]. Also defining b′k + δb′k(α)

4
=

Q1/2

k
(bk+δbk(α)) and D′k+δD′k(α)

4
= Q1/2

k
(Dk+δDk(α)),

it is evident that each MMCOP is equivalent to the con-
strained minimization of the squared 2-norm of the worst-case



weighted residual e′k(α). Hence the sequence of the nr MM-
COP (20), (21) is equivalent to solve the following sequence
of Constrained Robust Least Square Problems (CRLSP).

min
fk

max
‖δD′

k(α)‖s≤ρk ‖δb′k(α))‖s≤ξk

‖(D′k + δD′k(α))fk − (b′k + δb′k(α))‖, (24)
subject to fk,min ≤ fk ≤ fk,max, k = 0, 1, · · · , nr − 1,(25)

where: (24) is of the kind (4) and (25) is of the kind (6).
Remark 2 The numerical calculation of ρk and ξk can be
greatly simplified taking into account the following:

1 As the term ξ of (5) is independent of f , it cannot be
minimized. Hence it can be removed from the objective
function. This, in turn, implies that in (24) only the upper
bound ρk on ‖δD′k(α)‖s needs to be determined at each
k.

2 The way the B-spline basis functions are defined by the
Cox de Boor formula [12], implies that B̃(τ) = B̃(τ +
tw), ∀τ ∈ [tk, tk+ tw), k = 0, 1, · · · , nr−1 and hence it
can be easily proven that ρk

4
= ρ, ∀k = 0, 1, · · · , nr − 1.

3 The calculation of ρ can be entirely executed off-line by
performing a gridding on the parameter vector α ∈ Λl.

Theorem Under Assumptions A1 and A2, the feedforward
input r(t) of Σf resulting from the solution of the CRLSP (24),
(25), and from the above RHC strategy, solves the RAEOTP.
4
The proof of Theorem is not reported for page limits.

VI. NUMERICAL RESULTS

The example considered here is a more involved version of
the tracking problem considered in [16].
The linearized model (26) is the unstable, non minimum
phase near non hyperbolic system which represents the aircraft
trimmed at a nominal 5◦ pitch attitude, with a mid-range
weight, a mid-position center of gravity and operating in-
ground effect at near sea level. The model is described by

ẋp(t) = Apxp(t) +Bpu(t), y(t) = Cpxp(t) (26)

where

xp =



U
W
Q
V
P
R
θ
χ


=



forward velocity
vertical velocity

pitch rate
lateral velocity

roll rate
yaw rate

pitch attitude
roll attitude


∈ IRnp ,

y =
(
U W V R

)T ∈ IRq,

u =

 δC
δB
δA
δP

 =

 collective
longitudinal cyclic

lateral cyclic
tail rotor collective

 ∈ IRm

The vectors y(t), u(t), represent the controlled and ma-
nipulated variables respectively. Like [16], the state vector
xp(t) ∈ IRn, n = 8, is assumed to be measurable. The entries
of Ap and of Bp (not reported for brevity) can be found in [16],

matrix Cp directly follows by the way y(t) is defined. With
respect to [16], a polytopic dynamical matrix Ap(α) is here
assumed. The dynamical matrix Ap reported in [16] is con-
sidered the nominal matrix Āp of Ap(α). The three elements
ai,i, i = 2, 3, 5 of Ap(α), have been here assumed to belong
to the intervals [āi − εai,i , āi + εai,i ], i = 2, 3, 5, centered on
the nominal value āi where: ā2 = −0.39, ā3 = −0.19 and
ā5 = −0.57. The following uncertainty scenario is considered
S = (εa2,2 , εa3,3 , εa5,5) = (0.29, 0.09, 0.43).
For S, the respective uncertain open loop plant Ap(α) belongs
to the polytopic set A 4

= {Ap(α) =
∑l
i=1 αiApi , α ∈ Λl}

with l = 8.
As in [16], the forward velocity and the yaw rate are to be
kept at zero ∀t ∈ IR+, while the desired behavior of W and
V is the smooth function converging to the constant value
0.2 in the interval Ty = [0, ty) = [0, 13), as shown in Fig. 2.
Unlike [16], the unnecessity of a pre-actuation in the proposed
approach allowed us to freely assign the desired profiles
without requiring them to be null over an initial sufficiently
long time interval.
The first step is the design of a robustly stabilizing feed-
back controller. As the state is assumed to be measurable,
the observer Σo is not necessary. This directly implies that
the control input u(t) is given by u(t) = −Kpxp(t) +
Kcxc(t) + r2(t). The gain matrices Kp and Kc defining
a robustly stabilizing controller for S have been computed
imposing the following eigenvalues [−0.7 ± 0.73i, −2 ±
1.5i, −5, −5.5, −4.95, −3, −2.8, −2.24, −0.61, −0.33]
to the nominal closed loop dynamical matrix Āf =[

Āp 0
−BcCp Ac

]
−
[
Bp
0

] [
Kp −Kc

]
.

For the given Σp ≡ (Cp, Ap(α), Bp), it is easy to verify that

the system matrix
[
sI −Ap(α) Bp
−Cp 0

]
has rank n + q = 12

at s = 0, ∀α ∈ Λl. This implies the fulfillment of A2 and,
as a consequence, guarantees an exact steady-state tracking,
provided endowing the stabilizing controller with the internal
model Σc of the external reference [14]. As ỹd(t) ∈ IRq ,
q = 4, then the internal model Σc of constant signals is defined
by Ac = 0q×q = 04×4 and Bc = Iq×q = I4×4.
The second step is to compute the input r(t) solving the
RAEOT problem. According to Section IV.A one has r̃(t) =[
ỹTd (t) 0Tm

]T
, ∀t ≥ tr where: 0` denotes the column vector

of ` null elements and tr = 30 > ts = 25 is chosen. Both
the transient components s1,t(t) ∈ IRq , and s2,t(t) ∈ IRm,

defining rt(t)
4
=

[
yd(t) + µ1s1,t(t)

µ2s2,t(t)

]
have been modeled as

two B spline functions vectors with d1 = d2 = 1 (order of the
B-spline function) and `1 = `2 = 4 (number of control points
defining the B-spline function over each moving window of
length tw). Fig. 2 evidences a desired yd,t(t), t ∈ Ty , given
by two fast but smooth transitions between two set points.
The time interval of each transition is ttr = 2 and the value
tw = ttr = 2 is chosen. By (18) it directly follows that

c̃
4
=

[
c̄1

c̄2

]
∈ IRq`1+m`2=32, B̄d1(t) = Bd(t) has dimensions



1× q`1 and B̄d2(t) = Bd(t) has dimensions 1×m`2.
As tr = 30 and tw = 2 one has T ′r = [0, 32) and choosing
nr = 300 one has ∆ = 0.1 and w = 20. The vector fk

4
= c̃k

defining rt(t) over each moving prediction horizon [tk, tk +
tw) = [tk, tk+w), k = 0, · · · , nr − 1 = 299, is iteratively
estimated solving the sequence of nr CRLSP (24),(25), using
the software Yalmip [15]. All the weight matrices Q(tk) are set
equal to the identity matrix. A large interval [fk,min, fk,max] is
initially chosen to allow rt(t) to freely vary at the beginning
of the transition period 0 ≤ k ≤ ky

4
=

ty
∆ . For k > ky , fk,min

and fk,max (namely s1,t(t) and s2,t(t)) converge to zero in
such a way that rt(t) → r̃(tr) for t → tr. A general rule
to fix the vectors fk,max, and fk,min, k = 0, 1, · · · , nr − 1,

is: fk,max = |fk,min| =

{
f I1 0 ≤ k ≤ ky

fe−β(k−ky) I1 ky ≤ k ≤ nr − 1
where I1 denotes a column vector of (q`1 + m`2) elements
equal to 1. In this case f = 5, β = 0.4 and ky = 130 are set.
With reference to S, three simulations relative to FFCLI, FFPI
and FFOBI control schemes have been performed starting from
null initial conditions and choosing: α5 = 1 and αl = 0,
l 6= 5. Tables I reports the 2-norm of the tracking error
e(t)

4
= yd(t) − y(t), the 2-norms of s1,t(t) and s2,t(t)

over Tr = [0, 30) and the value of ρ relative to S . The
same table shows that the FFOBI control scheme outperforms
both FFCLI and FFPI because it provides the minimum 2-
norm of the transient tracking error. This is produced by
an optimal combination of FFCLI and FFPI, whose weights
are given by the 2-norm of the B-splines s1,t(t) and s2,t(t)
respectively. A measure of the improvement provided by the
FFOBI has been calculated as the percentage of reduction of
‖e‖2 with respect to FFCLI and FFPI. These percentages,
denoted by POBI/CLI and POBI/PI , are 15% and 81%
respectively. Figures 2 show the behavior of the controlled
output y(t)

4
= [U(t) W (t) V (t) R(t)]T produced by the

FFOBI, FFCLI and FFPI schemes respectively.

TABLE I

(εa2,2 , εa3,3 , εa5,5 ) = (0.29, 0.09, 0.43), ρ = 0.0685
‖e(t)‖2 ‖s1,t(t)‖2 ‖s2,t(t)‖2

FFOBI 0.6758 13.9686 7.2225
FFCLI 0.7950 16.2166 0
FFPI 3.6100 0 60.0232

VII. CONCLUSIONS

In the context of the model inversion based control, a new
and more general 2DoF control architecture has been proposed
here. It consists of an optimally weighted combination of
FFPI and FFCLI control schemes. The numerical results
confirmed that the best tracking performance is given by the
FFOBI configuration.
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programming”, Linear Algebra and its Applications, Vol. 284, pp. 193-
228, 1998.

[14] C.A. Desoer, Y.T. Wang, ”Linear time invariant robust servomechanism
problem: a self contained exposition”, Control and Dynamic SystemsC.T.
Leondes (Ed.), Vol. 16, pp. 81-129,1980.

[15] J. Löfberg, https://yalmip.github.io
[16] S. Devasia, ”Output Tracking with Nonhyperbolic and Near Nonhyper-

bolic Internal Dynamics: Helicopter Hover Control”, J. of Guidance,
Control and Dynamics, Vol 20, pp. 573-580, 1997.


