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Abstract
Modelling stock prices has been a research topic for many decades and it is
still an open question. Different approaches have been used in the literature,
the majority of which can be classified within the so-called econometric frame-
work and sometimes also referred to as the macro-to-micro approach. Another
strand of literature relies on the modelling of directly observable quantities, the
so-called micro-to-macro approach. Based on this second line of research, we
propose a new multivariate stochastic process to model simultaneously price
returns, trading volumes and the time interval between changes in trades, price
and volume. The proposed model is based on a generalization of semi-Markov
chain models and copulas and is motivated by empirical evidence that the
three mentioned variables are correlated and long-range autocorrelated. Utiliz-
ing Monte Carlo simulations, we compared our model with real data from the
Italian stock market and show that it can reproduce many empirical pieces of
evidence. The proposed model can be used in the field of portfolio optimization,
development of risk measure and volatility forecasting.
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1 INTRODUCTION

In financial markets, high frequency data and modelling have acquired a dominant role due to relevant information
brought by intraday observations. Nowadays, increasingly sophisticated models and ideas can be advanced and tested on
real market data based on the huge amount of information that can be stored and processed on modern computers.

A large part of the effort in market microstructure studies has been produced to understand, mimic and predict basic
empirical regularities observed in the most important financial variables. Special attention has been dedicated to the rela-
tion between financial volumes and returns. The majority of the works in this area can be classified within the so-called
econometric framework, sometimes also referred to as the macro-to-micro approach. The cornerstone of this approach
is to consider the observed price to be a collateral effect of an unobservable volatility process to which a noise process
transformation is applied, see, for example Reference 1. This line of research has flourished during the last two decades
and considerable attention has been dedicated to the problem of irregular spacing in time of observations when dealing
with high frequency financial data; the seminal work by Engle2 and the recent review by Bhogal and Thekke Variyam3

can provide a wide overview of the subject. Rapidly, econometricians turned the attention on multivariate models of
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logarithmic price returns, volumes and duration (waiting times), the latter to be intended as the time interval between
changes in trades, price and volume of stocks, see for example References 4-7

Another strand of literature relies on the modelling of directly observable quantities, the so-called micro-to-macro
approach that is philosophically in contrast with the econometric approach. This framework has a long tradition that has
its roots in the paper by Bachelier8 and also embraces lattice-based models including the popular binomial and trinomial
models (see, e.g. References 9 and 10). The micro-to-macro approach has undergone a revival in recent years mainly due
to the work of econophysicists that introduced the continuous time random walks (CTRW) apparatus in the modelling of
financial returns, see References 11-13. Furthermore, it is known that CTRW can be used to reproduce ordinary diffusions,
Levy flights, fractional Brownian motion and ambivalent processes, see Reference 14. The evolution equation of CTRW
was formulated and it was shown that it can catch non-Markovian effects. Sometimes the non-Markovian behaviour of
stocks has been accommodated considering a latent Markov process acting as a switching process as done in Reference 15.
In any case, a viable solution to the non-Markovian problem is given by semi-Markov based models. Semi-Markov pro-
cesses are the equivalent of CTRW having a nonindependent space–time dynamic. They appeared in the 1950s in the
probability field due to the independent contributions by Levy16 and Smith.17 They have been successfully investigated
and applied in connection with a very wide range of problems including reliability theory, queuing, stochastic systems
and DNA analysis, see, for example References 18, 19, 20,21 and 22,23.

Financial modelling is not an exception and has assisted to the progressive abandonment of the Markovian property
in favour of the semi-Markov one. Examples come from credit rating (e.g. References 24-26), high-frequency finance,27-29

financial time series30,31 and pricing problems.32-34

However, only recently it has been recognized that also semi-Markov processes (CTRW included) are not able to
reproduce accurately the statistical properties of high-frequency financial data and a more general solution has been
advanced in a series of papers where the concept of weighted-indexed semi-Markov chains (WISMC) has appeared, see
References 35 and 36. The WISMC model represents a generalization of ordinary semi-Markov processes and revealed
to be particularly useful to reproduce long-term dependence in the stock returns among other stylized facts of statistical
finance. WISMC models were extended using different strategies to multivariate settings and applied to measure the risk
of financial portfolios, see References 37 and 38. In the meantime, they were also successfully applied to the modelling
of financial volumes by D’Amico et al.39

So far, models proposed in the literature of the micro-to-macro approach have not yet been able to describe a unifying
framework where returns, volumes and waiting times are jointly modelled in such a way to reproduce known empirical
regularities they possess. The contribution of this article is to present a modelling framework where these three variables
are managed contemporaneously in a quite satisfactory and flexible way. Furthermore, the model is nonparametric and
then does not rely on any particular assumption on the probability density functions of the main variables. In particular,
we first conduct detailed explorative data analysis with the aim of a better understanding of the empirical relationships
among the considered financial variables. The data analyzed are from four Italian stocks for the period August 2015
to August 2017 observed at a 1-min frequency. The analysis has shown many empirical pieces of evidence such as the
autocorrelation of the absolute value of price and volume returns, the dependence between volume, returns and trading
time interval, the nongaussianity of price and volume returns. The WISMC model is presented for the first time with a
general state space in a discrete-time framework. It is considered as a model for the log-returns and also for the log-volume
returns but with different kernels. To achieve the objective of a multivariate model of price-volumes-waiting times (triplet
process), specific data-driven assumptions are advanced and the dependence structure between the price and the volume
returns, conditional on the waiting times, is embodied by using a copula function on the joint distribution of the modulus
of the returns and the modulus of the volume returns that exhibit a general dependence structure. The dynamic of the
multivariate model is characterized by the determination of the kernel of the triplet process. In general, this allows the
computation of any financial statistics that can be written as a function of the kernel of the triplet process. The model
is used to compute linear and nonlinear measures of dependence, joint first passage time distribution (fptd) function of
price and volumes and shows the ability to reproduce probability density functions of both variables as well as cross and
auto-correlation functions.

The article is organized as follows. Section 2 provides a statistical analysis of financial data with a particular focus on
the relationships among price returns, volume returns and waiting times. Section 3 sets out the marginal models of price
and volumes and the multivariate extension using copula functions. In this section, the kernel of the triplet process is
studied under some assumptions that are justified by the data. The section presents also the computation of some financial
functions of broad interest. Section 4 illustrates the result of the application to real data and demonstrates the accuracy
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T A B L E 1 Stocks used in the application and their symbols Code Name
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of the model in reproducing the main empirical regularities observed in financial markets. Section 5 summarizes our
contribution and results. All proofs are deferred to the Appendix.

2 DATA ANALYSIS

Empirical research on price changes, financial volumes and waiting times has identified some characteristics often called
the stylized facts.40-46 In this section we conduct an explorative data analysis with the aim of a better understanding
of empirical relations among the considered financial variables. This analysis will inspire the main assumptions under
which our model is going to be built on in the next section.

The data used are quotes of Italian stocks for the period August 2015 to August 2017 (2 full years) with 1 min frequency.
Every minute, the last price and the cumulated volume (number of transactions) is recorded. For each stock the database
is composed of about 2.6 * 105 volumes and prices. The list of stocks analyzed and their symbols are reported in Table 1.
From now onward we will use only the codes in the table to identify each stock.

The analyzed stocks are chosen to represent different market sectors. According to the Global Industry Classification
Standard, F is in the industrial sector, ISP is one of the largest banks in Italy (financial sector), TIT is in the telecommu-
nication and TEN in the energy sector. In Figure 1 we show an example, for the stock TIT, of the time series of price S(t)
and trading volumes V(t) in the analyzed period.

As a first step we analyze the time series and look for the most important statistical features. From prices we build a
time series of the price returns defined as r(t) = log(S(t)∕S(t − 1)) and from trading volumes we define the log variation
(from now onward volume returns) as v(t) = log(V(t)∕V(t − 1)) where t is the time variable in 1-min frequency. To be sure
to use only variation in 1-min period we exclude from the analyses the variation of both variables from the closing of the
stock market at day d to the reopening in the next trading day d+ 1 (we remind that the stock market is open from 9 am
to 17:30 pm in weeks day). Descriptive statistics are summarized in the Appendix.

As far as the probability density function are concerned, we performed a Jarque–Bera test that rejected the Gaussian
hypothesis for both r(t) and v(t) at 1% significance level.

One of the most important statistical feature of both time series is that their absolute values are long range correlated,
see Figure 2. For space reason we show the plots only for two of the analyzed stocks. We also found that there is zero
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F I G U R E 2 Sample
autocorrelation of |v(t)| (upper panels)
and |r(t)| (lower panels)

T A B L E 2 Cross-correlation between price and volume returns

𝝆(r(t), v(t)) p-value 𝝆(|r(t)|, v(t)) p-value 𝝆(r(t), |v(t))| p-value 𝝆(|r(t)|, |v(t))| p-value

TIT 0.0089 0 0.086 0 −0.0032 0.023 0.020 0

ISP −0.010 0 0.086 0 −0.0036 0.0095 −0.019 0

TEN −0.0091 0 0.086 0 0.00055 0.69 0.040 0

F −0.012 0 0.11 0 −0.0041 0.0037 −0.027 0

correlation between r(t) and v(t) while a nonzero correlation between |r(t)| and v(t) is present, see Table 2. In this table we
show all possible combinations of correlation between r(t) and v(t) and their absolute values, we also show the p-values
which gives significance of nonzero correlation.

Given these properties a good model should be able to take all of them into account. Another property that we found
quite interesting and that should be included into a model is the following: for both time series (r(t) and v(t)) we found
that there is a dependence with the waiting time which is defined as the time it takes for returns to change their values.
This result is confirmed from contingency tables where we can see the dependence between r(t), v(t) and the waiting
time T. The contingency tables, shown in Table 3, have been obtained by a discretization of both r(t) and v(t) into five
states.

It can be easily noticed, from Table 3, that there is a dependence of the number of transition from T (for T = 1 there are
much more transitions than for T = 2 or T = 3). More specifically, in brackets we give the number of transitions that we
would expect for independent processes where the probability of finding a given number of transition is simply given by
the product of the frequencies of having each variable at that given state. From Table 3 it is obvious that the independent
hypothesis does not hold for both processes. We obtained similar results for all other stocks which, for reasons of space,
are not shown here. From the above tables and from all results obtained in this section, we can say that a good real
world model of price and volumes should take into account all the aforementioned stylized facts that we can summarize
in a list:

- distributions of price returns and volume returns are not Gaussian;
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T A B L E 3 Contingency
table for F

r(t)

−∞:− 0.13% −0.13%:− 0.05% −0.05% : 0.05% 0.05% : 0.13% 0.13%:+∞

T 0 : 2 24,647 (23386,7) 45,762 (43588,8) 43,459 (50186,2) 46,381 (44216,1) 23,984 (22855,1)

2 : 4 696 (1436,3) 1487 (2677,1) 6805 (3082,3) 1553 (2715,6) 774 (1403,7)

4:+∞ 45 (565,0) 70 (1053,1) 4217 (1212,5) 66 (1068,2) 53 (552,2)

v(t)

−∞:− 4 −4:− 1.3 −1.3 : 1.3 1.3 : 4 4:+∞

T 0 : 2 3784 (3071,1) 58,063 (47168,3) 36,466 (60051,0) 59,221 (48145,5) 4787 (3885,2)

2 : 4 0 (289,7) 54 (4449,2) 15,157 (5664,3) 100 (4541,3) 0 (366,5)

4:+∞ 0 (423,2) 0 (6499,5) 22,367 (8274,7) 0 (6634,2) 0 (535,4)

Note: In the first table we tested the dependence between r(t) and T, while in the second table we tested the
dependence between v(t) and T. The numbers in brackets are obtained under the independence hypotheses. The 𝜒2

test rejects the null hypothesis of independence.

- the absolute values of price returns are long range correlated;
- the absolute values of volume returns are long range correlated;
- price returns and volume returns are uncorrelated while a nonzero correlation between |r(t)| and v(t) is present;
- r(t) and the waiting times influence each other;
- v(t) and the waiting times influence each other.

The majority of them was already known and extensively documented in the financial literature, here they have been
confirmed in our dataset. A very interesting summary and financial implications of those empirical regularities are dis-
cussed in Reference 47 and in the references therein. The empirical evidences in the list are the cornerstones on which is
built the model we are going to present in next section.

3 MATHEMATICAL MODEL

In this section we first present the WISMC model that is used as a marginal model for both the price and volume returns.
Successively, we extend the model in a multivariate setting by considering a dependence structure between price, volumes
and waiting times (durations) using a copula function.

3.1 Weighted-indexed semi-Markov chains

Here, we introduce discrete-time WISMC model with Borel phase space in relation to the financial problem to which
we are interested in. Note that, in previous papers,35,36 time was considered as a continuous variable but an appropriate
discretization was made when the application was performed.

Let (Ω, ,P) be a probability space endowed with a filtration F ∶= (n)n∈IN where all upcoming random variables are
defined.

Let S(t) be the price of a financial asset at time t ∈ IN. The time varying log return, defined as log(S(t)∕S(t − 1)),
is usually the main variable object of investigation in financial literature. As commented in the previous section, at
the short-time scales considered in high-frequency finance, this variable changes values only in correspondence of an
increasing sequence of times {TJ

n}n∈IN, the so-called jump-times of the asset price process.
In correspondence of the times {TJ

n}n∈IN, the logarithmic return process assumes different values denoted by {Jn}n∈ IN
and along any waiting time Xn ∶= TJ

n+1 − TJ
n it does not change value and remains constant. Thus, Jn is the value of the

logarithmic change in price at its nth transition.
Let assume that at current time, say t0 = 0, we dispose of a set of past data consisting of two vectors of observa-

tions collecting the last m+ 1 visited states of the log-return process and corresponding transitions times, respectively,
that is
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J0
−m = (J−m, J−m+1, … , J0),

T0
−m = (TJ

−m,TJ
−m+1, … ,TJ

0).

Consider also an index process:

IJ
n(𝜆) ∶=

m+n−1∑
r=0

TJ
n−r−1∑

a=TJ
n−1−r

f 𝜆(Jn−1−r,TJ
n, a) + f 𝜆(Jn,TJ

n,TJ
n), (1)

where f 𝜆 ∶ IR × IN × IN → IR is a bounded function.
The process IJ

n(𝜆) can be interpreted as an accumulated reward process with the function f 𝜆 as a measure of the
weighted rate of reward per unit time. The parameter 𝜆 is a memory parameter that should be calibrated on the data.
A calibration procedure is discussed in the application (Section 4). It should also be remarked that the index process
considered in this article is slightly more general than those considered in previous research articles because we added
the term f 𝜆(Jn,TJ

n,TJ
n) that add to the index process also the score deriving from observing the current log-return state Jn

at present time TJ
n.

Introduce the counting process NJ(t) ∶= max{n ∈ IN ∶ TJ
n ≤ t}, and let us now introduce the notion of

weighted-indexed semi-Markov chains.

Definition 1. The process ZJ(t) ∶= JNJ (t) is said to be a weighted-indexed semi-Markov chain with phase-space (IR,(IR))
if ∀i, x, j∈ IR and ∀t ∈ IN there exists a function qJ = qJ(i, x; j, t), called the indexed semi-Markov kernel, such that ∀n∈ IN
the following equality holds true:

P[Jn+1 ≤ j,TJ
n+1 − TJ

n = t|𝜎(Jh,TJ
h, I

J
h(𝜆), h ≤ n), Jn = i, IJ

n(𝜆) = x]
= P[Jn+1 ≤ j,TJ

n+1 − TJ
n = t|Jn = i, IJ

n(𝜆) = x] =∶ qJ(i, x; j, t). (2)

Remark 1. Relation (2) asserts that the knowledge of the values of the variables Jn, IJ
n(𝜆) is sufficient to give the conditional

distribution of the couple Jn+1,TJ
n+1 − TJ

n whatever the values of the past variables might be. Therefore, to assess the
probability of the next value of the log-return process and of the time in which the process is going to change state, we
need only the knowledge of the last state of the log-return and the last value of the index process.

Remark 2. The function QJ(i, x; j, t) ∶=
∑

s≤tqJ(i, x; j, s) satisfies the following properties:

a) QJ(i, x; j, ⋅) is a nondecreasing discrete real function such that

QJ(i, x; j, 0) = 0.

b) pJ(⋅ , x; ⋅) :=QJ(⋅ , x; ⋅ ,∞) is a Markov transition probability function from (IR,(IR)) to itself.

Remark 3. If the indexed semi-Markov kernel is constant in x, that is fixed the triple (i, j, t) for all y≠ x

qJ(i, x; j, t) ≠ qJ(i, y; j, t),

then, it degenerates in a semi-Markov kernel and the WISMC model becomes equivalent to classical semi-Markov chain
model, see, for example References 48 and 49.

The triplet {Jn,TJ
n, IJ

n(𝜆)} describes the system in correspondence of any jump time TJ
n. However, it is also impor-

tant to describe the system in correspondence of any time t, which can be a jump time (t = TJ
n) or not (t ≠ TJ

n). The
random process ZJ(t) ∶= JNJ (t) introduced in definition (1) marks the log-return at any time t, while the backward
recurrence time process BJ(t) ∶= t − TJ

NJ (t) denotes the time elapsed since the last transition. In our model this infor-
mation is not sufficient to completely characterize the status of the system because we need to know also the value
of the index process. To this end we extended the definition of the index process allowing to consider any time t ∈ IN
as follows:
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IJ(𝜆; t) =
m+NJ (t)−1+𝜃∑

r=0

(t∧TJ
NJ (t)+𝜃−r

)−1∑
a=TJ

NJ (t)+𝜃−1−r

f 𝜆(JNJ (t)+𝜃−1−r, t, a) + f 𝜆(JNJ (t), t, t), (3)

where 𝜃 = 1{t>TJ
NJ (t)

}. If t = TJ
n, then IJ(𝜆; t) = IJ

n(𝜆).
The following definition and result, which reduces the complexity of the model, is important for practical application

of the WISMC model.

Definition 2 (Shift operator). Let (i, t)n
−m = {(i𝛼, t𝛼), 𝛼 = −m, … ,n} be a sequence of states and transition times, that is

i𝛼 ∈ IR, t𝛼 ∈ Z, t𝛼 < t𝛼+1.
Let denote by Θn

−m = {(i𝛼, t𝛼), 𝛼 = −m, … , 0, … ,n, i𝛼 ∈ IR, t𝛼 ∈ Z}, then we define the shift operator

◦ ∶ Θn+1
−m → Θn

−m−1

defined by

◦((i, t)n+1
−m ) = (s, k)n

−m−1,

where s𝛼 = i𝛼+1, k𝛼 = t𝛼+1 − tn+1, 𝛼 = −m − 1, … , 0, … ,n.

From an intuitive point of view, the shift operator when applied to a trajectory (i, t)n+1
−m gives back a new trajectory

where the sequence of visited states is the same as in the input trajectory with the difference that transition times are
translated of tn+ 1 time units backward and the number of transitions is set one unit backward.

The following assumption concerning the score function f 𝜆 will be needed in the rest of the article:
A1: ∀i∈ IR, t ∈ IN, a∈ IN, f 𝜆(i, t, a) = f 𝜆(i, t − a).

Lemma 1. For a WISMC with score function f 𝜆 that satisfies assumption A1, for fixed arbitrary state j and time t and
(i, t)n+1

−m ∈ Θn+1
−m , we have:

P[Jn+2 ≤ j,TJ
n+2 − TJ

n+1 = t|(J,TJ)n+1
−m = (i, t)n+1

−m ] = P[Jn+1 ≤ j,TJ
n+1 − TJ

n = t|(J,TJ)n
−m−1 = ◦((i, t)n+1

−m )]. (4)

Proof. See the Appendix. ▪

The result presented in Lemma 1 focuses on a class of score functions leading probability (4) to be independent of n.
Accordingly, the WISMC inherits a homogeneity property that is particularly useful for the applications of the model.
Throughout this article, we are going to consider homogeneous WISMC.

In this research we consider also financial volume as one important variable worthwhile to be investigated. The
WISMC model was also applied to the modelling of financial volumes in a recent article by D’Amico et al.39 and revealed
to be able to reproduce several statistical properties of volumes at high-frequency scales. In order to be able to distin-
guish between the WISMC model for returns and that for volumes we introduce an additional notation for the volume
model. Precisely, if V(t) is the volume of a financial asset at time t ∈ IN, the time varying log volume is defined as
log(V(t)∕V(t − 1)). This variable at short-time scales changes values in correspondence of an increasing sequence of times
{TV

n }n∈IN, the so-called jump-times of the asset volume process. In correspondence of the times {TV
n }n∈IN, the logarithmic

volume process assumes different values denoted by {JV
n }n∈IN. We introduce the index process for the volume by replacing

in formula (1) the variables Jn, TJ
n and 𝜆 by V n, TV

n and 𝛾 , respectively. The semi-Markov kernel for the volume process
will be denotes by qV = qV (i, x; j, t) and the WISMC process for the volume variable is defined by ZV (t) ∶= VNV (t) being
NV (t) ∶= max{n ∈ IN ∶ TV

n ≤ t}.

3.2 The multivariate model

In this section we extend the WISMC model into a multivariate setting in such a way that it is able to describe jointly
the time evolution of the three considered variables: log-returns, log-volumes and waiting times. The extension is done
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advancing a series of assumption that allow us to merge the WISMC kernel of the log-return process and that of the
log-volumes in a new kernel that is completely characterized in this section.

The first step in the joint modelization of returns, volumes and durations is to synchronize the time events of the
returns and volumes. In order to do it let us start from the two sequences

(Jn,TJ
n)n∈IN, (Vn,TV

n )n∈IN. (5)

They mark the values and points in time where log-returns and log-volumes change states, respectively. First, we
define a new sequence of transition times:

{T̃n} = {TJ
n} ∪ {TV

n }, with T̃0 = TJ
0 = TV

0 = 0. (6)

Relation (6) means that we consider the union between the sets of transition times of returns and volumes and the
obtained ordered sequence of times is denoted with the symbol {T̃n}n∈IN. Intuitively, the time T̃1 is the first time when a
change in the returns or in the volumes occurred, T̃2 the second point in time when a second change of state of whichever
of the two processes Jn and V n occurred, and so on. The related interarrival times are denoted by

X̃n = T̃n+1 − T̃n.

Furthermore we define the corresponding values of the returns and volumes for each time of the random sequence T̃n
according to the following relations:

J̃n = Js, if s = max{h ∈ IN ∶ TJ
h ≤ T̃n},

Ṽ n = Vs, if s = max{h ∈ IN ∶ TV
h ≤ T̃n},

Thus, we ended up with three variables (J̃n, Ṽ n, T̃n) that denote the synchronized sequences of log-returns,
log-volumes and transition times. In order to advance a joint model for this three-variate process we need to advance some
specific properties concerning their interdependence and dynamics.

Suppose the following conditional independence relation, namely assumption A2, holds true:

P[J̃n+1 ≤ j, Ṽ n+1 ≤ a, X̃n = t|𝜎(J̃h, Ṽ h, T̃h, h ≤ n), J̃n = i, Ṽ n = v, ĨJ
n = x,

ĨV
n = w, T̃n = s, T̃n − TJ

NJ (s) = bJ , T̃n − TV
NV (s) = bV ]

= P[J̃n+1 ≤ j, Ṽ n+1 ≤ a, X̃n = t|J̃n = i, Ṽ n = v, ĨJ
n = x, ĨV

n = w, T̃n = s,
T̃n − TJ

NJ (s) = bJ , T̃n − TV
NV (s) = bV ]. (7)

Assumption A2 considers a quasi-Markovian-type hypothesis which asserts that the knowledge of the last values of
synchronized variables (J̃n = i, Ṽ n = v, T̃n = s) together with corresponding values of the index processes (ĨJ

n = x, ĨV
n = w)

and of the time elapsed from last transition of both log-return and log-volume (T̃n − TJ
NJ (s) = bJ , T̃n − TV

NV (s) = bV ) suffices
to give the conditional distribution of the triplet (J̃n+1, Ṽ n+1, X̃n) whatever the values of the past variables might be.

The following information sets are introduced for notational convenience:

J
n,s ∶= {J̃n = i, ĨJ

n = x, T̃n = s, T̃n − TJ
NJ (s) = bJ},

V
n,s ∶= {Ṽ n = v, ĨV

n = w, T̃n = s, T̃n − TV
NV (s) = bV},

JV
n,s ∶= J

n,s
⋃V

n,s,

JVT
n,s ∶= JV

n,s
⋃

{X̃n = t}.

Probability (7) is so important to merit a formal definition:

Definition 3. Let (J̃n, Ṽ n, T̃n) be the synchronized triplet process of log-return, log-volume and transition times. The
function
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qJV = qJV (JV
n,s; j, a, t),

with i, v, x,w, j, a ∈ R and bJ , bV , t ∈ N defined by

qJV (JV
n,s; j, a, t) ∶= P[J̃n+1 ≤ j, Ṽ n+1 ≤ a, X̃n = t|JV

n,s]. (8)

is called the kernel of the triplet process.

The kernel of the triplet process, can be factorized into the product of the conditional joint distribution of log-return
and log-volumes multiplied by the conditional distribution of interarrival times, that is

P[J̃n+1 ≤ j, Ṽ n+1 ≤ a|JVT
n,s ] ⋅ P[X̃n = t|JV

n,s]. (9)

Our next main task is to give a representation of this kernel in such a way that the dynamic of the joint process
(J̃n, Ṽ n, T̃n) could be completely characterized. We shall now consider reasonable data-driven assumptions that permits
this computation.

Assumption A3: synchronized waiting time distribution.
We assume that the probability distribution of interarrival time is independent on current time s, this avoid the use

of time nonhomogeneous probabilistic structures of the process. Moreover we assume that the waiting time distribution
does not explicitly depends on the time elapsed by log-return and log-volume into their current states but includes past
information depending on the index processes of returns and volumes. In formula

P[X̃n = t|JV
n,s] = P[X̃n = t|J̃n = i, Ṽ n = v, ĨJ

n = x, ĨV
n = w]. (10)

Assumption A3 implies that the distributional properties of the waiting-times in our model can differ according to
price and volume movements (J̃n and Ṽ n values) as well as with their past behaviour measured by the index processes
ĨJ

n and ĨV
n .

Denote the conditional probability of X̃n by

H̃i,v(x,w; t) ∶= P[X̃n ≤ t|J̃n = i, Ṽ n = v, ĨJ
n = x, ĨV

n = w], (11)

and the corresponding probability mass function by

P[X̃n = t|J̃n = i, Ṽ n = v, T̃n = s, ĨJ
n = x, ĨV

n = w] = H̃i,v(x,w; t) − H̃i,v(x,w; t − 1) =∶ h̃i,v(x,w; t). (12)

The independence of the cdf of waiting times on the number of transitions n, and on the time of last transition s is
done in order to avoid unnecessary complications that would have made the model inhomogeneous in time.

The knowledge of the kernel of the triplet process needs also the specification of the conditional joint probability
distribution of log-returns and log-volumes. In this respect we propose the following

Assumption A4: the conditional joint distribution of modulus of log-returns and log-volumes is given by

P[|J̃n+1| ≤ j, |Ṽ n+1| ≤ a | JVT
n,s ] =  (

F|J|(i, x, t + bJ ; j),F|V |(v,w, t + bV ; a
)
, (13)

where  is a Copula-function and the marginal distributions F|J|(i, x, t + bJ ; j) and F|V |(v, w, t + bV ; a) are given by

F|J| = P[|JNJ (s)+1| ≤ j | TNJ (s)+1 − s = t, JNJ (s) = i, IJ
NJ (s) = x, s − TJ

NJ (s) = bJ],

F|V | = P[|VNV (s)+1| ≤ a | TNV (s)+1 − s = t,VNV (s) = i, IV
NV (s) = x, s − TV

NV (s) = bV ].

Assumption A4 is motivated by the data analysis executed in Section 2, specifically in Table 2 we have shown that
the two processes are dependent on each other. Essentially this assumption allows us to consider a dependence structure
between the modulus of the log-returns and log-volumes that is managed through the use of any copula function. The
copula maps the two marginal distributions F|J| and F|V | into a joint probability distribution function. The quantity F|J|

expresses the probability to get the modulus of log-return less or equal to j conditionally on the last value of the variable,
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corresponding index process, waiting time length and duration in the last visited states. The same interpretation can be
given to the quantity F|V | with the only exception that it is related to the modulus of log-volume process.

The F|J| can be evaluated as follows:

F|J|(i, x, t + bJ ; j) = P[|JNJ (s)+1| ≤ j | TNJ (s)+1 − s = t, JNJ (s) = i, IJ
NJ (s) = x, s − TJ

NJ (s) = bJ]

= P[|JNJ (s)+1| ≤ j | TNJ (s)+1 − TNJ (s) + TNJ (s) − s = t, JNJ (s) = i,
IJ

NJ (s) = x,TJ
NJ (s) = s − bJ] = P[|JNJ (s)+1| ≤ j | TNJ (s)+1 − TNJ (s) = t + bJ , JNJ (s) = i, IJ

NJ (s) = x]

= P[|Jn+1| ≤ j | Tn+1 − Tn = t + bJ , Jn = i, IJ
n = x]

=
P[|Jn+1| ≤ j,Tn+1 − Tn = t + bJ | Jn = i, IJ

n = x]
P[Tn+1 − Tn = t + bJ | Jn = i, IJ

n = x]

=
qJ(i, x; j, t + bJ) − qJ(i, x; −j, t + bJ)

HJ
i (x; t + bJ) − HJ

i (x; t + bJ − 1)
.

Similar computations gives

F|V |(v,w, t + bV ; a) =
qV (v,w; a, t + bV ) − qV (v,w; −a, t + bV )

HV
v (w; t + bV ) − HV

v (w; t + bV − 1)
.

By means of assumptions A3 and A4 we can get information on the joint distribution of modulus of log-returns and
modulus of log-volumes. Nonetheless, it is our interest to recover information on the exact values (with signs) of these
variables. This is motivated by the empirical observation that although {|J̃n|} and {|Ṽ n|} are significantly correlated, {J̃n}
and {Ṽ n} are not.

To be able to reach this objective we advance a final assumptions:
A5: For each n ∈ N, J̃n and Ṽ n satisfy the following relations:

J̃n = |J̃n| ⋅ 𝜂J
n;

Ṽ n = |Ṽ n| ⋅ 𝜂V
n ;

where 𝜂J
n and 𝜂V

n are two sequences of i.i.d. random variables with pmf

𝜂J
n ∼

{
+1 with probability pJ

−1 with probability 1 − pJ

𝜂V
n ∼

{
+1 with probability pV

−1 with probability 1 − pV

This assumptions allows us to get the value of the variables starting from the knowledge of their modulus. Indeed, the
variables 𝜂J

n and 𝜂V
n provides the sign of the size of the variation. Obviously, the parameters pJ and pV need to be estimated

on the data.
The next theorem characterizes the kernel of the triplet process.

Theorem 1. Under assumptions A1–A5, ∀s∈ IN the kernel of the triplet process (J̃n, Ṽ n, T̃n), defined in formula (8), is given
by:

(i) for j≥ 0, a≥ 0

qJV (JV
n,s; j, a, t) = h̃i,v(x,w; t) ⋅ [1 + pJpV (1 − F|J|(i, x, t + bJ ; j)

− F|V |(v,w, t + bV ; a) + (F|J|(i, x, t + bJ ; j),F|V |(v,w, t + bV ; a)))
− pV (1 − F|V |(v,w, t + bV ; a)) − pJ(1 − F|J|(i, x, t + bJ ; j))], (14)

(ii) for j< 0, a< 0

qJV (JV
n,s; j, a, t) = h̃i,v(x,w; t) ⋅ (1 − pJ)(1 − pV )[1 − F|J|(i, x, t + bJ ; −j)

− F|V |(v,w, t + bV ; −a) + (F|J|(i, x, t + bJ ; −j),F|V |(v,w, t + bV ; −a))], (15)
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(iii) for j< 0, a> 0

qJV (JV
n,s; j, a, t) = h̃i,v(x,w; t) ⋅ [(1 − pJ) ⋅ [F|V |(v,w, t + bV ; a) − (F|J|(i, x, t + bJ ; −j),F|V |(v,w, t + bV ; a))]

+ (1 − pJ)(1 − pV ) ⋅ [1 − F|J|(i, x, t + bJ ; −j) − F|V |(v,w, t + bV ; a)
+ (F|J|(i, x, t + bJ ; −j),F|V |(v,w, t + bV ; a))]], (16)

(iv) for j> 0, a< 0

qJV (JV
n,s; j, a, t) = h̃i,v(x,w; t) ⋅ [(1 − pV ) ⋅ [F|J|(i, x, t + bJ ; j)

− (F|J|(i, x, t + bJ ; j),F|V |(v,w, t + bV ; −a))] + (1 − pJ)(1 − pV )
⋅ [1 − F|J|(i, x, t + bJ ; j) − F|V |(v,w, t + bV ; −a)
+ (F|J|(i, x, t + bJ ; j),F|V |(v,w, t + bV ; −a))]]. (17)

Proof. See the Appendix. ▪

3.3 Financial functions

In this subsection we show how it is possible to compute financial functions of specific interest using the characterization
of the kernel of the triplet process given in Theorem 1. Results are confined to marginal distributions of log-returns and
log-volumes, correlation structures and joint first passage time distributions. In general given the kernel, it is possible to
compute any type of functional of the kernel.

3.3.1 The one-step marginal distributions of returns and volumes

The first question to which we are interested in is the determination of the marginal distributions of log-returns
and log-volumes. Since the dependence structure has been introduced on the modulus of these variables
the marginal distributions we are looking for do not coincide with those used in the copula, that is with
F|J| and F|V |.

Let us consider the problem of finding the marginal distribution of the return process. Let us proceed by integration
of the volume variable and summation on the duration one, this gives

∑
t≥0qJV (JV

n,s; j,∞, t). Thus, for j> 0, using the
kernel representation (14) and the fact that F|V |(v, w, |∞|, t + bV )= 1 and that (F|J|(i, x, t + bJ ; j),F|V |(v,w, t + bV ;∞)) =
F|J|(i, x, t + bJ ; j) we obtain the following sequence of equalities:

∑
t≥0

qJV (JV
n,s; j,∞, t) =

∑
t≥0

h̃i,v(x,w; t) ⋅ [1 + pJpV (1 − F|J|(i, x, t + bJ ; j) − 1 + F|J|(i, x, t + bJ ; j))

− pV (1 − 1)) − pJ(1 − F|J|(i, x, t + bJ ; j))]

=
∑
t≥0

h̃i,v(x,w; t) ⋅ [1 − pJ(1 − F|J|(i, x, t + bJ ; j))]

= 1 − pJ ⋅

(
1 −

∑
t≥0

h̃i,v(x,w; t) ⋅ F|J|(i, x, t + bJ ; j)

)
.

This marginal distribution expresses the probability to observe with next transition, executed at any future time t, a
return not greater than j. Symmetric arguments prove that the marginal distribution of volumes results in

1 − pV ⋅

(
1 −

∑
t≥0

h̃i,v(x,w; t) ⋅ F|V |(v,w, t + bV ; a)

)
.
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3.3.2 Dependence measures

The kernel of the triplet process (8) completely describes the dependence structure between returns and volumes and
waiting times. Nevertheless, it is relevant to measure it using classical indicators of linear and nonlinear dependence.

The most widely studied measure of linear dependence is the correlation coefficient. Let 𝜌JV
n,s
(|J̃n+1|, |Ṽ n+1|) be the

correlation coefficient between the modulus of returns and the modulus of volumes at next transition unconditionally on
the time when the next transition will happen, that is

𝜌JV
n,s
(|J̃n+1|, |Ṽ n+1|) = CovJV

n,s
(|J̃n+1|, |Ṽ n+1|)

𝜎J
n,s
(|J̃n+1|) ⋅ 𝜎V

n,s
(|Ṽ n+1|) . (18)

Using the formula discussed above, we can calculate the correlation coefficient by using the joint probability density
function of (|J̃n+1|, |Ṽ n+1|) conditional on the information set JV

n,s. For every j, a≥ 0, one gets:

F(|J̃n+1|,|Ṽ n+1|)(j, a) ∶= P[|J̃n+1| ≤ j, |Ṽ n+1| ≤ a | JV
n,s]

=
∑
t≥0

P[|J̃n+1| ≤ j, |Ṽ n+1| ≤ a | JVT
n,s ] ⋅ P[X̃n = t | JV

n,s]

=
∑
t≥0

h̃i,v(x,w; t) ⋅ (F|J|(i, x, t + bJ ; j),F|V |(v,w, t + bV ; a). (19)

Consequently the density can be obtained by derivation of the cumulative distribution function, that is

f(|J̃n+1|,|Ṽ n+1|)(j, a) = 𝜕2

𝜕j𝜕a
F(|J̃n+1|,|Ṽ n+1|)(j, a)

=
∑
t≥0

h̃i,v(x,w; t) ⋅ 𝜕2

𝜕j𝜕a
(F|J|(i, x, t + bJ ; j),F|V |(v,w, t + bV ; a). (20)

Accordingly we get

CovJV
n,s
(|J̃n+1|, |Ṽ n+1|) = ∫

∞

0 ∫
∞

0
j ⋅ a ⋅ f(|J̃n+1|,|Ṽ n+1|)(j, a)djda − ∫

∞

0
jf|J̃n+1|(j)dj ⋅ ∫

∞

0
af|Ṽ n+1|(a)da. (21)

This allows the recovering of 𝜌JV
n,s
(|J̃n+1|, |Ṽ n+1|) once the standard deviations 𝜎J

n,s
(|J̃n+1|) and 𝜎V

n,s
(|Ṽ n+1|) are known.

They can be obtained by using the univariate densities f|J̃n+1|(⋅) and f|Ṽ n+1|(⋅) that in turn can be obtained by integration of
the joint density.

It is also interesting to compute the covariance function between the modulus of log-returns and the log-volumes at
next transition, that is

CovJV
n,s
(|J̃n+1|, Ṽ n+1) = EJV

n,s
[|J̃n+1| ⋅ Ṽ n+1] − EJ

n,s
[|J̃n+1|] ⋅ EV

n,s
[Ṽ n+1]

= EJV
n,s
[|J̃n+1| ⋅ 𝜂V

n+1 ⋅ |Ṽ n+1|] − EJ
n,s
[|J̃n+1|] ⋅ EV

n,s
[𝜂V

n+1 ⋅ |Ṽ n+1|]
= EV

n,s
[𝜂V

n+1] ⋅ (CovJV
n,s
(|J̃n+1|, |Ṽ n+1|)). (22)

Note that if EV
n,s
[𝜂V

n+1] = 0, then the modulus of log-returns and log-volumes are uncorrelated at next transition.
One may also be interested in providing nonlinear measures of dependence between random variables. Mutual

information, which goes back to Reference 50, possesses relevant properties that imposed it as a suitable measure
of nonlinear dependence, see, for example Reference 51. It is simple to express the mutual information within our
model:

MIJV
n,s
(|J̃n+1|, |Ṽ n+1|) = ∫

∞

0 ∫
∞

0
f(|J̃n+1|,|Ṽ n+1|)(j, a) log

f(|J̃n+1|,|Ṽ n+1|)(j, a)
f|J̃n+1|(j) ⋅ f|Ṽ n+1|(a)djda, (23)

where the densities are given in formula (20).
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3.3.3 First passage time distributions

The first passage time distribution (fptd) has attracted a lot of attention in finance. It has been considered for different
assumptions about the stochastic processes that describes the asset behaviour. It has been investigated for log-returns
when described by Ornstein–Uhlenbeck processes (see, for example Reference 52) and more recently for generalized
semi-Markov models in References 35,36,53. We shall now derive the fptd for our multivariate model.

Let M̃J
t (𝜏) be the accumulation factor of the return process in the multivariate model from time t to t + 𝜏. Formally, it

is defined as follows:
M̃J

t (𝜏) = e
∑𝜏−1

r=0 Z̃J (t+r).

A similar definition applies for the volume process, that is

M̃V
t (𝜏) = e

∑𝜏−1
r=0 Z̃V (t+r).

For 𝜌 ∈ IR+ and 𝜓 ∈ IR+, denote the joint first passage time by

Γ(𝜌;𝜓) ∶= min{𝜏 ≥ 0 ∶ {M̃J
0(𝜏) ≥ 𝜌} ∪ {M̃V

0 (𝜏) ≥ 𝜓}}. (24)

Thus, Γ(𝜌;𝜓) is the first time when at least one accumulation factor exceeds its own thresholds. Denote the correspond-
ing conditional survival function by

R(𝜌;𝜓)((i, v, t)0
−m,u; t) = P[Γ(𝜌;𝜓) > t|(J̃, Ṽ , T̃)0

−m = (i, v, t)0
−m, B̃(u) = u],

where B̃(u) = u − T̃Ñ(u).
The definition of the shift operator given in Definition 2 can be easily extended to triplet sequences (i, v, t)n

−m.

Definition 4. Let (i, v, t)n
−m = {(i𝛼, v𝛼, t𝛼), 𝛼 = −m, … ,n} be a sequence of returns, volumes and corresponding transition

times. Let denote by Φn
−m = {(i𝛼, v𝛼, t𝛼), 𝛼 = −m, … , 0, … ,n, i𝛼 ∈ IR, v𝛼 ∈ IR, t𝛼 ∈ Z, t𝛼 < t𝛼+1}, then we define the shift

operator
◦ ∶ Φn+1

−m → Φn
−m−1

defined by
◦((i, v, t)n+1

−m ) = (s, y, k)n
−m−1,

where s𝛼 = i𝛼+1, y𝛼 = v𝛼+1, k𝛼 = t𝛼+1 − tn+1, 𝛼 = −m − 1, … , 0, … ,n.

We prove a theorem which provides an equation for the joint fptd.

Theorem 2. Let f 𝜆 and g𝛾 be the score functions of the return and volume index processes, respectively. For i0 ≥ 0 and v0 ≥ 0,
it results that

R(𝜌;𝜓)((i, v, t)0
−m,u; t) = 1{ei0 t<𝜌}1{ev0 t<𝜓}

1 − H̃i0,v0(𝛼0, 𝛽0; t)
1 − H̃i0,v0(𝛼0, 𝛽0;u)

+
t∑

t1=u+1 ∫
+∞

−∞ ∫
+∞

−∞
di1dv1

1{ei0 t1<𝜌}1{ev0 t1<𝜓}

1 − H̃i0,v0(𝛼0, 𝛽0;u)

⋅
𝜕2qJV (i0, v0, 𝛼0, 𝛽0; i1, v1, t1)

𝜕i1𝜕v1
⋅ R( 𝜌

ei0 t1
; 𝜓

ev0 t1 )
(◦((i, v, t)1

−m), 0; t − t1), (25)

where

𝛼0 =
m−1∑
r=0

t−r−1∑
a=t−r−1

f 𝜆(i−r−1,−a) + f 𝜆(i0, 0),

𝛽0 =
m−1∑
r=0

t−r−1∑
a=t−r−1

g𝛾 (v−r−1,−a) + g𝛾 (v0, 0). (26)
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For i0 < 0 replace ei0t1 with ei0 everywhere in formula (25).
For v0 < 0 replace ev0t1 with ev0 everywhere in formula (25).

Proof. See the Appendix. ▪

4 APPLICATION TO REAL HIGH FREQUENCY DATA

To verify the validity of the model described above, we applied it to the database introduced in Section 2. Following
References 39,53 we use, as definition of the function f 𝜆 in (1), an exponentially weighted moving average (EWMA) of
the squares of Jn which has the following expression:

f 𝜆(Jn−1−k,TJ
n, a) =

𝜆TJ
n−aJ2

n−1−k∑m+n−1
k=0

∑TJ
n−k−1

a=TJ
n−1−k

𝜆TJ
n−a + 1

=
𝜆TJ

n−aJ2
n−1−k∑TJ

n
a=TJ

−m
𝜆a

. (27)

A similar choice is done for the volume return process leading to the choice of

g𝛾 (Vn−1−k,TV
n , a) =

𝛾TV
n −aV 2

n−1−k∑m+n−1
k=0

∑TV
n−k−1

a=TV
n−1−k

𝛾TV
n −a + 1

=
𝛾TV

n −aV 2
n−1−k∑TV

n
a=TV

−m
𝛾a

. (28)

We remark that the choice for the functional form of f 𝜆 is not obtained through any optimization procedure. One can
probably find functional forms that perform better according to some performance measure. Our choice is motivated by
its simplicity and the fact that it gives very good results. Moreover, it is justified by the empirical evidence that price and
volumes returns dynamics do depend on volatility regime.

Next step in the application is finding the optimal parameters to be used in the model. We followed the same procedure
described in Reference 38 and summarized in the following subsection.

4.1 Parameters optimization

We describe here the whole procedure to set and optimize the parameters used in the univariate models.

1. The first step to set the WISMC model is, by using the descriptive statistics of the dataset, to fix a number of states s
and a value for the weight parameter 𝜆;

2. Build the trajectory (Jn,TJ
n) implied by the choice of s and 𝜆;

3. Estimate the weighted-indexed semi-Markov kernel qJ applying the empirical estimators to the trajectory obtained at
previous step;

4. Perform Monte Carlo simulation to build synthetic time series;
5. Estimate the autocorrelation function (ACF) for the synthetic time series Σ(𝜏; s, 𝜆). Note that this ACF depends on the

number of states s and on the value of the weight parameter 𝜆;
6. Compare the real ACF, Σ(𝜏), with the synthetic one, Σ(𝜏; s, 𝜆), by computing the mean absolute percentage error

(MAPE) between them. The MAPE depends on the number of states and on the value of the weight parameter, then
it is denoted by MAPE(s, 𝜆);

7. Change the number of states and the parameter 𝜆, restart from point 2 and repeat all points;

At the end of the whole process, choose the number of states s* and parameter 𝜆∗ that best represent the dataset by
minimizing the MAPE(s, 𝜆), that is

(s∗, 𝜆∗) = argmin
(s,𝜆)

{MAPE(s, 𝜆)}.

Notice that the algorithm can stop whenever the increase in the number of states does not decrease the MAPE more than
a given threshold 𝜖.

This procedure should be repeated for all stocks in the portfolio and also for the variable v(t). Once all the parameters
for the two univariate models are optimized use a copula to build the bivariate model.
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T A B L E 4 Parameters used in the application to
real data

r(t) v(t)

s 𝝀 MAPE(%) s 𝜸 MAPE(%)

TIT 5 0.97 7.7 5 0.97 10.2

ISP 5 0.98 4.6 5 0.98 6.1

TEN 5 0.97 6.2 7 0.97 9.2

F 5 0.97 3.7 9 0.97 5.5

T A B L E 5 Cross-correlation between price and volume returns for simulated data

𝝆(r(t), v(t)) p-value 𝝆(|r(t)|, v(t)) p-value 𝝆(r(t), |v(t))| p-value 𝝆(|r(t)|, |v(t))| p-value

TIT 0.0001 0 0.091 0 −0.0042 0.36 0.0039 0

ISP −0.00390 0 0.083 0 −0.0025 0.053 −0.0086 0

TEN −0.0046 0 0.081 0 0.0011 0.46 0.022 0

F −0.0075 0 0.12 0 −0.0029 0.025 −0.0092 0

4.2 Results

Here we show some results obtained and a comparison with real data. Using the optimization procedure described above
we found the optimal parameters which are summarized in Table 4 for the four stocks

The dependence between the two real processes v(t) and r(t) is kept in the model by using a copula function. We tested
different copulas like Gaussian, t-student, Gumbel and Clayton finding almost no differences in the results. This is mainly
due to the fact that 1-min price returns are almost discrete and varies in a small range, then, in this dataset there is no
tail effect. To keep the application as simple as possible we decided to use a Gaussian copula that has only one parameter.
We simulated, using the estimated kernels and a Gaussian copula, the joint process |r(t)| and v(t) and obtained r(t) by
using the relation described in assumption A5. The results are trajectories with the same time length of real data for both
variables v(t) and r(t).

In Table 5 we show the cross-correlation between the synthetic v(t) and r(t) and their absolute values, for all
combinations, as done in Table 2. The table shows that there is a good agreement with what was found for real data.

The model is also used to compare the fptd of the joint process (v(t), r(t)). From the synthetic variables (r(t) and v(t))
we build the variables price and volumes in the following way: at each discrete state of r(t) (v(t)) is associated a range
of variability of the continuous real r(t) (v(t)), inside this range a continuous value is chosen by extracting a random
number form a uniform distribution and then inverting the empirical distribution of real continuous price (volume)
return. Once r(t) (v(t)) are transformed back into continuous values, prices S(t) (volume V(t)) are obtained by S(t) =
S0 × e

∑k=t
k=1 r(k) (V(t) = V0 × e

∑k=t
k=1 v(k)). Synthetic prices and volumes are then used to build the distribution of time at which

there is the first cross of given thresholds.
To verify if the price fptd depends on volume values we estimated the fptd as a function of the value of initial condition

on the discretized volume returns. In this way, for each initial v(t) value, we obtain a different fptd. Moreover, we verified
if the proposed model also keeps this dependence structure. In Figure 3 we show the results and comparison with real
data (for two of the given stocks). We fixed a price increment threshold at 0.5% and we see that it takes 10–15 min to reach
this price change.

From the figure we can see that there is, indeed, a dependence on the initial conditions on volume. Furthermore, the
dependence lasts up to 15 min and after this time all distributions converge to similar values. The behaviour depends on
the different stocks but almost all of them show faster achievements of threshold when the initial volume return is in
the third state. Figure 3 also shows that, although with some differences, the model has the same behaviour of real data,
there is a dependence on the initial conditions of volume return and it is very similar to real data. Finally, in Figure 4 we
show the joint fptd that represent the first time that both S(t) and V(t) cross a given threshold. Again, the price increment
threshold is set at 0.5% while the volume increment threshold is 100. Overall we can say that the model is able to capture
all statistical features of real data keeping all the dependencies between price, volumes and waiting times. Furthermore,
we found very good agreement between real data and model also for the first passage time distribution.
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5 CONCLUSIONS

In this work we have advanced a new stochastic model, based on weighted-indexed semi-Markov chain, for modelling
price, volumes and waiting times in high frequency finance. After showing all the empirical evidences that support the
use of a multivariate model, we defined the probabilistic structure of the model and give a detailed mathematical imple-
mentation. Furthermore, mathematical expressions for covariances and first passage time distributions are given. In the
last part we show, by using Monte Carlo simulations, that the model has the same statistical features of real data. In fact,
the model is able to reproduce the autocorrelation functions, the dependence between price and volume and the first
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passage time distributions. The parameter optimization is based on a performance measure that relies on mean square
error between autocorrelation function, further studies could be conducted to verify if there exist better measures.
Furthermore, the model could be used in portfolio optimization, development of risk measure and volatility forecasting.
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APPENDIX

A.1 Descriptive statistics
In Table A1 we summarize the descriptive statistics of price returns r(t), while in Table A2 we show the descriptive
statistics of volume returns v(t).

Stock Mean Median SD Skewness Kurtosis

TIT −2 * 10−6 0 4.7 * 10−4 0.18 * 10−2 2.5

ISP 2.5 * 10−6 0 5.4 * 10−4 −0.25 * 10−2 2.2

TEN −4.2 * 10−7 0 4.8 * 10−4 0.24 * 10−3 2.8

F 4.7 * 10−6 0 5.5 * 10−4 −0.88 * 10−2 2.3

T A B L E A1 Descriptive statistics of
the price returns r(t)

Stock Mean Median SD Skewness Kurtosis

TIT −2.9 * 10−2 −0.06 1.58 6.6 * 10−2 3.94

ISP −2.2 * 10−2 −0.05 1.53 9.2 * 10−2 3.96

TEN −2.9 * 10−2 −0.05 1.31 5.9 * 10−3 4.08

F −2.3 * 10−2 −0.06 1.51 8.7 * 10−2 3.88

T A B L E A2 Descriptive statistics of
volume returns v(t)
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A.2 Proofs

Proof of Lemma 1. Given (J,T)n+1
−m = (i, t)n+1

−m , we can compute the value of the index process at the (n+ 1)th transition
through formula (1) and assumption A1:

IJ
n+1(𝜆) =

m+n+1−1∑
r=0

Tn+1−r−1∑
a=Tn+1−1−r

f 𝜆(Jn+1−1−r,Tn+1 − a) + f 𝜆(Jn+1,Tn+1 − Tn+1)

=
m+n∑
r=0

t n+1−r−1∑
a=tn−r

f 𝜆(in−r, tn+1 − a) + f 𝜆(in+1, 0). (A1)

For simplicity of notation, denote by x this value, that is IJ
n+1(𝜆) = x. Thus,

P[Jn+2 ≤ j,Tn+2 − Tn+1 = t|(J,T)n+1
−m = (i, t)n+1

−m ] =
P[Jn+2 ≤ j,Tn+2 − Tn+1 = t|Jn+1 = in+1, IJ

n+1(𝜆) = x] = q(in+1, x; j, t). (A2)

Let us consider now the probability P[Jn+1 ≤ j,Tn+1 − Tn = t|(J,T)n
−m−1 = ◦((i, t)n+1

−m )] and apply the definition of the
shift operator to have:

◦((i, t)n+1
−m ) = (s, k)n

−m−1, (A3)

and in turn
P[Jn+1 ≤ j,Tn+1 − Tn = t|(J,T)n

−m−1 = ◦((i, t)n+1
−m )]

= P[Jn+1 ≤ j,Tn+1 − Tn = t|(J,T)n
−m−1 = (s, k)n

−m−1)]
= P[Jn+1 ≤ j,Tn+1 − Tn = t|Jn = sn, IJ

n(𝜆) = b], (A4)

where

b =
m+n∑
r=0

kn−r−1∑
a=kn−1−r

f 𝜆(sn−1−r, kn − a) + f 𝜆(sn, 0). (A5)

Since sn− 1− r = in− r and kn− 1− r = tn− r − tn+ 1 it follows that

b =
m+n∑
r=0

t n−r+1−tn+1−1∑
a=tn−r−tn+1

f 𝜆(in−r,−a) + f 𝜆(in+1, 0).

A change of variable y= a+ tn+ 1 gives

b =
m+n∑
r=0

t n−r+1−1∑
y=tn−r

f 𝜆(in−r, tn+1 − y) + f 𝜆(in+1, 0) = x.

Accordingly, we get

P[Jn+1 ≤ j,Tn+1 − Tn = t|(J,T)n
−m−1 = ◦((i, t)n+1

−m )]
= P[Jn+1 ≤ j,Tn+1 − Tn = t|Jn = in+1, IJ

n(𝜆) = x] = q(in+1, x; j, t),

which completes the proof. ▪

Proof of Theorem 1. The kernel of the triplet process has been represented in formula (9) as follows: qJV (JV
n,s; j, a, t) =

P[J̃n+1 ≤ j, Ṽ n+1 ≤ a|JVT
n,s ] ⋅ P[X̃n = t|JV

n,s], and from assumption A3 we get h̃i,v(x,w; t) = P[X̃n = t|JV
n,s].

Thus, it remains to evaluate the conditional probability of the joint distribution of log-return and log-volume. Let
consider the case when j≥ 0 and a≥ 0 and introduce the notation F|J|(j) and F|V |(a) to denote in a compact form the
marginal distributions of the copula.
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Let us consider the following representation:

P[J̃n+1 ≤ j, Ṽ n+1 ≤ a|JVT
n,s ] = P[|J̃n+1| ≤ j, |Ṽ n+1| ≤ a|JVT

n,s ]
+ P[|J̃n+1| > j, 𝜂J

n+1 = −1, |Ṽ n+1| ≤ a|JVT
n,s ]

+ P[|J̃n+1| > j, 𝜂J
n+1 = −1, |Ṽ n+1| > a, 𝜂V

n+1 = −1|JVT
n,s ]

+ P[|J̃n+1| ≤ j, |Ṽ n+1| > a, 𝜂V
n+1 = −1|JVT

n,s ]. (A6)

Let us proceed to the computation of each one of the four addenda in (A6). From assumption A4 we know that

P[|J̃n+1| ≤ j, |Ṽ n+1| ≤ a|JVT
n,s ] = (F|J|(j),F|V |(a)). (A7)

Next consider P[|J̃n+1| > j, 𝜂J
n+1 = −1, |Ṽ n+1| > a, 𝜂V

n+1 = −1|JVT
n,s ]. From assumption A5 this probability is equal to

P[𝜂J
n+1 = −1] ⋅ P[𝜂V

n+1 = −1] ⋅ P[|J̃n+1| > j, |Ṽ n+1| > a|JVT
n,s ]

= (1 − pJ)(1 − pV ){1 − P[|J̃n+1| ≤ j, |Ṽ n+1| ≤ a|JVT
n,s ]

− P[|J̃n+1| > j, |Ṽ n+1| ≤ a|JVT
n,s ] − P[|J̃n+1| ≤ j, |Ṽ n+1| > a|JVT

n,s ]}
= (1 − pJ)(1 − pV ){1 − (F|J|(j),F|V |(a)) − (P[|J̃n+1| ≤ j|JVT

n,s ]
− P[|J̃n+1| ≤ j, |Ṽ n+1| ≤ a|JVT

n,s ]) − (P[|Ṽ n+1| ≤ a|JVT
n,s ] − P[|J̃n+1| ≤ j, |Ṽ n+1| ≤ a|JVT

n,s ])}
= (1 − pJ)(1 − pV ){1 − (F|J|(j),F|V |(a)) − F|J|(j) + (F|J|(j),F|V |(a)) − F|V |(a) + (F|J|(j),F|V |(a))}
= (1 − pJ)(1 − pV )[1 − F|J|(j) − F|V |(j) + (F|J|(j),F|V |(a))]. (A8)

Then, proceed to compute P[|J̃n+1| > j, 𝜂J
n+1 = −1, |Ṽ n+1| ≤ a|JVT

n,s ]. Apply again assumptions A4 and A5 to get

P[𝜂J
n+1 = −1] ⋅ P[|J̃n+1| > j, |Ṽ n+1| ≤ a|JVT

n,s ]
= (1 − pJ)[P[|Ṽ n+1| ≤ a|JVT

n,s ] − P[|J̃n+1| ≤ j, |Ṽ n+1| ≤ a|JVT
n,s ]]

= (1 − pJ)[F|V |(a) − (F|J|(j),F|V |(a))]. (A9)

Analogous computations allow to get

P[|J̃n+1| ≤ j, 𝜂V
n+1 = −1, |Ṽ n+1| > a|JVT

n,s ] = (1 − pV )[F|J|(j) − (F|J|(j),F|V |(a))]. (A10)

A substitution of (A7), (A8), (A9) and (A10) into (A6) and some algebraic manipulations produces

P[J̃n+1 ≤ j, Ṽ n+1 ≤ a|JVT
n,s ] = 1 − pJpV ⋅ (1 − F|J|(j) − F|V |(a) + (F|J|(j),F|V |(a)))

− pV (1 − F|V |(a)) − pJ(1 − F|J|(j)). (A11)

A multiplication of (A11) by h̃i,v(x,w; t) concludes the proof for the case (i). The remaining cases (ii)–(iv) can be
accomplished by similar arguments. ▪

Proof of Theorem 2.

R(𝜌;𝜓)((i, v, t)0
−m,u; t) = P[Γ(𝜌;𝜓) > t|(J̃, Ṽ , T̃)0

−m = (i, v, t)0
−m, B̃(u) = u]

= P[Γ(𝜌;𝜓) > t, T̃1 > t|(J̃, Ṽ , T̃)0
−m = (i, v, t)0

−m, B̃(u) = u] (A12)

+ P[Γ(𝜌;𝜓) > t, T̃1 ≤ t|(J̃, Ṽ , T̃)0
−m = (i, v, t)0

−m, B̃(u) = u]. (A13)

By the definition of conditional probability (A12) can be written as

P[Γ(𝜌;𝜓) > t|T̃1 > t, (J̃, Ṽ , T̃)0
−m = (i, v, t)0

−m, B̃(u) = u] × P[T̃1 > t|(J̃, Ṽ , T̃)0
−m = (i, v, t)0

−m, B̃(u) = u]. (A14)
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Note that by definition X̃0 ∶= T̃1 − T̃0 but since T̃0 = t0 = 0, we can replace T̃1 with the corresponding sojourn time
X̃0. Also note that the event {B̃(u) = u} is equivalent to the event {T̃N(u) = 0, T̃N(u)+1 > u}. The latter equality between
events means that at least one between returns and volumes did last transition at time t0 = 0 and the other process made
its last transition at some time before. Let bJ and bV generically denote the times since last transition of the backward
recurrence time processes, that is

T̃0 − TJ
0 = bJ , T̃0 − TV

0 = bV .

Besides, note that the information set (J̃, Ṽ , T̃)0
−m = (i, v, t)0

−m generates a value of the index process of returns equal to

ĨV
0 =

m−1∑
r=0

t−r−1∑
a=t−r−1

f 𝜆J (i−r−1,−a) + f 𝜆J (i0, 0) =∶ 𝛼0, (A15)

and of the index process of volumes equal to

ĨV
0 =

m−1∑
r=0

t−r−1∑
a=t−r−1

g𝜆V (v−r−1,−a) + g𝜆V (v0, 0) =∶ 𝛽0. (A16)

Thus, in virtue of assumption A2, the probability (A14) becomes equal to

P[Γ(𝜌;𝜓) > t|X̃0 > t, J̃0 = i0, Ṽ 0 = v0, ĨJ
0 = 𝛼0, ĨV

0 = 𝛽0, T̃1 > u, T̃0 − TJ
0 = bJ , T̃0 − TV

0 = bV ]
× P[X̃0 > t|(J̃, Ṽ , T̃)0

−m = (i, v, t)0
−m, B̃(u) = u]. (A17)

Nevertheless, according to assumption A3, we have

P[X̃0 > t|(J̃, Ṽ , T̃)0
−m = (i, v, t)0

−m, B̃(u) = u]
= P[X̃0 > t|X̃0 > u, J̃0 = i0, Ṽ 0 = v0, ĨJ

0 = 𝛼0, ĨV
0 = 𝛽0]

=
P[X̃0 > t|J̃0 = i0, Ṽ 0 = v0, ĨJ

0 = 𝛼0, ĨV
0 = 𝛽0]

P[X̃0 > u|J̃0 = i0, Ṽ 0 = v0, ĨJ
0 = 𝛼0, ĨV

0 = 𝛽0]
=

1 − H̃i0,v0(𝛼0, 𝛽0; t)
1 − H̃i0,v0(𝛼0, 𝛽0;u)

. (A18)

By the definition of joint first passage time we have that

P[Γ(𝜌;𝜓) > t|X̃0 > t, J̃0 = i0, Ṽ 0 = v0, ĨJ
0 = 𝛼0, ĨV

0 = 𝛽0, T̃1 > u, T̃0 − TJ
0 = bJ , T̃0 − TV

0 = bV ]

= P[min{𝜏 ≥ 0 ∶ {M̃J
0(𝜏) ≥ 𝜌} ∪ {M̃V

0 (𝜏) ≥ 𝜓}}|JV
0,0, T̃1 > u], (A19)

where

JV
0,0 = {J̃0 = i0, Ṽ 0 = v0, ĨJ

0 = 𝛼0, ĨV
0 = 𝛽0, T̃0 = 0, T̃0 − TJ

0 = bJ , T̃0 − TV
0 = bV}.

It is clear that since i0 ≥ 0, v0 ≥ 0 and T̃1 > t, the processes M̃J
0(𝜏) and M̃V

0 (𝜏) are both increasing with respect to the
variable 𝜏. Accordingly,

max
𝜏∈{0,1,… ,t}

{M̃J
0(𝜏)} = M̃J

0(t) = e
∑t−1

r=0 Z̃J (r) = ei0t,

and analogously max𝜏∈{0,1,… ,t}{M̃V
0 (𝜏)} = ev0t. Thus, formula (A19) becomes

P[ei0t < 𝜌, ev0t < 𝜓|JV
0,0, T̃1 > u] = 1{ei0 t<𝜌}1{ev0 t<𝜓}. (A20)

A substitution of (A20) and (A18) in (A17) gives:

P[Γ(𝜌;𝜓) > t|(J̃, Ṽ , T̃)0
−m = (i, v, t)0

−m, B̃(u) = u] = 1{ei0 t<𝜌}1{ev0 t<𝜓}
1 − H̃i0,v0(𝛼0, 𝛽0; t)
1 − H̃i0,v0(𝛼0, 𝛽0;u)

. (A21)
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It remains to compute probability (A13). The law of total probability and the definition of conditional probability give
the following chain of equality:

P[Γ(𝜌;𝜓) > t, T̃1 ≤ t|(J̃, Ṽ , T̃)0
−m = (i, v, t)0

−m, B̃(u) = u] =
t∑

t1=1 ∫
+∞

−∞ ∫
+∞

−∞
P[Γ(𝜌;𝜓) > t,

T̃1 = t1, J̃1 ∈ (i1, i1 + di1), Ṽ 1 ∈ (v1, v1 + dv1)|(J̃, Ṽ , T̃)0
−m = (i, v, t)0

−m, B̃(u) = u]

=
t∑

t1=1 ∫
+∞

−∞ ∫
+∞

−∞
P[Γ(𝜌;𝜓) > t|T̃1 = t1, J̃1 = i1, Ṽ 1 = v1, (J̃, Ṽ , T̃)0

−m = (i, v, t)0
−m, B̃(u) = u]

× P[T̃1 = t1, J̃1 ∈ (i1, i1 + di1), Ṽ 1 ∈ (v1, v1 + dv1)|(J̃, Ṽ , T̃)0
−m = (i, v, t)0

−m, B̃(u) = u].

Let start to compute the following probability:

P[T̃1 = t1, J̃1 ∈ (i1, i1 + di1), Ṽ 1 ∈ (v1, v1 + dv1)|(J̃, Ṽ , T̃)0
−m = (i, v, t)0

−m, B̃(u) = u]
= P[T̃1 = t1, J̃1 ∈ (i1, i1 + di1), Ṽ 1 ∈ (v1, v1 + dv1)|JV

0,0, T̃1 > u]

=
P[u < T̃1 = t1, J̃1 ∈ (i1, i1 + di1), Ṽ 1 ∈ (v1, v1 + dv1)|JV

0,0]

P[T̃1 > u|JV
0,0]

=
1{t1>u}

𝜕2qJV (i0,v0,𝛼0,𝛽0;i1,v1,t1)
𝜕i1𝜕v1

di1dv1

1 − H̃i0,v0(𝛼0, 𝛽0;u)
. (A22)

It remains to compute

P[Γ(𝜌;𝜓) > t|T̃1 = t1, J̃1 = i1, Ṽ 1 = v1, (J̃, Ṽ , T̃)0
−m = (i, v, t)0

−m, B̃(u) = u]

= P[ max
s∈{0,1,… ,t}

{M̃J
0(s)} < 𝜌, max

s∈{0,1,… ,t}
{M̃V

0 (s)} < 𝜓|(J̃, Ṽ , T̃)1
−m = (i, v, t)1

−m, B̃(u) = u]. (A23)

Now observe that since T̃1 = t1 we have that

max
s∈{0,1,… ,t}

{M̃J
0(s)} = max{ max

s∈{0,1,… ,t1}
{M̃J

0(s)}, max
s∈{1,… ,t−t1}

{M̃J
0(t1 + s)}},

and due to the fact that i0 ≥ 0 it results that maxs∈{0,1,… ,t1}{M̃J
0(s)} = M̃J

0(t1) = et1i0 . Accordingly we can deduce that

max
s∈{0,1,… ,t}

{M̃J
0(s)} = max{et1i0 , max

s∈{1,… ,t−t1}
{et1i0 e

∑s−1
r=0 Z̃J (t1+r)}}.

Similarly we have

max
s∈{0,1,… ,t}

{M̃V
0 (s)} = max{et1v0 , max

s∈{1,… ,t−t1}
{et1v0 e

∑s−1
r=0 Z̃V (t1+r)}}.

Thus by substitution, the probability (A23) becomes

= P[max{et1i0 , max
s∈{1,… ,t−t1}

{et1i0 e
∑s−1

r=0 Z̃J (t1+r)}} < 𝜌,

× max{et1v0 , max
s∈{1,… ,t−t1}

{et1v0 e
∑s−1

r=0 Z̃V (t1+r)}} < 𝜓|(J̃, Ṽ , T̃)1
−m = (i, v, t)1

−m, B̃(u) = u].

= 1{et1 i0<𝜌}1{et1v0<𝜓}

⋅ P[ max
s∈{1,… ,t−t1}

{et1i0 e
∑s−1

r=0 Z̃J (t1+r)} < 𝜌, max
s∈{1,… ,t−t1}

{et1v0 e
∑s−1

r=0 Z̃V (t1+r)} < 𝜓

× |(J̃, Ṽ , T̃)1
−m = (i, v, t)1

−m, B̃(u) = u].
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= 1{et1 i0<𝜌}1{et1v0<𝜓} ⋅ P[ max
s∈{1,… ,t−t1}

{e
∑s−1

r=0 Z̃J (t1+r)} < 𝜌

et1i0
,

× max
s∈{1,… ,t−t1}

{e
∑s−1

r=0 Z̃V (t1+r)} < 𝜓

et1v0
|(J̃, Ṽ , T̃)1

−m = (i, v, t)1
−m, B̃(u) = u].

= 1{et1 i0<𝜌}1{et1v0<𝜓} ⋅ P[Γ( 𝜌

et1 i0
; 𝜓

et1v0 ) > t − t1|(J̃, Ṽ , T̃)1
−m = (i, v, t)1

−m, B̃(u) = u].

The latter probability, making use of Definition 4 can be expressed as

1{et1 i0<𝜌}1{et1v0<𝜓} ⋅ P[Γ( 𝜌

et1 i0
; 𝜓

et1v0 ) > t − t1|(J̃, Ṽ , T̃)0
−m−1 = ◦(i, v, t)1

−m, B̃(u) = u]

= 1{et1 i0<𝜌}1{et1v0<𝜓} ⋅ R( 𝜌

ei0 t1
; 𝜓

ev0 t1 )
(◦((i, v, t)1

−m), 0; t − t1). (A24)

A substitution of (A24) into (A23) and then of the obtained quantity in (A13) together with (A22) concludes the
proof. ▪


