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Abstract: In this paper, we computed general interval indicators of availability and reliability for
systems modelled by time non-homogeneous semi-Markov chains. First, we considered duration-
dependent extensions of the Interval Reliability and then, we determined an explicit formula for
the availability with a given window and containing a given point. To make the computation of
the window availability, an explicit formula was derived involving duration-dependent transition
probabilities and the interval reliability function. Both interval reliability and availability functions
were evaluated considering the local behavior of the system through the recurrence time processes.
The results are illustrated through a numerical example. They show that the considered indicators can
describe the duration effects and the age of the multi-state system and be useful in real-life problems.

Keywords: recurrence time processes; reliability; availability; non-homogeneous system

1. Introduction

Reliability measures of repairable systems have been extensively investigated. Specific
indicators are used according to the characteristics of the system that the user wishes to
understand and to the nature of the system. For example, it is common to come across
reliability, availability, and maintainability functions when dealing with general mechan-
ical systems (see, e.g., [1]) or to single-use reliability function for software performance
assessment (see, e.g., [2,3]). Frequently, the evolution of the system is conveniently de-
scribed by multi-state models where the state of the system evolves in time according to
a specified probabilistic structure (see, e.g., [4]). One of the most popular choices is for
Markov chain models in continuous or discrete-time cases (see, e.g., [5]). Markov models
rely on the Markovian property that informally states that the future state of a system is
independent of its past evolution given the state occupied at present. Unfortunately, this
property is rarely observed on real data in reliability studies as well as in different domains
of applications. For this reason, the proposal of more general frameworks is becoming,
even more, a rule rather than an exception. This is confirmed by the success achieved by
semi-Markov models in different scientific domains such as applied probability [6], finan-
cial credit ratings [7], population dynamics [8], asymptotic behavior of random systems [9]
risk assessment and evaluation [10], change of measures in credit risk [11] and pricing
problems [12].

Semi-Markov processes have been applied in reliability studies by several authors.
Studies based on discrete-time semi-Markov processes in homogeneous case (see e.g., [13])
and in the non-homogeneous case (see e.g., [14]) have demonstrated the ability of this
class of stochastic processes to describe and represent problems of reliability theory in a
more flexible and satisfactorily way as compared to Markovian models. Continuous-time
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models were considered in [15] as related to the dependability analysis of a semi-Markov
system, in [16] for numerical treatment of probabilistic functions in homogeneous case
and in [17] for non-homogeneous processes. Models with general state space related to
reliability measures were considered in [18] and existence and uniqueness of solutions
of Markov renewal equations were investigated in [19]. Recent developments concern
indexed semi-Markov models [20] and the development of reliability measures for those
systems showing the presence of an indexed mechanism [21].

In a semi-Markov processes, the transition probabilities and related indicators are
duration dependent, that is, the time the system is in a state influence its transition prob-
abilities, see e.g., [22,23]. This effect can be shown by computing transition probabilities
including the information contained in the recurrence time processes. Recurrence time
processes play an important role in describing the local behavior of a renewal process, see
e.g., [24]. They are also intimately related to semi-Markov processes which are a multi-
variate extension of renewal processes. For this reason, they have been investigated by
many authors both connected to the asymptotic behavior of the process ([25,26]) as well
as to the transient analysis, see e.g., [27]. The recurrence times are of a backward and
forward type. The former denotes the time since the last transition of a system or, in other
words, the time elapsed in the current state occupied by the system. The latter denotes
the time to the next transition. The reason for the existence of this duration dependence
resides in the fact that the conditional waiting time distribution functions in the states
of the system, i.e., the length of time in a state before making a transition, can be of any
type, furthermore, no memoryless distributions can be used. In this case, the time length
spent in the starting state (backward value) changes the transition probabilities as well as
the information concerning how long the process will stay in the current state (forward
value). The consideration of backward and forward processes at the initial and final times
permits us to have complete knowledge of the waiting times at the beginning and at the
end of the observation period of the model, this issue has been investigated in discrete
time [22], continuous time models [23] and related to the mono-unireducible topological
structure [28].

Recently, a stream of research has focused on general performance measures of a
system. The proposed measures generalize classical reliability indicators. These measures
are interval based in the sense that they refer to properties of the system not in relation to a
point in time but rather to an interval of time.

Confining our attention to semi-Markov systems, the first contributions dealing with
interval measures, in the specific with the interval reliability, are those by [29,30]. In those
papers, the author determines a system of integral equation the interval reliability function
should satisfy. The solution gives the probability of the system to be operational in a given
time interval originating at some time s and length x. This measure contains, as special
cases, the availability function and the reliability function and has also been evaluated
concerning discrete-time systems, see [31,32]. Similar ideas are at the origin of another
interval-based measure: the availability of a given window and containing a point. This
function is defined as the probability that a repairable system is operational throughout
an interval window of length s which contains a point in time x. This interval availability
function has been introduced by [33] for Markov repairable systems in continuous-time
and successively generalized by [34] for discrete-time semi-Markovian systems. The results
are achieved by determining specific relations concerning the Z-transform of working
period length, failure period length and whole period length. These Z-transforms are used
to get a representation of the corresponding Z-transforms of reliability and availability
measures and need the application of inverse Z-transforms to produce numerical results.

In the present paper, we considered several new aspects in the computation of interval-
based performability indices. First, we extended the framework from time-homogeneous
processes to a more general time non-homogeneous setting. In our case, the indicators
depend on the initial time when the evaluation is done. Accordingly, the age of the system
is fully taken into account. Second, we computed the indicators involving the recurrence
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time processes at the initial time. This extension allows us to consider the duration effect
properly. Third, we provided a new proof of the availability of a given window and
containing a point that does not make use of transform analysis. The proof is based
on the introduction of specific random times and on the exploration of the relationship
among duration dependent transition probability function, duration-dependent interval
reliability and availability of given window. The result is a new formula linking the
aforementioned indicators.

The next section contains a short description of discrete-time non-homogeneous semi-
Markov processes with recurrence time processes. The section after presents the main
results of the paper. First, the general framework of performability analysis through multi-
state systems is presented together with classical reliability indicators. Then, the Duration
Dependent Interval Reliability function is presented and explicit formulas are given for its
calculation in different cases. The section ends by considering the Duration Dependent
Availability of given window and containing a point and a new relation that can be used
for its computation. Section 4 presents an example of a repairable semi-Markov system for
which all of the considered performance measures are evaluated. In the last section, some
concluding remarks are made.

2. Non-Homogeneous Semi-Markov Models

In this section, discrete-time semi-Markov models are briefly described. Let (Ω,=, P)
be a probability space equipped with a filtration F = (=t, t ∈ N0 = {0} ∪N) satisfying the
usual conditions. On this probability space, we defined two random variables denoted by
Jn and Tn. The variable Jn, n ∈ N represents the state of the system at the n-th transition
and assumes values in a finite state space E = {1, 2, . . . , m}. The random variable Tn,
n ∈ N, with state space equal to N0, represents the time of the n-th transition. The
filtration F = (=t, t ∈ N0) coincides with the natural filtration generated by the joint
process (Jn, Tn)n∈N0

. The process (Jn, Tn) is supposed to be a non-homogeneous discrete-
time Markov Renewal Process. Accordingly, we assume that:

P[Jn+1= j, Tn+1 ≤ t|=n, Jn = i, Tn = s]

= P[Jn+1 = j, Tn+1 ≤ t| Jn = i, Tn = s] =: Qi,j(s, t).

The probabilities Q = [Qi,j(s, t)] define the so-called semi-Markov kernel. They can
be written as follows:

Qi,j(s, t) = P[Tn+1 ≤ t | Jn = i, Jn+1 = j, Tn = s]

·P[Jn+1 = j | Jn = i, Tn = s] =: Gi,j(s, t)·pi,j(s).

The main difference between a non-homogeneous Markov process and a
non-homogeneous semi-Markov process (NHSMP) resides in the family of probability
distributions Gi,j(s, ·) = P[Tn+1 ≤ · | Jn = i, Jn+1 = j, Tn = s]. Indeed, in a Markovian
framework, these functions have to be geometrically distributed, while, in the semi-Markov
case they can be of any type. The probabilities

{
pi,j(s)

}
i,j∈E , s ∈ N0, represent the tran-

sition probabilities of the non-homogeneous embedded Markov chains {Jn}n∈N0
. They

denote the probability to have next transition in state j given that the system entered state i
at current time s.

Now, let N(t) = max{n ∈ N|Tn ≤ t} be the number of transitions up to time t, then
the discrete-time non-homogeneous semi-Markov chain is defined according to:

Z(t) := JN(t), t ∈ N.

The process Z(t) indicates which state is being to be occupied by the embedded
Markov chain at the last transition.
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Transition probability functions are defined in the following way:

φi,j(s, t) =: P[ Z(t) = j |Z(s) = i, TN(s) = s],

Hence, they denote the probability of being in state j at time t given that the system
entered state i at time s. They are obtained by solving the following evolution equations,
see e.g., [21]:

φi,j(s, t) = δij(1− Hi(s, t)) + ∑
a∈E

t

∑
θ=s+1

qi,a(s, θ)·φa,j(θ, t), (1)

where δij =

{
1 if i = j
0 if i 6= j

is the Kronecker’s delta, Hi(s, t) = ∑
a∈E

Qi,a(s, t), and

qi,a(s, θ) :=

{
Qi,a(s, θ)−Qi,a(s, θ − 1) for θ > s,

0 for θ ≤ s.

The first part on the right-hand side (RHS) of Equation (1) expresses the probability
the system does not have any transition up to the time t conditional on the entrance in the
state i at the time s. The second term represents the probability that the system will enter
into state a at time θ, given that it entered the state i at time s and then, after the execution
of this transition, will follow one of the possible trajectories connecting state a at time θ, to
state j at t. This event is considered for all possible values of a ∈ E and θ ∈ {s + 1, . . . , t}.

Given the process (Jn, Tn)n∈N0
, it is possible to introduce two stochastic processes

of recurrence times: the backward process B(t) and the forward process F(t). They are
defined according to:

B(t) = t− TN(t), F(t) = TN(t)+1 − t. (2)

Following the general notation adopted in [22] we consider some transition probability
functions with recurrence time processes that will be needed to reach our scopes. First,
define by:

b, f φ i,j(l, s, u; t) := P[Z(t) = j |Z(s) = i, B(s) = s− l, F(s) = u− s]. (3)

We call Equation (3) the transition probability functions with initial backward and
forward. These probabilities can be obtained according to the following equation:

b, f φ i,j(l, s, u; t) = ∑
r∈E

qi,r(l, u)
∑k∈E qi,k(l, u)

·φr,j(u, t). (4)

Equation (4) reveals that the probability to be in state j at time t depends on the local
behavior of the process in the initial time s, i.e., on the state occupied at that time and
also on the time since last jump and on the time needed to have next transition. The
transition probabilities in (4) can be obtained once Equation (3) is solved. Particular cases
of Equation (4) are those where the recurrence time processes are considered separately.
Precisely, we can have transition probability with initial backward

bφ i,j(l, s; t) := P[ Z(t) = j |Z(s) = i, B(s) = s− l], (5)

which satisfy relation:

bφ i,j(l, s; t) = δij
(1− Hi(l, t))
(1− Hi(l, s))

+ ∑
a∈E

t

∑
θ=s+1

qi,a(l, θ)

(1− Hi(l, s))
·bφa,j(0, θ; t), (6)
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with bφa,j(0, θ; t) = φa,j(θ; t), and transition probability with initial forward:

f φ i,j(s, u; t) := P[Z(t) = j | Z(s) = i, B(s) = 0, F(s) = u− s], (7)

which satisfy formula:

f φ i,j(s, u; t) = ∑
r∈E

qi,r(s, u)
∑k∈E qi,k(s, u)

·φr,j(u, t). (8)

The last probability of our interest is the one with initial and final backward times, i.e.,

bφb
i,j
(
v, s; v′; t

)
:= P[ Z(t) = j, B(s) = t− v′ |Z(s) = i, B(s) = s− v], (9)

which satisfy relation:

bφb
i,j
(
v, s; v′; t

)
= δij

(
v, v′

) (1− Hi(v, t))
(1− Hi(v, s))

+ ∑
a∈E

v′

∑
θ=s+1

qi,a(l, θ)

(1− Hi(l, s))
·bφb

i,j
(
θ, θ; v′; t

)
, (10)

and δij(v, v′) =
{

1 if i = j and v = v′

0 otherwise
.

All of the relations presented before are particular cases of the more general transition
probability functions with initial and final backward and forward presented in [22].

3. Interval-Based Performability Measures

In this section, we present the main results of the paper. First, we described the
framework of multistate systems as applied to reliability studies, and successively, we
analyzed two performability measures for a repairable system based on semi-Markov
process and we derived specific recurrent relations useful for their computation.

3.1. The General Framework of Performability Analysis through Multi-State Systems

A general approach to measure the performance of a system is to consider a state
space E = {1, 2, . . . , m} as a representation of the different levels to which a system can
perform. In some circumstances, it may be opportune to assume an ordering relation on E
so that to lower ranks i ∈ E correspond to a lower system’s performance. It is frequent to
partition the state space E into two disjoint sets U and D such that:

E = U ∪ D, U ∩ D = ∅, U 6= ∅, D 6= ∅.

The subset U contains all the elements of E which denote that the system is operational
(or working well), instead the subset D contains all the states of E in which the system is
not well performing or has fault. The system changes its performance in time by migrating
from one state to another. According to our working hypothesis, we assume the stochastic
behavior of the system can be well represented by a non-homogeneous discrete-time
semi-Markov process Z = {Z(t), t ≥ 0}.

The overall quality of the system can be measured by introducing specific indicators
that we need to remember in a non-homogeneous environment.

The availability function for a non-homogeneous semi-Markov system can be
defined by:

Ai(s, t) := P[Z(t) ∈ U|Z(s) = i, TN(s) = s]. (11)

This function expresses the probability that a system ranked i at time s will be opera-
tional at time t. This indicator can be computed using the following formula:

Ai(s, t) = ∑
j∈U

φi,j(s, t). (12)
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The reliability function for a non-homogeneous semi-Markov system can be defined by:

Ri(s, t) := P[Z(n) ∈ U, ∀n ∈ {s, s + 1, . . . , t}|Z(s) = i, TN(s) = s]. (13)

This function expresses the probability that a system ranked i at time s will never
experience a fault (visit to subset D) from time s up to time t. This indicator has been
evaluated through a transformation of the semi-Markov kernel that render the states of D
absorbing. In formula:

Ri(s, t) = ∑
j∈U

φ̂i,j(s, t), (14)

where φ̂i,j(s, t) are the transition probabilities computed by using the following kernel
transformation:

p̂i,j = pij ∀i ∈ U and p̂i,j = δij ∀i ∈ D. (15)

The transformation (15) defines a new semi-Markov kernel for which all the states of
the subset D are changed in absorbing states, see [14].

The availability and the reliability functions have also been generalized by considering
the influence of the recurrence time processes B(t) and F(t) as developed for example
in [22].

3.2. The Duration Dependent Interval Reliability Function

The notion of Interval Reliability has been introduced for continuous-time semi-
Markov processes in [29,30] and only recently it has been investigated in relation to discrete–
time semi-Markov processes in [31,32]. In this subsection, we extended this indicator to the
more general non-homogeneous discrete-time semi-Markov framework and we derived
formulas that consider the influence of recurrence time processes in different ways.

First, we defined the Non-Homogeneous Interval Reliability IRi(s; t, p), s, t, p ∈ N, s < t,
as the probability that the system is working at time t and will continue to work for the
next p time units given that at time s the system entered state i. In formula:

IRi(s; t, p) := P[Z(n) ∈ U, ∀n ∈ {t, t + 1, . . . , t + p}|Z(s) = i, TN(s) = s].

This measure is of particular interest and includes as special cases both the reliability
and availability function. In this regard, it is sufficient to observe that:

IRi(s; s, p) = Ri(s; p), IRi(s; t, 0) = Ai(s; t).

The calculation strategy adopted in [31] can be adjusted to the time non-homogeneous
processes. Thus, it is possible to obtain the following relation:

IRi(s; t, p) = (1− Hi(s, t))1{i∈U} + ∑
j∈U

t+p

∑
θ=t+1

qi,j(s, θ)·Rj(θ, t + p)·1{i∈U}

+ ∑
j∈E

t

∑
θ=1

qi,j(s, θ)·IRj(θ, t, p).

(16)

It should be remarked that Equation (16) is of recursive type and can be seen as
a Markov Renewal Equation for which well-known computational methods have been
proposed to get a solution. The seminal contribution of Erhan Çinlar [26] was followed by
an extensive treatment in [27] and some recent results given in [19]. Numerical methods
were developed in [35] while general indexed Markov renewal equations were considered
in [20] together with their numerical solution.

Now, we proceed to compute the Interval Reliability using the incremental information
brought by the recurrence time processes in different cases. To this end, we define the
Duration Dependent Interval Reliability DIRi(v, s, u; t, p), v, s, u, t, p ∈ N, v < s < u <
t < t + p, as the probability that the system is working at time t and will continue to work
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for the next p time units given that at time s the system occupies state i being entered in
this state in the last transition at time v and will exit from this state at time u. In formula:

DIRi(v, s, u; t, p) :=
P[Z(n) ∈ U, ∀n ∈ {t, t + 1, . . . , t + p}|Z(s) = i, B(s) = s− v, F(s) = u− s].

Thus, this function expresses the probability of the same event considered by IRi(s; t, p)
but evaluated on an enlarged information set which includes local behavior of the system
around the present time s. Any difference between DIRi(v, s, u; t, p) and IRi(s; t, p) is only
due to the influence of the recurrence time processes at the initial time s.

It should be remarked that while the event {B(s) = s− v} ∈ =t, the same does not
hold for {F(s) = u− s} which is not =t-measurable. Accordingly, the conditioning at
time s on possible values of the forward process F(s) may serve as a strategy to build
scenario-based perturbations of a reliability indicator.

A slightly more general indicators can be defined allowing for the process F(s)
to assume value in a specified time interval, namely [a− s, b− s]. This motivates the
following definition.

The Duration Dependent Interval Reliability DIRi(v, s, [a, b]; t, p), v, s, a, b, t, p ∈ N,
v < s < a < b < t < t + p, is defined as the probability that the system is working
at time t and will continue to work for the next p time units given that at time s the system
occupies state i being entered in this state in the last transition at time v and will exit from
this state in a moment belonging to the time interval [a, b]. In formula:

DIRi(l, s, [a, b]; t, p) :=

P[Z(n) ∈ U, ∀n ∈ {t, t + 1, . . . , t + p}|Z(s) = i, B(s) = s− l, F(s) ∈ [a− s, b− s] ∩N0]

It is simple to realize that DIRi(l, s, [u, u]; t, p) = DIRi(l, s, u; t, p).
The following proposition provides formulas for computing the Duration Dependent

Interval Reliability according to five different cases we can observe according to the diverse
relationship between temporal variables.

Proposition 1. The Duration Dependent Interval Reliability DIRi(v, s, [a, b]; t, p), v, s, a, b, t,
p ∈ N, v < s < a < b < t < t + p for a discrete-time non-homogeneous semi-Markov system can
be expressed by the following six cases:

(i) For s < a < b < t < t + p, we can prove that:

DIRi(l, s, [a, b]; t, p) = ∑
j∈E

b

∑
u=a

qi,j(l, u)
Hi(l, b)− Hi(l, a− 1)

·IRj(u; t, p). (17)

(ii) For s < a < t < b < t + p, we have that:

DIRi(l, s, [a, b]; t, p) = ∑
j∈E

t−1
∑

u=a

qi,j(l,u)
Hi(l,b)−Hi(l,a−1) ·IRj(u; t, p)

+∑j∈U ∑b
u=t

qi,j(l,u)
Hi(l,b)−Hi(l,a−1) ·Rj(u; t + p).

(18)

For s < a < t < t + p < b, it results that:

DIRi(l, s, [a, b]; t, p) = ∑
j∈E

t−1
∑

u=a

qi,j(l,u)
Hi(l,b)−Hi(l,a−1) ·IRj(u; t, p)

+ ∑
j∈U

t+p
∑

u=t

qi,j(l,u)
Hi(l,b)−Hi(l,a−1) ·Rj(u; t + p) + ∑

j∈U

b
∑

u=t+p+1

qi,j(l,u)
Hi(l,b)−Hi(l,a−1) ·1{i∈U}.

(19)
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(iii) For s < t < a < b < t + p, we have that:

DIRi(l, s, [a, b]; t, p) = ∑
j∈U

b

∑
u=a

qi,j(l, u)
Hi(l, b)− Hi(l, a− 1)

·Rj(u; t + p)·1{i∈U}. (20)

(iv) For s < t < a < t + p < b,

DIRi(l, s, [a, b]; t, p)

=

(
∑

j∈U

t+p
∑

u=a

qi,j(l,u)
Hi(l,b)−Hi(l,a−1) ·Rj(u; t + p) + Hi(l,b)−Hi(l,t+p)

Hi(l,b)−Hi(l,a−1)

)
·1{i∈U}

(21)

(v) For s < t < t + p < a < b,

DIRi(l, s, [a, b]; t, p) = 1{i∈U}. (22)

Proof. We start with the proof of Equation (17) which corresponds to the case when
s < a < b < t < t + p. In this eventuality it results that:

DIRi(l, s, [a, b]; t, p) :=
= P[Z(n) ∈ U, n ∈ {t, t + 1, . . . , t + p}|Z(s) = i, B(s) = s− l, F(s) ∈ [a− s, b− s] ∩N0]

= P[Z(n)∈U, n∈{t,...,t+p},F(s)∈[a−s, b−s]|Z(s)=i,B(s)=s−l]
P[F(s)∈[a−s, b−s]|Z(s)=i,B(s)=s−l] .

(23)

The denominator of Equation (23) is given by:

P[F(s) ∈ [a− s, b− s]|Z(s) = i, B(s) = s− l] =
Hi(l; b)− Hi(l; a− 1)

1− Hi(l; s)
. (24)

The numerator of Equation (23) is given by:

P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, F(s) ∈ [a− s, b− s]|Z(s) = i, B(s) = s− l]

= ∑
j∈E

b
∑

u=a
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

= ∑
j∈E

b
∑

u=a
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}|TN(s)+1 = u, JN(s)+1 = j]

·P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

= ∑
j∈E

b
∑

u=a

qij(l;u)
1−Hi(l;s)

·IRj(u; t, p).

(25)

A substitution of Equations (24) and (25) in Equation (23) gives Equation (9).
Equation (18) corresponds to the case when s < a < t < b < t + p. Let us consider

again Equation (23):

DIRi(l, s, [a, b]; t, p) =
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, F(s) ∈ [a− s, b− s]|Z(s) = i, B(s) = s− l]

P[F(s) ∈ [a− s, b− s]|Z(s) = i, B(s) = s− l]
.

The denominator has been calculated in Equation (24), whereas the numerator can
now be represented as follows:
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P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, F(s) ∈ [a− s, b− s]|Z(s) = i, B(s) = s− l]

= ∑
j∈E

(
t−1
∑

u=a
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

+
b
∑

u=t
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

)
= ∑

j∈E

t−1
∑

u=a
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}|TN(s)+1 = u, JN(s)+1 = j]

·P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

+ ∑
j∈U

b
∑

u=t
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}|TN(s)+1 = u, JN(s)+1 = j]

·P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

=

(
∑

j∈E

t−1
∑

u=a

qij(l;u)
1−Hi(l;s)

·IRj(u; t, p) + ∑
j∈U

b
∑

u=t

qij(l;u)
1−Hi(l;s)

·Rj(u; t + p)

)
.

(26)

A substitution of Equations (24) and (26) in Equation (23) gives Equation (18).
Equation (19) corresponds to the case when s < a < t < t + p < b. Let us consider

again Equation (23):

DIRi(l, s, [a, b]; t, p) =
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, F(s) ∈ [a− s, b− s]|Z(s) = i, B(s) = s− l]

P[F(s) ∈ [a− s, b− s]|Z(s) = i, B(s) = s− l]
.

The denominator has been calculated in Equation (24), whereas the numerator can be
now represented as follows:

P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, F(s) ∈ [a− s, b− s]|Z(s) = i, B(s) = s− l]

= ∑
j∈E

t−1
∑

u=a
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

+ ∑
j∈U

t+p
∑

u=t
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

+ ∑
j∈E

b
∑

u=t+p+1
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

= ∑
j∈E

t−1
∑

u=a
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}|TN(s)+1 = u, JN(s)+1 = j]

·P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

+ ∑
j∈U

t+p
∑

u=t
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}|TN(s)+1 = u, JN(s)+1 = j]

·P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

+ ∑
j∈E

b
∑

u=t+p+1
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}|TN(s)+1 = u, JN(s)+1 = j]

·P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

=

(
∑

j∈E

t−1
∑

u=a

qij(l;u)
1−Hi(l;s)

·IRj(u; t, p) + ∑
j∈U

t+p
∑

u=t

qij(l;u)
1−Hi(l;s)

·Rj(u; t + p) + ∑
j∈U

b
∑

u=t+p+1

qi,j(l,u)
1−Hi(l;s)

·1{i∈U}

)

(27)
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A substitution of Equations (24) and (27) in Equation (23) gives Equation (19).
Equation (20) corresponds to the case when s < t < a < b < t + p. Let us consider

again Equation (23):

DIRi(l, s, [a, b]; t, p) =
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, F(s) ∈ [a− s, b− s]|Z(s) = i, B(s) = s− l]

P[F(s) ∈ [a− s, b− s]|Z(s) = i, B(s) = s− l]
.

The denominator has been calculated in Equation (24), whereas the numerator can be
now represented as follows:

P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, F(s) ∈ [a− s, b− s]|Z(s) = i, B(s) = s− l]

= ∑
j∈U

b
∑

u=a
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

= ∑
j∈U

b
∑

u=a
P[Z(n) ∈ U, n ∈ {t, . . . , u− 1}, Z(n) ∈ U, n ∈ {u, . . . , t + p}|TN(s)+1 = u, JN(s)+1 = j]

· P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

= ∑
j∈U

b
∑

u=a
P[Z(n) ∈ U, n ∈ {u, . . . , t + p}|TN(s)+1 = u, JN(s)+1 = j]

·P[Z(n) ∈ U, n ∈ {t, . . . , u− 1}|TN(s)+1 = u, JN(s)+1 = j]
· P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

= ∑
j∈U

b
∑

u=a
Rj(u; t + p)· qij(l;u)

1−Hi(l;s)
·1{i∈U}.

(28)

A substitution of Equations (24) and (28) in Equation (23) gives Equation (20).
Equation (21) corresponds to the case when s < t < a < t + p < b. The starting point

is always Equation (23) for which the denominator has been calculated in Equation (24).
The numerator can be now represented as follows:

∑
j∈E

b

∑
u=a

P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l].

Now, due to the ordering relation among the considered times we write the former
probability as follows:
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∑
j∈E

(
t+p
∑

u=a
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

+
b
∑

u=t+p+1
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}, TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

)

= ∑
j∈E

(
t+p
∑

u=a
P[Z(n) ∈ U, n ∈ {t, . . . , u− 1}, Z(n) ∈ U, n ∈ {u, . . . , t + p}|TN(s)+1 = u, JN(s)+1 = j, Z(s) = i, B(s)

= s− l]·P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

+
b
∑

u=t+p+1
P[Z(n) ∈ U, n ∈ {t, . . . , t + p}|TN(s)+1 = u, JN(s)+1 = j, Z(s) = i, B(s) = s− l]

= ·P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]
)

= ∑
j∈U

t+p
∑

u=a
P[Z(n) ∈ U, n ∈ {u, . . . , t + p}|Z(n) ∈ U, n ∈ {t, . . . , u− 1}, TN(s)+1 = u, JN(s)+1 = j, Z(s) = i,

B(s) = s− l]·P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]
·P[Z(n) ∈ U, n ∈ {t, . . . , u− 1}|TN(s)+1 = u, JN(s)+1 = j, Z(s) = i, B(s) = s− l]

+ ∑
j∈D

t+p
∑

u=a
P[Z(n) ∈ U, n ∈ {u, . . . , t + p}|Z(n) ∈ U, n ∈ {t, . . . , u− 1}, TN(s)+1 = u, JN(s)+1

= j, Z(s) = i, B(s) = s− l]·P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]
·P[Z(n) ∈ U, n ∈ {t, . . . , u− 1}|TN(s)+1 = u, JN(s)+1 = j, Z(s) = i, B(s) = s− l]

+ ∑
j∈E

b
∑

u=t+p+1
1{i∈U}·P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

= ∑
j∈U

t+p
∑

u=a
P[Z(n) ∈ U, n ∈ {u, . . . , t + p}|TN(s)+1 = u, JN(s)+1 = j]·1{i∈U}

·P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

+ ∑
j∈D

t+p
∑

u=a
0·1{i∈U}·P[TN(s)+1 = u, JN(s)+1 = j|Z(s) = i, B(s) = s− l]

+
b
∑

u=t+p+1
1{i∈U}·P[TN(s)+1 = u|Z(s) = i, B(s) = s− l]

= ∑
j∈U

t+p
∑

u=a
Rj(u; t + p)·1{i∈U}·

qij(l;u)
1−Hi(l;s)

+ 1{i∈U}

·
(

P[TN(s)+1 ≤ b|Z(s) = i, B(s) = s− l]− P[TN(s)+1 ≤ t + p + 1|Z(s) = i, B(s) = s− l]
)

= 1{i∈U}·
(

∑
j∈U

t+p
∑

u=a
Rj(u; t + p)· qij(l;u)

1−Hi(l;s)
+

Hi(l;b)−Hi(l;t+p)
1−Hi(l;s)

)
.

(29)

A substitution of Equations (24) and (29) in Equation (23) gives Equation (21).
Equation (22) corresponds to the case when s < t < t + p < a < b. In this case,

directly from the definition of the Duration Dependent Interval Reliability we get:

DIRi(l, s, [a, b]; t, p) = 1{i∈U},

because t + p < a implies that Z(n) = i∀n ∈ {t, . . . , t + p}. �

Corollary 1. The Duration Dependent Interval Reliability DIRi(v, s, u; t, p), v, s, u, t,
p ∈ N, v < s < u < t < t + p for a discrete-time non-homogeneous semi-Markov system
can be expressed by the following three cases:

(i) For s < t < t + p < u, we have that:

DIRi(l, s, u; t, p) = 1{i∈U} (30)
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(ii) For s < t < u < t + p, we have that:

DIRi(l, s, u; t, p) =

 ∑
j∈U

qi,j(l,u)
∑k∈E qi,k(l,u)

·Rj(u, t + p) if i ∈ U,

0 if i ∈ D.
(31)

(iii) For s < u < t < t + p, we have that:

DIRi(l, s, u; t, p) = ∑
j∈E

qi,j(l, u)
∑k∈E qi,k(l, u)

·IRj(u; t, p). (32)

Proof. Equation (30) is obtained simply considering Equation (22) with a = b = u.
Equations (31) and (32) are obtained from Equations (20) and (18) with a = b = u and

observing that in this case we obtain:

Hi(l; b)− Hi(l; a− 1) = Hi(l; u)− Hi(l; u− 1) = ∑
k∈E

qik(l; u). (33)

�

The Duration Dependent Interval Reliabilities DIRi(l, s, u; t, p) and DIRi(l, s, [a, b]; t, p)
provide important information to the reliability engineer. In particular, the backward value
s− l at initial time s permits to include in the model the information related to the time
occupancy of the current state of performance of the system. This allows the possibility to
differentiate the evaluation of the reliability of the system according to the time elapsed in
the current state. This feature is a prerogative of the semi-Markovian models and cannot be
reproduced by Markov chain based models. The indicator DIRi(l, s, u; t, p) considers also
the impact of the value u of the forward process at time s and permits the measurement
of the effect caused by the time in which the first transition after the current time s will
happen. Since this time cannot be known at the present time s, any conjecture on its value
can be used to build up a scenario analysis of the reliability of the system. Due to the
uncertainty on the value of the forward process, the indicator DIRi(l, s, [a, b]; t, p) permits
the advancement of even mild belief on the value of F(s) which can now be expressed
in interval form. All of the obtained relations (Equations (18)–(32)) express the Duration
Dependent Interval Reliabilities as a function of the Reliability and Interval Reliability of
the system.

3.3. The Duration Dependent Availability of Given Window and Containing a Point

In this subsection, we dealt with another performability measure based on intervals.
In particular, we considered the availability of a given window and containing a point.
This measure has been introduced for Markov repairable stochastic systems in [33] where
the corresponding calculation formula is derived using the Laplace transform technique. A
further generalization is provided in [34] where the analysis is extended to discrete-time
homogeneous semi-Markov systems. Again the results are obtained using the mathe-
matical apparatus based on transform analysis which requires inverse transformation
to get numerical results useful in applications. Here, we extended the investigation to
include non-homogeneous discrete-time semi-Markov process with duration dependence
effects. We demonstrated how to derive a formula for this indicator without making use of
transform analysis and exploiting the relationship between this indicator, the Duration De-
pendent Interval Reliability DIRi(v, s; t, p) and the duration dependent transition probability
function bφb

i,j(v, s; v′; t). To achieve this result we needed to introduce the formal definition
of the indicator, some auxiliary random times, and corresponding properties.

We defined the Duration Dependent Availability of the given window and containing
a point DA(i,v,s)(τ; x), v, s, τ, x ∈ N, v < s < x , ∀τ , as the probability that a repairable
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system works throughout an interval window which has at least a length τ and contains a
given point x given that at time s the system was in state i with a time elapsed in this state
equal to s− v. In formula:

DA(i,v,s)(τ; x)
:= P[∃c ≥ s : x ∈ [c, c + τ] , Z(n) ∈ U, ∀n ∈ [c, c + τ]|Z(s) = i, B(s) = s− v].

(34)

We defined the last failure time before time x as:

Sx = sup{t < x : Z(t) ∈ D}, (35)

with the convention that Sx = +∞ when sup{t < x : Z(t) ∈ D} = ∅.
We also defined the excess time of x at the level τ as the random variable Ex,τ defined

according to:
Ex,τ = inf{r ≥ 0 : r + x− Sx ≥ τ}. (36)

It denotes the minimum time to add to x− Sx to reach at least the length τ.
Let us introduce two useful subsets of the sample space that are in a direct relation

with Sx and Ex,τ .
First we denote by:

W(s, x, τ) = {ω ∈ Ω : ∃c ≥ s such that x ∈ [c, c + τ], Z(n) ∈ U, ∀n ∈ [c, c + τ]}, (37)

and then consider the set:

w(t1, t2) = {ω ∈ Ω : Z(n) ∈ U, ∀n ∈ [t1, t2]}. (38)

Lemma 1. The subsets W(·, ·, ·) and w(·, ·) satisfy the following relation:

W(s, x, τ) =
(x−s)∧τ⋃

i=0

w([(x− τ) ∨ s] + i, [(x− τ) ∨ s] + i + τ). (39)

Proof. Given three times s, x, τ we can distinguish two cases:

(a) τ ≤ x− s ; (b) τ > x− s .

Let us first consider the case a). In order to represent the set W(s, x, τ) in this situation
we can enumerate all the intervals [c, c + τ] where the system works. The first interval is
[x− τ, x] which is equal to [c, c + τ] with c = x− τ. The second interval is [x + 1− τ, x + 1],
i.e., the interval [c, c + τ] with c = x + 1− τ. The latter is the interval [x, x + τ], i.e., the
interval [c, c + τ] for c = x. Thus, the union of all these intervals gives:

W(s, x, τ) =
x⋃

c=x−τ

w(c, c + τ) (40)

Set i = c− x + τ to transform Equation (40) into:

W(s, x, τ) =
τ⋃

i=0

w(x + i− τ, x + i). (41)

In the alternative case b), that is when τ > x − s, the enumeration of all possible
intervals of length τ covering x starts from the first interval [s, s + τ] which is obtained for
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c = s and proceeds until the last interval [x, x + τ] which is obtained for c = x. Thus, the
union of all these intervals gives:

W(s, x, τ) =
x⋃

c=s
w(c, c + τ), (42)

that, after the change of variable i = c− s is transformed into:

W(s, x, τ) =
x−s⋃
i=0

w(s + i, s + i + τ). (43)

Equations (41) and (43) can be merged using the max and min operators in a
unique expression:

W(s, x, τ) =
(x−s)∧τ⋃

i=0

w([(x− τ) ∨ s] + i, [(x− τ) ∨ s] + i + τ).

�

Lemma 2. The subsetsW(·, ·, ·) and w(·, ·) satisfy the following relation:

W(s, x, τ)
⋂

wc(s, x)

=


x−1⋃
d=s
{Sx = d, Ex,τ = d + 1 + τ− x} if τ > x− s(

x−τ−1⋃
d=s
{Sx = d, Ex,τ = 0}

)⋃( x−1⋃
d=x−τ

{Sx = d, Ex,τ = d + 1 + τ− x}
)

if τ ≤ x− s

(44)

Proof. Fix the three times s, x, τ such that τ > x − s and x > s and observe that from
Lemma 1 we have that:

W(s, x, τ)
⋂

wc(s, x) =
(

x−s⋃
i=0

w(s + i, s + i + τ)

)⋂
wc(s, x)

=
x−s⋃
i=0

(w(s + i, s + i + τ)
⋂

wc(s, x)).
(45)

Observe now that for i = 0:

w(s + i, s + i + τ)
⋂

wc(s, x) = w(s, s + τ)
⋂

wc(s, x) = ∅

whereas for i ∈ {1, . . . , x− s}:

w(s + i, s + i + τ)
⋂

wc(s, x) = {Sx = s + i− 1}
⋂
{Ex,τ = Sx + τ + 1− x}, (46)

then by substitution, Equation (45) becomes:

W(s, x, τ)
⋂

wc(s, x) =
x−s⋃
i=1
{Sx = s + i− 1, Ex,τ = s + i− 1 + τ+ 1− x}

=
x−s⋃
i=1
{Sx = s + i− 1, Ex,τ = s + i + τ− x}.

(47)

A change of variable posing d = s + i− 1 transforms Equation (47) into:

W(s, x, τ)
⋂

wc(s, x) =
x−1⋃
d=s
{Sx = d, Ex,τ = d + 1 + τ− x},

which proves the first part of Equation (44).
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Let us consider now the second case which corresponds to times such that τ ≤ x− s
and x > s.

From Lemma 1 we have that:

W(s, x, τ)
⋂

wc(s, x) =
(

τ⋃
i=0

w(x + i− τ, x + i)
)⋂

wc(s, x)

=
τ⋃

i=0
(w(s + i− τ, x + i)

⋂
wc(s, x))

= (w(x− τ, x)
⋂

wc(s, x))
⋃( τ⋃

i=1
(w(x + i− τ, x + i)

⋂
wc(s, x))

)
.

Now, observe that:

(
w(x− τ, x)

⋂
wc(s, x)

)
=

x−τ−1⋃
d=s
{Sx = d, Ex,τ = 0}. (48)

Moreover, from Equation (46) we have:(
w(x + i− τ, x + i)

⋂
wc(s, x)

)
= {Sx = s + i− τ − 1}

⋂
{Ex,τ = Sx + τ + 1− x}.

Therefore:
τ⋃

i=1

(
w(x + i− τ, x + i)

⋂
wc(s, x)

)
=

τ⋃
i=1
{Sx = x + i− τ − 1, Ex,τ = Sx + τ + 1− x}. (49)

Now, set d = x + i− τ − 1, then Equation (49) becomes equal to:

x−1⋃
d=x−τ

{Sx = d, Ex,τ = d + τ + 1− x}. (50)

In this way by substitution, we obtain that for τ ≤ x − s, W(s, x, τ)
⋂

wc(s, x) is
expressed by the union between the sets, i.e.,

W(s, x, τ)
⋂

wc(s, x) =

(
x−τ−1⋃

d=s
{Sx = d, Ex,τ = 0}

)⋃( x−1⋃
d=x−τ

{Sx = d, Ex,τ = d + 1 + τ− x}
)

.

�

Proposition 2. The Duration Dependent Availability of given window and containing a point
DA(i,v,s)(τ; x), v, s, τ, x ∈ N, v < s < x , ∀τ for a discrete-time non-homogeneous semi-Markov
system can be expressed by the following formula:

DA(i,v,s)(τ; x) = Ri(v, s; x ∨ (s + τ))

+
x−1
∑

d=(x−τ)∨s
∑

f∈D

{
d−s−1

∑
v′=0

bφb
i, f (v, s; d− v′; d)·DIR f (d− v′, d; d + 1, τ) + δi, f

·
(

1−Hi(v,d)
1−Hi(v,s)

)
·DIR f (v, d; d + 1, τ)

}
+

x−τ−1
∑

d=s
∑

f∈D

{
d−s−1

∑
v′=0

bφb
i, f (v, s; d− v′; d)·DIR f (d− v′, d; d + 1, x− (d + 1)) + δi, f

·
(

1−Hi(v,d)
1−Hi(v,s)

)
·DIR f (v, d; d + 1, x− (d + 1))

}
1{τ≤x−s}.

Proof. The Duration Dependent Availability of given window and containing a point can
be expressed in term of the set W(s, x, τ) :

DA(i,v,s)(τ; x) = P[W(s, x, τ)|Z(s) = i, B(s) = s− v] = P[W(s, x, τ)|(i, v, s)],
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where the last equality is only considered for introducing a compact notation we shall use
extensively. First, consider that:

DA(i,v,s)(τ; x) = P[W(s, x, τ), w(s, x)|(i, v, s)] + P[W(s, x, τ), wc(s, x)|(i, v, s)] (51)

Consider before the first addendum of Equation (51)

P[W(s, x, τ), w(s, x)|(i, v, s)] = P[W(s, x, τ)| w(s, x), (i, v, s)]·P[w(s, x)| (i, v, s)] (52)

Now, we distinguish two cases according to whether τ ≤ x − s or τ > x − s. If

τ ≤ x− s from Lemma 1 we know that W(s, x, τ) =
τ⋃

i=0
w(x + i− τ, x + i) and then we

have that:
w(s, x) ⊂ w(x− τ, x) ⊂W(s, x, τ).

Consequently, the first term on the RHS of Equation (52) becomes:

P[W(s, x, τ)| w(s, x), (i, v, s)] = 1,

While:

P[w(s, x)| (i, v, s)]= P[Z(n) ∈ U, ∀n ∈ [s, x]|(i, v, s)] = DIRi(v, s; s, x− s) = Ri(v, s; x). (53)

On the contrary, for τ > x − s, from Lemma 1 we know that
W(s, x, τ) =

⋃x−s
i=0 w(s + i, s + i + τ) and since:(

x−s⋃
i=0

w(s + i, s + i + τ)

)⋂
w(s, x) = w(s, s + τ),

we have that:

P[W(s, x, τ), w(s, x)|(i, v, s)] = P[w(s, s + τ)|(i, v, s)]
= P[Z(n) ∈ U, ∀n ∈ [s, s + τ]|(i, v, s)] = DIRi(v, s; s, τ) = Ri(v, s; s + τ).

Thus, the results obtained in the two cases give:

P[W(s, x, τ), w(s, x)|(i, v, s)] = 1{x−s≥τ}·Ri(v, s; x) + 1{x−s<τ}·Ri(v, s; s + τ)

= Ri(v, s; x ∨ (s + τ)).
(54)

It still remains to compute the second addend on the RHS of Equation (51). We proceed
by decomposing it according to Lemma 2 as follows:

P[W(s, x, τ), wc(s, x)|(i, v, s)]
= P[

⋃x−1
d=s {Sx = d, Ex,τ = d + τ− x}|(i, v, s)]1{x−s<τ}

+P[
(⋃x−τ−1

d=s {Sx = d, Ex,τ = 0}
)⋃(⋃x−1

d=x−τ{Sx = d, Ex,τ = d + τ− x}
)
|(i, v, s)]1{x−s≥τ}.

The events {Sx = d, Ex,τ = d + τ− x} are mutually exclusive for any choice of
d = x− τ, . . . , x− 1 or d = s, . . . , x− τ− 1. Thus, we get

P[W(s, x, τ), wc(s, x)|(i, v, s)] =
x−1
∑

d=s
P[Sx = d, Ex,τ = d + τ− x|(i, v, s)]1{x−s<τ}

+
x−τ−1

∑
d=s

P[Sx = d, Ex,τ = 0|(i, v, s)]1{x−s≥τ} +
x−1
∑

d=x−τ
P[Sx = d, Ex,τ = d + τ − x|(i, v, s)]1{x−s≥τ}.

(55)

Now, let us consider the first addendum on the RHS of Equation (55):
x−1
∑

d=s
P[Sx = d, Ex,τ = d + τ− x|(i, v, s)]1{x−s<τ}

= ∑x−1
d=s ∑ f∈D ∑v′∈Dd−v

0,d−s
P[Z(d) = f , B(d) = v′, , Z(h) ∈ U, ∀h ∈ {d + 1, . . . , d + 1 + τ}|(i, v, s)],

(56)

where the symbol Dd−v
0,d−s = {0, 1, . . . , d− s− 1} ∪ {d− v} denotes the set of possible dura-

tions (value of the backward process) at time d. Equation (56) can be expressed as follows:
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x−1
∑

d=s
∑

f∈D
∑

v′∈Dd−v
0,d−s

P[Z(h) ∈ U, ∀h ∈ {d + 1, . . . , d + 1 + τ}|Z(d) = f , B(d) = v′, (i, v, s)]·P[Z(d) = f , B(d)

= v′|(i, v, s)]

=
x−1
∑

d=s
∑

f∈D

d−s−1
∑

v′=0
P[Z(h) ∈ U, ∀h ∈ {d + 1, . . . , d + 1 + τ}|Z(d) = f , B(d) = v′, (i, v, s)]·P[Z(d) = f , B(d)

= v′|(i, v, s)] + P[Z(h) ∈ U, ∀h
∈ {d + 1, . . . , d + 1 + τ}|Z(d) = f , B(d) = d− v, (i, v, s)]·P[Z(d) = f , B(d)
= d− v|(i, v, s)].

(57)

Now, notice that:

(i) P[Z(d) = f , B(d) = v′|(i, v, s)] = bφb
i, f (v, s; d− v′; d);

(ii) P[Z(h) ∈ U, ∀h ∈ {d + 1, . . . , d + 1 + τ}|Z(d) = f , B(d) = v′, (i, v, s)] = P[Z(h) ∈ U,
∀h ∈ {d + 1, . . . , d + 1 + τ}|Z(d) = f , B(d) = v′] = DIR f (d− v′, d; d + 1, τ), where
the first equality is due to the Markovian property of the joint process (Z(d), B(d)).

(iii) In the case B(d) = d − v, by definition of the backward process we have that
TN(d) = d − (d− v) = v, which means that from time v to time d no change of
state is allowed. Accordingly, state f should coincide with state i. Formally:

P[Z(d) = f , B(d) = v′|(i, v, s)] = P[Z(d) = f |B(d) = v′, (i, v, s)]·P[B(d) = v′|(i, v, s)]
= P[Z(d) = f |TN(d) = d− (d− v), Z(s) = i, TN(s) = v]·P[TN(d) = v|(i, v, s)]

= P[Z(d) = f |TN(d) = v = TN(s), Z(s) = i, ]·P[TN(s)+1 > d|(i, v, s)] = δi, f ·
(

1−Hi(v,d)
1−Hi(v,s)

)
.

(iv) P[Z(h) ∈ U, ∀h ∈ {d + 1, . . . , d + 1 + τ}|Z(d) = f , B(d) = d− v, (i, v, s)]
= DIR f (v, d; d + 1, τ).

Then, a substitution of the quantities computed in the points (i)–(iv) inside
Equation (57) gives the following representation of the first addendum on the RHS of
Equation (47):

x−1
∑

d=s
∑

f∈D

{
d−s−1

∑
v′=0

bφb
i, f (v, s; d− v′; d)·DIR f (d− v′, d; d + 1, τ)

+δi, f ·
(

1−Hi(v,d)
1−Hi(v,s)

)
·DIR f (v, d; d + 1, τ)

}
·1{τ>x−s}

(58)

Now, we proceed to compute the second addendum on the RHS of Equation (55). The
computations share similar ideas as those generating Equation (58). In particular:

x−τ−1
∑

d=s
P[Sx = d, Ex,τ = 0|(i, v, s)]1{x−s≥τ}

=
x−τ−1

∑
d=s

∑
f∈D

{
d−s−1

∑
v′=0

P[Z(h) ∈ U, ∀h ∈ {d + 1, . . . , x}|Z(d) = f , B(d) = v′]·P[Z(d) = f , B(d)

= v′|(i, v, s)] + P[Z(h) ∈ U, ∀h ∈ {d + 1, . . . , x}|Z(d) = f , B(d) = d− v]·P[Z(d) = f , B(d)

= d− v|(i, v, s)]}1{x−s≥τ}

=
x−τ−1

∑
d=s

∑
f∈D

{
d−s−1

∑
v′=0

bφb
i, f (v, s; d− v′; d)·DIR f (d− v′, d; d + 1, x− (d + 1)) + δi, f ·

(
1−Hi(v,d)
1−Hi(v,s)

)
·DIR f (v, d; d + 1, x− (d + 1))

}
1{x−s≥τ}.

(59)

Finally, we can compute the third addendum on the RHS of Equation (55). The com-
putations are based again on similar ideas as those which gave Equation (58). In particular:
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x−1
∑

d=x−τ
P[Sx = d, Ex,τ = d + τ − x|(i, v, s)]1{x−s≥τ}

=
x−1
∑

d=x−τ
∑

f∈D
∑

v′∈Dd−v
0,d−s

P[Z(h) ∈ U, ∀h ∈ {d + 1, . . . , d + 1 + τ}|Z(d) = f , B(d) = v′]

·P[Z(d) = f , B(d) = v′|(i, v, s)]1{x−s≥τ}

=
x−1
∑

d=x−τ
∑

f∈D

{
d−s−1

∑
v′=0

P[Z(h) ∈ U, ∀h ∈ {d + 1, . . . , d + 1 + τ}|Z(d) = f , B(d) = v′]·P[Z(d) = f , B(d)

= v′|(i, v, s)] + P[Z(h) ∈ U, ∀h ∈ {d + 1, . . . , d + 1 + τ}|Z(d) = f , B(d) = d− v]
·P[Z(d) = f , B(d) = d− v|(i, v, s)]]}1{x−s≥τ}

=
x−1
∑

d=x−τ
∑

f∈D

{
d−s−1

∑
v′=0

bφb
i, f (v, s; d− v′; d)·DIR f (d− v′, d; d + 1, τ)

+δi, f ·
(

1−Hi(v,d)
1−Hi(v,s)

)
·DIR f (v, d; d + 1, τ)

}
1{x−s≥τ}.

(60)

We observed that Equations (58) and (60) may be merged in a unique expression
because the indicator function 1{x−s≥τ} in Equation (60) implies that:

x−1

∑
d=x−τ

{·} =
x−1

∑
d=(x−τ)∨s

{·}·1{x−s≥τ}. (61)

Concerning Equation (58), due to the fact that x− s < τ, it can be rewritten replacing
the summation as follows:

x−1

∑
d=s
{·} =

x−1

∑
d=(x−τ)∨s

{·}·1{x−s<τ}. (62)

According to Equations (61) and (62), we can write the summation of Equations (58)
and (60) by:

x−1
∑

d=(x−τ)∨s
∑

f∈D

{
d−s−1

∑
v′=0

bφb
i, f (v, s; d− v′; d)·DIR f (d− v′, d; d + 1, τ)

+δi, f ·
(

1−Hi(v,d)
1−Hi(v,s)

)
·DIR f (v, d; d + 1, τ)

} (63)

A substitution of (59) and (63) in (55) and the summation of the results with (54)
completes the proof. �

4. A Numerical Example

In this section, we gave a numerical example of the behavior of the Duration Depen-
dent Interval Reliability functions and of the Duration Dependent Availability.

To simplify this application, we considered a repairable systems with only two states
for the system: state U and state D. When the system is in state U it means that it is working,
on the contrary state D denotes a failure of the system. We modelled an non-homogeneous
semi-Markov kernel by fixing a transition probability matrix which makes provision for
a system alternating its states between state U and state D according to the following
transition probability matrix:

pi,j(s) =
{

1 if i 6= j
0 if i = j

and time varying sojourn time distributions according to Weibull distribution:

W(x; a, b) = 1− e−(
x
a )

b
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with time-varying parameters given by:

GU,D(s, ·) ∼W(a = 4.0 , b = 1.7) for 0 ≤ s ≤ 9,

GD,U(s, ·) ∼W(a = 3.5 , b = 1.5) for 0 ≤ s ≤ 9,

GU,D(s, ·) ∼W(a = 4.5 , b = 1.7) for s ≥ 10,

GD,U(s, ·) ∼W(a = 4.0 , b = 1.5) for s ≥ 10.

In this way, we were able to model a non-homogeneous semi-Markov process. Then,
we used the theoretical relations determined in previous sections to compute the Non-
Homogeneous Interval Reliability, the Duration Dependent Interval Reliability and the
Duration Dependent Availability of the given window and containing a point. The results
have been validated implementing a Monte Carlo technique based on 100,000 simulated
trajectories. The algorithm to simulate the process is described in Figure 1.
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Figure 1. Algorithm for the simulation of non-homogeneous semi-Markov trajectories.

In Figure 2 we plotted the Non-Homogeneous Interval Reliability for initial state U and
D, for reference purpose we set s = 0. The behavior is as expected, in fact the probability to
work for time length p is inversely proportional to p itself in both cases, but it is inversely
proportional to t when the system is already in state U while the proportionality with
respect to t is the opposite when the starting state is D.
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Figure 2. Non-Homogeneous Interval Reliability. For reference purpose we fixed s = 0.

In Figure 3, we show the Duration Dependent Interval Reliability for some fixed values
of parameters. Specifically, we set i = U, s− l = 3, s = 0, t = 10 and let change possible
values of the forward interval [a− s, b− s] and selected four different values of p. Also, in
this case, we can see that the probability is higher for lower values of p, another important
feature is that the probability does depend on the forward time in the interval [a− s, b− s].
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The Duration Dependent Availability of the given window and containing a point is
shown in Figure 4 for i = U, s = 0, v = 3. The function is plotted depending of x and τ.
As expected, the probability decreases when the window length τ increases. We also found
a small dependence on x. In fact, for small values and for high values of x the probability
is higher.
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5. Conclusions

In this paper, we extended the definition of some important reliability indicators in
several directions. First, we considered a discrete-time non-homogeneous semi-Markov
repairable model for which interval availability and reliability indicators are defined in
such a way to consider the durational effects in terms of backward and forward recurrence
time processes. Then, we analysed the link between these indicators and previously
studied measures and we determined new formulas of recurrence type useful to the
computation of the new indexes. The results avoid the recourse to the transform analysis
apparatus and may be applied in real life problems of reliability. Further developments
of this research include the extension of the analysis to indexed semi-Markov models and
the application of the results to other applied domains such as finance and renewable
energies. A possible further extension consists of the computation of these measures when
some of the parameters of the reliability system are expressed in form of intervals. It is
not infrequent, in the study of a mechanical system, to improve performance evaluation
of uncertain systems using interval parameters, see e.g., [36]. Thus, a mixed form of
uncertainty can be considered both probabilistic and engineering in nature.
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27. Limnios, N.; Oprişan, G. Semi-Markov Processes and Reliability Modeling; Birkhauser: Boston, MA, USA, 2001.
28. D’Amico, G.; Janssen, J.; Manca, R. Monounireducible Nonhomogeneous Continuous Time Semi-Markov Processes Applied to

Rating Migration Models. Adv. Decis. Sci. 2012, 2012, 1–12. [CrossRef]
29. Csenki, A. On the interval reliability of systems modelled by finite semi-Markov processes. Microelectron. Reliab. 1994, 34,

1319–1335. [CrossRef]
30. Csenki, A. An integral equation approach to the interval reliability of systems modelled by finite semi-Markov processes. Reliab.

Eng. Syst. Saf. 1995, 47, 37–45. [CrossRef]
31. Georgiadis, S.; Limnios, N. Interval reliability for semi-Markov systems in discrete time. J. Soc. Fr. Stat. 2014, 153, 152–166.

http://doi.org/10.1016/S0164-1212(03)00241-3
http://doi.org/10.1007/s10492-014-0072-4
http://doi.org/10.2307/3214890
http://doi.org/10.1016/0024-3795(94)90470-7
http://doi.org/10.1080/03610926.2013.804563
http://doi.org/10.3390/math9010055
http://doi.org/10.1081/STA-120028686
http://doi.org/10.1081/STA-200037923
http://doi.org/10.1081/STA-120028692
http://doi.org/10.1016/S0951-8320(96)00121-4
http://doi.org/10.1007/s11009-007-9035-5
http://doi.org/10.1016/j.ress.2008.03.032
http://doi.org/10.1007/s11009-011-9211-5
http://doi.org/10.1007/s11009-017-9570-7
http://doi.org/10.1016/j.apm.2011.03.006
http://doi.org/10.1016/j.ress.2015.07.015
http://doi.org/10.1007/s11009-009-9142-6
http://doi.org/10.1090/S0002-9947-1966-0193679-8
http://doi.org/10.2307/1426216
http://doi.org/10.1155/2012/123635
http://doi.org/10.1016/0026-2714(94)90145-7
http://doi.org/10.1016/0951-8320(94)00039-Q


Mathematics 2021, 9, 575 23 of 23

32. Georgiadis, S.; Limnios, N. Nonparametric estimation of interval reliability for discrete-time semi-Markov systems. J. Stat. Theory
Pr. 2015, 10, 20–39. [CrossRef]

33. Cui, L.; Chen, J.; Wu, B. New interval availability indexes for Markov repairable systems. Reliab. Eng. Syst. Saf. 2017, 168, 12–17.
[CrossRef]

34. Yi, H.; Cui, L.; Shen, J.; Li, Y. Stochastic properties and reliability measures of discrete-time semi-Markovian systems. Reliab. Eng.
Syst. Saf. 2018, 176, 162–173. [CrossRef]

35. Janssen, J.; Manca, R. Numerical Solution of non-Homogeneous Semi-Markov Processes in Transient Case. Methodol. Comput.
Appl. Probab. 2001, 3, 271–293. [CrossRef]

36. Cheng, J.; Liu, Z.-Y.; Tan, J.-R.; Zhang, Y.-Y.; Tang, M.-Y.; Duan, G.-F. Optimization of Uncertain Structures with Interval
Parameters Considering Objective and Feasibility Robustness. Chin. J. Mech. Eng. 2018, 31, 38. [CrossRef]

http://doi.org/10.1080/15598608.2015.1064049
http://doi.org/10.1016/j.ress.2017.03.016
http://doi.org/10.1016/j.ress.2018.04.014
http://doi.org/10.1023/A:1013719007075
http://doi.org/10.1186/s10033-018-0244-3

	Introduction 
	Non-Homogeneous Semi-Markov Models 
	Interval-Based Performability Measures 
	The General Framework of Performability Analysis through Multi-State Systems 
	The Duration Dependent Interval Reliability Function 
	The Duration Dependent Availability of Given Window and Containing a Point 

	A Numerical Example 
	Conclusions 
	References

