
Reflection and Diffraction of Internal Waves analyzed

with the Hilbert Transform

Matthieu Mercier, Nicolas Garnier, Thierry Dauxois

To cite this version:

Matthieu Mercier, Nicolas Garnier, Thierry Dauxois. Reflection and Diffraction of Internal
Waves analyzed with the Hilbert Transform. Physics of Fluids, American Institute of Physics,
2008, 20 (08), pp.0866015. <ensl-00294000>

HAL Id: ensl-00294000

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00294000

Submitted on 8 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

We apply the Hilbert transform to the physics of internal waves in two-dimensional fluids. Using

this demodulation technique, we can discriminate internal waves propagating in different directions:

this is very helpful in answering several fundamental questions in the context of internal waves.

We focus more precisely in this paper on phenomena associated with dissipation, diffraction and

reflection of internal waves.

Keywords: Stratified fluids – Internal waves – Nonlinear Physics – Hilbert transform.

PACS numbers: 47.55.Hd Stratified flows. 47.35.+i Hydrodynamic waves.
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I. INTRODUCTION

The Synthetic Schlieren technique [1] is a very powerful method to get precise and quanti-

tative measurements for two-dimensional internal waves in stratified fluids. Such a technique

was very effectively used to get quantitative insights while studying different mechanisms

for internal waves. Let us just mention the emission, propagation and reflection of internal

waves [2, 3, 4, 5, 6], or the generation and reflection of internal tides [6, 7, 8]. However, when

considering internal waves generated by an oscillating body or by an oscillating flow over a

topography, the analysis is drastically complicated by the possibility of different directions

of propagation associated to a single frequency; such a problem arises also when multiple

reflections occur at boundaries.

We present in this article a method to discriminate the different possible internal waves

associated with one given frequency ω. These waves can be discriminated by their wave vec-

tors k = (kx, kz), according to the sign of both components, kx and kz. The transformation

we present here not only offers an analytical representation of the wave field which allows us

to extract the envelope and the phase of the waves, but allows also to isolate a single wave

beam. This method is based on the Hilbert transform (HT) previously applied to problems

dealing with propagating waves, but adapted here to two-dimensional phenomena.

The method is used here to tackle several fundamental issues in order to bring new

insights. It is important to emphasize that we used a source of monochromatic internal

plane waves to facilitate the comparison with theoretical results.

The paper is organized as follows. In section II, we present the Hilbert transform. In the

section IID, we present its application to the classical oscillating cylinder experiment, with

a special emphasis on the insights provided by the Hilbert Transform. In section III, we

study three different physical situations that can be nicely solved with this technique. The

dissipation length is studied in Sec. IIIA, the back reflection on a slope in Sec. III B, while

Sec. IIIC focus on the diffraction mechanism. Finally section IV concludes the paper.
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II. PRINCIPLE OF THE HILBERT TRANSFORM

A. Presentation of the variables

Before explaining on a simple example the different steps necessary to apply the Hilbert

transform, let us briefly recall different properties of internal gravity waves. We consider a

two-dimensional (x, z) experimental situation and denote t the time variable, g the gravity

and ρ(x, z) the density. In a linearly stratified fluid such that ∂ρ/∂z < 0, and within the

linear approximation, it is well-known [9] that the same wave equation

△ψtt +N2ψxx = 0 (1)

is valid for the field ψ(x, z, t) which stands for either the streamfunction, both velocity

components, the pressure, or the density gradients. The constant

N =

√

−
g

ρ

∂ρ

∂z
(2)

which characterizes the oscillation of a fluid particle within a linearly stratified fluid is the

so-called Brunt-Väisälä frequency. Looking for propagating plane waves solutions

ψ = ψ0 e
i(ωt−k.x) , (3)

where x = (x, z) and k = (kx, kz), one gets the dispersion relation

ω2 = N2 k2
x

k2
x + k2

z

= N2 sin2 θ , (4)

if one introduces θ the angle between the wavevector and the gravity. In this unusual

dispersion relation, it is apparent that changing the sign of the frequency ω or the sign of

any component kx, kz of the wavevector has no consequences. So four possible wavevectors

are allowed for any given positive frequency, smaller than the Brunt-Väisälä frequency.

The Synthetic Schlieren technique gives quantitative measurements of the respectively

horizontal and vertical density gradients, ρx(x, z, t) and ρz(x, z, t). As anticipated, both

quantities verify Eq. (1). In the remainder of this section, we work on a field U(x, z, t),

which might be either ρx(x, z, t), ρz(x, z, t), or a velocity component as obtained in PIV

experiments.
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B. A simple one-dimensional example

We present here, in the first stage, how to compute the complex-valued field Ũ(x, z, t)

such that U(x, z, t) will correspond to its real part Re(Ũ(x, z, t)). In order to do so, we

demodulate the signal by applying the Hilbert transform. To avoid misunderstandings, let’s

note that the Hilbert transform is sometimes the name of the operation that associates the

real-valued field Im(Ũ) to the real-valued field U , such that the complex number Ũ can be

fully reconstructed. In this article, we call Hilbert transform (or complex demodulation)

the operation associating the complex-valued field Ũ to the real field U . This demodulation

technique has been previously used to compute local and instantaneous amplitudes, frequen-

cies and wavenumbers [10, 11, 12] but, to the best of our knowledge, the present study is

the first application in the context of internal gravity waves.

As an introductory example, let us consider a simple signal in one spatial dimension

constructed as the superposition of two wave beams propagating in the vertical direction z

with the same frequency and the same wavenumber kz

U(z, t) = A cos(ωt− kzz) +B cos(ωt+ kzz). (5)

As z is the vertical component, the first term corresponds to a wave propagating upward,

whereas the second one to a wave propagating downward. For the sake of simplicity, we

further suppose that the amplitude A and B are constant in space and time. Rewriting the

cosines as the sum of exponentials with complex arguments, and decomposing according to

a Fourier transform in time, we have

U(z, t) = Û1 e
iωt + Û2 e

−iωt (6)

where Û1 = (Ae−ikzz + Beikzz)/2 and Û2 is the complex conjugate of Û1. So if we filter out

the negative frequencies in Fourier space, and multiply by a constant factor 2, we are left

with

Ũ(z, t) = Aei(ωt−kzz) +B ei(ωt+kzz). (7)

The real-valued signal U(z, t) has been transformed into the complex-valued signal Ũ(z, t)

such that U(z, t) = Re(Ũ(z, t)). With that complex signal at hands, it is now easy to

separate the two wave beams by looking at the Fourier transform in space

Ũ(z, t) = (Aeiωt) e−ikzz + (Beiωt) eikzz. (8)
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Isolating the positive (resp. negative) values of the wavenumber kz will isolate the wave

propagating towards positive (resp. negative) z. It is important to stress that this second

stage is only possible because Ũ is a complex valued signal and not a real valued one: its

Fourier transform is therefore not the sum of two complex conjugated parts on positive and

negative frequencies.

C. The two-steps procedure for two-dimensional waves

Let us now precise how we operate on real experimental data involving two spatial di-

mensions.

The first step, called demodulation, is obtained by performing sequentially the three

following operations:

i) a Fourier transform in time of the field U(x, z, t),

ii) a wide or selective band-pass filtering in Fourier space around the positive fundamental

angular frequency ω = 2πf , where we have introduced f the temporal frequency

measured in hertz.

iii) the inverse Fourier transform generating the complex signal Ũ(x, z, t).

On step ii) which removes exactly half the energy of the signal, we also perform a multipli-

cation by a factor 2, to preserve the amplitude of the signal and to have U = Re(Ũ).

It is crucial to realize that four different travelling waves are mixed in this complex signal

Ũ(x, z, t) = Ã(x, z, t) + B̃(x, z, t) + C̃(x, z, t) + D̃(x, z, t) (9)

with

Ã(x, z, t) = A(x, z, t) exp i(ωt− kxx− kzz) , (10)

B̃(x, z, t) = B(x, z, t) exp i(ωt− kxx+ kzz) , (11)

C̃(x, z, t) = C(x, z, t) exp i(ωt+ kxx− kzz) , (12)

D̃(x, z, t) = D(x, z, t) exp i(ωt+ kxx+ kzz) . (13)

Note that in Eqs (10)-(13), we have considered the wavenumbers kx and kz positive in order

to identify more easily the direction of propagation.
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Although the four waves oscillate in time at the same frequency ω, they do not propagate

in the same direction, because of the different signs in front of the wavenumbers kx and kz (cf.

Fig. 1). Note that amplitudes A, B, C and D might depend on space and time: dissipation

is a good example. However, scales on which they vary must be much larger than scales

ω−1, k−1
x and k−1

z around which the demodulation is performed.

In the second step, we isolate the four waves A, B, C and D, one from each other,

using the complex-valued field Ũ(x, z, t). To do so, we apply another filtering operation

in Fourier space, but this time in the wavenumber directions kx and kz associated with

spatial directions x and z. Again, this filtering is only possible on a complex field, i.e. after

the Hilbert transform has been performed. The goal of this additional filtering is only to

select positive or negative wavenumbers, but one might also take advantage to apply a more

selective filter to remove spurious details and noise at other wavenumbers.

The two steps we have detailed involved successively a Fourier transform in time, and

then in space directions. Of course, it is equivalent to operate first in a space direction and

then in time and in the other space direction. The best choice is in fact imposed by the

Fourier transforms resolution, i.e. the first Fourier transform has to be performed in the

direction with the largest number of experimental points.

According to the schematic figure 1, we then get a single wave corresponding to a specific

direction of the wavevector where A(x, z, t) is the complex-valued amplitude of the wave

travelling to the right in the x-direction and travelling up in the z-direction. B, C and D

are the complex-valued amplitudes of the three other possible waves. In the experiments,

one has to measure first the frequency ω and the wavenumbers kx, kz, but we note that

they are the same over all spatiotemporal data corresponding to a given experiment. The

envelopes A, B, C and D contain information not carried by the fast frequencies ω and

fast wavenumbers kx, kz, such as amplitude envelopes of the beams, and local wavenumber

modulations: we will study carefully these quantities.

In summary, the demodulation technique extracts from the experimental signal the com-

plex quantity

χ(x, z, t) = |χ(X,Z, T )| exp[iϕχ(x, z, t)] , (14)

where χ stands for A, B, C or D. The argument of the exponential, ϕχ, is the fast-

varying phase corresponding to wave χ, rotating at the experimental signal frequency, while

containing slow modulations.
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FIG. 1: These pictures emphasize the four different travelling waves which might propagate in

a stratified fluid. Left panel corresponds to the wavenumbers in the Fourier space while the

right panel is in the direct space. Left panel defines the four different domains A, B, C and D

corresponding to different signs of the wavenumber in the x and z space directions. Right panel

presents also a synthetic view of the four internal wave beams emitted, in a 2D stratified fluid, by

a vertically oscillating body located at the origin. For each beam, the phase velocity cϕ is parallel

to the wavevector k, but orthogonal to its associated group velocity cg. Note that, for example,

the beam propagating in the bottom-right domain of the right panel, corresponds to a wavevector

with both positive components, explaining that this domains is labelled A, according to (10).

In practice, the complex demodulation of the initial spatio-temporal signal U(x, z, t)

results in four sets of four fields (local and instantaneous):

i) the amplitude |χ(x, z, t)|,

ii) the frequency ω(x, z, t) = ∂ϕχ/∂t,

iii) the wavenumber in the x-direction kx(x, z, t) = ∂ϕχ/∂x,

iv) the wavenumber in the z-direction kz(x, z, t) = ∂ϕχ/∂z.

Note that the wavenumbers and the frequency have to be calculated from the phase field.

Let us emphasize finally that, the Fourier transform being bijective only when applied

to infinite or periodical signals, it is important to filter the data first in time, in order to

benefit from the sharpness of time spectra obtained after long-time data acquisitions; in a

second step, the Fourier transform in space is applied, allowing to separate waves A, B, C

or D.
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The application of the Hilbert Transform (HT) to the study of internal waves can provide

very interesting results and answer questions that remained unsolved. The main idea is to

isolate the differences between internal wave beams propagating up or down, to the left or to

the right. However, before considering such situations, we study in the following subsection

how this method might be applied to a simple two-dimensional situation which has been

intensively studied already.

D. The classical oscillating cylinder experiment as a first example

The first example one might consider is the simple experiment of a cylinder oscillating up

and down at a given frequency ω. Initiated by the Görtler experiment [13], this setup was

later popularized by Mowbray and Rarity [14] and recently generalized to a three dimensional

situation [15].

The experiment we will describe was realized in a tank of 120 x 50 x 10 cm3 filled with

linearly stratified salt water. Quantitative internal waves visualization were obtained by

Synthetic Schlieren [1], which measures the horizontal and vertical density gradient pertur-

bations referred as ρx(x, z, t) and ρz(x, z, t) in the following. If one considers an oscillating

cylinder in a two-dimensional stratified fluid, the four internal wave beams emitted have

four wavevectors differing one from each other by the sign of their projections onto (Ox)

and (Oz), as summarized in Fig. 1(b).

The complex demodulation of the wave field, in time first, is presented in Fig. 2. Such a

picture clearly emphasizes that four different beams are generated by the oscillating cylinder,

all of them being tilted with an angle θ with respect to the gravity, θ being given by the

dispersion relation (4).

After an additional filtering along the z-coordinate, first, and then along the x-coordi-

nate, four different beams can be isolated as presented in Fig. 3. Although some boundary

effects can be detected at locations corresponding to discontinuities in space due to the

cylinder, explaining the intense yellow areas along the horizontal and vertical axes, it is

important to stress that there is no ambiguity concerning the field treated. Moreover, these

side-effects might be corrected by applying the HT in space only to a selected domain instead

of considering the full window of observation containing also the cylinder here.

We will now present two interesting points that have not been addressed in the previous
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FIG. 2: Saint Andrew’s cross obtained with a cylinder of radius R = 1.5 cm oscillating vertically

with an amplitude 1.5mm at a frequency ω = 0.28 rad.s−1 in a stratified fluid with Brunt-Väisälä

frequency N = 1.0 rad.s−1. The picture presents the real part (left panel) and amplitude (right

panel) of the Hilbert transform, corresponding to the experimental horizontal density gradient ρx

filtered in time.

literature (for recent results see [6, 20]) while studying the wavefield emitted by an oscillating

cylinder.

Figure 4(a) presents a zoom on the phase of the beams emitted to the right of the cylinder

(right side of Fig. 2): it is clear that there is no direct link between the phase evolution of

the downward and upward propagating waves. Such an image will be very helpful when we

will analyze the spatial structure of the emitted phase for the diffraction phenomenon in

section IIIC.

Figure 4(b) shows the evolution of the transverse spatial spectrum of the downward

propagating wave to the right. They have been obtained by extracting the transverse profiles

(along (Oη)) at the circles located on the axis of propagation of the wave (Oξ) and shown

in Fig. 4(a). This picture reveals not only the decrease of the amplitude due to dissipation

(see Sec. IIIA for a complete analysis) but also the gradual shift toward smaller value of the

wavenumbers, i.e. toward larger wavelengths. [22]

In summary, the use of the Hilbert transform allows one to separate rather easily all the

waves emitted from the cylinder, and to have a very precise definition of the phase of the

wavefield, a quantity of importance to describe the wave spectra. We use in the next section

these properties to address questions still pending.
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FIG. 3: Real part of the horizontal density gradient ρx presented in Fig. 2 after spatial filtering.

The four different pictures correspond to the four possible waves described in Fig. 1(a).

III. APPLICATIONS

In the remainder of the article, we study internal waves beam emanating from a “pocket

size” version [24] of the internal plane wave generator that we have recently developed [16].

All experiments were realized in a tank of 80 × 42.5 × 17 cm3 filled with linearly stratified

salt water. Horizontally oscillating plates of thickness 6 mm create a sinusöidal envelope of

amplitude a0 = 5 mm and wavelength λe = 3.9 cm, (ke = 2π/λe). The oscillating frequency

ω defines through the dispersion relation (4) the angle of propagation of the beam with

respect to the gravity. Such a device was shown to be extremely effective to generate nice

plane wave beams in linearly stratified fluids [16].

A. Dissipation of internal waves

The first physical situation we consider is the dissipation of internal waves within a

laboratory tank. The linear viscous theory developed by Thomas & Stevenson [17] first,

and Hurley & Keady [18] afterwards, has been tested with good accuracy [2, 19, 20]. The
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FIG. 4: (Left panel) Phase of the density gradient ρx(x, z, t) after step 1, zoomed on the right-hand

side of Fig. 2. The cylinder is represented in black. Note also the definition of the variables ξ and

η, respectively along and transversal to the propagation. (Right panel) Evolution of the transverse

spatial spectrum along the axis of propagation (Oξ). Amplitudes have been normalized by the

maximum value of the spectrum closest to the cylinder at ξ = 5 cm.

damping of the averaged spectrum with time has also been studied, typically in the case

of attractors because a steady state is obtained due to a balance between amplification

at reflection and viscous damping [21, 22]. In Fig. 4(b), the damping of the spectrum

along the axis of propagation can also be analyzed similarly. Nevertheless, these approaches

are integral ones over all wavenumbers, and the viscous damping has not been tested on

a monochromatic internal wave. The Hilbert Transform is moreover an excellent tool to

measure the dissipation effects.

The structure expected [23] for a viscous internal plane wave is

ψ(ξ, η, t) = ψ0 e
−β ξ ei(ωt−kη) , (15)

where ξ is the longitudinal coordinate while η corresponds to the transversal one. The

quantity

β =
νk3

2N cos θ
=

νk3

2N
√

1 − ω2

N2

. (16)

corresponds to the inverse dissipation length. Thanks to the analytical representation of

the internal waves using the HT, it is easy to get the envelope of a monochromatic internal

wave and thus quantify how it decreases through viscous dissipation. Results shown below

correspond to three different stratifications.
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For each frequency, the envelope of the emitted beam is extracted: a typical result is

shown in Fig. 5(a). The logarithm along the ξ-coordinate is then plotted versus the longi-

tudinal coordinate ξ for different η-values, as illustrated in Fig. 5(b). The dissipation rate

according to the direction of propagation is then obtained by the averaged linear fit over the

different profiles extracted.

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

ξ (cm)
lo

g(
ψ

/ψ
0)

averaged slope = −0.058 cm −1

FIG. 5: (a) Envelope of the Hilbert transform of the downward field ρx(x, z, t) (A and C) for an

oscillating frequency f = 0.033Hz and a Brunt-Väisälä frequency N = 0.66 rad.s−1. The tilted

black line indicates the location of one of the regularly extracted profiles. All other ones are parallel

to this one. Panel (b) presents the logarithm of extracted profiles together with the averaged linear

fit.

Repeating the above procedure for several frequencies, one gets the evolution of the

dissipation length β(ω). It is however important to realize that, the propagation being

tilted with respect to the vertical plane of emission, the forcing of the internal plane wave

generator does not create a wave whose wavelength is λe. A projection of the wavelength

on the direction perpendicular of propagation has to be taken into account: the wavevector

of the propagating internal wave is therefore k = ke/ cos θ, so that we have the following

relation

β =
νk3

e

2N cos4 θ
, (17)

which can be rewritten in the more convenient form

Nβ =
νk3

e

2

1

(1 − x2)2
(18)

by introducing x = ω/N . It is thus generic to plot the attenuation rate β times the Brunt-

Väisälä frequency N as a function of the ratio x = ω/N for different values ofN , as presented
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in Fig. 6. Using the value of the viscosity η = 1.05 10−6 m2.s−1, only one free parameter is

remaining, the wavevector ke = 2π/λe.

Above procedure leads to the following result, λe = 3.55 cm (+0.20/-0.16) cm, in good

agreement with the value obtained from the transverse beam structure [24]. Surprisingly

these values are slightly different from the one imposed by the internal plane wave generator.

Figure 6 which presents the best fit attests the good agreement with experimental results.

The model seems particularly accurate for frequencies ω sufficiently small compared to the

cut-off frequency N .

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ω/N

N
β 

(c
m

−
1 .s

−
1 )

FIG. 6: Nβ as a function of ω/N for three different stratifications: stars, squares and circles

correspond to experiment with N = 0.66, 0.68 and 0.76 rad.s−1. The solid curve corresponds to

the best value for fitting the data, λe = 3.55 cm, while the dashed (resp. dotted) line to the lower

(resp. upper) bound λe = 3.39 cm (resp. λe = 3.75 cm).

B. Back-reflected waves on a slope.

We have also used the Hilbert Transform to identify a possible back-reflected wave when

an incident internal wave beam is reflecting on a slope of angle α with the horizontal. After

reflection, as shown by Fig. 7, two beams inclined with an angle θ with respect to the

horizontal might be emitted from the slope. One of this beam has been experimentally

reported several times [2, 4, 5, 6], contrary to the second one, aligned with the incident

beam but propagating in the opposite direction and represented by the dashed arrow in
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Fig. 7. This additional beam was considered by Baines [25] and Sandstrom [27] when

studying theoretically the effect of boundary curvature on reflection of internal waves. Let

us experimentally prove that no back-reflection occurs at planar surfaces.

FIG. 7: Left panel presents the principle of the possible back-reflection problem for an incident

internal wave beam. Left panel shows the θ > α case, while the right one presents the opposite

case θ < α.

It is clear that if it exists the amplitude of the back-reflected beam has to be much smaller

than the incident one, as usual techniques were unable either to identify it, or to exclude it.

This is the reason why we have performed several experiments of an incident beam impinging

onto a slope, away from critical incidence but also close to it (see Table I for values of control

parameters). Analysis of one case with θ > α is presented in Fig. 8. The back reflected

beam in that case should be a D-wave according to classification (9). However, Fig. 8

shows absolutely no evidence of it, and only a B-component is visible. Nevertheless, as the

HT along the x-coordinate has not been performed to avoid the introduction of spurious

boundary effects, it is still possible to argue that the D-wave might be localized where the

B-wave could shadow it. However, as this spatial domain remains extremely small, it is

therefore very unlikely.

Varying the angle θ of the waves around α, the slope angle, no trace of back-reflected

intensity are apparent, even close to critical conditions θ = α. In order to give a definitive

answer, we have also considered the case θ < α (see Fig. 7(b)). In that case, the back-

reflected beam would be the only one to propagate upward, while the classically reflected

beam would be a C-wave, propagating downward. Figure 9 corresponding to such a case

attests that there is no wave propagating backward. We can therefore claim that the back-

reflected beam is definitely not present when internal waves reflect onto a slope. Concave
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FIG. 8: Horizontal density gradient ρx. (Left) Downward (A and C) and (right) upward (B and D)

waves reflecting on a slope (α = 14), in ∆N2 rad2.s−2. The frequency of the waves was ω/N = 0.43

with the Brunt-Väisälä frequency N = 0.42 rad.s−1.

Run 1 2 3 4 5

θ (deg.) 14.0 7.0 11.4 15.1 25.0

α (deg.) 25.5 14.5 14.5 14.5 14.0

ε (deg.) -11.5 -7.5 -3.1 0.6 11.0

N (rad.s−1) 0.42 0.58 0.58 0.58 0.42

TABLE I: Summary of experimental runs with all control parameters: θ the angle of energy

propagation, α the angle of the slope, ε = θ − α and N the Brunt-Väisälä frequency.

or convex slopes might lead to different results [25].

C. Diffraction of internal waves

The diffraction of internal waves is the last issue we will consider in this paper. Although

it is not directly interesting for oceanographic applications, it seems natural to ask [29]

what is the equivalent of the Huygens-Fresnel principle for optical waves. Indeed, it has

been established for centuries that when a plane wave encounters a thin slit, optical waves

are reemitted in all directions. But what about internal waves? To the best of our knowledge,

there is neither theoretical nor experimental results on this topic.

As the incident wave is impinging onto the slit with a well defined frequency, it is clear that
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FIG. 9: Horizontal density gradient ρx. (Left) Downward waves (A and C) and (right) upward

waves (B and D) reflecting on a slope (α = 25.5), in ∆N2 rad2.s−2. The frequency of the waves

was ω/N = 0.24 with the Brunt-Väisälä frequency N = 0.42 rad.s−1.

the transmitted waves have to satisfy the dispersion relation (4). However, as schematically

shown in Fig. 10(a), two different beams might be expected after the slit. In the case

exemplified in this picture, it is clear that most of the energy will be transmitted to the

waves propagating upward. Is it possible however to detect whether part of the energy is

emitted downward? The main goal is therefore to be able to discriminate what is going out

of a slit with a width comparable to the wavelength of an incoming internal plane wave.

In th experiments, the stratification is linear with N = 0.45 rad.s−1, while the incoming

beam has a frequency ω = 0.196 rad.s−1 and a wavelength λ = 3.2 cm. Since the source is

the internal plane wave generator, we remind that it corresponds to a vertical wavelength

λz = 3.6 cm. The slit of varying width a is made of two sliding plastic plates of a thickness

of 1 cm, and is represented by a thick vertical white line in Figs. 10, 11 and 12, since no

signal can be obtained in this region with the Synthetic Schlieren technique because of the

sides of the slits. We present below results corresponding to widths of the slit a = 6, 4, 3,

and 2 cm. Note that for a = 1 cm, no signal was obtained after the slit, which means that

its intensity was below the noise level (if there was anything to measure).

Figures 11 and 12 present the results for a = 4 cm and a = 2 cm, emphasizing two

different mechanisms for the emission that corresponds to a > λ and a < λ. Note that both

pictures present zooms close to the slit to better appreciate the interesting region.
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FIG. 10: Left panel presents the principle of the diffraction problem for an incident internal wave

beam. Right panel shows the horizontal density gradient U field in ∆N2 rad2.s−2 for an incoming

internal plane wave, corresponding to a wavelength λ = 3.6 cm on a 4 cm wide slit. The dotted

square corresponds to the region presented in Figs. 11 and 12.

FIG. 11: Large slit case. Hilbert transform of the gradient density field ρx in ∆N2 (rad.s−1)2

filtered at ω = 0.196 rad.s−1 for a = 4 cm with kz > 0 (left panel), kz < 0 (centered panel) and

phase of the complete field with all values of kz (right panel).

In the first case, it is apparent that most of the intensity is in the beam emitted in the

same direction than the incoming wave (upward propagation here). Furthermore, this beam

seems very similar to the incoming plane wave: one notes indeed that the wavelength is
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identical before and after the slit. Moreover the continuity of the phase is nicely shown

by the right panel of Fig. 11. Nevertheless, the edges of the slit are also a source emitting

downward propagating beams since waves can be seen on both sides of the slit. It seems

logical since the incoming plane wave creates an oscillating flow close to the slit, inducing a

wavefield similar to the one of an oscillating body in a fluid at rest. It is finally important

to notice that the spatial structure of the phase of the complete wave field is different from

the one observed in Fig. 4 for an oscillating cylinder. The emission of the upward and

downward propagating waves by the slit is consistent since there is no discontinuity in the

spatial structure of the phase.

In the second case a = 2 cm presented in Fig. 12 with a slit smaller than the wavelength,

the mechanism is different. It seems that the only property similar to the incoming plane

wave in the two beams transmitted through the slit is the frequency. Both transmitted beams

have comparable intensities. The spatial structure of the phase presents a discontinuity

strongly reminiscent of the wave field emitted by an oscillating body as shown by Fig. 4.

FIG. 12: Small slit case. Hilbert transform of the horizontal density gradient field ρx in ∆N2

(rad.s−1)2 filtered at ω = 0.196 rad.s−1 for a = 2 cm with kz > 0 (left panel), kz < 0 (centered

panel) and phase of the complete field with all values of kz (right panel).

To have a global view of the physics of internal plane waves diffraction, we finally present

in Fig. 13 the vertical spatial spectra associated to the transmitted waves (upward and

downward) taken at 1.5 cm after the slit for all values of the width a, in comparison with

the spectrum of the incoming wave. The amplitudes of the Fourier components have been

normalized by the maximum amplitude |Aincoming| of the incoming wave spectrum measured
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4 cm before the slit. Several comments are in order. A clear shift of the peak toward larger

values of the wavenumbers is visible when the width of the slit decreases. The spectra are

also clearly enlarged. This is consistent with the previous remark that for a large slit the

transmitted wave beam is very similar to the incident one. The spectra of the downward

beam are visible in the negative k half plane. In the large cases, a = 3 and 4, they are wide

and with a small amplitude attesting that most of the incident energy is transmitted upward,

i.e. directly. On the contrary, in the thin slit case, a = 2, the amplitudes for downward and

upward propagating are comparable. It is difficult to propose a more quantitative discussion

since the dissipation of the spectra is important.
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FIG. 13: Spectra of the vertical cut of the horizontal density gradient ρx measured 1.5 cm on the

right of the slit. The different curves corresponds to different widths a of the slit (see inset for

values).

In summary, the analysis of these spectra confirms that when the slit is sufficiently “large”,

the emitted beam has a vertical wavenumber similar to the incoming one although the

spectrum is slightly wider. On the contrary, when the slit is “small” enough, both beams

have similar spectra and amplitudes.

Finally, we can conclude that the change in the type of waves emitted after the slit is

due to the possibility of a spatial forcing of the phase by the incoming plane wave. The

latter involves a typical length, the inverse of the vertical number kz, which is in the present

experiment nothing but the wavenumber forced by the generator. It appears that a criterion

for a change in behavior occurs when the spatial evolution of the phase is small compared
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to the temporal one, leading to kza ≤ ωT , i.e. kza ≤ 2π. In the present case, it leads to

a ≤ λe = 3.6 cm. The main question remaining is to find a precise criterion to discriminate

when spatial forcing of the phase occurs or not. This phenomenon of phase forcing might be

related to circular oscillations of a cylinder in a stratified fluid which leads to two preferential

emission (two beams instead of four). [30, 31]

IV. CONCLUSION

In this article, we have applied the complex demodulation, also called Hilbert transform.

This transformation is shown to be very powerful when adapted to internal waves in two

dimensions. The experimental investigation of attenuation, reflection and diffraction of

internal plane waves generated using a new type of generator has brought answers to several

theoretical assumptions never confirmed.

The attenuation of internal plane waves is in good agreement with the linear viscous

theory of internal waves. Furthermore, the results obtained quantify the influence of the

wavelength since we consider monochromatic internal plane waves.

Although the reflection of internal waves is a classic phenomenon, some theoretical ideas

remained assumptions, and by looking for an hypothetical back-reflected wave we can now

confirm that the back-reflection is not present.

Finally, we study the problem of diffraction of internal waves as it has not been investi-

gated to our knowledge yet, and we exhibit the diffraction pattern of internal wave which is

atypical due to the peculiar dispersion relation of internal waves.
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