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In this study, the neuromuscular control modeling of the perturbed human upright stance is
assessed through piecewise affine autoregressive with exogenous input (PWARX) models.
Ten healthy subjects underwent an experimental protocol where visual deprivation and
cognitive load are applied to evaluate whether PWARX can be used for modeling the role of
the central nervous system (CNS) in balance maintenance in different conditions. Balance
maintenance is modeled as a single-link inverted pendulum; and kinematic, dynamic, and
electromyography (EMG) data are used to fit the PWARX models of the CNS activity.
Models are trained on 70% and tested on the 30% of unseen data belonging to the
remaining dataset. The models are able to capture which factors the CNS is subjected to,
showing a fitting accuracy higher than 90% for each experimental condition. The models
present a switch between two different control dynamics, coherent with the physiological
response to a sudden balance perturbation and mirrored by the data-driven lag selection
for data time series. The outcomes of this study indicate that hybrid postural control
policies, yet investigated for unperturbed stance, could be an appropriate motor control
paradigm when balance maintenance undergoes external disruption.
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neuromuscular control, cognitive load

1 INTRODUCTION

Although upright posture maintenance could seem a straightforward task, its study can reveal
complex control mechanisms aimed at preventing falls (Horak and Nashner, 1986; Suzuki et al.,
2012). Posture has been studied using different experimental protocols and different data sources
that can be grouped in two main areas: unperturbed and perturbed posture (Horak and Nashner,
1986; Peterka, 2002; Visser et al., 2008). The former task refers to the quiet upright stance in which
the only external force considered is the gravitational one (Peterka, 2000, 2002; Morasso et al.,
2019), while different internal factors that can potentially promote instability may arise,
i.e., postural noise or change in the visual field (Conforto et al., 2001; Berencsi et al., 2005).
Due to the convenience in many aspects of its study, including simple and well-assessed measuring
protocols, unperturbed posture has played a key role in developing neuromuscular models of the
central nervous system (CNS). However, different applications can also be found in the clinical
scenario to study pathologies potentially affecting the CNS (Corradini et al., 1997; Fioretti et al.,
2010).
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Conversely, perturbed posture refers to those tasks in which
not only gravitational pull acts on the body, but other additive
external disturbances, i.e., support base movements, external
forces, and vibrations, are employed in perturbing the upright
stance (Horak and Nashner, 1986; Patel et al., 2009; Engelhart
et al., 2014). Such disturbances necessarily challenge the CNS,
which responds with motor commands to counteract those
potentially dangerous sources of instability (Horak and
Nashner, 1986). Among all of the possible types of
perturbation, support base movement has constituted one of
the most employed due to its capability in reproducing
everyday life experiences (Horak and Nashner, 1986; Nanhoe-
Mahabier et al., 2012; Mengarelli, 2017). Additive factors were in
general introduced to get closer to a real scenario; namely,
subjects are asked to close their eyes (visual deprivation) or
perform mental counting (cognitive load) while they undergo
the experiment (Albertsen et al., 2017). The responses that the
CNS actuates have been assessed through different signals such as
the center of pressure (CoP), sway angles, and surface
electromyography (sEMG). Moreover, as described in Jacobs
and Horak (2007), evidences confirm that evoked postural
responses to external perturbations may involve also higher
control centers, e.g., cortical involvement.

As suggested by many works (Peterka, 2002, 2000; Suzuki
et al., 2012; Nomura et al., 2013; Morasso et al., 2019; Zhang et al.,
2014, 2016), a modeling perspective that accounts for
biomechanical quantities (sway angles, CoP, and joint torques)
can be considered a fundamental core in postural analysis, for
explaining possible CNS control mechanisms. In this context,
system identification provided a valuable way to model the CNS
activity as effectively proven when the ARMAX was employed to
analyze the postural control rearrangement in patients affected by
multiple sclerosis and hemiparesis (Corradini et al., 1997). The
aforementioned study considered an unperturbed posture
protocol, while other identification procedures were studied
for perturbed posture protocols (Engelhart et al., 2014; Ersal
et al., 2014). In order to perform closed-loop identification of the
CNS controller, in Engelhart et al. (2014), an experimental device
was presented and used for neuromuscular control identification
purposes, highlighting the importance of challenging balance
maintenance with external forces. A relation between torques
(controller output) and sway angles was estimated following de
Vlugt et al. (2003), which essentially made use of the partial
coherence to estimate the neuromuscular frequency response
function (FRF).

The experimental protocol and the device employed in
Engelhart et al. (2014) have been specifically designed and
realized to provide a stance perturbation by applying an
impulsive external force to the upper and lower limbs, in
order to obtain a disturbance time series minimally correlated
to joint torques, which represent the output of the balance
regulatory activity. This got closer the hypothesis behind the
identification procedures to the properties of the measured data.
However, in the clinical scenario, support base movement still
represents the most common choice for investigating upright
stance maintenance after external perturbations (Dimitrova et al.,
2004; Nardone et al., 2007; Visser et al., 2008), but from a

modeling point of view, surface translations present some
issues that need to be highlighted. For instance, the
acceleration of the platform induces an inertial disturbance at
the center of mass (COM) that cannot be independent with
respect to the control torques. In addition, linear approximations,
commonly employed in the modeling of the neural controller,
may not hold anymore, eventually revealing a nonlinear behavior
of the upright balance process (Tigrini et al., 2019).

A possible way to deal with such nonlinearity is the use of
discontinuous control models. As highlighted byMorasso and co-
workers (Morasso et al., 2019), much evidences suggest a
discontinuous or hybrid nature of the postural feedback
control, and this aspect was treated starting from a modeling
perspective in a few fundamental works that dealt with the quiet
stance (Asai et al., 2009; Suzuki et al., 2012). At the same time,
literature manifested an increasing interest in hybrid system
identification, and different methodologies have been developed
(Lauer and Bloch, 2019). Therefore, investigating whether a
hybrid control policy can be recognized as a plausible
physiological control mechanism, also when the upright
stance is tampered with external disruptions, may be a
valuable choice in order to deepen the understanding of the
CNS motor regulatory mechanisms. However, the idea of
modeling neural controllers with hybrid properties has not
yet been applied to analyze human balance maintenance in a
perturbed scenario.

Hybrid systems are dynamical systems arising from the
interaction between continuous and discrete dynamics and can
be used to model physical phenomena characterized by a
discontinuous behavior (Paoletti et al., 2007). Piecewise affine
(PWA) models represent hybrid systems obtained by the
partition of the state-input domain into non-overlapping
polyhedral regions and then considering affine subsystems for
each region. Such kinds of models were suitable for deriving
hybrid models from the data and also for nonlinear system
identification (Paoletti et al., 2007). In this work, the role
played by the neuromuscular controller has been identified,
through the use of piecewise affine autoregressive (AR) with
exogenous input (PWARX) models (Nakada et al., 2005; Paoletti
et al., 2007), where multiple sources of information can
contribute to the model building. More in detail, the upright
stance has been modeled as a single inverted pendulum (SIP)
(Morasso et al., 2019), and the control torque, obtained using
kinematic and dynamic data, has been modeled through the use
of the sway angle and sEMG data as exogenous inputs. Data
acquired from ten subjects who underwent sudden perturbations
of balance, involving also visual deprivation and cognitive load,
have been employed; and PWARX model identification was able
to capture the different strategies adopted by the CNS in
managing the information to generate regulatory commands
(Albertsen et al., 2017).

The paper is organized in the following way: in Section 2, the
details about the experimental data acquisition, the
biomechanical modeling of the upright stance, and the system
identification procedure are provided. The results are reported in
Section 3 and discussed in Section 4, while final remarks in
Section 5 end the paper.
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2 METHODS

2.1 Experimental Protocol
Ten healthy subjects were recruited for this study. None of them
was affected by neurological or musculoskeletal disorders that
may affect their abilities in balance maintenance. Subjects were
informed regarding each phase of the experimental protocol, and
they gave written informed consent prior to the beginning of the
test. The study was undertaken in compliance with the ethical
principles of the Declaration of Helsinki and was approved by the
local ethics committee.

Each participant was instrumented with 26 reflective markers
placed on anatomical landmarks following Leardini et al. (2007).
Additional markers were placed on the platform corners, in order
to track translational movements. All the experiments were
acquired through a six-camera optical motion analysis system
(BTS Elite, Milan, Italy).

A Kistler force platform was used to collect dynamic data,
namely, the CoP and ground reaction forces. Further, muscle
activity was collected through sEMG. The signals were recorded
bilaterally from the tibialis anterior (TA) and the gastrocnemius
medialis (GA). All data were synchronously acquired, and
kinematics was acquired with a sampling frequency of 100 Hz,
while sEMG and force plate data were sampled at 1,000 Hz.

After being instrumented, participants stood on a servo-
controlled movable platform, waiting for the rise of the
external disturbance. Each perturbation consisted of a
backward horizontal displacement (5 cm) of the base of
support, with a time duration of 0.3 s. Each subject underwent
a two-stage experiment. In the first stage (training), the
participants performed ten trials with eyes open to avoid the
first trial effect and account for the habituation rate (Nanhoe-
Mahabier et al., 2012). Then, in the second stage, three further
trials were performed: the first one with eyes opened (EO), the
second one with eyes closed (EC), and the third with each subject
standing on the platform with eyes opened counting back from
100. The latter is referred to as dual task (DT) and was designed to
investigate how the postural control reflex may change in the
presence of a cognitive task. The time at which the platform
motion starts remained unknown for the subject in both stages of
the experiment. Each trial was accepted whether the subject
maintained both feet on the platform for the entire duration
of the record, without step responses. Otherwise, the trial was
discharged and repeated.

2.2 Biomechanical Model
Modeling perturbed posture with support base shift requires
some physical considerations, while in Engelhart et al. (2014),
the perturbing device can apply direct forces to the human
subject; in support base shift, this does not happen. The
support base acceleration induces an inertial force coupled
with the gravity pulling to the body. This ensemble of forces
generates disturbance torques at the lower limb joints, eventually
perturbing the human upright stance. It is possible to model the
physics mentioned above in the sagittal plane employing a multi-
link inverted pendulum on a moving platform (Tigrini et al.,
2019).

However, as highlighted in the previous section, the
magnitude of the disturbance employed and the subjects’
training phase permitted to assume that the balancing
response was mainly based on the ankle strategy (Horak and
Nashner, 1986), enforcing the validity of a single-link inverted
pendulum model for describing the biomechanics of the motor
task. Hence, in this study, a simple model, i.e., single-link inverted
pendulum standing on a support base (Figure 1), was used to
describe the mechanics of the upright stance, where the whole
body is considered as a unique rigid rod hinged at the level of the
ankle (Figure 1) and the feet are modeled with no inertia and
assumed to be fixed with the platform.

In order to describe the human stance mechanics, let us
assume the following three reference frames (RFs): Rg �
{O, x̂, ŷ} representing the global one; Rp � {O′, û, ŵ}
representing the platform RF whose origin coincides with the
ankle joint (O′); and Rb denotes the pendulum RF with the origin
inO′. The mechanical system has two degrees of freedom and can
be described by q(t) � [x(t) θ(t)], where x(t) represents the
backward displacement along the horizontal axis (Figure 1),
and θ(t) is the sway angle of the rod with respect to the
vertical axis ŵ. The mass m of the pendulum can be
considered to be concentrated in a single point. In order to
derive the equation of the system, conservation of the angular
momentum can be applied:

dL
dt

� ∑n
k�1

Mk/O (1)

where the term dL
dt is the rate of change of the angular momentum

of the mechanical system and ∑n
k�1Mk/O represents the sum of all

FIGURE 1 | Biomechanical model of the upright stance. The generalized
coordinates and the reference frames are also reported, together with the
external forces acting on the system and the internal control torque, modeled
as a lumped control action acting at the ankles.
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moments generated by external forces with respect to the origin
of Rg. In this case n � 2, since the moments acting on the system
are as follows:Mg caused by gravitational field acting on the COM
m and the global torque applied at the ankle, generated by the
ground reaction force R applied at the CoP (Figure 1). Then, it is
possible to obtain the equation of the SIP:

Ma t( ) � ml2€θ t( ) −mglsin θ t( )( ) + _d t( )mlsin θ t( )( ) _θ t( )
− €d t( )mlcos θ t( )( ) (2)

where the term Ma(t) indicates the total torque generated at the
ankle, which depends on the linear displacement d(t), angular
displacement θ(t), and their time derivatives. The angle θ(t) will
be treated as controlled variable and the linear acceleration €d(t)
as disturbance for the system. The element that depends on the
linear velocity _d(t) and angular velocity _θ(t) is a Coriolis term.

The experiment presented in this study consistently differs
from those posturography protocols with no movements of the
support platform (Corradini et al., 1997; Engelhart et al., 2014).
The termMa(t) contains two components, i.e., the neuromuscular
(internal) control torque and the disturbance torque. The latter
can be considered as the sum of the gravity pull and the inertial
term induced by the disturbance €d(t). Hence, to retrieve the
control torque at the ankle, the following decomposition has been
taken into account:

τd t( )� −mglsin θ t( )( )+ _d t( )mlsin θ t( )( ) _θ t( )−€d t( )mlcos θ t( )( )
τc t( ) � Ma t( ) − τd t( ){

(3)

where Ma(t) is the external ankle torque, obtained as the cross
product between position vector of the CoP(t) with respect to the
ankle joint and the ground reaction force R(t) (Figure 1). τd(t) is
the torque generated by the disturbances, while τc(t) is the
internal control torque modeled as the difference between the
measured Ma(t) and the disturbance torque τd(t), derived by
the model.

2.3 Data Cleaning
For each subject, data series of 1 s are considered, starting from
the beginning of the perturbation for the EO, EC, and DT
conditions. This was motivated by the aim of examining the
control dynamics taking place during the transient phase of the
response, avoiding the possible voluntary control effects arising
whether greater temporal epochs are taken into account. This
choice appears in line with other previous studies dealing with the
same topic (Diener et al., 1988; Visser et al., 2008; Allum et al.,
2011; Nanhoe-Mahabier et al., 2012). Kinematic data are filtered
with a second-order zero-phase low-pass Butterworth filter with a
10-Hz cutoff frequency. Kinetic data are low-pass filtered in the
same way, with a cutoff frequency of 15 Hz, and then detrended
and down-sampled at 100 Hz. By using inverse dynamics,
following the decomposition presented in Eq. 3, it is possible
to retrieve τc(t) as the difference between Ma(t) and the
disturbance torque τd(t), obtained by the model. A graphical
representation of the control torque τc(t) of a representative
subject, for the three considered conditions, is reported in
Figure 2.

Regarding the sEMG data, the GA and TA signals of the
dominant leg are taken into account and band-pass filtered
between 30 and 450 Hz. Then, the root mean square (RMS) is
computed and down-sampled at 100 Hz. At the end of the data
cleaning step, for each subject and for each condition, 4 time
series made by 100 samples were used to model the
neuromuscular control, namely, the control torque τc(t), the
sway angle θ(t), and the RMS of GA and TA.

2.4 Identification Procedure and Analysis
PWA models are a representation of hybrid systems, and
according to Paoletti et al. (2007), they can be obtained
through partitions of the regression space into a finite number
of non-overlapping convex polyhedral regions, where linear/
affine subsystems are identified. Therefore, such piecewise-
defined models are often used to approximate a single
nonlinear continuous behavior by a collection of linear or
affine sub-models, each of which is valid only in a particular
region. Let us consider a system in the input–output (I/O) form:

yk � f xk, ek( ) (4)

where yk ∈ Rp is the output vector, xk ∈ Rnd is the regression
vector, and ek ∈ Rp is the noise vector, which includes lagged
values of the input uk−i and the output yk−i. Following this
representation, for a hybrid system, the following holds:

yk � f σ k( ) xk, ek( ) (5)

where yk, xk, and ek are as in Eq. 4, and the discrete state σ(k) ∈ {1,
. . . , s} selects the active sub-model {f j}sj�1 at time k, where s is the
number of sub-models. The discrete state σ(k) depends on the
continuous regression vector xk, i.e., σ(k) � j if xk ∈ X j, where X j

are regions that form a partition of the whole regression space X .
Hybrid system identification, in the form given by Eq. 5, requires
a parameterization in order to identify an opportune I/O data
relation. Thus, Eq. 5 becomes

FIGURE 2 | Control torque τc(t) for a representative subject measured in
the three experimental conditions.
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yk � f σ k( ) xk θσ k( )[ ], eσ k( ), θσ k( )( ) (6)

which implies the determination of all the parameter vectors
{θj}sj�1 and the number of sub-models s. In addition, it is also
necessary to solve a classification problem: it is required to classify
which part of the data is described by a sub-model rather than
another one.

As reported in Nakada et al. (2005) and Lauer and Bloch
(2019), in PWA system identification, a typical
representation is the PWARX model. The general form of
PWARX is given by

yk �

θ⊤1
xk
1

[ ] + ek, if xk ∈ X 1

θ⊤2
xk
1

[ ] + ek, if xk ∈ X 2

..

.

θ⊤s
xk
1

[ ] + ek, if xk ∈ X s

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(7)

for (k � 1 . . . N), where yk ∈ Rp is the output vector and ek ∈ Rp

is the noise at time k. Furthermore, the regression vector xk ∈ Rnd

can be defined by

xk � y⊤k−1 . . . y⊤k−ny u⊤
k−1 . . . u⊤

k−nu[ ]⊤ (8)

where uk ∈ Rm is the input vector and nd � pny +mnu, with non-
negative integers ny and nu representing, respectively, the output
and input lag orders (Nakada et al., 2005). Let X ⊆ Rnd be
the regression space, and X i (i � 1, 2, . . . , s) represents a
convex polyhedral subset of X . Each polyedron X i is assumed
to satisfy X i � { xk ∈ X : Hi [xk 1]⊤ ≤ 0}, (i � 1, 2, . . . , s),
X i ≠ ∅ ∀i ∈ {1, 2, . . . , s},X i ∩ X j � ∅∀i, j ∈ {1, 2, . . . , s}, i ≠ j,
and ⋃s

i�1X i � X (Paoletti et al., 2007; Lauer and Bloch, 2019).
Each row of Hi defines a separating hyperplane between X j and
the other regions (Lauer and Bloch, 2019). Indeed, if the PWA
map is assumed to be continuous, the model parameters and the
partition of the domain are not independent. At the switching
surface between two modes, it must hold that (Lauer and Bloch,
2019)

θ⊤i xk 1[ ]⊤ � θ⊤j xk+1 1[ ]⊤, 1≤ j< i≤ s (9)

To be noted, assuming the presence of only two sub-dynamics
for the PWARX model, the state points xk belong either to X 1or
X 2 with just one separating hyperplane characterized by the
normal vector H1. Hence, in this case, when the condition
H1 [xk 1]⊤ ≤ 0 holds, the dynamics is driven by the first
subsystem. When the latter condition does not hold, switch to
the second subsystem occurs, and the system evolves accordingly.
In order to identify a PWARX model for the neuromuscular
control, the first step requires to define the dimension of the
regression space nd and the lag orders nu and ny for the input and
output data, respectively. It should be noted that while the output
is τc(t), the exogenous inputs that could be relevant to build the
model are the sway angle θ(t) and the muscle RMS data. This
great amount of exogenous information could lead to a non-
parsimonious model identification. Thus, as suggested in Han
et al. (2018), one can take advantage of the minimum redundancy
maximum relevance (mRMR) principle to select the exogenous
inputs, their lags, and the lags relative to the AR part of the model.
The mRMR selection algorithm was formulated by Ding and
Peng (2003) and further explained in Peng et al. (2005).

For each subject and trial, a large regression space is generated,
delaying the input and output time series by a lag limit value equal
to 20. Three large regression spaces, made by data relative to 7
subjects, are created for training, as follows: seven of ten
regression spaces are concatenated for trials, namely, EO, EC,
and DT, by preserving the lag coordinates. This corresponds to
training–testing dataset split of 70%–30%. Each training set is
shrunk with the mRMR algorithm to the five most relevant
components for predicting the torques τc at the current time.
Thus, by means of mRMR, the original large nd training dataset is
reduced to spaces with nd � 5, where the lag selection of the AR
and exogenous (X) components is driven directly by the data.

Each training dataset is partitioned through the spectral
clustering approach, and the optimal number of clusters is
evaluated through the silhouette method (Rousseeuw, 1987).

TABLE 1 | The five ARX components selected by the mRMR algorithm for the
three augmented regression spaces namely, EO, EC, and DT, in terms of time-
series lags chosen.

Condition AR X

τc θ GA TA

EO {1; 20} 12 20 17
EC {1; 20} 19 {17; 20}
DT {1; 4; 20} 18 19

Note. ARX, autoregressive with exogenous input; mRMR, minimum redundancy
maximum relevance.

FIGURE 3 | Silhouette spectral cluster evaluation for the three shrink
regression spaces in eyes opened (EO), eyes closed (EC), and dual task (DT)
conditions. Note that the optimal numbers of clusters is given in
correspondence to the maximum of the silhouette values.
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Spectral clustering is employed to overcome the limitation of a
parametric clustering approach, such as Gaussian mixture
models, where the data are assumed to be a mixture of
Gaussian distributions, by relying on a geometric approach
(Ng et al., 2002). After clustering, data are labeled and
employed to identify the polyhedral regions that partition
the regression space. In order to do this, a soft margin
support vector machine (SVM) is employed, as in Nakada
et al. (2005).

After hyperplane identification, it remains to identify the ARX
sub-models. Thus, possible data points lying on the hyperplanes
are discharged, and the closed-form least mean square estimation
based on the pseudo-inverse matrix is employed to recover the
parameters of each sub-model (Ljung, 1999; Nakada et al., 2005).
Normalized RMS error metric (NRMSE) is used to quantify the
fitting goodness of the three identified models. Such measure will
be referred to as fit percentage:

fit% � 100 1 − ‖ y − ŷ ‖
‖ y − μy ‖⎛⎝ ⎞⎠ (10)

where y is the data output, ŷ is the output produced by the model,
and μy indicates the mean value of y. In order to test the reliability
of the identification procedure in terms of robustness against
overfitting, the above steps, maintaining the same identified lags,
are applied using two additional dataset partitioning,
i.e., 60%–40% and 50%–50%.

3 RESULTS

In EC and DT conditions, the mRMR algorithm does not present
the RMS of TA in the first five most relevant components
(Table 1). To be noted, in the DT condition, mRMR selected
three time lags of the control torque in the first five most
significant components, thus suggesting a more AR scheme
rather than those employed in the other two cases
(i.e., characterized by two AR lags; Table 1).

In all experimental conditions, the silhouette criterion
suggested an optimal number of clusters equal to 2 (Figure 3).
This is required to identify, in each condition, two ARX
components and one boundary hyperplane dividing the two
clusters. The three identified models are reported in Table 2.

The identified models present adequate fitting properties in
the training step, as highlighted by the value of the fit percentages
for the three dataset partitioning (Table 3). However, it should be
noted that subject 9 belonging to the testing data presented a
moderate fit percentage value (about 70%) regarding the EC
condition. All the other testing data guaranteed high NRMSE
(Table 3).

4 DISCUSSION

The findings of this study confirm that movement analysis
techniques and dynamic posturography can be used to infer

TABLE 2 | Regression vector (xk), estimated boundary hyperplane (Ĥ12), and sub-models coefficients (θ̂1 and θ̂2) for the identified models in the three conditions, i.e., EO,
EC, and DT.

EO EC DT

xk Ĥ12 θ̂1 θ̂2 xk Ĥ12 θ̂1 θ̂2 xk Ĥ12 θ̂1 θ̂2
τck−1 0.918 0.889 0.943 τck−1 3.470 0.912 0.929 τck−1 −2.250 1.275 1.196
τck−20 −4.574 0.010 -0.079 τck−20 −2.691 0.005 −0.105 τck−20 4.274 0.001 0.006
TAk−17 0.859 0.004 0.004 GAk−17 0.681 0.006 0.021 GAk−19 −0.805 −0.003 −0.001
GAk−20 2.078 0.003 −0.017 GAk−20 1.506 0.008 0.017 θk−18 1.755 −0.022 −0.002
θk−12 −2.472 0.005 −0.059 θk−19 −3.460 0.008 0.029 τck−4 −0.960 −0.316 −0.238

1.235 0.043 0.085 −0.340 0.030 0.082 −0.003 0.028 0.021

TABLE 3 | NMRSE fitting percentages obtained by the models identified for each experimental condition.

Condition S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Training data Testing data

EO 97.1 95.9 96.2 94.3 93.6 90.8 91.2 91.2 87.5 91.6
EC 95.8 94.8 93.9 95.9 95.5 89.5 93.1 93.1 67.9 92.0
DT 97.9 97.9 96.3 97.2 97.5 97.5 98.1 98.1 95.7 97.4

Training data Testing data

EO 97.7 95.5 95.8 95.1 93.3 91.5 90.0 90.0 87.7 90.0
EC 96.0 94.5 93.3 96.4 96.0 89.9 92.1 92.1 69.4 91.7
DT 97.9 97.8 96.2 97.3 97.5 97.5 97.7 97.7 97.0 97.3

Training data Testing data

EO 97.1 96.3 97.2 95.4 94.4 87.9 91.2 91.1 85.4 92.3
EC 95.7 95.1 94.5 95.9 96.7 87.3 93.0 92.9 72.4 91.9
DT 97.5 97.7 96.3 97.5 97.6 96.6 97.7 97.7 97.1 97.3

Note. The results are relative to three training–testing data split (70%–30%, 60%–40%, and 50–50%). S1, . . ., S10 indicate subjects.
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how the CNS handles sensory information and cognitive load
while the subject undergoes sudden postural perturbations.
Despite the control action being a postural reflex and should
be attributed to lower control structures, part of the response may
be attributed to higher-level CNS control structures (Horak and
Nashner, 1986; Jacobs and Horak, 2007). This aspect is suggested
by the criterion used to select the information and the time lags of
the input–output data used to identify the models for the three
different experimental conditions. Results indicate that the
information content, useful to predict the control torque,
markedly changed for the three tasks (Table 1). Indeed, all the
exogenous information in the EO condition can be used to obtain

good fits in both the training and testing phases (Table 3).
Moreover, the lag orders of the exogenous signals, i.e., θ, GA,
and TA, are always greater or equal to 12. This means that the
delays used to obtain a parsimonious model of the physiological

FIGURE 4 | Root mean square (RMS) value of the myoelectric activity for
the tibialis anterior (red line) and gastrocnemius (blue line) recorded during the
EO trial, from a representative subject.

FIGURE 5 | Root mean square (RMS) value of the myoelectric activity for
the tibialis anterior (red line) and gastrocnemius (blue line) recorded during the
EC trial, from a representative subject.

FIGURE 6 | Error signal autocorrelation for a representative subject. The
error signal was obtained as the difference between the output generated by
the model and the measured torque.

FIGURE 7 | Switching signal of a representative subject in DT condition.
Dynamic index i corresponded to the ith autoregressive with exogenous input
(ARX) dynamic fitted with the ith data cluster, for i � 1,2. The signal shows one
switch, and in this case, the second dynamic occurred at 230 ms.
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control torque are of the order of 120–200 ms, comparable with
physiological values reported for upright stance models (Peterka,
2002; Bottaro et al., 2005). It should also be noted that both
muscles are relevant in the EO condition, while for EC and DT,
the TA time-laggedmuscle activity was not ranked within the first
5 regressors considered for the identification procedure. More
precisely, in the EC and DT conditions, two GA time lags were
identified to be meaningful in modeling the control action
(Table 1), while TA did not appear, eventually supporting that
sensory deprivation or cognitive loads can steer the CNS to
actuate different control schemes.

Due to the nature of the experiment, the gastrocnemius is
expected to play a key role, since the support base moved
backward with respect to the visual field. Hence, GA needs to
activate in order to prevent the subject from falling forward
(Horak et al., 1989). This is supported by considering that the GA
information is taken into account in all three models (see Section
3). However, its role seems to be further enhanced in EC
condition: the selection of two time lags for the GA
component and the exclusion of TA in EC rather than EO
might indicate that the CNS employed the visual sensory
information to regulate more efficiently the redundancy of the
control structure (Mengarelli et al., 2019). This explanation is
consistent with Albertsen et al. (2017), where it is highlighted that
postural adjustment in EC might be promoted by joint stiffening
or increment of postural proprioceptive or vestibular reflex
responses, while in the presence of vision, the CNS could
afford low degrees of muscle stiffness, which might no longer
be possible in visual deprivation (Albertsen et al., 2017). To be
noted, the lack of TA in the identified models in EC and DT
conditions does not mean that the role of tibialis is negligible for
balance recovery in the EC condition since a modulation of the
response involving both the ankle muscles is well-acknowledged
(Perucca et al., 2014). Indeed, both muscles are involved in the
balance maintenance process in both conditions (Figures 4, 5).
However, the predominant role of the GA with respect to TA in
EC condition seems to be supported by considering the
myoelectric activity of both muscles within the time epoch
considered in this study, where the ratio between GA and TA
area under the curve (Campbell et al., 2009) resulted in 2.48 ±
0.43 (EO) and 5.02 ± 0.55 (EC), averaged over all the participants.

Albeit EO and EC conditions promoted models that differed
mainly in managing exogenous information, they presented a
similar ARX structure, i.e., with the same number of AR
components (see Section 3). This cannot be stated for the DT
model (Table 1), for which an increase in AR order is captured if
compared with the other two experimental conditions. Such
structural change could be partially explained by the
involvement of higher CNS control centers in a cognitive task,
leading to a more reflex-based control. Indeed, the additional AR
term presented a lag order of 4, (40 ms), which indicates a sudden
disturbance compensation. From a physiological point of view, this
could be explained by greater involvement of the proprioceptive
information to produce a postural adjustment (low-level scheme),
thus suggesting a control policy mainly driven by the peripheral
information. This is not completely surprising since it has been
reported that introducing torque-related information for balance

regulation could be a reasonable physiological regulatory strategy
(Peterka, 2009, 2018).

Another aspect that should be underlined is the number of
sub-dynamics that silhouettes identified (Figure 3). The number
of clusters remained equal to two for all the three different
experimental trials and the lagged signals, suggesting an akin
control response between the considered perturbed conditions.
Although a clear interpretation of the subdivision of the five-
dimensional data in two clusters is not straightforward, due to the
black-box nature of the identification procedure, the models
guaranteed satisfactory autocorrelation of the error signals
(Figure 6) and fitting percentage in both training and testing
(Table 3). This supports the generalization properties of the
identification procedure, also by considering that no detriment
is observed by progressively increasing the amount of testing data
(up to 50%) at the expense of lower data available for training
(Table 3). Note that in the present study, with time lag equal to 20
and given four regressors, i.e., sway angle, torque, andmyoelectric
activity of two shank muscles (tibialis and gastrocnemius), the
total number of possible regressors was equal to 80. Therefore, we
choose nd � 5 as a fixed value for two reasons: first, it guaranteed a
robust fitting of the testing data even when the size of the training
set was reduced, thus avoiding overfitting issues (Table 3). On the
other hand, nd � 5 allowed to obtain better interpretable models
with respect to system identification approaches, e.g., neural
networks or deep learning, for which the goodness of fitting is
favored with respect to the model interpretability (Ljung et al.,
2020).

Moreover, by the analysis of the switching signals between the
two sub-dynamics, obtained considering the training data, it can
be observed that the models present one switch (Figure 7), which
occurs at 210, 260, and 230 ms for OA, OC, and DT, respectively
(median values among all the subjects). The aforementioned
values are always lower than about 300 ms, which is
approximatively the time when the platform ended to move.
Thus, the identified neuromuscular control models work with a
certain control policy in the first part of the experiment, where the
inertial forces vary more due to the presence of the support base
acceleration (3) and switches to another policy when the inertia is
reduced (after 300 ms), eventually confirming that the data
partitions are consistent with the process dynamics. This
suggests that the models made by two ARX components
capture a significant amount of information, confirming the
line proposed in Corradini et al. (1997) regarding the
capability of black-box modeling to be sensitive to balancing
strategy changes. Hence, such identification procedures can be
employed concurrently with classical posturographic analyses to
investigate the neural policies adopted for maintaining an upright
stance challenged by external disturbances.

In the present study, both biomechanical models and
controllers are not linearly approximated, despite that in many
works related to the characterization of the postural control this
represents a common procedure (Peterka, 2000; Corradini et al.,
1997; Engelhart et al., 2014). However, as reported in Section 2,
this is mainly due to the nature of the experiment, since the
perturbation magnitude is higher than the physiological postural
noise (Conforto et al., 2001), thus making the linearization
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hypothesis an over-simplification of the problem. In passing, the
perturbation was appropriate to elicit a balance response relying
mainly on the ankle joint, since the magnitude of the disruption
was within the range reported by Diener et al. (1988), who
observed a counterbalancing response that relied almost
entirely on the variation of the ankle strategy amplitude alone.
Further confirmation is found in the ARX sub-model coefficients:
for a given predictor, a change of the magnitude of the sign or of
both is obtained (see Section 3), indicating that unimodal linear
controllers may be not adequate to fit postural data obtained
through support base movement perturbation. Nevertheless, a
piecewise approach seems to be adequate to successfully model
the process when the eventual aim is the analysis from a
physiological viewpoint. Indeed, despite other kinds of models,
such as nonlinear ARX (NARX) or PWNARX, could indeed be
applied, the potential benefits in terms of data fitting would be
obtained at the cost of poorer and more difficult interpretability of
the results, hindering their practical use in the clinical context.
Moreover, it is noteworthy that despite the single-link inverted
pendulum representing a simplified model of the human upright
stance, it appears suitable for modeling stance maintenance in
perturbed conditions. Indeed, many previous studies investigated
balance responses to external perturbations relying on single-link
inverted pendulum model, where the ankle joint is the only
actuated joint for counteracting the disruption (Van Der Kooij
and De Vlugt, 2007; Peterka, 2009; Davidson et al., 2010; Schut
et al., 2020). In addition, this kind of model for the human upright
stance constitutes the core of any balancing task, also in dynamical
conditions, where a multi-link structure is often reduced to the
CoP–COM relation (Chevallereau et al., 2008; Morasso, 2020).

It deserves to be pointed out that discontinuous systems
(Orlov, 2008) with multiple dynamics were employed to
model upright maintenance in perturbed (Tigrini et al., 2019)
and unperturbed conditions, with internal physiological noise
sources (Bottaro et al., 2005; Suzuki et al., 2012; Nomura et al.,
2013). The latter resulted in highly interpretable and constitute a
great advance toward the understanding of neuromuscular
control CNS actuates in posture maintenance. In the PWARX
identification context, the idea of multiple dynamics with possible
discontinuities is still preserved; thus, the high fits obtained in this
study seem to confirm the hypothesis that neuromuscular control
of the upright stance can be modeled as a multi-dynamic process
(Suzuki et al., 2012; Nomura et al., 2013). The use of PWARX in
modeling neuromuscular control merits further investigations,
and additional efforts will be devoted to the investigation of the
entire body chain, whose employment would provide valuable
additional insights regarding the dynamics of balance response to
a sudden external perturbation. These aspects should be taken
into account in future studies, since they require the use of

different system identification approaches, e.g., multi-input
multi-output, and the acquisition of kinematics and
myoelectric activity also from the upper segments of the
human body. Eventually, such kind of system identification
framework can be also applied in posturographic data analysis
and other motor tasks, e.g., gait, in relation to different
experimental conditions or populations, such as elderly and
pathological individuals. A further possible research line
encompasses the investigation of additive sub-dynamics,
possibly involving voluntary control efforts, which can
manifest themselves over longer temporal epochs.

5 CONCLUSION

In the present work, the PWARX framework was employed to
identify different models of neuromuscular control of upright
stance maintenance with respect to three different experimental
perturbations, commonly used in clinical and research scenarios.
The PWARX family and the identification procedure led to
parsimonious models that captured the differences present in
the three experimental settings, confirming that black-box
modeling can be used concurrently with dynamic
posturography analysis, supporting physicians in clinical
evaluations and interpretation.
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