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Abstract

Europe’s ageing transport infrastructure needs effective and proactive main-
tenance in order to continue its safe operation during the entire life cycle;
European countries have to allocate huge resources for maintaining their service-
ability level [1]. This give rise to the necessity of an urgent need to adopt
faster and more reliable monitoring inspection approaches to help tackling these
issues. The deterioration of structures is most often foreseen by the formation
of cracks on concrete surface [2]. The presence of cracks can be a symptom
of various problems like expansion and shrinks due to temperature differences,
settlement of the structure, improper cover provided during concreting, cor-
rosion of reinforcement steel, heavy load applied, insufficient vibration at the
time of laying the concrete or loss of water from concrete surface shrinkage
[3], therefore the identification, measurement and monitoring of cracks on the
concrete surface becomes of primary importance. The main currently adopted
inspection methods rely on visual marking and rulers [4], long and cumbersome
activity, prone to errors and poorly objective on quantitative analysis because it
strongly depends on operator experience. According to UNI EN 1992-1-1:2005
standard , the maximum admitted concrete crack width is 0.3mm [5]. For this
reason, to accurately and reliably measure the target dimension, it is necessary
to employ measurement instruments with suitable metrological characteristics
(e.g. precision and accuracy at least one order lower than the value to be
measured). Otherwise, the crack severity could be misclassified.

This thesis work proposes a novel automatic image-based approach able to
locate and measure cracks on concrete surfaces respecting the metrological
constraint imposed by UNI EN 1992-1-1:2005 standard. Using only one image,
the developed method is able to automatically and rapidly locate and measure
the average width and length of a crack in an existing concrete structure. The
measurement system developed exploits a single camera working in the visible
range to acquire a digitized image of the structure being inspected. The software
component of the system receives as input the single image framing the crack
and gives as output an augmented image where the crack is highlighted as
well as its average/max width and length. The measure of the crack width is
performed perpendicularly to the crack central line with sub-pixel accuracy.
The measurement system has been deployed on a smartphone for operator-based
manual inspections as well on embedded systems for remote inspection with
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robots or Unmanned Aerial Vehicles (Unmanned Aerial Vehicles (UAVs)). The
strategies developed can be easily extended from concrete inspection applications
to any other context where a surface quality control targeted to the identification
of eventual damages/defects is required. The activity was triggered by an explicit
need within the EnDurCrete project.
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4.40 ŵ calculated using the Crack Analyser algorithm according to

the distance of the camera from the target. In the graph there
are superimposed the results of the measurements carried out
with the laser and telecentric profilometers in terms of average
value and uncertainty bounds. . . . . . . . . . . . . . . . . . . . 109

4.41 Acquisition setup described in 4.3. On the left, a picture framed
at a distance of 600mm. On the right a picture framed at a
distance of 1650mm. . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 The hardware side of the measurement system consists of a
system capable of recording and processing images able or not
to detect distance between image sensor and target surface . . 112

5.2 BPMN model modules explanation. . . . . . . . . . . . . . . . 113
5.3 BPMN model for software design . . . . . . . . . . . . . . . . . 114
5.4 Architecture design for Crack Analyser app. The front-end run

on Flutter application, the back-end part is entirely managed by
a python-based server. . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Front-end application run on Android device. . . . . . . . . . . 117
5.6 Front-end application run on Android device. . . . . . . . . . . 118
5.7 Front-end application run on Android device. . . . . . . . . . . 119

6.1 Santa Barbara Foundation mining tunnels . . . . . . . . . . . . 122
6.2 Corrosion and structural health monitoring of tunnel precast

concrete segments for mining tunnel demonstrator in EnDurCrete
Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xviii



List of Figures

6.3 Crack ruler used as reference measuring instrument. . . . . . . 123
6.4 The cracks present on the panels are barely visible, therefore it

is necessary to use the high spatial resolution system. . . . . . 124
6.5 Comparison between the proposed method, on the left, and the

traditional method with a ruler, on the right. In both cases the
device returns the measurement of 0.1mm. . . . . . . . . . . . . 124

6.6 Due to the high roughness it is impossible to apply targets on
the surface, therefore it is necessary to use the device equipped
with a depth sensor. . . . . . . . . . . . . . . . . . . . . . . . . 125

6.7 Complete calculation flow for the measurement of the average
width of the crack in the surface in the tunnel. . . . . . . . . . 126

6.8 The bridge chosen for the inspections in conditions of natural
light is located on the "Centro Cadore" Lake . . . . . . . . . . . 127

6.9 Complete calculation flow for the measurement of the average
width of the crack located in the lateral support structure of the
bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xix





List of Tables

3.1 Comparison among σ values obtained by knee location and Steger
domain intersection . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Computational time for a σ span of 0.5 between 1 and 30 . . . 40
3.3 The table shows the variation of Knee and Optimization error

due to the increase of σdelta . . . . . . . . . . . . . . . . . . . . 41
3.4 Optimization error for v-shape, diagonal-shape and circle-shape

lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Optimization error for real crack case . . . . . . . . . . . . . . 42
3.6 Comparison between Steger line detector and FCN VGG19 +

Steger line detector in terms of Accuracy and Precision . . . . 52
3.7 Models characteristics in terms of number of trainable weights

and prediction computational time in seconds calculated as the
average time for 100 predictions with different input images. . . 59

3.8 Models characteristics in terms of number of trainable weights
and prediction computational time in seconds calculated as the
average time for 100 predictions with different input images. . . 59

4.1 Gage R&R study assessed by asking 5 different operators to
perform ten measurements each in 3 different target cracks.
Metrological characterization of the measurement system with
fiducial markers . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Example of ANOVA table . . . . . . . . . . . . . . . . . . . . . 157

xxi





List of Symbols

fp Parabolic line profile
fb Bar-shaped line profile
fa Parabolic Bar-shaped line profile
h Line Contrast
w Line half local width
a Line asymmetry
σ Root of Variance of Gaussian Kernel, Steger

algorithm parameter
i Horizontal image coordinate
j Vertical image coordinate
p(i, j) Pixel intensity value at i, j

gσ 2D Gaussian Kernel function
r Convolution of Gaussian Kernel and line profile
ϕσ Integral of 2D Gaussian Kernel
x0 1D line position
H Hessian Matrix
λ Eigenvalue of the Hessian matrix
n Eigenvector of the Hessian matrix
t Line point sub-pixel location
d Distance between two neighbours line points
β Angle between two neighbours line points
el Left line edge
er Right line edge
l Lower threshold, Steger algorithm parameter
u Upper threshold, Steger algorithm parameter
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eS Steger error, represent the difference between
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FL Filling Level

FN False Negative

FOV Field of View

FP False Positive

G3F Gap and Flush laser triangulation system [8]

IOU Intersection Over Union

LIDAR Laser Imaging Detection and Ranging

MLP Multi-layer Perceptron

NDC Number of Distinct Categories

NDT Non-Destructive Testing

ROI Region of Interest

SCM Supplementary Cementitious Materials

SDK Software Development Kit

SHM Structure Health Monitoring
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Acronyms

TN True Negative

ToF Time-of-Flight

TP True Positive

UAVs Unmanned Aerial Vehicles

UNIVPM Università Politecnica delle Marche
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Chapter 1

General introduction and thesis
outline

The work presented in this thesis has been conducted within the research project
New Environmental friendly and Durable conCrete (EnDurCrete). The project
has received funding from the Horizon 2020 Programme under grant agreement
No. 760639. "Ordinary Portland cement has been considered for many years the
benchmark structural material for durable buildings and infrastructures, as well
as for marine environments. However, its production process consumes signifi-
cant mineral resources (good-quality limestone and clay), energy and fuel, and
creates greenhouse gas emissions. Various efforts are underway to improve the
environmental friendliness of concrete, by integrating Supplementary Cementi-
tious Materials (SCM), such as by-products of industrial processes. Nevertheless,
current state of the art sustainable solutions based on high substitution rate
of Portland cement clinker by SCM occasionally lead to limited performance
and durability of concrete structures, particularly critical when applied in harsh
conditions. All these aspects affect also the resource consumption, waste pro-
duction, environmental and economic costs of repair and replacement. In this
framework, EnDurCrete Project aims to develop a new cost-effective sustainable
reinforced concrete for long lasting and added value applications. The concept
is based on the integration of novel low-clinker cement including high value
industrial by-products, new nano and micro technologies and hybrid systems
ensuring enhanced durability of sustainable concrete structures with high me-
chanical properties, self-healing and self-monitoring capacities" [9]. This four
year project has been carried out by cooperation between two university Univer-
sità Politecnica delle Marche (Italy) and Norges Teknisk-Naturvitenskapelige
Universitet (Norway) and thirteen industrial partner: Vito (Belgium), Infra
Plan (Croatia), Rina (Italy), Sika (Switzerland), Nuova Tesi System (Italy),
i-Box (Spain), Advanced Management Solutions, KVAERNER (Norway), ZAG
(Slovenia), Heidelberg Cement (Germany), Geonardo (Hungary), Fenix TNT
(Czech Republic), Acciona (Spain) and CEA (France). In this project Università
Politecnica delle Marche (UNIVPM) is leader in Work Package 5: Lab-scale
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Chapter 1 General introduction and thesis outline

performance testing and development of monitoring and NDT tools for concrete
components and structures. In particular, this thesis work is carried out into
task 5.3: Advanced NDT tools for non-intrusive in-field inspection.

In many cases Structure Health Monitoring (SHM) must be complemented
with full inspection of the structures, to optimize maintenance and durability.
Here the aim is thus the development of advanced NDT tools for non-intrusive
in-field inspection. In this task UNIVPM develop inspection tools targeted to
the detection of sub-millimetre cracks in concrete. The activity is carried on by
working both on the hardware side, by developing an integrated solution exploit-
ing computer vision, and on the software side, by developing high performance
processing algorithms for an autonomous crack identification.

The overall outcome of the project is the results of close cooperation among
all the people involved in the project; however, this thesis specifically presents
results related to task 5.3 of the project, which represents the main research
focus of the author.

The thesis work is divided in 7 chapters.
Chapter 1 gives a general introduction and thesis outline with a focus on

EnDurCrete project where the work is conducted within.
Chapter 2 presents an extensive literature review of the state-of-art existing

techniques for the automatic detection of cracks on concrete surfaces exploiting
an analytical and artificial intelligence inferential approach. All the limitations
of both methods proposed by the literature are highlighted.

Chapter 3 is divided in 3 sections. Section 3.1 describes the novel image-
based computer vision algorithm developed in this thesis work to identify and
measure cracks on concrete structures. The section begins with a broad and
new theoretical description of the chosen ridge detection algorithm, already
known in the state-of-art. The algorithm is then tested on lab-scale scenario
and all its limitations are highlighted. In the sub-section 3.1.2, an innovative
optimization technique able to measures crack width without knowing a priori
proper parameters is presented. Nevertheless, the developed optimization
algorithm still presents several limitations that bind its use only in laboratory
conditions (3.1.3). From these limitation arise the need of automatically locate
the crack inside image. This will be overcome trough Deep Learning algorithms
in next section. Section 3.2 describes all steps for the development and training
of a model for the automatic discrimination of the target cracks from the
background and disturbing elements. Starting from a Convolutional Neural
Network architecture, a Fully Convolutional Neural Network able to perform
semantic segmentation and locate with high accuracy cracks in input images
is built and trained. Section 3.3 described the developed Crack Analyser
algorithm. The model built in 3.2 is used for overcoming the limitation of the
Sigma Optimization algorithm developed in 3.1.2 in order to assess cracks on a

6



real-scale scenario.
Chapter 5 explains the architecture design of the measurement system that

integrates the developed Crack Analyser algorithm in order to make it usable
and user-friendly even by non-expert operators for in-fields testing.

Chapter 4 is divided in 4 sections. Section 4.2 begins with a theoretical
description of the techniques chosen to evaluate the metrological characteristics
of the instrument. Sections 4.3 and 4.4 show the Measurement System Analysis
(MSA) of the developed algorithm where the metrological performance of the
measurement system is assessed in terms of precision and accuracy for two case
scenarios: camera without depth sensor, that measure the conversion constant
pixel-to-mm using fiducial markers, and camera equipped with depth sensor (i.e.
depth cameras, LIDAR or Tof sensors), that measures the conversion constant
pixel-to-mm without fiducial markers.

Chapter 6 shows the results of the in-field tests carried out in different
scenarios.

Chapter 7 discusses the results and future developments of the thesis work
carried out.
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Chapter 2

State of the Art: image-based NDT
for crack severity analysis

This chapter presents an extensive literature review of the state-of-art existing
techniques for the automatic detection of cracks on concrete surfaces exploiting
analytical and artificial intelligence inferential approaches.

Knowing the crack width is fundamental to verify the compliance with crack
admissibility tables reported in the UNI EN 1992-1-1:2005 standard [5]. For the
EnDurCrete project exposition classes the maximum admitted crack width is
0.3 [mm]. Such a tight boundary implies the use of measurement systems whose
metrological characteristics ensure precision and accuracy at least one order
of magnitude lower than the target dimension. In fact, a higher uncertainty
would imply a misclassification of the crack severity that cannot be accepted.
The typical instruments discussed in literature rely on optical triangulation
that consists on a laser line projection onto a target surface while a camera,
recording the scene from a known angle θ, detects light scattered by the target
surface (Figure 2.1).

Figure 2.1: Laser triangulation system’s working principle [8]
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Chapter 2 State of the Art: image-based NDT for crack severity analysis

There are several works addressing surface crack detection through laser
triangulation in literature. These papers report the use of this technique on
several kind of surfaces like pavements, ranging from concrete to asphalt and
chip seal. Through the combined use of high-speed cameras, laser line projector
and 3D reconstruction algorithms this technique is able to well-detect crack
line profile. In [13] Pavements inc., in collaboration with the National Optics
Institute of Canada and the Minister des Transports du Quebec, develops and
tests a new 3D technology called Laser Crack Measurement System (LCMS)
proven to be 95% correct in general crack classification tasks. In [12] O’Brien
et al. develop an automated pavement assessment using the LCMS that has
been in extensive use in Ireland since 2012 to provide high speed pavement
distress data and imagery for runways, taxiways and aprons. In both articles it
is demonstrated that the LCMS system has an excellent 3D depth resolution
(0.5 mm), a good resolution along the lateral direction of scanning (1mm)
coupled with a field of view of 4 meters. This method appears to be extremely
performing because, with an appropriate acquisition frequency, it would be
possible to inspect very large areas in a short time. The downsides of this
approach mainly concern the resolution and versatility of the system. In fact,
this kind of instrumentation must be mounted on moving systems, such as vans
or systems on rails, and as we know it is not always possible to scan cracks on
surfaces in this way. Moreover the spatial resolution reached by the instrument
for many applications could be limiting. The performance of this system is also
very much subjected to how you process the data output from the system. In
[14] Ouyang et al. introduce an automated pavement inspection system which
uses cameras and laser to frame dense transverse profiles of a pavement lane
surface when it carries a moving vehicle. Also in this case a system very similar
to the previous one is introduced, with a transverse resolution of 1.56mm and a
depth resolution of 0.5mm with the camera positioned at 1.4m. Also in this
case there are the same problems found in the system previously introduced.
As previously mentioned, the processing of images captured by linear cameras
becomes of paramount importance in this type of application. In [15] a fully
automated algorithm for segmenting and enhancing pavement crack on 3D
pavement images is proposed, achieving an average precision of 88.38%, recall
of 93.15%, and F-measure of 90.68% exploiting SMFB operation, Tensor Voting.
Thanks to this technique it is possible to recognize the presence of cracks in the
images acquired, to be then measured by traditional algorithms. Despite the
excellent results achieved by the method, however, this type of processing is
very expensive from a computational point of view (about 10.3s per image).

Although laser triangulation is a consolidated technique, it can be of difficult
use in those applications where the target cannot be easily reached, like pylons of
bridges, offshore structures, inaccessible surface of builds and all those scenarios
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where is not possible to bring all the necessary equipment. From this point of
view, other techniques based solely on computer vision can be more versatile, as
they could be embedded in remotely controlled systems like UAVs (Unmanned
Aerial Vehicles) [[17]]. Moreover, these approaches are also well suited to be
adopted in mobile device to allow assisted inspection by human operators.
As far as imaging is concerned, the use of threshold techniques (e.g. Niblack
method [18], Bernsen method [19], Sauvola and Pietikäinen method [20], Wolf
method [21], and Otsu method [22]) for image segmentation in order to detect
surface crack or non-compliances is widely documented. In [28] an algorithm
capable of automatically detect sealed cracks in pavement surface images via
Heuristic Thresholding Approach is developed. In [29], Talab et al. present a
new method for concrete crack detection based on Otsu method and multiple
filtering technique. Despite the good performance of these two techniques both
are primarily limited to crack detection and not to crack measurement. They
also suffer greatly in distinguishing cracks from other disturbances. Oliveira and
Correia [33] perform a crack segmentation using entropy and image dynamic
threshold. The main disadvantage of using thresholds lies in the fact that it does
not allow for complete generalization of the algorithm, always requiring human
input in assessing its value. Cheng et al. in [32] try to overcome this limitation
performing a real-time automated detection of pavement cracks through space
reduction and interpolation approach for automatic determination of greyscale
threshold values. This method has the advantage of being able to automatically
derive the threshold value on the gray scale ensuring the use of the method even
in real-time processing tasks. This method has the advantage of being able to
automatically derive the threshold value on the gray scale ensuring the use of
the method even in real-time processing tasks. Nevertheless, working on the
grayscale can be extremely risky as a crack can be easily confused with other
disturbing elements. In [26], Rimkus et al. exploit Digital Image Correlation
(DIC) technique for crack localization using the Agglomerative Hierarchical
Clustering Technique for identifying pixels belonging to cracks. Alam et al.
[30] determine crack width and spacing through digital image correlation and
acoustic emission. Both of the proposed methods prove to be very effective
in automatically detecting cracks even of very complex shapes, but they face
all the limitations introduced by the use of DIC-based techniques. In fact,
although the use of DIC brings with it a number of important advantages,
such as the possibility of extracting the deformation field and from this the
stress state through inverse approaches, necessarily implies the acquisition of
sequences of images and it is therefore usable only where the generation of the
fracture is predictable and controllable. The quality of the acquired images is
of fundamental importance in the localization and measurement of cracks. An
incorrect illumination could compromise the measurement. L. Ying and E. Salari
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[31] developed an algorithm to correct the non-uniform background illumination
by calculating the multiplicative factors that eliminate the background lighting
variation. Yu et al. [34] overcome challenging issues such as low contrast,
uneven illumination, and severe noise pollution that generally exist in a tunnel
lining image through infrared images. The use of infrared images for improving
crack detection is also reported in [34].
All of the image-based techniques just described have the advantage of being
versatile and fast. For these reasons, the possibility to exploit UAVs and mobile
devices is the background idea that drove the development of the crack severity
measurement system reported in this work.

The techniques presented so far mostly involve the use of analytical computer
vision algorithms; in recent years numerous possibilities have been explored
involving the use of artificial intelligence techniques for the identification of
cracks on structures of various kinds. Among the most used techniques we
must certainly mention those exploiting Convolutional Neural Networks (CNNs)
and their evolution over time. Convolutional Neural Networks, introduced
by LeCun in 1989 for computer vision applications [36, 37], are a category of
Neural Networks that have proven to be very effective in areas such as image
classification [42]. CNNs have been successful in identifying faces, objects, and
traffic signs apart from powering vision in robots and autonomous applications.
[43–50] In [44], Zang et al. present a new approach to detect traffic signs based
on cascaded convolutional neural networks.In [43], Abdel-Salam et al. introduces
Real-Time Image Enhanced CNN (RIECNN) for traffic sign recognition, a real-
time novel approach that tackles multiple, diverse traffic sign datasets, and
out-performs the state-of-the-art architectures in terms of recognition rate and
execution time. In [45], Memon et al. explore the system to helps the driver
about recognition of road signs to avoid road accidents using CNNs achieving
the 95% of accuracy in classification tasks. In [48] an hybrid neural-network for
human face recognition is presented for the first time. In [46] six commercial
face recognition CNNs are tested. Hancock et al. found that they outperform
typical human participants on standard face-matching tasks. In [47] Syafeeza
et al. presents a robust 4-layer CNN architecture for face recognition problems,
with a solution that is capable of handling facial images that contain occlusions,
poses, facial expressions and varying illumination. In [50] Lou et al. develops
a multi-level information fusion model based on the VGG16 fully connected
neural network for face image recognition leading reducing computational time
and increasing the recognition rate of the image.
CNN is a Deep Learning algorithm which usually takes images as input and
returns a vector, usually used for classification, as output. The effectiveness
of using CNNs for the automatic identification of cracks on images is amply
demonstrated in the literature by the presence of several works. [56] proposes
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a deep learning framework, based on a CNN and a Naive Bayes data fusion
scheme, called NB-CNN, to analyze individual video frames for crack detection
of nuclear power plant components. This method is not only limited to the
classification of single frames of a video, but uses the information obtained from
each frame to increase the overall performance and robustness of the proposed
system. In this way, through Naive Bayes decision making, the number of
false positives is lowered, achieving an accuracy of 98.5%. [57] proposed a
customized CNN for crack detection in concrete structure and evaluate the
performance of the proposed model through the comparison with pretrained
networks, i.e., the VGG-16, VGG-19, ResNet-50, and Inception V3 models, on
eight datasets of different sizes. This work is particularly useful because it tests
the performance of known models in the literature from both a classification
and a localization perspective, exploiting a "sliding windows" approach. At
the same time it analyzes the performance of the models as the variability and
numerosity of the input dataset increase, showing that performance does not
always increase as the numerosity of the data used for training increases. By
analyzing the variance of the data used for training, we also conclude that all
of the models tested can achieve good accuracy if good variance is ensured
among the data. Shengyuan et al. design a CNN classifier architecture through
fine-tuning an existed CNN. The results illustrate that the proposed method
shows high accuracy and robust performance and can indeed detect crack on
real concrete surface [60]. In this work the authors integrate the system into a
smartphone making it easy and immediate to use.

The main limitation of CNNs is that they act as a classifier. In the liter-
ature there are several articles, already cited above, where "sliding windows"
approaches are adopted in order to perform a semantic segmentation starting
from CNN networks. However, this brings numerous disadvantages from the
point of view of resolution and in terms of computational times. For all applica-
tions where semantic segmentation is most required, such as in the case of the
identification of cracks, more advanced networks were soon adopted, capable
of implementing convolution logics of the same CNNs: from Regional-CNN
to Fully Convolutional Neural Networks (FCNs), up to the most advanced
UNET. The UNET was developed by Olaf Ranneberger et al. for Bio Medical
Image Segmentation [97]. The UNET is largely used for image segmentation
with great success in different fields: seabed segmentation in mineral images,
nuclei, tumor, retina vessel and skin lesion segmentation in medical images,
and rice lodging segmentation in UAVs images. In [64], Zhang et al. discuss
the advantages and disadvantages of the Dice loss function for lesion segmen-
tation in medical images. In [65], Zeng et al. present a new method called
RIC-Unet (residual-inception-channel attention-Unet) for nuclei segmentation
tasks in histology images. In [66], Li et al. propose a novel hybrid densely
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Chapter 2 State of the Art: image-based NDT for crack severity analysis

connected UNet (H-DenseUNet), which consists of a 2-D DenseUNet for effi-
ciently extracting intra-slice features and a 3-D counterpart for hierarchically
aggregating volumetric contexts for liver and tumor segmentation. In [69],
Chen et al. propose a novel Separable 3D U-Net architecture using separable
3D convolutions overcoming the problem that 2D convolutions cannot make
full use of the spatial information of volumetric medical image data, while
3D convolutions suffer from high expensive computational cost and memory
demand. Xiao et al. proposed a U-Net-like model with the weighted attention
mechanism and the skip connection scheme in order to increase segmentation
performance for retina vessel segmentation which is particularly complicated
due to the extreme variations in the morphology of the vessels against the noisy
background [70]. In [71] Skin Lesion Segmentation (SLS) method based on the
separable-Unet with stochastic weight averaging is proposed by Tang el al. In
[72], Huang et al. propose a novel architecture called UNET 3+, which takes
advantage of full-scale skip connections and deep supervisions. The full-scale
skip connections incorporate low-level details with high-level semantics from
feature maps in different scales while the deep supervision learns hierarchical
representations from the full-scale aggregated feature maps.In [73] Zhao et al.
proposed a new method for rice lodging assessment based on a deep learning
UNET exploiting UAVs and multi-spectral imaging.

The effectiveness of using R-CNN, FCN and U-NET for the automatic
semantic segmentation of cracks on images is widely demonstrated in the
literature by the presence of several works [77–83]. In [74] Dung et al. propose a
vision-based method for concrete crack detection exploiting FCN using VGG16
architecture as backbone. This architecture proves to perform better than
InceptionV3 and ResNet for crack image classification, reaching 90% of F-
1 score. In [75], Attard et al. demonstrate that Mask R-CNN can be used
successfully in localization and segmentation tasks of cracks on concrete surfaces.
Tests on the trained model achieved a precision value of 94%. As explained
by the authors of both articles, these methods, although very performant in
segmenting the crack, does not solve the problem of accurately measuring its
geometric dimensions automatically.

Nevertheless, all the methods described above are limited to the simple
identification of the crack on the image. What is missing is a complete and
exhaustive technique for identifying and measuring the main characteristics of
the crack: length, average width, maximum width. This measurement is in fact
fundamental in practice in order to understand the degree of severity of the
crack and monitor its evolution over time. Thus, the literature review shows
that there is a need to develop a strategy that can automatically detect and
measure a crack on concrete surfaces. Not only will this technique need to be
metrologically appropriate, but it will also need to be versatile and usable in
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complex situations. Fundamental will be therefore the possibility to embed
this technology on remote systems, such as robots or UAVs, or in portable
systems. This system shall be used during inspection processes even by non-
expert operators, with the feature of not having to resort to bulky, expensive
and difficult to use equipment.
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Chapter 3

Methods

3.1 An optimized ridge detector algorithm for crack
identification

3.1.1 Crack identification via Ridge Detectors: theory
As described in chapter 2, line identification techniques in image processing
is typically addressed by two main image filtering approaches: edge detection
and ridge detection. Despite similar at first impression, they embed important
differences that prevent the use of one approach with respect to the other in
certain applications. An Edge filter is typically a first derivative operator, which
measures the speed with which the intensity level changes in the whole image.
On the one hand, these filters (e.g. Sobel, Canny, Roberts, etc.) well detect
borders between areas of high and low grey values; on the other hand, the output
generates a double-line, one on each side of the line. This is clearly visible in the
concrete crack example image in figure 3.1. While Edge detectors are typically
first derivative operators, Ridge detector algorithms detect thin lines darker or
brighter than their neighbour pixels and work as second derivative operators
(figure 3.2). This characteristic made ridge detectors very suitable for not only
for surface defects detection, but also for width estimation because it allows to
detect the central line position with high accuracy.

For these reasons, in order to detect the central line of concrete cracks, ridge
detector algorithms are better to be used. There are different ridge detection
algorithms in computer vision literature. A well-established ridge detection
algorithm able to locate, link, and measure line width is the well-known Steger
line detector algorithm [84]. For this work we use the Steger’s second-derivative
hysteresis-threshold algorithm. The basic idea is that ridge in a surface will
have high curvature in the direction perpendicular to the ridge, this means
an high second derivative of the image function p(i, j). Furthermore, the first
derivative will be zero at the top of the ridge since it is a local maximum. Thus,
ridges are identified as contiguous sets of points at which p(i, j) has a local high
curvature. The algorithm involves four main different steps:
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Figure 3.1: First derivative behaviour of edge filter is clearly shown through the
3D plot before and after filtration of a wall crack image

Figure 3.2: Original image (a), edge filter (b) and ridge filter (c)
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• line points detection,

• line points joining,

• line width calculation,

• line bias removal.

Line Points Detection

The line point detection step defines which pixels of the image are possible
candidates to belong to line and defines the final line with sub-pixel accuracy.
It is possible to consider cracks, or surface defects, as darker lines in a bright
surrounding, as shown in Figure 3.2. If we take a 2D greyscale image containing
cracks (ridges) and cross-cut perpendicularly to one crack, three different types
of line profile can be obtained (Figure 2.4):

• parabolic line profile (3.1),

• bar-shaped line profile (3.2),

• asymmetrical Bar-Shaped line profile (3.7).

Figure 3.3: Parabolic line profile fp (a), bar-shaped line profile fb (b), and
asymmetrical bar-shaped line profile fa (c), with h = 1, w = 1, and
a = 0.2

fb(x, w, h) =
{

−h, |x| ≤ w

0, |x| ≥ w
(3.1)

fp(x, w, h) =

−h
(

1 −
(

x
w

)2
)

, |x| ≤ w

1, |x| ≥ w
(3.2)
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fa(x, w, a, h) =


0, x < w

−h, |x| ≤ w

−ha, x > w

(3.3)

where 2w is the crack width, h ∈ [0, 1] is the line depth (grey value), and a ∈ [0, 1]
represents the asymmetry of all the lines which have different surrounding heights.
The a value will be zero if there is no asymmetry. As shown in Figure 3.3, is
it clear that the asymmetrical bar-shaped profile (Figure 3.3 (c)) is the more
general and can best fit 1D crack profile in real images (e.g. Figure 3.4). From
this point forward, the term h is neglected from all the calculations because the
asymmetrical bar-shaped line profile can be scaled as hfa(x).

Figure 3.4: 1D Crack line profile from real image

Gaussian kernel convolution

Noise can be an obstacle to identify line points and on a framed image it will
always be present. In the previous chapter it has seen how, through the first or
second derivative, it was possible to identify curvilinear structures in an image.
But an image, which itself contains noise, cannot be directly derived. Figure 3.5
shows the graph of the 1D profile of a curvilinear structure with added noise,
as it could be the profile of a crack on surface. By deriving the function, noise
increases without showing any salient points for identifying the line.

One possible solution to this problem is to convolve the image with a Gaussian
kernel in order to smooth the image according to a σ ∈ R+ parameter. In this
way, it is possible to reduce noise contribution and neglect it as plausible candi-
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Figure 3.5: 1D plot of the intensity of a row or column of an image along the
perpendicular to a line. The plot shows how deriving the intensity
function the noise increases.

date to constitute line points. Figure 3.6 shows how deriving the convolution
between the intensity function and the Gaussian profile, it is possible to locate
the salient points (local maxima) that allow the identification of the line.

Choosing the σ parameter involves the definition of a low threshold, because
it will cut out line under a certain width. For this reason, in this discussion, σ

is used as scale-space parameter, in order to decide the range of line width of
interest. Scale-space theory is a well-known framework in computer vision to
handle the images multi-scale nature. Indeed, the best value of a parameter is
difficult to be known a priori, hence it is more reasonable to represent input data
at multiple scales. Figure 3.7 shows different levels of scale-space representation
of a crack image at scale level σ = 1, 2, 3, 4, 5, 6. The Gaussian kernel gσ and
its derivatives are given by the following equations:

gσ(x) = 1√
2πσ

e− x2
2σ2 (3.4)

gσ(x) = 1√
2πσ

e− x2
2σ2 (3.5)

g′
σ(x) = −x√

2πσ3
e− x2

2σ2 (3.6)

g′′
σ(x) = −x2 − σ2

√
2πσ5

e− x2
2σ2 (3.7)

The Gaussian kernel is then convolved with the asymmetrical bar-shape line
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Figure 3.6: 1D plot of the intensity of a row or column of an image along the
perpendicular to a line. The plot shows how deriving the convolution
between the intensity function and the Gaussian profile, it is possible
to locate salient points (local maxima) that allow the identification
of the line.

Figure 3.7: Different levels in the scale-space representation of a crack image
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profile function. Convolution of two functions produces a third function express-
ing how the shape of one is modified by the other. It is defined as the integral
of the product of the two functions, one of which is reversed and shifted. It is
an integral transform given by the following expression:

(g ∗ f)(x) =
∫ +∞

−∞
g(τ)f(x − τ)dτ (3.8)

The convolution, r(x, σ, w, a), of the Gaussian function and asymmetrical bar-
shape line function, is given by the following expressions:

r(x, σ, w, a) = gσ(x) ∗ fa(x, w, a) = ϕσ(x + w) + (a − 1)ϕσ(x − w) (3.9)

r′(x, σ, w, a) = g′
σ(x) ∗ fa(x, w, a) = gσ(x + w) + (a − 1)gσ(x − w) (3.10)

r′′(x, σ, w, a) = g′′
σ(x) ∗ fa(x, w, a) = g′

σ(x + w) + (a − 1)g′
σ(x − w) (3.11)

The integral function, ϕσ(x), of the Gaussian kernel is reported as follow:

ϕσ(x) =
∫ x

−∞

1√
2πσ

e− x2
2σ2 dt (3.12)

Unfortunately, Equation 3.12 cannot be solved analytically. As shown in Figure
3.8, after convolving the Gaussian kernel to bar-shaped line profile, the profile
becomes smoother and fit better a real crack profile. This also leads to the

Figure 3.8: Gaussian kernel (a), bar-shaped line profile (b) and the result of
their convolution (c) with σ = 0.2, w = 1, a = 1.
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detection of the centre of the curve using the zero point of the first derivative
r′(x, σ, w, a). The x position where the first derivative become zeros is given
by:

r′ = (x0, σ, w, a) = 1√
2πσ

e− (x0+w)2

2σ2 + (a − 1) 1√
2πσ

e− (x0−w)2

2σ2 (3.13)

e− (x0−w)2

2σ2 = (1 − a)e− (x0−w)2

2σ2 (3.14)

− (x0 + w)2

2σ2 = − (x0 − w)2

2σ2 + ln(1 − a) (3.15)

− (2x0)(−2w)
2σ2 = ln(1 − a) (3.16)

x0 = − σ2

2w
ln(1 − a) (3.17)

Equation 3.17 clearly demonstrates that, if we use the zero point of the
first derivative r′(x, σ, w, a) to locate the line position, x0 will be affected by
a significant error if the line is asymmetrical. The correction of this bias is
one of the key points of the Steger’s algorithm and will be discussed in detail
later in the next chapter. If we look at Figure 3.9, which shows the scale-space
behaviour of a bar-shaped line profile (h = 1, a = 1, w = 1) when convolved with
the derivatives of Gaussian kernel, it is easy to note that the second derivatives
do not have the maximum on x = 0 for small sigma values. In order to select

Figure 3.9: Scale-space behaviour of the bar-shaped line profile when con-
volved with the derivatives of Gaussian kernel for x ∈ [−3, 3], σ ∈
[0.2, 2], a = 1 and w = 1

salient line points, it is desirable that the second derivative of the response
r′′(x, σ, w, a) presents a maximum at x = 0 (line centre), that is the true line
position. As shown in Figure 2.9, this happens only after a certain value of σ.
Once this has been assessed, line point detection can be performed. The value
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3.1 An optimized ridge detector algorithm for crack identification

Figure 3.10: Scale-space behaviour of the bar-shaped line profile when convolved
with the derivatives of Gaussian kernel for x ∈ 0, σ ∈ [0.2, 2], a = 0
and w = 1

of σ where the function r′′(0, σ, w, 0) takes its maximum can be found by:

∂

∂σ
r′′

b (0, σ, w, 0) ≤ 0 (3.18)

∂

∂σ
r′′

b (0, σ, w, 0) = ∂

∂σ
[g′′

σ(0) ∗ fa(0, w, 0)] = ∂

∂σ
[g′

σ(w) + g′
σ(w)] (3.19)

g′
σ(w) + g′

σ(w) = − −w√
2πσ3

e− −w2

2σ2 = e− −w2

2σ2

(
− −2w√

2πσ3

)
(3.20)

∂

∂b
(g′

σ(w) + g′
σ(w)) = w2 1

σ3 e− w2
2σ2

(
− −2w√

2πσ3

)
+ e− w2

2σ2

(
2w√
2π

)
(3)
(

1
σ4

)
(3.21)

w2 1
σ3 e− w2

2σ2

(
− −2w√

2πσ3

)
+ e− w2

2σ2

(
2w√
2π

)
(3)
(

1
σ4

)
≥ 0 (3.22)

e− −w2

2σ2

√
2π

(
−2w3

σ6 + 6w

σ4

)
≥ 0 (3.23)

2w(2σ2 − w2) ≥ 0 (3.24)

σ ≥ w√
3

(3.25)

This imply that σ not only imposes a lower limit due to the smoothing of the
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Gaussian kernel, but also an upper limit where the function r′′
b (0, σ, w, 0) reach

its maximum. From now on this will be referred to be the Steger limitation. This
upper limit depends on the line width value 2w. The next step is to determinate
the ridge location with sub-pixel accuracy. At first, we will illustrate the 1D
lines case, then we will move this concept for 2D lines. The second order Taylor
polynomial of the piecewise image function is given by:

p(x) = r + r′x + 1
2r′′x2 (3.26)

where r, r′ and r′′ are the previously obtained results of convolving with
Gaussian kernel. The ridge location will be where the first derivative of the
function becomes zero.

p′(x) = r′ + r′′x = 0 (3.27)

x = r′

r′′ (3.28)

For 2D images, it is possible to approximate locally the pixel value by a second
order polynomial. If the image function is called p(i, j), for small values of i

and j it is possible to express p(i, j) as:

p(i, j) ≈ 1
2 i2 ∂2p

∂i2 + ij
∂2p

∂i∂j
+ 1

2j2 ∂2p

∂j2 + i
∂p

∂i
+ j

∂p

∂j
+ p(0, 0) (3.29)

In matrix form, it is possible to write:

p(i, j) ≈ 1
2

(
i

j

)(
∂2p
∂i2

∂2p
∂i∂j

∂2p
∂i∂j

∂2p
∂j2

)(
i j

)
+
(

i

j

)(
∂p
∂i

∂p
∂j

)
+ p(0, 0) (3.30)

The second order derivative matrix is the Hessian Matrix H and it describes
ridges structure:

H(i, j) =
(

∂2p
∂i2

∂2p
∂i∂j

∂2p
∂i∂j

∂2p
∂j2

)
(3.31)

It is possible to decompose this matrix into the sum of two parabolic functions
according to the following equation:

H(i, j) = λ1i2 + λ2j2 (3.32)

where λ1 and λ2 are the eigenvalues of H(i, j) matrix. This function can assume
different shapes depending on λ1 and λ2 values. The plot of the function with
different λ1 and λ2 values are shown in Figure 3.11.

To detect ridges, it is easy to note that the function H(i,j) must look like
the graph relating to λ1 = 1 and λ2 = 0, i.e. bottom right image of Figure

26



3.1 An optimized ridge detector algorithm for crack identification

Figure 3.11: Shaped assumed by the decomposition of the Hessian matrix vary-
ing λ values.

3.11. If we want to detect ridges, we must look for all p(i, j) pixels where
the absolute difference between eigenvalues of the Hessian matrix is maximum.
Then, it is possible to calculate the eigenvector corresponding to the eigenvalue
of H(i, j) with maximum absolute value (ni, nj) with |(ni, nj)|2 = 1. This
vector represents the direction perpendicular to the line. For 2D images, the
first directional derivatives r′ and r′′ along (ni, nj) are given by:

r′ = ∂p

∂i
ni + ∂p

∂j
nj (3.33)

r′′ = ∂2p

∂i2 n2
i + ∂2p

∂j2 n2
j + ∂2p

∂i∂j
njni (3.34)

From Equation 3.17, the line point sub-pixel location t can be determined as:

t = −
∂p
∂i ni + ∂p

∂j nj

∂2p
∂i2 n2

i + ∂2p
∂j2 n2

j + ∂2p
∂i∂j njni

(3.35)

Therefore, given the longest eigenvector n = (ni, nj), the directional derivate
along n vanishes in the point given by:
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p = (pi, pj) = (tni, tnj) (3.36)

In conclusion, the line point detection phase works as follows:

• Calculation of the local Hessian Matrix for each pixel storing eigenvectors
and eigenvalues.

• Application of an hysteresis threshold on pixels eigenvalues: any pixel
that has a value above the higher threshold will be marked as possible
line pixel, and any pixel whose value lies between the higher and the lower
thresholds, but is connected to a pixel whose value is above the higher
threshold, will also be marked as possible line pixel. All the other pixels
of the image are rejected.

• For each of the selected line pixels, the local point (tni, tnj) is calculated.
The global line point coordinates will be given by (c + tni, r + tnj), where
c, r are the number of column and row of the target pixel, respectively.

Line points joining

From the line point detection step, for each possible line point pixel, the following
information is obtained:

• Direction of the longest eigenvector n = (ni, nj), which represents the
direction perpendicular to the line.

• Subpixel position where the directional derivative along n vanish (c +
tni, r + tnj).

The next step will join all these points into lines, when possible. All the
possible points are examined based on their position on the image, from top left
to bottom right. At this point, Steger assumes that line does not have sharp
corners. For this reason, as shown in Figure 3.12, it is sufficient to examine only
three of the eight neighbours of each pixel based on the direction perpendicular
to the normal n founded in the previous step.

Once three neighbours are selected, the algorithm examines only those points
belonging to a line. For each line point, the distance d and the angle difference
β are measured. The point that minimizes the value of d + cβ is chosen as point
to join to the current point, where c is set to 1. This step is repeated until no
line points fall into examinable neighbours. If a point belonging to another line
is selected as point to join with, that point became a junction, and the line of
the junction point is split into two parts obtaining three lines in total.
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Figure 3.12: Neighbours selection based on the angle perpendicular to the nor-
mal n of the current line point.

Line width calculation

Once the lines in the image are located with sub-pixel accuracy is possible to
measure their width depending on the σ value. For line width determination, we
must look for edges along the direction perpendicular to the line. To determine
the neighbour pixel perpendicular to the line, Steger implements in the script a
modified Bresenham algorithm [85], which calculates all intermediate points over
the interval between start and end points, implemented entirely with integer
numbers, in order to select which pixel belong to the desired line. From the
previous section, we know that it is sufficient to look at a distance of

√
3σ, but

the algorithm refers to a larger value of 2.5σ (Figure 3.13), in order to ensure
that almost all the edge points are detected and stay on safe side. Once all of
the points belonging to the normal of the line are founded , the algorithm looks
for the point where the absolute value of the gradient is maximum and it uses
an approach similar to the previous step used to find line points, in order to find
where r′′ vanishes. As shown in Figure 3.9, r′′ will vanish at the edge location
of the line, so we will find two edge points, namely el on the left and er on the
right side, where r′′(el, σ, w, a) = r′′(er, σ, w, a) = 0. This equation cannot be
solved analytically, so they are computed by a root finding algorithm. If for
some reason the line edges are not located, the line width is linearly interpolated
to the closest line points width.
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Figure 3.13: Bresenham algorithm used to look for pixels perpendicular to the
line until a distance of 2.5σ

Bias removal for asymmetrical lines

Inverting the expression r′′(el, σ, w, a) = r′′(er, σ, w, a) = 0 founded in the
previous step, it is possible to obtain the true value of w and a, assuming that
w and σ are not independent. For this reason, σ value can be fixed to 1 and
use values normalized to σ. In order to determine the optimal w and a value,
more information is needed to solve the equation. Other information can be
given by the ratio r = |r′(el, σ, w, a)|/|r′(er, σ, w, a)| of the gradient at detected
edges el and er, which can be observed in the image. Then, since the equations
are not analytically solved, a root finding algorithm is used to create an inverse
function in order to determine w and a, once given the edge location and the
gradient ratio. Steger in his algorithm pre-calculate some selected values of
this function and interpolation is used to obtain other values during the bias
removal step [84].

Ridge detector algorithm testing on lab-scale crack scenario

As largely described in chapter 3.1.1, Steger algorithm can measure line pixel
width; therefore, it is possible to use this algorithm for detecting and evaluating
crack width in images. The evaluation of the width w depends on several
parameters, including Lower l and Upper u threshold (hysteresis threshold) and
σ value of the convolved Gaussian kernel. While the first two parameters depend
on the line contrast h that can be estimated through the histogram associated
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to the intensity distribution of the image, the σ value strongly depends on the
crack width itself. As described in 3.1.1, salient lines are defined by their second
directional derivative:

r′′(x, σ, w, a, h) = h(g′′
σ(x)∗fa(x, w, a)) = h(g′

σ(x+w)+(a−1)g′
σ(x−w)) (3.37)

Assuming zero asymmetry, Steger limitation 3.25 and remembering that w is
the half of line width, is possible to write up the following expression:

r′′(w, σ, h) = h(g′
σ(2w))) (3.38)

r′′(w, σ, h) = h

(
−2w√
2πσ3

e− 2w2
2σ2

)
(3.39)

r′′(σ, h) = h

(
−2

√
3σ√

2πσ3
e− 2(

√
3σ)2

2σ2

)
(3.40)

r′′(σ, h) = h

(
−2

√
3√

2πσ2
e−3
)

(3.41)

Then σ value and the line contrast h can be plugged into the above equation
to yield an upper threshold u for the algorithm. The lower threshold can be
estimated as a fraction of upper threshold [84]. The σ value cannot be known
a-priori, nevertheless the σ value can be estimated.

The algorithm is tested on lab-simulated cracks through a dedicated setup
(Figure 3.14). A camera is fixed on a tripod and an artificial crack is realized
with two plastic plates on the mobile and fixed elements of a micro-metric stage
(Newport 3-axis motion controller ESP300, uncertainty ±0.01mm). The setup
is illuminated homogeneously, for avoiding illumination gradient problems. The
distance between camera and crack was fixed to 500 mm. The camera used
in this setup is a 24mpx Nikon D7200 equipped with 60mm 2.8 Nikon Macro
Lens. The width of the artificial crack is varied through the sliding stage and
30 images were acquired varying the crack width between 0.3 and 3.5 mm, with
0.1 mm steps in one direction and then in the other.

Two pose estimation markers were used to find pixel-to-mm conversion
constant. The process of pose estimation is based on looking for correspondences
between points in the real environment and their 2D image projection were
considered and binary square fiducial markers were used for this purpose; in
particular, the ArUco markers were employed. The Augmented Reality library
from the University of Cordoba [6, 7] (ArUco) module is based on the ArUco
library, which was developed by Rafael Muñoz and Sergio Garrido [6, 7]. They
are synthetic square markers with a wide black border (to detect the markers
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Figure 3.14: Artificial crack used for ridge detector algorithm testing on lab-
scale scenario

position in the image) and an inner binary matrix (to identify each marker).
Two ArUco markers were applied to the setup of the artificial crack, two for each
side. Since the marker’s dimensions were known, the pixel-to-mm conversion
constant of the image was derived, measuring the average length of each side
of the markers. The workflow used for the ridge detector algorithm testing on
lab-scale scenario is described in Figure 3.15. As starting input for Steger’s
line detector, a fixed set of parameters (lower and upper thresholds of pixel
eigenvalues and σ value) was considered. At first, the two ArUco markers were
detected in order to compute the pixel-to-mm conversion constant. The laser
triangulation measurement system Gap and Flush laser triangulation system [8]
(G3F) for measuring artificial crack gap is used as reference [8]. All these steps
were repeated with all image set that show an increasing and decreasing crack
aperture values in order to evaluate the algorithm performances at different
crack apertures. The artificial crack can be detected by the Steger’s algorithm,
which also can measured its mean width in pixel that can be converted in mm
with the conversion constant found before.

Steger’s algorithm was applied to the 30 collected images following the proce-
dures explained in Figure 3.15. While lower and upper threshold parameters
can be calculated with 3.41 because depend only on image contrast h, that
is constant in each image, the choose of the correct σ parameter depend only
on crack aperture. For this reason, the algorithm is tested on the 30 images
multiple times using different σ values (σ = 3, 7, 15, 23). Figure 3.16 shows
the comparison between width measured with Steger algorithm (green dots),
G3F measurement system (red dots), and slider position (blue dots). Lower
values of σ are suitable for thinner cracks, and higher values of σ are suitable
for thicker cracks. It is easy to note that it is not possible to well approximate
any crack mean width using a fixed σ value without knowing a priori the order
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Figure 3.15: Workflow used for ridge detector algorithm testing on lab-scale
scenario
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of magnitude of the crack.

Figure 3.16: Steger algorithm used to measured artificial crack width varying
σ input parameters: comparison among Steger algorithm (green
dots), G3F measurement system (red dots), and slider position
(blue dots) for different σ values (σ = 3 (a), σ = 7 (b), σ = 15 (c),
σ = 23 (d)).

In order to better understand its behaviour, the algorithm was applied to
synthetic lines with known width and asymmetry. Blur filter was applied to
the generated synthetic lines, hence adding noise and making the image more
realistic (3.17). Steger’s algorithm was applied at the same image by varying σ

value and fixing upper and lower thresholds, according to the workflow shown
in Figure 3.18, using σ as space-scale parameter.

A synthetic line is generated with known width and blur. The line contrast
h in known, so the upper and lower threshold parameters can be calculated
analytically with 3.41 at each σ. Starting from σ = 1 , Steger line detector is
applied to the image and the mean half width ŵ of the detected line is stored.
These steps are repeated increasing each time the σ value until σ = σmax, where
σmax is determined by the operator. The mean line width ŵ value calculated
by Steger’s algorithm by varying σ value from 1 to 30 is shown in Figure 3.19.
The calculated ŵ at each step ŵ(σ1), ŵ(σ2), ŵ(σ3), ...,ŵ(σ30), is represented by
the blue dots. The blue line represents the target width value (the algorithm
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Figure 3.17: Synthetic line with known width and asymmetry (left); synthetic
line on the left blurred with blur filter to get a more realistic
representation of the image (right).

Figure 3.18: Flow chart used for ŵ(σi) behaviour examination in order to find
a proper σ value target line
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calculates w, that is half line thickness). The red line determines the Steger’s
algorithm upper boundary given by 3.25, where the second derivative should
take its maximum; under that line the σ boundary is respected. It easy to
notice that the measured ŵ(σi) closer to this line is also the closest to the target
values. In this way, it is possible to determine line width without knowing
the line thickness a priori, applying the algorithm several times on the same
image using σ value as a scale-space parameter. As shown in Figure 3.19, by
varying blur noise condition or increasing synthetic line width, the previous
considerations do not change.

Figure 3.19: Flow chart used for ŵ(σi) behaviour examination in order to find
a proper σ value target line

Observing the obtained results, it is easy to notice that increasing σ value
will make ŵ(σi) increase as well. The red circle in Figure 3.20 identifies the
ŵ(σ∗

i ) that well approximates crack width (i.e. half of the target, 11.5 in this
example) where σ∗ is the value that led Steger algorithm to obtain the ŵ(σi)
that better approximates the target line width (i.e. σ∗ = 5 in the considered
example).

Looking at Figure 3.21, it is possible to make two main observations:
Therefore, it is necessary to find a methodology suitable to find σ∗ based

on ŵ(σi) trend that can led good results whatever the thickness value is. The
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Figure 3.20: The red circle identifies the ŵ(σi) that best fit target line thickness
(remember that line thickness is 2w).

identification of a correct σ value is of key importance in assessing the correct
line width. A novel methodology was defined to well estimate the optimal σ∗

value. The σ value that minimizes the error between ŵ(σ) and target w is
always located on the Knee Location Kl of the ŵ(σ) = ŵ curve, where the
width changes fast its value (Figure 3.21).

Figure 3.21: The red circle identifies the ŵ(σi) that best fit target line thickness.
Increasing line thickness, the intersection between σ restriction
(red line) and measured average width ŵ(σi) trend (green dashed
line) is no more representative of σ∗ location.

3.1.2 Optimized ridge detector algorithm
In section 3.1.1 has been proven as the identification of a correct σ value is of
key importance in assessing the correct crack width. This section describes a
novel methodology to well estimate the optimal σ∗ value. From the previous
examples, it is easy to notice that the σ value that minimizes the error between
ŵ(σ) and target ŵ is always located on the Knee of the ŵ(σ) = ŵ curve, where
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σstart σend σdelta ek [px] eS [px]
1 30 1 0.017 0.202
1 30 2 0.018 0.203
1 30 3 0.034 0.250
1 30 4 0.059 0.250
1 30 5 0.099 0.250
1 30 6 0.153 1.188
1 30 7 0.211 1.200

Table 3.1: Comparison among σ values obtained by knee location and Steger
domain intersection

the width changes fast its value. For this purpose, a set of synthetic images are
generated with line width from 2 to 92 pixels with a step of 2 pixel (45 images
in total) and fixed 5 X 5 gaussian blur. In Table 3.1 the comparison in terms of
mean absolute error (45 cases in total), use of σ values corresponding to Knee
Location Kl and σ values corresponding to the intersection with Steger lower
boundary is shown. Seven cases are considered varying the σspan values from 1
to 7. The use of the σknee values corresponding to the Knee Location strongly
minimizes the mean absolute error in all the considered cases.

Figure 3.22 shows 5 measures superimposed at different thickness (2, 12, 22,
32 and 42 pixels); the σ value is varied from 1 to 30 in a step of 0.5. Blue
lines represent the true ŵ values, red lines are the linear interpolation of the
measured ŵ(σ1), ŵ(σ2), ŵ(σ3), ...,ŵ(σ60), and green dots are the knee position
at each case considered . It is easy to note that the knee position, that is also
the minimum error location, seems to follow a linear trajectory.

Figure 3.23 shows the linear interpolation of the knee positions for 45 images
with different line thicknesses. The resulting line can be considered as an
optimization line hosting those σ values minimizing the error between the actual
and the estimated width value. Now it is possible to determine the optimum σ

value, σopt, providing the minimum absolute error.
For computational time reason, it is not practical to apply Steger algorithm

60 times on the same image (one time for each σ on the set). As shown in Table
3.2, the usage of a σ span of 0.5 between 1 and 30 (60 repetitions of Steger
algorithm) means approximately 60 s of computational time (Core i5-655K).

The number of different σ was therefore reduced to 5 and the optimisation
curve found in the previous step was employed to find σopt. The Steger’s
algorithm was applied 5 times (Figure 20) with a σspan = 6 (σ = 1, 7, 13, 19, 25
). The ŵ(σi) values obtained are plotted (red dotted line); then, the knee is
located (Point 1). Obviously, the knee location cannot be part of optimization
line previously found because before a σ span of 0.5 was used. The knee location
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Figure 3.22: Five measurement with lines at different thickness are superimposed
in order to observe how the knee position change according to the
line width.

Figure 3.23: Linear interpolation of knee position for 45 lines images with
thickness from 2 to 92 pixel. The obtained line localizes the σopt

at each line thickness.
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σstart σend σdelta Computational Time [s]
1 30 0.5 60
1 30 1 34
1 30 2 19
1 30 3 13
1 30 4 9
1 30 5 8
1 30 6 7
1 30 7 6

Table 3.2: Computational time for a σ span of 0.5 between 1 and 30

is then projected on the optimization line (point 2) and the σopt is obtained. In
the end, Steger algorithm is applied to the image with σopt parameter.

Figure 3.24: Steps used in order to find σopt using a few numbers of different σ
(5 in this case) based on the optimization line previously obtained.

The introduction of this new methodology involves significant improvements
in terms of absolute error, as shown in Table 3.3. The eo associated with
σspan = 7 is three times lower than the ek at σspan = 1 (ek = 0.017[px] at
σspan = 1,eo = 0.006[px] at σspan = 7).

This procedure is then extended to other types of lines besides the horizontal
one: V-shaped line, diagonal line, and circle line (Figure 3.25). Results of this
experiment are reported in Table 3.4. Even in this case, the method correctly
locates line position and well estimates its width.

Finally, the method was applied to the real artificial crack used in the previous
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σstart σend σdelta ek [px] eo [px]
1 30 1 0.017 0.001
1 30 2 0.018 0.001
1 30 3 0.034 0.001
1 30 4 0.059 0.002
1 30 5 0.099 0.002
1 30 6 0.153 0.004
1 30 7 0.211 0.006

Table 3.3: The table shows the variation of Knee and Optimization error due
to the increase of σdelta

σstart σend σdelta ek [px] eo [px]
V shaped 1 30 5 0.13 0.09
Diagonal 1 30 5 0.14 0.07
Circle 1 30 5 0.13 0.07

Table 3.4: Optimization error for v-shape, diagonal-shape and circle-shape lines

Figure 3.25: Circle line (a), v line (b) and diagonal line (c) used to validate the
width estimation optimization methodology
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σstart σend σdelta ek [mm] eo [mm]
1 30 2 0.011 0.007

Table 3.5: Optimization error for real crack case

chapter. The width of the artificial crack was varied through the sliding stage
using the same procedure described in the previous chapter. The results are
reported in terms of absolute error with a reference crack mean width of 0.40
mm in 3.5.

The width of the artificial crack was varied through the sliding stage and 30
images were acquired varying the crack width between 0.3 and 3.5 mm with
0.1 mm steps in one direction and then in the other. For each step, an image
was acquired, and the optimization procedure was applied (Chapter 3.1.1). The
comparison between the crack mean width measured by the proposed algorithm
(green line) and G3F laser triangulation system is reported in Figure 22; the
mean absolute error was equal to 0.02 mm and 0.06 mm with and without the
proposed optimization technique, respectively.

Figure 3.26: Performance of proposed algorithm compared to G3F triangulation
system
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3.1.3 Open issues
In conclusion, This chapter discussed the use of a ridge detector approach
to locate a crack and measure its width. It has been proved that the Steger
Ridge Detector, combined with the new developed parameters optimization
technique, is able to locate and measure lines and crack on lab-scale scenario
with high accuracy and low computational time comparable to more established
measurement system based on laser triangulation. But unresolved issues remain:

1. In the Sigma Optimization procedure is taken for granted that Steger
algorithm is able to located the entire line with every value of σ. In a
real-scale scenario this may not happen due to the complexity of the crack
and the variation of with w and contrast h along the line.

2. In a real-scale scenario is not possible to know a-priori line contrast h

because the histogram can be easily affected by disturbing elements.

3. In a real-scale scenario there is no guarantee that during the Sigma
Optimization procedure the algorithm focuses on the same crack: varying
σ value it is easy for the located crack to change making the entire
procedure pointless.

4. In a real-scale scenario there is no guarantee that the ridge detector will
focus only on target crack. The presence of disturbing element or other
cracks will make the entire procedure pointless.

5. The established procedure is applied to the entire image resulting in high
processing times. Even a computational time of 6s (σspan = 7) may be
too long for several applications.

6. The ridge detector is not able to distinguish cracks from scratches or other
disturbing elements.

From all these observation comes the need for a technique able to narrow the
working area around the target crack in order to reduce computational time and
avoiding wrong detections. In this way there will be also possible to calculate
precisely the line contrast based on local image histogram. It can be concluded
that the developed Sigma Optimization Technique as it is brings remarkable
improvements in terms of line width measurements and resolves the problem of
algorithm parameters selection in lab-scale scenarios. Nevertheless the technique
presents strong limitations if applied to a real-scale scenario.

3.2 AI-based preprocessing for cracks isolation
Chapter 3.1 proves that Ridge Detectors are valid algorithms to identify and
measure crack width (3.27). For highly featured images in which cracks as well
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as other elements (e.g. objects, scratches on the wall, ...) are present (see, for
instance, 3.28 a), ridge detection algorithms fail to detect cracks location and
width (3.28 b), hence it is necessary to find an autonomous technique to isolate
the areas containing the crack directly on the image.

Figure 3.27: Ridge detector well detect cracks as curvilinear structures.

Figure 3.28: The ridge detector algorithm cannot distinguish between wall
cracks, scratches and other disturbing elements that can be included
in a real image.

The key idea discussed in the following is to exploit Neural Networks to
create a procedure able to improve crack detection. After proper training, the
network can autonomously detect regions of interest (Region of Interest (ROI)s)
containing only real defects, i.e. cracks. Once the crack is roughly isolated in
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the image, its correct position can be identified by the ridge detector algorithm
presented in the previous section. This strategy avoids measurement errors and
optimizes computational costs, given the reduced size of the image on which
ridge detection is performed. Four different neural approaches were investigated:

1. Convolutional Neural Networks (CNNs) for image classification.

2. Convolutional Neural Network (CNN) sliding windows for image segmen-
tation.

3. CNN to Fully Convolutional Neural (Fully Convolutional Neural Network
(FCN)) Networks for image segmentation.

4. U-NET for image segmentation.

3.2.1 Convolutional Neural Network for image classification
CNN architecture is very similar to classic Neural Networks. Like the more
ordinary Multi-layer Perceptron (Multi-layer Perceptron (MLP)) [86] is a su-
pervised learning algorithm that learns a function f(·) = Ri → Rj by training
on a dataset, where i is the number of dimensions for input (image dimension)
and j for the output (number of classes). The basic component of the network
is the Artificial Neuron, a simple operation unit with weighted input and biases,
which produces output through an activation function that fixes the output
value boundaries and determines the neuron activation threshold. All these
Artificial Neurons are arranged into layers of neurons and all the Neurons are
connected to all the Neurons of the next layer as Fully Connected layers. In
addition to this, in the CNN architecture, convolutional and pooling operations
are applied to the input image to generate an output to transfer to one or more
fully connected layers. The output prediction is then obtained at the end of
the network, where an activation function (e.g. SoftMax [87]) is used. A CNN
algorithm typically works in two main phases. Starting from a complex input
(e.g. images), passing through several pooling and convolutional layers, features
are extracted. Then a classification is performed based on the previous feature
learning phase. A CNN mainly involves the following operation: convolution
layers, pooling layers, fully connected layers [88]. The convolutional layers
convolve inputs with learnable filters (kernels), generating a feature map for
each applied filter. Each feature map is joined together into a volume obtaining
the output of the convolutional layer. The kernel has specific dimensions, stride,
and padding (typical zero padding) and determines the output dimension. The
stride is the parameter that controls how the filter convolves around the input
volume. The convolution output volume dimension follows the expression 3.42

O = W − K + 2P

S
+ 1 (3.42)
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where O is the output volume dimension, W is the input dimension, K is the
filter size, P is the padding, and S is the stride. After each convolutional
layer, there is an elementwise activation function (e.g. Rectified Linear Unit,
maxf(x, 0)) in order to add non-linearity in the feature map [89].

The most frequent pooling technique involves max and average pooling. The
pooling layer always reduces the dimension of the input feature map from the
convolutional layer. The input is divided into subregions and each is replaced
by its average (average pooling) or max (max pooling) value. Pooling layers
lead a spatial subsampling of the input feature, making the results more robust
to changes in the position of the feature in the image (e.g. crack location) [90].
The pooling layer adds the so-called propriety of invariance to local translation
to the model. In the end, the last layer is flattened into a Fully Connected layer
that will feed the classifier. The most famous classifier is the Soft-max function,
that returns the probability value of belonging to a certain class given a certain
input [91].

For the purpose of this work, the CNN VGG-19 architecture is chosen as
classifier. VGG-19, presented in [92], is a convolutional neural network that is
19 layers deep, with an image input size of 224-by-224. This type of architecture
has been shown to be particularly efficient for classification tasks in terms of
accuracy, size, and scalability. In fact, its architecture makes it possible to
convert the model into more complex networks (e.g., semantic segmentation
tasks) as we will see in later chapters. The network includes 13 convolutional
layers with filter size of 3 X 3 and fully connected layers. The padding and
the stride are fixed to 1 pixel for all the convolutional operations. As shown
in 3.29,each group of Convolutional layers is followed by a max pooling layer,
and the Fully Connected layers end with the Soft-max activation function.
The last VGG19 FC layer size is then modified from 1000 to 2, in order to
perform a binary classification (cracked and non-cracked). In order to train the

Figure 3.29: VGG19 original architecture [92]

model, a large dataset of images containing/not-containing cracks is needed.
A set of 56000 images in several different scenarios (cracked and non-cracked
concrete bridge decks, walls, and pavements) were collected from SDNET2018
[93, 94]. SDNET2018 is an annotated image dataset for training and validation
of artificial intelligence-based crack detection algorithms for concrete. The
database crack width ranges from 0.06 mm to 25 mm. The dataset includes a
variety of obstructions: shadows, surface roughness, scaling, edges, holes, and
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background debris [94]. This database has never been tested in the literature
with the configuration described in this thesis work. The databank is split into
a training set and a validation set, with a ratio of 5:1. The entire train process
can be summarized as follows. The model training starts initializing all the
filters and weights with random values. Then, it takes the first image from the
training dataset and performs the forward computation through convolutional,
pooling, and fully connected layers, returning the class output that encodes the
probability for the input image of belonging to a particular class. At the first
iteration, the output probability will be random. The error of the output layer
is then calculated through a loss function. Since a binary classifier is modelled
(cracked or non-cracked), the binary cross-entropy loss between true label and
predicted label is calculated as 3.43.

BCE = −
C∑

i=i

tilog(si) (3.43)

Where BCE is the Binary Cross-Entropy loss, C is the number or classes (2 in
this case), ti is the true label, and si is the predicted label [95]. The next steps
are Backpropagation followed by parameter updates. The Backpropagation step
calculates the gradient of the error with respect to all network filters/weights
and uses the gradient descent in order to perform the parameter update mini-
mizing the output error, by adjusting the filters/weights proportionally to their
contribution to the total error. Successively, all the steps are repeated: the
next image is used as input for the forward computation using the weight found
with the previous image, and so on, until the training set is finished. Several
hyperparameter configurations (e.g. learning rate, number of epochs, batch size,
weight initialization, . . . ) were tested, in order to improve network performances
in terms of loss, accuracy, and false positives, simultaneously avoiding overfitting
[96]. The training was performed in a Python-Caffe environment obtaining
0.924 validation set accuracy and 0.213 validation set loss. While the loss is
defined by the loss function, the accuracy is a metric that can be applied only
to classification tasks and describes just what percentage of the test data is
classified correctly (e.g. if the binary classification has 1000 test samples and
the model is able to classify 900 of them correctly, then the model’s accuracy
will be 90.0%).

3.2.2 CNN sliding windows for image segmentation
The model obtained in the section 3.2, based on VGG19 CNN, is able to predict
if an image contains cracks or not. Since the model was trained with 224x224
images which contain only a small portion of concrete surfaces in different
scenarios, it is not able to predict and detect the presence of defects in real
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large images. One might think of applying the CNN repeatedly in a 224x224
sliding window with a target stride and a proper padding 3.30. Then, all the

Figure 3.30: Image segmentation through CNN sliding window

windows predicted as ‘cracked’ can be used to create a mask, obtaining an
image that contains only cracked regions 3.31, in order to ensure that the ridge
detector works only in the proper region of interest, avoiding local disturbing
elements. The problem of this approach is the high computational cost: the

Figure 3.31: Image segmentation results through CNN sliding window technique

CNN is inferenced N times, where N is the number of windows slid on the image
multiplying, in this way, the time consumption. This problem can be solved
through an image semantic segmentation by a convolutional implementation of
the sliding window algorithm. This process allows to pass from CNN to Fully
Convolutional Neural Networks.

3.2.3 CNN to Fully Convolutional Neural Networks for image
segmentation

The CNN classification architecture has different downsides:

1. The input image dimensions are fixed by the problem.
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2. The output is a discrete probability distribution that represents the
dominant class in the input image.

3. The location information of the predicted class cannot be obtained except
through the sliding window approach that lead with high computational
time.

Model architecture that practises semantic image segmentation eliminates all
these drawbacks. In order to perform a semantic segmentation with the obtained
CNN weights, the Fully Connected layers are replaced with convolutional ones,
converting the model into a Fully Convolutional Neural Network model. This
option is preferred to CNN sliding window for computational time reasons.
The entire model conversion process can be summarized as follows (Figure
3.32). Starting from a simple CNN, all the Fully Connected layers are replaced
by a convolutional 1X1 kernel; in this way, 3 convolution kernels are added
to the network architecture. Figure 3.32 shows an example of a simplified
version of VGG19 binary classifier that, like in the case of this work, takes as
input one 224 X 244 X 3 (RGB) image and returns a classification vector of
length 2 (number of classes probability). At first glance nothing seems to be

Figure 3.32: CNN architecture is converted to FCN replacing Fully Connected
layers into Convolutional layers

changed; however, thanks to this alteration of the architecture, it is possible
to take as input bigger size images. Applying a sliding window with a stride
of 2 in a set image of size 2240 X 2240 X 3 would mean applying the CNN
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1007 times ([(2240-224)/2]-1 according to the previous formula), because the
window will assume 1007 different positions along the image. Figure 3.33 shows
that, instead of applying the sliding windows algorithm, if 2240 X 2240 X 3
image is given to the FCN network, with no change in terms of convolutional
kernel dimensions, a vector 1007 X 1007 X 2 is obtained. Each element of the
final vector represents the class probability obtainable by a hypothetical sliding
algorithm. For example, the first red element of the output vector describes
the probability value of belonging to a certain class of the region 224 X 224
X 3 which would cover the first window in the input image, the second green
one to the second (with a stride of 2 due to the max pooling layer 2x2), and so
on (Figure 3.33). The convolutional implementation of sliding window leads

Figure 3.33: CNN architecture is converted to FCN replacing Fully Connected
layers into Convolutional layers

to perform all the predictions at the same time, decreasing dramatically the
computational time, hence making the CNN much more efficient. All these
concepts are adopted in order to convert the modified VVG19 CNN into FCN
architecture. The output tensor will be a tensor of N X SV X SH, where N

is the number of classes and SH and SV are the number of sliding windows
along vertical and horizontal axes, whose stride depends strictly on max pooling
layers. When an image passes through the convolutional VGG19 model, coarse
features are extracted. Since the purpose of the semantic segmentation is to
perform pixel-wise prediction, all these coarse features obtained have to be
reconstructed through the addition of a deconvolutional layer, which is then
put on the top of FCN VGG19 model. In this way, the down-sampled response
maps from the new architecture are up-sampled through this deconvolution
layer, producing the feature that can be used to predict class labels at all the
pixel locations. A value P from 0 (non-cracked) to 1 (cracked) is assigned to
each pixel of the input image. A binary threshold on pixel-wise class label is
then applied: all pixels with P < 0.8 are turned into black pixels. In this way,
ROIs are automatically selected in an easy way, where only cracked concrete
regions are included (Figure 3.34). A number of 50 real cracked wall images were
collected. For each image, two different methods were applied to the images:
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Figure 3.34: Crack ROI detection by a binary threshold on FCN output pixelwise
probability value. The original image (a) and image deprived of
non-cracked region (b) are reported in figure.

1. Steger line detector algorithm, where the ridge detector is applied directly
to the entire image.

2. FCN VGG19 + Steger line detector algorithm, where, at first, ROI
containing only cracked concrete regions are autonomously detected, then
the ridge detector is applied to the masked image.

In order to evaluate the methods performances, the Accuracy and Precision are
calculated as follows:

ACC = TP + TN

TP + TN + FP + FN
(3.44)

PRE = TP

TP + FP
(3.45)

where:

1. True Positive True Positive (TP) value is the number of cracks correctly
individuated by the algorithm.

2. True Negative True Negative (TN) value is set to zero (i.e. non-cracked
areas), because in a problem like this, the value 1 makes no sense.
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Method ACC PRE
Steger 16% 17%
FCN + Steger 78% 85%

Table 3.6: Comparison between Steger line detector and FCN VGG19 + Steger
line detector in terms of Accuracy and Precision

3. False Positive False Positive (FP) value is the number of false cracks
individuated by the algorithm.

4. False Negative False Negative (FN) value is the number of cracks that the
algorithm was unable to recognize.

In binary classification, the Accuracy describes how comfortable the method
is with detecting the positive and negative classes, whereas the Precision
describes the probability of making a correct positive classification. Accuracy
and Precision are calculated for all the considered 50 cases, obtaining the results
reported in Table 3.6.

As clearly shown by the results of the comparison of the Accuracy and
Precision of both methods, the introduction of the automatic ROI detection
increases from 16% to 78% the Accuracy and from 17% to 85% the Precision.
In fact, the ridge detector used alone is not able to distinguish crack from other
disturbing elements and the FCN makes up for this lack. Figure 3.35 and Figure
3.36 report a clear example where FCN is able to well-detect crack regions, even
avoiding eventual wall scratches. The usage of ridge detector alone led 32 false
positives in the example in Figure 3.35, and 25 false positive in the example in
Figure 3.36.

3.2.4 UNET for image segmentation.
The model architecture involved in this step is the U-NET, an evolution of
Convolutional Neural Network and stems from the Fully Convolutional Neural
networks. As shown in Figure 3.37, the architecture consists contracting path
(encoder), typically a series of convolution and max pooling operation that
reduces spatial information and increase the feature information, and expanding
path (decoder) where an up-sampling is performed allowing the network to
propagate context information to high resolution layer. This architecture can
accept as encoder side different model architectures. UNET encodes the image
passing it through a CNN as it gets downsampled and then decode it back
or upsample it to obtain the segmentation mask. According to the choose
backbone, the decoder side is built by concatenating the previous output on
the decoder side. Since the model does not contain Dense layers, it can accept
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Figure 3.35: Comparison between Steger algorithm (a) and FCN + Steger
algorithm (b). Wall scratches and disturbing elements are correctly
excluded from ridge detection by FCN VGG19 method.

input of any size. [97]. A total of 5000 crack images in different scenarios and
with different cameras (reflex and smartphones) have been taken from different
operators to build an on-purpose crack database. For each crack image the
corresponding binary target crack mask is realized (Figure 3.38) with the help
of a graphics tablet and a specific software written in Python. This mask will
represent the input ground truth for the segmentation model. Five different
operators were asked to perform this operation to avoid that the model fits too
much the behaviour of a single operator.

The obtained dataset is randomly divided in train, validation and test dataset.
The training dataset is the sample of data used to fit the model and the validation
dataset is used to provide an unbiased evaluation of a model fit to training
dataset while tuning model weights. While train and validation dataset are used
in the training phase, the test dataset is the sample of data used to provide an
unbiased evaluation of a final model fit on the training dataset, for this reason
the test dataset is never in training phase. [98, 99] analyse the influence of
validation-training-test-set size ratio. Since the database of classified images is
relatively small, a ratio of 0.80-0.20-0.20 of train, validation and test is chosen.

Data augmentation techniques are used in order to increase training perfor-
mances. Data augmentation is a data-space solution to the problem of limited
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Figure 3.36: Comparison between Steger algorithm (a) and FCN + Steger
algorithm (b). Disturbing elements are correctly excluded from
ridge detection by FCN VGG19 method.

Figure 3.37: UNET typical architecture. K classes segmentation of a 256x256
RGB input image. [97]
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Figure 3.38: On the left the RGB crack image, on the right the binary crack
mask manually selected by an operator.

availability of data that enhance the size and quality of training datasets avoid-
ing over-fitting, that is the situation where a network makes predictions that
corresponds too closely or exactly to a particular set of data, and may therefore
fail to make prediction outside training dataset [100]. It has been largely proven
that a correct data augmentation can improve dramatically the performances
in classification and semantic segmentation problems [101–103]. The following
techniques are used for creating additional training samples:

1. Horizontal Flip, where the image is randomly flipped along horizontal
axis.

2. Vertical Flip, where the image is randomly flipped along vertical axis.

3. Shift, the image is randomly shifted, the image dimensions are kept the
same.

4. Rotation, the image is randomly rotated around a random point, the
image dimensions are kept the same.

5. Crop, the image is randomly cropped, the image dimensions are kept the
same.

6. Gaussian Noise, apply gaussian noise to the input image from 0 to 20%.

7. Perspective transform, perform a random four point perspective transform
of the input, the image dimensions are kept the same.

8. Blur, blur the input image using a random-sized kernel.c

9. CLAHE, random applying Contrast Limited Adaptive Histogram Equal-
ization [104] to the input image.

10. Brightness, randomly change brightness of the input image.
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Figure 3.39 shows the mean histogram of the 5000 binary crack masks
manually selected. The crack region, with assigned value of 1, represents the
0.004% of the mask where the background has an assigned value of 0. Since
this segmentation problem is strongly imbalanced, the loss function must be
chosen properly. Since the data-imbalanced nature of the segmentation problem

Figure 3.39: Mean histogram of the 5000 binary crack masks.

the Dice + Focal loss function is chosen for training the model [105],[106],[107].
The Dice coefficient is typically used in computer vision application where it is
necessary to calculate the similarity between two images and it is largely used
as metric to evaluate segmentation results. The Dice loss function is inspired
by the Dice coefficient given by the equation 3.46

D = 2
∑N

i yipi∑N
i y2

i +
∑N

i p2
i

(3.46)

Where p represents the pixel predicted value and y represents the ground truth.
In this specific case of binary classification problem, p and y varies from 0 to 1.
While the denominator is the sum of total crack pixels and always grow as the
crack grow, the numerator increments its value only when the prediction and
the ground truth match. The Dice Loss is defined by the equation 3.47

DiceLoss(y, p) = 2yp + 1
y + p + 1 (3.47)

Where the 1 is added to ensure that the function works well even if y and p

are both null. The Focal Loss derives from the Binary Cross Entropy Loss
function. Its purpose is to increase the contribution and focus the model on
hard example, such as find pixels belonging to crack regions, and down-weight
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the contribution of easy examples, such as find no-crack pixels. The Binary
Cross Entropy Loss function can be written by:

BCE = −log(pt) (3.48)

Where p is the estimated probability of a class, and it is defined by:

pt =
{

p, y = 1
1 − p, otherwise

(3.49)

The Focal Loss in then defined by:

FocalLoss(pt) = −αt(1 − pt)δlog(pt) (3.50)

Where the term −αt(1 − pt)γ is called Modulating Factor and up-weights
the contribution of hard samples. α and γ can be considered model hyper-
parameters. Focal and Dice Loss can be summed in order to take the advantages
of both techniques [105]:

TotalLoss = DiceLoss + FocalLoss (3.51)

in this way is possible to train UNET model to the hard-negative examples
instead of overlooking that class and getting an arbitrarily high accuracy. In
order to select the proper backbone and hyper-parameters, 60 different training
are performed with the following parameters:

• Backbone = [’efficientNET’,’vgg19’,’resNET’,’mobileNET’,’inceptionv3’]

• batch size = [2,4,8,16]

• Learning Rate = [0.01,0.001,0.0001,0.00001]

Different CNN architecture backbones are tested.
The efficientNET was developed by Mingxing Tan et al. in 2019. the idea

behind this model is simple: CNNs are developed at fixed resource budget,
based on availability of resources are then scaled up for better performance.
In their work is proven that balancing network depth, width and resolution
can lead to better accuracy without increasing the scale of the model [108].
Efficientnet achieve state-of-art accuracy on ImageNet [109] while being 8.4x
smaller and 6.1x faster on inference than the best existing ConvNet.

The resNET was developed by Kaiming He et al. in 2015. They present a
residual learning framework to ease the training of networks that are substan-
tially deeper than those used previously [110]. The network won the 1st places
on the tasks of ImageNet detection, ImageNet localization, Common Objects in
COntext (COCO) [111] detection, and COCO segmentation in 2015.
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The mobileNET was developed by Andrew G. et al. in 2017. The model
is designed for mobile and embedded vision applications and it is based on a
streamlined architecture that uses depth-wise separable convolutions to build
light weight deep neural networks [112].

The Inception model was developed by Christian Szegedy et al. in 2014. The
main hallmark of this architecture is the improved utilization of the computing
resources inside the network [113]. The network won the 1st places on ImageNet
Large-Scale Visual Recognition Challenge in 2014.

When evaluating a CNN classification model the predictions is usually clas-
sified into four categories: false positives, true negatives, false negatives and
true positives. This is not possible with pixel-wise predictions in segmentation
models. The Jaccard Index, also know as Intersection Over Union (IOU) can
be used as metric for segmentation model evaluation. This metric quantifies
the percent overlap between the target mask (ground truth) and the output
prediction measuring the number of pixels common between the ground truth
and predicted masks divided by the total number of pixels present across both
masks 3.52.

IOU = Ground Truth ∩ Predicted

Ground Truth ∪ Predicted
(3.52)

Another metric used for evaluation segmentation model is the Dice Coefficent,
also known as F-score, already discussed in [105]. Both metrics range from 0 (no
overlap) to 1 (perfect overlap). While F score tends to measure something closer
to average performance, the IOU score measures evaluate the model relating to
the worst case performance.

Adam algorithm is used as model weights optimizer. The Adam optimizer is
an algorithm for first-order gradient-based optimization of stochastic objective
functions, based on adaptive estimates of lower-order moments [114]. The model
is trained on a machine equipped with Intel(R) Xeon(R) CPU E5-2630 v4 @
2.20GHz and NVIDIA GPU GeForce RTX 2070 SUPER. The 60 configuration
are trained with the following hyper-parameters:

• Model = According to the case, ’efficientNETb3’, ’vgg19’, ’resNET152’,
’mobileNETv2’ or ’inceptionv3’.

• Optimizer = Adam with learning rate according to the case, 0.01,0.001,0.0001
or 0.00001

• Batch Size = according to the case, 2,4,8 or 16

• Number of Classes = 2, crack and no crack.

• Epochs = 50.

• Loss Function = Dice Loss + Focal Loss
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model weights time [s]
efficientnetb3 17,867,833 0.06

vgg19 29,061,969 0.07
resnet152 67,295,194 0.10

mobilnetv2 8,047,441 0.05
inceptionv3 29,933,105 0.07

Table 3.7: Models characteristics in terms of number of trainable weights and
prediction computational time in seconds calculated as the average
time for 100 predictions with different input images.

Top Batch Size LR model Loss IoU-score f1-score
1 4 0.0001 efficientnetb3 0.011 0.992 0.996
2 4 0.0001 mobilenetv2 0.012 0.992 0.996
3 4 0.0001 inceptionv3 0.010 0.992 0.996
4 4 0.0001 resnet152 0.012 0.991 0.996
5 2 1.00E-05 resnet152 0.018 0.991 0.996
6 2 0.0001 efficientnetb3 0.011 0.991 0.996
7 2 0.0001 inceptionv3 0.012 0.991 0.995
8 2 1.00E-05 inceptionv3 0.015 0.991 0.995
9 2 0.0001 resnet152 0.013 0.991 0.995
10 4 0.001 mobilenetv2 0.013 0.990 0.995
11 4 0.0001 vgg19 0.013 0.990 0.995
12 2 1.00E-05 efficientnetb3 0.033 0.989 0.995
13 2 1.00E-05 mobilenetv2 0.023 0.989 0.995
14 4 1.00E-05 efficientnetb3 0.023 0.989 0.995
15 2 0.0001 mobilenetv2 0.015 0.989 0.994

Table 3.8: Models characteristics in terms of number of trainable weights and
prediction computational time in seconds calculated as the average
time for 100 predictions with different input images.

• Metrics = IOU and F score

Table 3.7 shows models characteristics in terms of number of trainable weights
and prediction computational time in seconds calculated as the average time
for 100 predictions with different input images. Table 3.8 shows top 15 best
models ordered by IOU and F scores. The backbone mobileNETv2 with batch
size of 4 and learning rate of 0.0001 is chosen due to its performance in terms
of computational time under the same IoU and F scores.

In summary, the following hyper-parameters are used for the training phase:

• Optimizer = Adam, with a learning rate of 0.0001.

• Backbone = ’mobilenetv2’
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• Batch Size = 4

• Number of Classes = 2, crack and no crack.

• Loss Function = Dice Loss + Focal Loss

• Metrics = IOU and F score

The model is also trained with different train database split ratio. The result,
shown in figure 3.40, confirms that the ratio that maximize IoU and F score is
0.80-0.20-0.20 of train, validation and test. The model is than trained for 50
epochs obtaining a of IoU score of 0.99 and f1 score of 0.99. Train the model
over 50 epochs does not improve model performance 3.40 3.42 3.41. Examples of
the U-NET trained model inference results on the various image from collected
crack test dataset are shown in figure 3.44.

Figure 3.40: The model is trained with different train-validation-test ratio. The
results confirms that the ratio that maximize IoU and F score is
0.80-0.20-0.20

In this chapter it has seen how it is possible to identify the area of an image
containing a crack surface. Through the use of most recent neural networks
trained with databases collected during the thesis work, it is possible to extract
the mask containing only the crack with extreme precision even in noisy images
containing disturbing elements (shadows, external objects, ...). This technology
will be the basis for development of a new methodology that will lead to the
resolution of all the limitations of Sigma Optimization algorithm presented in
chapter 3.1.2.
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Figure 3.41: The plot shows the IoU score curve over epochs for train and test
dataset. Above 50, the IoU score stabilises.

Figure 3.42: The plot shows the f score curve over epochs for train and test
dataset. Above 50, the f score stabilises.
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Figure 3.43: The plot shows loss curve over epochs for train and test dataset.
Above 50, the loss value stabilises.

3.3 A novel image-based NDT approach for
measuring crack severity

In section 3.1.1 the use of ridge detectors for line location and measurement is
discussed in terms of lab-scale crack scenario. From chapter 3.1.1 unresolved
issues remain:

• the Sigma Optimization procedure is taken for granted that Steger algo-
rithm is able to located the entire line with every value of σ. In a real-scale
scenario this may not happen due to the complexity of the crack and the
variation of with w and contrast h along the line,

• in a real-scale scenario is not possible to know a-priori line contrast h

because the histogram can be easily affected by disturbing elements,

• in a real-scale scenario there is no guarantee that during the Sigma
Optimization procedure the algorithm focuses on the same crack: varying
σ value the located crack could change, making the entire procedure
pointless,

• in a real-scale scenario there is no guarantee that the ridge detector will
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Figure 3.44: Result of U-NET trained model inference on the various image
from collected crack test dataset are shown in figure. On the left
the input image, on the right the output binary mask.
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focus only on target crack. The presence of disturbing element or other
cracks will make the entire procedure pointless,

• the established procedure is applied to the entire image resulting in high
processing times. A computational time of 6s with σspan = 7 on 12MP
image may be too long for several applications,

• the ridge detector is not able to distinguish cracks from scratches or other
disturbing elements.

In this section the use of the semantic segmentation developed in 3.2.4 for
resolving these issues is discussed. The Sigma Optimization algorithm will
be modified in order to be used in a real-scale scenario. In this chapter will
be described the developed Crack Analyser algorithm that rapidly locate and
measure crack width in a real-scale crack scenario. The algorithm involves
different steps:

1. image acquisition and calibration,

2. neural Network based semantic segmentation,

3. automatic threshold parameters selection,

4. filling Level algorithm

3.3.1 Image acquisition and calibration
The first step of the crack Analyser algorithm involves the acquisition of the
image containing defects or cracks. The image can be acquired with any camera.
The accuracy of the algorithm strongly depends on lens distortion, that can
be mitigated with a custom system calibration, and the spatial resolution of
the camera sensor. As is usually the case in computer vision application, the
higher the spatial resolution the higher the accuracy and the precision. The
performance of the algorithm increases significantly when using high resolution
cameras combined with low perspective distortion lenses such as macro or
telephoto lens.

In most cases, it is possible to assume that the target surface is a plane. As
parallelism between the sensor plane and the surface plane cannot be guaranteed,
a perspective correction of the image will always be necessary.

Equation 3.53 shows the camera matrix, a 3x4 matrix that transform from
3D scene points (X, Y, Z) to 2D scene points (u, v, 1).

u

v

1

 =

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 1




x

y

z

1

 (3.53)
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3.3 A novel image-based NDT approach for measuring crack severity

If the 2D scene points lies on a plane (e.g., target surface) they all have a
Z coordinate of zero in the reference system of the plan under consideration.
This imply that the equation 3.53 can be simplified since the third column
of the camera matrix will be multiplied by zero. As shown in the equation
3.54, the camera matrix become a 3x3 matrix, that can be referred as a planar
homography. u

v

1

 =

h11 h12 h13

h21 h22 h23

h31 h32 1


x

y

1

 (3.54)

Just as for the camera matrix, even the homography matrix has an arbitrary scale
factor and it can be normalized. It is possible to estimate the homography matrix
if four world points coordinates and the corresponding position of those point on
the image plane of the camera are known [115]. The homography transformation
can be easily used for perspective removal. Therefore, to eliminate the defects
due to the perspective in the acquired image, it is necessary to know the
coordinates of at least 4 points in the image. Those four points can be obtained
in different ways, including:

• the use of fiducial targets of known size and shape,

• the use of external sensors capable of measuring the depth map and there-
fore the position in the real world of each point of the image. Examples
of these sensors can be: LIDAR, Time of Flight, etc.

Figure 3.45 shows the use of the 4-points perspective correction technique
applied to an input image exploiting a fiducial target of known size and shape.

In order to be able to measure the severity of a crack it is necessary to switch
between image pixels coordinates to real-world coordinates in mm (Figure 3.46).
This step can be performed in several ways using different technologies:

• depth cameras,

• Laser Imaging Detection and Ranging (LIDAR) sensors,

• Time-of-Flight (ToF) sensors,

• fiducial markers.

As shown in Figure 3.47, given the focal length in multiple of the pixel size
F = (fx, fy) and the distance between the camera and the target, is possible
to obtain the pixel-to-mm conversion constants based on similarity criterion of
triangles:

Xpix−to−mm = depth

fx
(3.55)
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Figure 3.45: 4-points perspective correction using fiducial target of known size
and shape.

Figure 3.46: To measure the severity of a crack it is necessary to switch between
image pixels coordinates to real-world coordinates in mm.
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Ypix−to−mm = depth

fy
(3.56)

Assuming a pixel aspect ratio 1:1 is possible to write Ypix−to−mm ≈ Xpix−to−mm.
While the focal length is a camera intrinsic parameter, the depth value varies
based on reciprocal position between camera and target. Sensors like ToF,
LIDAR or depth cameras can easily obtain depth value for each image pixel
in real time obtaining the pixel-to-mm conversion constant where 1 is the
normalized dimension of the pixel. The usage of depth cameras, LIDARs or ToF

Figure 3.47: The picture shows how is possible to obtain pixel-to-mm constant
knowing the focal length and the distance from the target.

sensors allows the user not to have to physically reach the target to be measured.
Several applications, like pylons of bridges, offshore structures, inaccessible
surface of builds are inaccessible. LIDAR, ToF sensor and depth cameras can
be easily embedded in remotely controlled systems like UAVs and allows the
user to obtain instantly pixel-to-mm conversion constant.

If it is possible to reach the target, a cheaper solution can be the use of
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fiducial markers. It is enough that the user prints and tapes 3 ArUco markers
[6, 7] on the wall around the crack to be measured. The algorithm detects the
markers and assign them a number from zero to two in clockwise direction.
The script measures, for each of them, the length of the sides of the markers in
terms of pixels. Then, the average value of the 12 measured sides is calculated.
Knowing that the side of each marker is 10 mm (printer rescaling during print
operation must be avoided), the pixel-to-mm conversion constant is obtained,
and the picture is calibrated. As shown in Figure 3.48 ROI can be selected
then based on the centres of marker 0 and marker 2 in order to reduce image
dimension and focus on the target.

Figure 3.48: Crack ROI selection based on target 0 and target 2 positions.

3.3.2 Neural Network based semantic segmentation.

Once the pixel-to-mm constant is obtained, the image is inferenced by a neural
network model in order to create a mask that contains only the target crack of
defect. The model architecture involved in this step is the U-NET, an evolution
of Convolutional Neural Network and stems from the Fully Convolutional Neural
networks already describes and trained in 3.2.4. The model is trained obtaining
a of IOU score of 0.99 and f1 score of 0.99. Figure 3.49 shows an example
of the model prediction. The output binary mask is used for the selection of
the automated best-enveloping ROI that envelop the predicted crack (Figure
3.50). The image is now limited to what is strictly necessary which leads
to the complete elimination of disturbing elements and significantly increases
the performance of the ridge detector algorithm in terms of computational
burden and accuracy. This turns out to be a key point of the Crack Analyser
algorithm as it minimizes the error and focus the Steger algorithm only where
it is necessary avoiding false positives and it increases the computational speed
by several orders of magnitude.
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3.3 A novel image-based NDT approach for measuring crack severity

Figure 3.49: On the left the acquired RGB input image, on the right the binary
model prediction

Figure 3.50: automated best-enveloping ROI selection based on model prediction
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3.3.3 Automatic threshold parameters selection
Once the automated best-enveloping ROI containing the target crack is selected,
the ridge detector algorithm can be applied to the image. From the previous
chapter 3.1.1 is known that Steger ridge detector depends on 3 key parameters:

1. Lower threshold l

2. Upper threshold u

3. Sigma σ, and consequently line width w

As described in 3.1.1, salient lines are defined by their second directional
derivative:

r′′(σ, h) = h

(
2
√

3√
2πσ2

e−3/2
)

(3.57)

In the equation 3.57 it is assumed that σ = w/
√

3, but if values greater than 3
below the root are used, it simply remain more conservative in the choice of
threshold parameters. Then σ value and the line contrast h can be plugged
into the above equation to yield an upper threshold for the algorithm. The σ

value cannot be known a-priori, nevertheless the h value can be estimated. The
workflow for calculating the line contrast is shown in Figure 3.51. Taking the
advantage of the tailored selection of the essential ROI containing only the crack
region explained in section 3.3.2, there is the possibility to study its histogram
and determine with good accuracy the medium pixel intensity of the crack and
the medium pixel intensity of the surrounding framed area. First of all, the
same ROI is selected on both RGB input image and on the binary mask (a).
An erosion filter is applied to the mask to enlarge the area that immediately
surround the crack (b). The mask is multiplied to the RGB image: all the RGB
pixel not belonging to the mask therefore became zero (c). The histogram of
the resulting image is performed (d), null intensity values are excluded from the
calculation. The crack line contrast is finally obtained as the absolute difference
between the two local maxima of the cubic spline approximation histogram
function (Figure 3.52). The first maxima (peak) represents pixels belonging
crack region, the second peak represent pixels belonging background area (e).
After h is obtained, the upper and lower thresholds u, l can be obtained as:

u = h

(
2
√

3√
2πσ2

e−3/2
)

(3.58)

l = 0.1h

(
2
√

3√
2πσ2

e−3/2
)

(3.59)

The lower threshold can be considered the 10% of upper threshold using a
more conservative assumption than Stager paper. As described in the Steger
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Figure 3.51: Contrast h evaluation workflow

Figure 3.52: Line contrast h is obtained as the absolute difference between the
two local maxima of the cubic spline approximation histogram
function
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algorithm any pixel that has a value above the upper threshold will be marked
as possible line pixel, and any pixel whose value lies between the higher and the
lower thresholds, but is connected to a pixel whose value is above the higher
threshold, will also be marked as possible line pixel. All the other pixels of the
image are rejected [84].

3.3.4 Filling Level Algorithm
At this point, the only input to be chosen for applying Steger algorithm to
the target RGB image, is σ value. Assuming a σ value is possible to obtain
line width and line location with sub-pixel accuracy. Is not possible to known
a-priori the correct σ value because it depends on line width. In section 3.1.2
the Sigma Optimization Algorithm is presented but the procedure is taken
for granted that Steger algorithm is able to located the entire line with every
value of σ. In a real-scale scenario this may not happen due to the complexity
of the crack and the variation of width w and contrast h along the line. As
shown in Figure 3.53, changing σ value, the recognized portion of the crack
varies. It is possible to notice how, after a certain value, the crack is always
well-recognized by the algorithm. From Sigma Optimization algorithm chapter
is known that, overestimating σ value leads to an overestimation of the line
thickness. The idea is to establish a procedure able to determine the minima
σ value that best fit the target curve. Figure 3.54 shows the Filling Level

Figure 3.53: Recognized portion of the crack varies changing σ value

algorithm procedure in order to select σF L, that is the minima σ value able
to well-locate the target crack. First of all, an array of σ is defined ranging
from 0.6 to 6 with a step of 0.2 (a). The initial value of 0.6 is a limitation
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imposed by Steger line detector. According to the algorithm, with σ = 6 is
possible to locate line with a maximum thickness of about 20.8 pixel; since the
application is meant to be used by standard resolution cameras, it is logical to
assume that a crack will never be thicker than this size. For high-resolution
cameras, it will be sufficient to raise the limit in accordance with its resolution
and proximity to the crack. For low-resolution cameras (around 1MP) it will
be possible to reduce this value in order to increase computational speed since
crack thickness will never exceed a few pixels. Starting from the first value of
σi, the hysteresis threshold parameters ui and li are calculated with equations
3.58 and 3.59 basing crack contrast following the procedure explained in section
3.3.3(b). Given σi,ui and li is possible to apply Steger line detector to the
target RGB crack image (c). All the lines that do not fall within crack mask
are automatically discarded. Basing on the binary crack mask and the detected
line location, the Filling Level determines how much the detected lines fills the
mask and it is measured in percentage terms (d). The operations (b), (c) and
(d) are iterated until σi > σN . The final step consists on finding σF L (e) with
an automatic procedure basing on Filling Level (FL) over σ plot (Figure 3.55).
The σ selected will be the first value of FL plateau, that is the point at which
the FL stops growing as the σ the increases. Once σF L,uF L,lF L are determined
is possible to apply Steger Line detector to obtain the line width and position
for each line point with sub-pixel accuracy.
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Figure 3.54: Filling Level algorithm flowchart for σF L identification

Figure 3.55: FL over σ plot. The data are collected within the Filling Level
algorithm.
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Metrological characterization

The metrological characterization of the proposed system is performed through
a structured test, where for each acquired image the relative angles between
the sensor surface and the target surface are known 4.1, and a test that does
not adopt any type of control, thus simulating a real-scale application of the
measuring device 4.2. In the first type of test, an anthropomorphic robot is
used to acquire images at known angles and define the working range of the
developed device. Subsequently the results obtained from these tests will be
compared with the results obtained through uncontrolled measurements.

4.1 Working range definition
The working range of the device is determined through the analysis of cracks
in a controlled environment. To this end, an anthropomorphic robot is used.
On the surface of the end-effector a plate is placed on which a crack with a
constant width of 1.25 mm was printed. 3 fiducial markers have been placed
around the crack in order to calibrate the acquired image. The reference system
of the end-effector is shown in figure 4.1, with the Z axis coming out of the
plane, with origin of the axes fixed at the center of the crack. Nikon D7200
24MP camera, equipped with Nikon NIKKOR 60mm f2.8 macro lens, is used
as acquiring system. The reflex is placed on a tripod at a known distance from
the target. The parallelism between the sensor surface and the target surface
is guaranteed through a system of a laser and a mirror 4.2: a laser is made
integral with the target surface (3) and a mirror (2) has been affixed to the front
surface of the lens. Through manual positioning, the end-effector is positioned
in such a way that the laser beam, reflecting on the mirror surface, tarnished
back to the emission point. Four types of acquisitions are made:

1. controlled rotation of the target surface from −30◦ to +30◦, with steps of
0.5◦, rotating around the x axis, for a total of 60 images acquired,

2. controlled rotation of the target surface from −30◦ to +30◦, with steps of
0.5◦, rotating around the y axis, for a total of 60 images acquired,
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Figure 4.1: An anthropomorphic robot is used in order to define the working
range of the developed device in a controlled environment.

Figure 4.2: The image acquisition system (1) it is placed at a known distance
from the target (4). The parallelism between the sensor surface and
the target surface is guaranteed through a system made of a laser
(3) and a mirror (4). The two surfaces are to be considered parallel
when the laser beam reflected by the mirror returns back to the
source.
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3. controlled rotation of the target surface with random rotation angles from
−30◦ to +30◦ along the x and y axes, for a total of 360 images acquired,

4. 100 images acquired manually by an non-expert operator without any
type of control over the exposure angle.

The first two types of acquisition are carried out in such a way as to separate the
single contribution due to the relative laying angle between the surfaces. The
third type of test, on the other hand, is used to estimate the type A uncertainty
of the system as the pose angles vary. All these measurements were repeated
at different distances: 70cm, 100cm, 130cm and 240cm. The Crack Analyser
algorithm is then applied to all the acquired images.

4.1.1 Target rotated around x axis
A controlled rotation is imposed to the target surface from −30◦ to +30◦, with
steps of 0.5◦, rotating around the x axis. The Crack Analyser algorithm is
applied to the 60 images framed at each distance from the target. At each
iteration, the measured average width value and the pixel-mm conversion factor
are saved. Figure 4.3 shows the plot of the absolute error over the angle at
which every image is framed. The error is calculated as the absolute difference
between mean width measured by the Crack Analyser algorithm and the target
width (1.25 mm). It is easy to notice the measurement result does not depend
on the distance of acquiring system from the target crack. This is most likely
made possible by the nature of the ridge detection algorithm used. In fact,
once the crack position has been detected, the algorithm measures its width
perpendicular to the centre of the line, identifying the transitions of the edges,
therefore the fact that the crack is represented by more or less pixels inside
the sensor it matters less. This concept is clear from the figure 4.4, where
the thickness of the crack converted into pixels is shown and where, for each
acquisition distance, the actual thickness in number of pixels is indicated. As
it is logical to expect, moving away from the target the number of pixels of
crack thickness decrease as well as the absolute error in pixels due to the lack
of correct parallelism between the measurement and crack planes.

4.1.2 Target rotated around y axis
A controlled rotation is imposed to the target surface from −30◦ to +30◦, with
steps of 0.5◦, rotating around the y axis. The Crack Analyser algorithm is
applied to the 60 images framed at each distance from the target. At each
iteration, the measured average width value and the pixel-mm conversion factor
are saved. Figure 4.5 shows the plot of the absolute error over the angle at
which every image is framed. The absolute error is calculated as the difference
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Figure 4.3: The figure shows the plot of the absolute error in millimetres, as
difference between mean width measured by the Crack Analyser
algorithm and the target width, for each angle at which every images
are framed.

Figure 4.4: The figure shows the plot of the absolute error in pixel, as difference
between mean width measured by the Crack Analyser algorithm and
the target width, for each angle at which every image are framed.
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between mean width measured by the Crack Analyser algorithm and the target
width (1.25 mm). The same considerations of the previous section 4.1.1 can be
made.

Figure 4.5: The figure shows the plot of the absolute error in millimetres, as
difference between mean width measured by the Crack Analyser
algorithm and the target width, for each angle at which every images
are framed.

4.1.3 Target rotated around x and y axis

The camera, placed parallel to the surface at the predetermined distance by
means of the method described above. acquires an image and then the surface
randomly rotates around its centre of gravity. A controlled rotation is imposed
to the target surface with a random angle between −30◦ to +30◦ (continuous
uniform distribution). A total of 360 images are collected with different angular
positions for each distance considered. The angles assumed by the surface are
shown in figure 4.7. The Crack Analyser algorithm is then applied to each
acquired image to calculate the average width of the detected crack. The results
for target distance are shown in figure 4.8. The plots show the measured points
p(Rx, Ry, ŵ) for target distance of 70, 100, 130 and 240 cm. In all the cases
examined, a fit error of 0.01 mm is obtained. As it is easy to see, all the
interpolating curves are of the hyperbolic paraboloid type ŵ = R2

x

a2 − R2
y

b2 , where
a and b are positive real numbers. All this was easy to expect since, as displayed
in figure 4.9, rotations around the y-axis Ry axis tend to underestimate, while
rotations around the x-axis Rx axis tend to overestimate the width measurement
for perspective effects. Subsequently, a study was carried out on the trend
of the standard deviation as the rotation angle changed. Starting from 1◦,
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Figure 4.6: The figure shows the plot of the absolute error in pixel, as difference
between mean width measured by the Crack Analyser algorithm and
the target width, for each angle at which every image are framed.

up to 30◦ with a step of 1◦, the crack width standard deviation is calculated
considering only the measurements carried out in that angular range. For
example in figure 4.10 all the acquisitions that fall within the angular range
±25◦ are highlighted in red. The graphs in figures 4.11 and 4.12 show the trend
of the standard deviation as the imposed angle varies. The first figure shows
the standard deviation in mm, the second in pixels. From the graphs it can be
seen how, similarly to what happened with fixed rotation on Rx and Ry angles,
the distance from the target does not affect the trend of the standard deviation
of the measurement. On the contrary, the increase in the angle pose leads to
a significant increase in the standard deviation and the measurement error.
Although these acquisitions are made with a reflex with high spatial resolution
and fiducial markers, the concept exposed can also be extended to acquisition
systems with a lower number of megapixels and other image calibration methods
simply by making the appropriate proportions based on the spatial resolution.

A further interesting aspect is linked to the variability of the sigma value,
obtained through the filling level algorithm, at each framing distance. Figure
4.13 shows the dispersion of the values at each distance, normalized to the
equivalent pixel width of the crack. For example, if we consider a crack about 7
pixels thick, the optimal sigma value selected by the algorithm varies from 1.0
to 2.4 for images taken at the same distance, but with different angles. The
range of variability reaches from 5.8 to 8.4 in the case in which the crack has
an equivalent thickness of about 30 pixels (image taken from a closer distance).
In the latter case, the sigma can therefore assume 13 different values, the range
being equal to 2.6 with the filling level algorithm set at a step of 0.2. All this
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Figure 4.7: A controlled rotation is imposed to the target surface with a random
angle between −30◦ to +30◦ (continuous uniform distribution). For
each distances 360 images are framed.
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Figure 4.8: Best-fit quadratic curve of measured points p(Rx, Ry, ŵ) for target
distance of 70, 100, 130 and 240 cm. In all the cases examined, a fit
error of 0.01 mm is obtained

Figure 4.9: Rotations around the y Ry axis tend to underestimate, while rota-
tions around the x Rx axis tend to overestimate the width measure-
ment for perspective effects.
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Figure 4.10: In red are highlighted all the acquisitions that fall within the
angular range −25◦ < Rx < +25◦ and −25◦ < Ry < +25◦

Figure 4.11: Trend of the standard deviation in mm as the maximum rotation
angle imposed on the target varies.
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Figure 4.12: Trend of the standard deviation in pixel as the maximum rotation
angle imposed on the target varies.

immediately makes us understand how fundamental the choice of a correct
sigma is and how much this can vary a lot even in images taken at the same
distance from the target. The Steger algorithm, without the proposed automatic
optimization technique, could never have returned the results obtained by not
knowing a-priori the optimal sigma value.

Figure 4.13: Dispersion of the values at each distance, normalized to the equiv-
alent pixel width of the crack.
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4.1.4 Manual acquisition by non-expert operator
For this test 100 images are framed manually by a non-expert operator. The
purpose of this test is to understand, through the study of the standard deviation
of the results obtained, what is the equivalent pose angle by comparing it with
the study in a controlled environment of the previous section 4.1.3. For each
of the 100 images the average crack width is measured by applying the Crack
Analyser algorithm. The results show an average value of average crack width
of 1.23 mm and a standard deviation of 0.13 mm. By curve-fitting the standard
deviation data over imposed angular range, obtained in the previous chapter,
a second degree function of equation y = 0.00001x + 0.00003x2 + 0.00221 is
obtained (figure 4.14). From this it can be deduced that, through the manual
acquisition of images, a result, in terms of standard deviation, equal to the
controlled acquisition with a maximum angle set of 19◦ can be obtained.

Figure 4.14: By curve-fitting the standard deviation data over imposed angular
range, obtained in the previous chapter, a second degree function
of equation y = 0.00001x + 0.00003x2 + 0.00221 is obtained. A
standard deviation of 0.013mm corresponds to a maximum angular
range of 19◦.

4.2 Measurement System Analysis: theory
In the previous chapter a metrological analysis was carried out through a
structured test and the use of a printed crack with known dimensions. In
the following chapters, on the other hand, the metrological analysis will be
carried out in a context of real and uncontrolled environment. The metrological
performance of the Crack Analyser algorithm in real-scale environment is
assessed in terms of precision and accuracy [116] for two case scenarios:
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1. Camera without depth sensor, that measure the conversion constant
pixel-to-mm and calibrate the image using fiducial markers.

2. Camera equipped with depth sensor (i.e. depth cameras, LIDAR or Tof
sensors), that measures the conversion constant pixel-to-mm and calibrate
the image without fiducial markers.

Three different target crack on concrete surface are chosen for repeatability
and reproducibility tests (Figure 4.15). The Type A uncertainty is used for

Figure 4.15: Concrete wall crack used as target for reproducibility and repeata-
bility tests

the system characterization. The Type A uncertainty is a method of assessing
uncertainty based on the statistical analysis of series of measures. The evaluation
of a Type A contribution is based on any statistically valid method. An
example is the calculation of the standard deviation of the mean of a series of
independent observations and performing an analysis of variance (Analysis of
Variance (ANOVA)) [117] to analyse and quantify the random effects in certain
types of measures. If is considered a quantity Xi whose value is estimated from
n independent observation Xi,k of Xi obtained with identical measurement
conditions, in this case the estimation xi is defined by the sample mean:

xi = Xi = 1
n

n∑
k=1

Xi,k (4.1)

And the standard uncertainty u(xi) associated with xi is the standard devia-
tion of the sample mean xi:

u(xi) = s(Xi) = 1
n(n − 1)

n∑
k=1

(Xi,k − Xi)2 (4.2)

Although the standard uncertainty u is used to express the uncertainty of many
measurement results, what is often required is an uncertainty measure that
define an interval, around the result of the measurement y, that can reasonably
contain the true value of the measurand Y . The measure of uncertainty used to
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satisfy this requirement is the expanded measurement uncertainty U obtained
multiplying u by a coverage factor k. The true value of the measurand is
considered to be in the range xi ± U . The coverage factor k is chosen on the
basis of the required confidence level, typically k = 2 or 3. When the normal
distribution of the n independent observation Xi,k of Xi is valid and u(xi) is
a reliable estimation of the standard deviation of y, k = 2 defines an interval
with a confidence level of approximately 95 %, and k = 3 defines an interval
with a confidence level greater than 99%.

Gage Repeatability and Reproducibility (Gage R&R) method is performed
in order to assess repeatability and reproducibility of the measurement sys-
tem. While the repeatability is defined as the variation between successive
measurements by the same operator, on the same target and using the same tool,
the Reproducibility studies the variation in measurements taken by different
operators on the same target using the same system. The Gage R&R method
compares the variability caused by the system itself with the total variability in
order to assess the actual variability of the entire measurement system. Basing
on the system type there are several types of Gage R&R. The best that can fit
this work is the Crossed Gage R&R that is used for non-destructive testing and
fit all cases where all the operators can repeatedly measure the same targets
(Figure 4.16). Crossed Gage R&R can be performed with the ANalysis Of VAri-

Figure 4.16: Cross Gage R&R method for non-destructive testing for crack
assessment.

ance (ANOVA) that is also able to measure the variability of the interaction
between the operator and the different targets measured. The ANOVA test
typically works as follow. A number o of operators, minimum required is o = 2,
perform m measurements, minimum required is m = 3, on p different parts.
The total Sum of Square of deviations is given by sum of the contribution of
operators, target parts, their interaction and the equipment used:

SStotal = SSoperator + SSparts + SSoperator∗parts + SSequipment (4.3)
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The operator sum of squares is calculated as:

SSoperators =
o∑

i=1
p · m(Xi − Xi)2 (4.4)

Where Xi is the average of the measurements made by the i operator on all
parts and X is the average of the measurements made by all operator on all
parts. The target part sum of square is similarly obtained as:

SSparts =
p∑

k=1
o · m(Xk − Xi)2 (4.5)

Where Xk is the average of the measurements made by all operator on j part.
The total sum of squares is obtained as the squared deviation of each individual
result from overall average:

SStotal =
o∑

i=1

p∑
k=1

m∑
j=1

(Xi,j,k − Xi)2 (4.6)

Where Xijk is the j measure made on k part by i operator. Then the equipment
sums of squares, that represent the repeatability of the system, is obtained as
the deviation of all trials for a given part and given operator from the average
for that part and that operator Xik

SSequipment =
o∑

i=1

p∑
k=1

m∑
j=1

(Xi,j,k − Xik)2 (4.7)

Now it is easy to separate the single contribution of the interaction between
target parts and operators:

SSoperator∗parts = SStotal − (SSoperator + SSparts + SSequipment) (4.8)

The ANOVA Table can be created as shown in Table 7. F-statistic asses if
the variance between two population (operators and parts) are significantly
different and determines the p-value that is the probability the results could
have happened by chance. The F-statistic determine if a group of variables are
jointly statistically significant. After choosing the so-called α level, typically
α = 0.05, that is the Significance threshold Level, is possible to reject of not the
Null Hypothesis. Reject the Null Hypothesis is possible when p-value is smaller
than the α level. The Null Hypothesis states there is no difference between
certain characteristics of a groups. Rejecting the Null Hypothesis means that the
differences between groups are significant and the test is statistically significant.
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4.2 Measurement System Analysis: theory

For p-value calculation the Excel FDIST function is used:

pvalue = FDIST (F, DoF1, DoF2) (4.9)

This function calculates the F probability Distribution, which measures the
degree of diversity between two data sets given the F-statistic where the function
is to be evaluated and the degree of freedom of the involved groups. If the
pvalue(interaction) > α is not possible to consider the repeatability with inter-
action values, the interaction row of the ANOVA table has to be ignored. After
the p-value study, the variances of repeatability, operator, part, and interaction
has to be measured as follow:

σ2
rep = MSrep (4.10)

σ2
int =

MSint − σ2
rep

m
(4.11)

σ2
part = MSpart − MSint

o · m
(4.12)

σ2
op = MSop − MSint

p · m
(4.13)

The Gage R&R, Repeatability, Reproducibility, Part to Part and Total Variation
are obtained as follow:

GAGE R&R = σ2
rep + σ2

op (4.14)

Repeatability = σ2
rep (4.15)

Reproducibility = σ2
op + σ2

int (4.16)

Part to Part = σ2
part (4.17)

Total V ariation = σ2
op + σ2

int + σ2
rep + σ2

part (4.18)

If the GAGE R&RV ariance% < 1% it is considered to be an acceptable
measurement system, if it is between 1% and 9% it may be acceptable according
on the specific application, over it is considered to be unacceptable. Then the
Study Variation is the amount of variation caused by the measurement system
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and by the differences between parts. It is calculated as:

Study V ariance = 6 · σ (4.19)

According to the Automotive Industry Action Group (AIAG) if the GAGE R&R
StudyV ariance% < 10%, the measurement system is acceptable, if it is between
10% and 30%, it may be acceptable according on the specific application, over
it is considered to be unacceptable [118]. Finally, the Number of Distinct
Categories (NDC) can be measured:

Number of Distinct Categories = σpart

σGAGE R&R

√
2 (4.20)

This is a metric that is used in GAGE R&R studies to identify a measurement
system’s ability to detect a difference in the measured characteristic. According
to AIAG this metric should be greater than 5 for an adequate measuring system.
In summary:

• P-value of interaction between operator and part should be less than the
α, that is typically fixed at 0.05.

• The % Variance contribution of GAGE R&R should be less than 1% to
be considered as an acceptable measurement system.

• The % Study Variance contribution of Gage R&R should be less than
10% to be considered as an acceptable measurement system.

• The NDC should be greater than 5% to be considerate an adequate
measuring system.

While the precision of the measurement system is assessed by Gage R&R studies,
the accuracy is assessed with measurement comparison with 2D profilometer
laser Wenglor MLSL132. The optical characteristics of the laser profilometer
are shown in Figure 4.17. The profilometer is able to project a laser line onto

Figure 4.17: Wenglor MLSL132 Optical data

the object to be detected and generate an accurate, linearised height profile
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4.2 Measurement System Analysis: theory

with an internal camera which is set up at a triangulation angle. The resolution
X of 33 µm at working distance of 65mm from the target make this instrument
suitable for measuring surface cracks on concrete once mounted on a motorized
micro-metric trail. As shown in Figure 4.18, the Wenglor MLSL132 (7) is
mounted on an electronically controlled micro-metric positioning system (6)
which is integral with the tripod (5). The profilometer is connect to the laptop
(1) with GigE Vision standard (4). The trail is connected with serial cable (3)
to the trail controller (2) that is piloted by the laptop with serial interface. A

Figure 4.18: Measurement system for cracks assessment with WENGLOR laser
profilometer

LabVIEW Virtual Instrument (VI) is realized in order to control the micro-
metric positioning system following the flowchart reported in Figure 4.19. The
system is positioned manually to the starting position. The total displacement
Y and the mm per step ∆y are defined based on target crack. The first laser
profile is acquired then the positioning system moves ∆y mm, wait 2 second
in order to stabilize and acquire the laser line profile until the current position
y = Y . Finally, the gap for all stored laser line profiles, can be calculated.
Several gap measurement algorithms are available in the literature. The gap
algorithm used in this scenario measures the Euclidean distance between points
p1, p2 ∈ z, where z is the measured laser line profile. The laser line profile
gradient z′ is computed using second order accurate central differences in the
interior points and either first or second order accurate one-sides differences
at the boundaries (Figure 4.20). Point p1 is the point of line profile where the
gradient exceeds a certain threshold (e.g. threshold = 0.2 mm). The order of
elements of laser line profile is then reversed, the shape of the array is preserved,
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Figure 4.19: LabVIEW VI flow chart for crack gap measurement

but the elements are reordered. Point p2 is the point of line profile where the
gradient of this new array exceeds a certain threshold (e.g. threshold = 0.2
mm). The mean crack width is calculated as the mean gap measured in the
laser lines recorded between y0 and y0 + ∆Y .

Figure 4.20: On the left the detected laser line, on the right its gradient.
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4.3 Metrological characterization of the measurement system with fiducial markers

4.3 Metrological characterization of the
measurement system with fiducial markers

Nikon D7200 24MP camera, equipped with Nikon NIKKOR 60mm f2.8 macro
lens, is used for the metrological characterization of measurement system with
fiducial markers. The Type A uncertainty is assessed by taking 100 pictures of
the same crack while the reciprocal pose between operator and target is varying
(i.e. moving the camera near and away from the wall and taking the picture from
different height). The distribution, normalised with respect to their mean value,
related to the values measured in the intra-operator analysis is reported in Figure
4.21. The Type A uncertainty associated to the measurements is estimated to be
0.0019 mm. If considered a coverage factor of k = 2, and expanded uncertainty
value of 0.0038 mm is identified. The Gage R&R study is assessed by asking

Figure 4.21: Distribution normalised with respect to the mean value of mean
width values measured on 100 images by the same operator

5 different operators to perform ten measurements each in 3 different target
cracks. A two-way ANOVA is run on sample of 150 measurements to examine
the effect of operator and the type of crack, defined by CRACK ID (Table 4.1).

The results show that there is a significant interaction between the crack and
the operator (p < 0.05), the null hypothesis can be rejected, the differences
between groups are significant and the test is statistically significant. The Vari-
ance analysis shows that the repeatability variance is quite small (0.000055mm2)
if compared with the reproducibility (0.000925mm2). The contribution % of
Variance of Total Gage R&R minor than 1%, that is acceptable. According to
AIAG it is considered to be an acceptable measurement system because the
contribution % of Study Variance is 9.23% and the NDC is 15. As shown in the
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ANOVA TABLE
Source DoF SS MS F p

Crack ID 2 11.412 5.706 753.39 0
Operator 4 0.051 0.013 1.684 0.25

Interaction 8 0.061 0.008 137.863 0
Repeatability 135 0.007 0

Total 149 11.531

Source Variance % Contr
Total Gage R&R 0.00098 0.85

Repeatability 0.000055 0.05
Reproducibility 0.000925 0.8

Operator 0.000173 0.15
Interaction 0.000752 0.65

Part to Part 0.113967 99.15
Total Variation 0.114947 100

Source SD SV (6 sigma) % SV
Total Gage R&R 0.031298 0.188 9.23

Repeatability 0.007412 0.044 2.19
Reproducibility 0.030408 0.182 8.97

Operator 0.013145 0.079 3.88
Interaction 0.02742 0.165 8.09

Part to Part 0.33759 2.026 99.57
Total Variation 0.339038 2.034 100

Number of Distinct Categories = 15

Table 4.1: Gage R&R study assessed by asking 5 different operators to perform
ten measurements each in 3 different target cracks. Metrological
characterization of the measurement system with fiducial markers
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4.3 Metrological characterization of the measurement system with fiducial markers

Gage R&R report (Figure 4.22) several considerations can be drawn:

• As it is reasonable to expect, the much variation is between Part-to-Part,
but not due to Gage R&R (Components of Variation chart)

• The difference between operators is quite small (average width by operator
chart).

• The operators measure is mostly consistently, all the points except one
fall within the control limits. (S chart by operator).

• There is no significant difference between the operators and also there is no
interaction between parts and operator. (Crack ID*operator Interaction
chart).

Figure 4.22: Gage R&R (ANOVA) Report for mean width crack calculation.
Metrological characterization of the measurement system with
fiducial markers

While the precision of the measurement system is assessed by Gage R&R
studies, the accuracy is assessed with measurement comparison with 2D pro-
filometer laser Wenglor MLSL132 following the procedure described in 4.2. The
measure is performed at the minimum working distance (65mm) in order to
maintain X resolution of 33 µm. Measurements are performed on Crack ID
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3 with the 2D laser profilometer WENGLOR. The realised setup is shown in
figure 4.23. In order to make the measurement systems comparable, the starting
point of the laser is manually positioned to the centre of maker ID 6 (Figure
4.24). A ∆Y = 0.1mm is set as minimum step for the electronically controlled
micro-metric positioning system (figure 4.19).

Figure 4.23: Lab-scale WENGLOR laser profilometer measurement setup.

The gap is measured in each point, and results are reported in figure 4.24. The
same measure is performed with Nikon D7200 and Crack Analyser algorithm.
The average gap measured by the profilometer is 1.11 mm and the mean gap
measured with the developed algorithm is 1.08 mm. The difference between the
two measures falls within the X resolution of the profilometer (33 µm).

4.4 Metrological characterization of the
measurement system with depth sensor

Intel Realsense D435i depth camera, largely used in applications such as robotics
or augmented and virtual reality, is used to assess the metrological character-
ization of measurement system without fiducial markers (Figure 4.26). The
camera is equipped with two monochromatic sensors (1280x720pixels) and
one IR projector for estimating depth map through Active IR Stereo technol-
ogy. The RGB model for image acquisition has a 64◦ × 41◦ × 77◦(±3◦) Field
of View (FOV) and 1920x1080 pixels spatial resolution. Through Active IR
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4.4 Metrological characterization of the measurement system with depth sensor

Figure 4.24: In order to make the measurement systems comparable, the starting
point of the laser is manually positioned to the centre of maker ID
6 then move to centre of marker ID 8 with a step of 0.1 mm

Figure 4.25: Crack gap measured between centre of marker ID 6 and ID 8 with
a step of 0.1mm
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Figure 4.26: Intel Realsense RGBD D435i depth camera
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4.4 Metrological characterization of the measurement system with depth sensor

Stereo technology, after a proper calibration with a custom calibration target
provided by Intel, a calibrated depth layer 1280x720 can be obtained. Each
single pixel value represents the distance in millimetres between that pixel and
reprojected real-world surface with a depth accuracy of < 2% in the range
of 0.1 − 2m. With proper internal algorithm the RGB and Depth layer are
matched obtaining a RGBD image. In all that cases where the target surface
is plane (e.g. concrete wall), the Depth layer can be used for checking the
parallelism between sensor and target surface plane (Figure 4.27). In this way

Figure 4.27: Relative position between sensor and target planes.

the operator could be forced to capture the image as parallel as possible to
the target surface under a certain threshold angle. In Figure 4.28 is shown 4
different acquisition where is angle between target and sensor planes range from
0◦ to 10◦ for yaw and pitch. In order to assess the effect of yaw and pitch angles
in terms of repeatability and reproducibility 5 different acquisition scenario are
performed following the scheme in Figure 4.29. The operator approaches the
target surface and the camera start looping acquisition (a). Each acquired frame
is used for estimating yaw and pitch angles between target and sensor planes, if
one of them is higher than target angular threshold the frame is rejected and
the camera continue the acquisition loop (b) until an RGBD frame with yaw
and pitch angles lower than target angular threshold are acquired (c). The
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Figure 4.28: Depth frame can be used for estimating yaw and pitch angle
between target and sensor planes.
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4.4 Metrological characterization of the measurement system with depth sensor

loop continues until 10 RGBD frame are collected (d), then the acquisition is
automatically stopped. Figure 4.30 shows the live view application provided to
the operator in order to have real-time feedback on what is captured by the
camera. The Gage R&R study is assessed by asking 3 different operators to

Figure 4.29: Realsense acquisition loop for In order to assess the effect of yaw
and pitch angles in terms of repeatability and reproducibility.

perform 10 measurements each in 3 different target cracks following the scheme
reported in Figure 4.29. These acquisitions are repeated for six different angular
thresholds of 5◦, 10◦, 15◦, 20◦, 25◦ and 30◦. A two-way ANOVA is run on sample
of 90 measurements in the 6 different angular scenarios to examine the effect
of operator, the type of crack and the angular threshold (Appendix 1). The
results show there is a significant interaction between the crack ID and the
operator (p < 0.05), the null hypothesis can be rejected, the test is statistically
signification considering all case scenarios. The Variance analysis shows that
the repeatability standard deviation is quite small (0.0074 mm) if compared
with the reproducibility (0.0151 mm) where the angles admitted are lower
than 5◦. As shown in Figure 4.31 this difference grows as the admitted angles
increases, increasing the admitted angles the standard deviation associated
to the reproducibility increases as well significantly. The contribution % of
Variance associated to the Total Gage R&R is minor than 1% where the angles
admitted are lower than 5◦, that makes it an acceptable measurement system.
As shown in Figure 4.32 increasing the admitted angles, the contribution % of
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Figure 4.30: Realsense live view for real-time feedback.

Figure 4.31: Repeatability and Reproducibility Standard Deviation increasing
admitted yaw or pitch angles.
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Variance associated to the Total Gage R&R increases significantly making the
measurement system unacceptable. Such a thing happens with the contribution
% of Study Variance associated to the Total Gage R&R (Figure 4.33) and
the number of distinct categories (Figure 4.34). According to AIAG, the

Figure 4.32: Total Gage R&R % Contribution of Variance increasing admitted
yaw or pitch angles.

scenario with maximum admitted yaw or pitch angle of 5◦ is the only that can
be considered acceptable. These results underline the importance of assessing
the parallelism between sensor and target surface plane. Comparing the gauge
R&R test in Table 7 and Table 4.1 it is important to note how a limited system
like the 2MP RGBD Intel RealSense is able to obtain performances comparable
to those of a much better performing system such as a 24MP DSLR (Nikon
D7200) with aspherical lens with very limited distortion (AF-S Micro NIKKOR
60mm f/2.8G ED), all this thanks to the parallelism between sensor and target
surface plane.

4.5 Performance Comparison on reference specimen
The performance of the algorithm is tested by comparing the measurement
between the system described in section 4.3 and 2 different high-precision
optical-based measurement systems. For the purposes of comparison, a reference
specimen is realized exploiting Fused Deposition Modelling (FDM) 3D printing
technology. As shown in figure 4.35, the specimen consists of a central groove
with a design thickness of 5mm. Around the groove there are 9 cavities, with a
thickness of 0.5mm, on each side, equally spaced by 5mm. The cavities will be
used to ensure perpendicularity between the laser and the central line of the
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Figure 4.33: Total Gage R&R % Contribution of Study Variance increasing
admitted yaw or pitch angles.

Figure 4.34: Number of Distinct categories increasing admitted yaw or pitch
angles.
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groove. The measurement systems chosen for the test are:

Figure 4.35: 3D printed reference specimen.

• OASIS, a custom telecentric profilometer designed by Zannini and Z4Tech
with a declared uncertainty of 25.5µm,

• Wenglor MLSL132, a laser profilometer, already described in section 4.2,
with a declared uncertainty of 33µm at a working distance of 15cm.

The OASIS telecentric profilometer used for performance comparison on
reference specimen is a custom measurement system developed by Zannini and
Z4Tech. OASIS is based on telecentric optical profilometry for in-production
dimensional quality control. Short inspection time, the possibility to simultane-
ously measure several dimensions on different sides of the part and suitability
for automated part handling are key specifications of the device. Figure 4.36
shows the cross-shaped mechanical structure of the instrument. The OASIS
instrument is composed of:

• a pair of 61 mm telecentric lens equipped with 5Mpx sensors,

• a pair of 520µm telecentric illuminator.

Traditional lenses are affected by parallax, the perspective error can decrease
significantly the measurement accuracy. Telecentric lenses, through their par-
ticular optical scheme, overcome this problem. As shown in figure 4.37 at any
distance from the lens, a telecentric lens will always have the same field of
view. As happens for the lenses, the telecentric illuminators have the abil-
ity to emit light rays that are collimated and parallel to the optical axis. A
telecentric illuminator increases edge contrast and measurement accuracy by
decreasing diffuse reflections from the object. In this way, from the combination

105



Chapter 4 Metrological characterization

Figure 4.36: Cross-shaped structure of OASIS. The piece to inspect is placed on
the glass, between the two pairs of telecentric profilometers. [119]

Figure 4.37: FOV comparison of a conventional and telecentric lens
(www.edmundoptics.com)
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of telecentric lenses and illuminators, profilometer are obtained that are able to
return a perfect silhouette of the sample to be measured. OASIS device exploit
NI LabVIEW Vision library in order to perform image-based measurements.
This device is used to perform measurement of the average groove width in
the reference specimen (Figure 4.38). As shown in figure, the same measure-

Figure 4.38: On the left, the reference specimen on OSASIS device. On the
right, the resulting silhouette

ment setup and procedure already described in section 4.2 are used to perform
measurement of the average groove width in the reference specimen with the
Wenglor MLSL132 laser profilometer. The Crack Analyser algorithm is tested
according the same method already described in 4.3. The reference specimen
and the camera are they are fixed in an optical bench. Starting from a distance
of 40cm, the camera acquires an image and moves away from the target by
2cm at each photo, for a total of 30 images collected. From the measurements
carried out, it is obtained an extended standard uncertainty u(xi)k = U = 0.018
(coverage factor k = 2) and a sample mean xi = 4.657. The extended standard
uncertainty appears to be compatible with that obtained in the section 4.3.
The results of the measurements of the groove average width of the reference
specimen are:

• Crack Analyser device: ŵ = 4.657 ± 0.018, working distance from 600mm
to 1650mm,

• laser profilometer device: ŵ = 4.631 ± 0.033, working distance of 150mm,

• telecentric profilometer device: ŵ = 4.660 ± 0.025, working distance of
102mm.
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Figure 4.39: Wenglor MLSL132 laser profilometer is used to perform measure-
ment of the average groove width in the reference specimen.

The graph in the figure 4.40 shows the ŵ calculated using the Crack Analyser
algorithm according to the distance of the camera from the target. From this
analysis several considerations can be drawn:

• all the ŵ measured with Crack Analyser method at each distance fall
within the measurement uncertainty calculated with the same methodology
described in section 4.3,

• the proposed system is able to obtain results compatible with reference
measuring instruments known in the state of the art even at very variable
working distances. The figure 4.41 shows two images framed respectively
at a distance of 700 mm and 1650 mm: despite the enormous difference
between the two acquisitions, the results of w fall within the previously
calculated uncertainty interval. This type of behaviour is also in line with
what was observed in the chapter 4.1 in controlled scenario environment.

• the proposed system, in addition to achieving the same result, is much
more versatile than competing systems. In fact, both for one and for
the other, it is necessary to guarantee the perpendicularity between the
measured piece surface and the optical axis. This results in a much shorter
tool set-up time than the competition,

• for the purposes of the test, it was necessary to guarantee the perfect
perpendicularity the axis of symmetry of the groove to be measured, as
neither the laser profilometer nor the telecentric one are able to measure
the thickness of the groove perpendicularly to the center of the line. The
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proposed system, on the other hand, is totally indifferent to the inclination
of the groove as it measures the thickness point by point perpendicularly
to the axis of symmetry of the groove.

Figure 4.40: ŵ calculated using the Crack Analyser algorithm according to the
distance of the camera from the target. In the graph there are
superimposed the results of the measurements carried out with the
laser and telecentric profilometers in terms of average value and
uncertainty bounds.

109



Chapter 4 Metrological characterization

Figure 4.41: Acquisition setup described in 4.3. On the left, a picture framed at
a distance of 600mm. On the right a picture framed at a distance
of 1650mm.
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Chapter 5

Deployment on portable devices for
in-field testing

In chapter 3.3 the Sigma Optimization algorithm is modified in order to be used
in a real-scale scenario. The result of this work is the Crack Analyser algorithm,
a novel automatic image-based approach able to locate and measure crack
respecting the metrological constraint imposed by the UNI EN 1992-1-1:2005
standard. Using only one image, this method is able to rapidly locate and
measure crack average width and length without requiring any user input or
parameters selection in order to reduce the bias introduced by the user that
performs the operation. The algorithm is equipped with two different systems: a
standard DSLR reflex and the Intel Real Sense depth camera. The Measurement
System Analysis proves that both systems have a standard deviation associated
to reproducibility and repeatability tests under 0.03 mm. The precision of
both system is assessed with the state-of-art gap measurement system: the
laser profilometer. In this chapter is explained the architecture design of the
system and the application that integrate the Crack Analyser algorithm in order
to make it usable and user-friendly even by non-expert operators for in-field
testing.

5.1 Measurement System design
The measurement system which is the subject of this document consists of a
hardware component and a software component. The hardware consists of a
system capable of recording and processing images (for example smartphones,
dedicated vision systems,. . . ). The measurement set-up (hardware component)
is schematically represented in figure 5.1. The system may or may not be able
to measure the distance between the camera sensor and target surface. As
explained in chapter 3.3, if the device does not have a depth measurement
system (such as LIDAR sensors, Time of Flight or depth cameras), in order to
calibrate the image, fiducial markers have to be applied to the surface. If the
measurement system is equipped with depth sensor, an image acquisition device
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(3), equipped on board a UAV (5) or in the hand of an operator, observes a crack
on a surface that is not physically reachable (1) and carries out the measurement
by calibrating the image acquired through the depth sensor (4). In the other
case, an image acquisition device (3), in the hand of an operator, observes a
lesion (1) and carries out the measurement by calibrating the acquired image
through the use of applied markers on the surface (2). The algorithm (software

Figure 5.1: The hardware side of the measurement system consists of a system
capable of recording and processing images able or not to detect
distance between image sensor and target surface

component) for the identification and measurement of the lesion performs the
following flow of operations:

1. Acquisition of an RGB image containing the crack.

2. Applying of the Crack Analyser algorithm.

3. Displaying result for user feedback.

5.2 Software design
Business Process Modelling Notation (BPMN) is adopted to model the software
design of the proposed method from end to end. Figure 5.2 shows the BPMN
model modules explanation. In figure 5.3 is shown the BPMN model that shows
the software architecture.
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Figure 5.2: BPMN model modules explanation.

113



Chapter 5 Deployment on portable devices for in-field testing

Fi
gu

re
5.

3:
BP

M
N

m
od

el
fo

r
so

ftw
ar

e
de

sig
n

114



5.3 Crack Analyser App

5.3 Crack Analyser App
The Crack Analyser algorithm is integrated in a Flutter application, an open-
source user interface Software Development Kit (SDK) by Google for cross-
platform development. It can be used for writing applications for Android,
iOS, Linux, Mac, Windows, and web-app from a single codebase. Flutter
apps are based Dart language [120] and make use of many of the language’s
more advanced features. [121]. Figure 5.4 shows the architecture design of the
application: the front-end side run on Flutter application mounted on the device,
the back-end side is entirely managed by a python-based server where the Crack
Analyser algorithm run. The front-end application can be easily embedded on
any Android/iOS smartphone or dedicated Linux/Windows-based hardware
since the cross-platform nature of Flutter SDK. The front-end and the back-end
server communicate through HTTP requests with Application Programming
Interfaces (APIs) managed by Flask, a micro web framework written in Python
[122]. The APIs allows this two systems to communicate each other providing

Figure 5.4: Architecture design for Crack Analyser app. The front-end run
on Flutter application, the back-end part is entirely managed by a
python-based server.

the language and contract for how the two systems interact and determines how
information can be transferred. The exposed API use Http requests to receive
and give informations. The points of entry in a communication channel when
two systems are interacting are the API endpoints. In particular, the developed
APIs used comply with the REST (REpresentational State Transfer) protocol,
which is why they are called REST APIs [123]. The designed API consists of a
list of endpoints:

1. http : //SERV ER_IP/image : this endpoint receives as input the
acquired image, the user credentials, the camera configuration. The
image is uploaded to the server in a dedicated directory based on user
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credentials. The outputs are the image location in the server and a boolean
that represents the feedback of uploading procedure.

2. http : //SERV ER_IP/detect_line : this endpoint receives no inputs
from front-end application. It gives the command to server to applying
the Crack Analyser algorithm to the image previously uploaded. If the
image comes from a camera not equipped with depth sensor the algorithm
will look for fiducial marker in order to calibrate the input image. The
resulting image and the Filling Level plot are saved on server according
to user credentials previously received. Returns as output the processed
image, the crack masked with semantic segmentation, the Filling level
plot image and the value of measured crack average width.

Figures 5.5, 5.6 and 5.7 shows the Flutter front-end application developed on
Android device. The application is composed of three screens: the login/register
screen, the home screen, and the measure screen. The starting page is the
login/register screen (a). In this page are present two buttons: the login button
(1) where the user can insert its credentials, and the register button (2) where
the user can register a new account and log in. The login and register data
are stored and verified through Google Firebase Authentication. Once the user
is register or logged in, the app move to home screen (b). In this page are
present four buttons: Camera, Gallery, Detect Line and RealSense. With the
Camera button (3) the application will open the default device camera in order
to acquire an image. With the Gallery button (4) the application will open the
default device image gallery in order to use photos stored on the device as input
for the measurement. By default the RealSense and DetectLine buttons are
greyed out. A Intel RealSense camera can be plugged in to the device through
USB OTG cable. If a camera RealSense camera is detected on the device, the
RealSense button became green and can be used for acquiring RGBD images.
The image, regardless of how it was acquired, is then shown on the screen
(c). Through "/image" HTTP request the device automatically uploads the
input image to the back-end server sharing infos about the camera and the
user. If the server communicates that the upload is been done, the DetectLine
button (5) become green and if pressed the user land on Detect Line screen
(d). The Detect Line page contains three buttons: Measure, Graph FS and
Mask buttons. By default the Graph FS and Mask buttons are greyed out.
Pushing on Measure button (7) the "/detect_line" HTTP request is sent to
the server. The server receive as input the acquired image and data regarding
the user and camera infos. Once the image is processed by the python-based
back-end, the server give as output the processed image, the crack masked with
semantic segmentation, the Filling level plot image and the value of measured
crack average width. Once the data are received with positive feedback from
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the server the processed image and the crack average width are displayed on the
screen and the Graph FS and Mask buttons are activated (e). The graph FS
button (8) allows the user to have a visual feedback about the Crack Analyser
algorithm, the red dot on the plot represents the σF L used as input for Steger
algorithm (f). The Mask button (9) allows the user to have a visual feedback
about the semantic segmentation of the crack, incorrect segmentation can lead
to errors in estimating average crack width.

Figure 5.5: Front-end application run on Android device.
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Figure 5.6: Front-end application run on Android device.
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Figure 5.7: Front-end application run on Android device.
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Chapter 6

In-field testing results

The Crack Analyser algorithm is tested through the application developed in
chapter 5 in the facilities of an EnDurCrete project partner, the Santa Barbara
Foundation. The Santa Barbara Foundation is a Public Foundation of indefinite
duration and non-profit nature, attached to the Ministry of Economy and
Finance of the Junta de Castilla y León through the General Directorate of
Energy and Mines that collaborates with the social welfare and the promotion
of those cultural activities aimed at promoting knowledge and scientific and
technical research. Today, the Santa Barbara Foundation is a consolidated entity,
which works on training tasks, technological tests and research, development and
innovation projects, always acting within the field of applied technology, security,
and technological progress, developing its activity in its centres of El Bierzo
Labor School, located in the municipalities of Folgoso de la Ribera and Torre del
Bierzo (León). Santa Barbara Foundation offers professional training courses
for employment and specialized continuous training in various training areas:
Underground Construction, Earthworks, Electromechanics, Renewable Energies
and the Environment. Its specialized staff and facilities allow it to provide
eminently practical training, with full-scale pitches suitable for adequate learning
aimed at insertion and professional improvement (Figure 6.1). FSB mining
tunnels facilities were used within the EnDurCrete project for corrosion and
structural health monitoring of tunnel precast concrete segments for tunnel lining
and mortar grouting formulations and non-destructive inspection techniques for
detection of delamination after installation (Figure 6.2). The system developed
in 5 is used to inspect and measure cracks on the tunnel precast concrete
panels and mining tunnel surface. This type of environment seems to be ideal
for testing the measurement system developed in this thesis work as it is the
closest to a real use case, with the addition of being in a hostile, dirty and not
very illuminated. The classic crack ruler (range from 0.010 to 2.50 mm) was
used as the reference measuring instrument, designed to provide inspectors for
determining the width of a crack in concrete or other building materials (Figure
6.3).

In total, two cracks were found on the panels and one crack on the external
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Figure 6.1: Santa Barbara Foundation mining tunnels

Figure 6.2: Corrosion and structural health monitoring of tunnel precast con-
crete segments for mining tunnel demonstrator in EnDurCrete
Project
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Figure 6.3: Crack ruler used as reference measuring instrument.

surface of the mine.In the first case the cracks were barely visible to the naked
eye, so it was necessary to use a high spatial resolution system (tablet camera
with 18MPx) applying fiducial markers on the concrete surface (Figure 6.4).
Despite the reduced thickness, the algorithm was able to identify the crack and
measure its thickness in both cases considered, reporting a width of 0.1 mm.
This result is validated through the use of a crack ruler (Figure 6.5).

The most difficult case is the measurement of the cracks on the internal
surface of the mining tunnel. In this case, in fact, it is a question of analysing
a crack on an optically non-cooperative surface with very high roughness and
made by dark material that minimises the contrast between target crack and
surrounding surface. Due to the high roughness it is impossible to apply targets
on the surface, therefore it was necessary to use the device equipped with a
depth sensor, the Intel RealSense depth camera (Figure 6.6).

The figure shows the complete calculation flow for the measurement of the
average width of the crack in the surface in the tunnel. The calibrated RGBD
image is acquired (a), then AI is exploited for the binary semantic segmentation
in order to find the region of interest that contain the crack (b). The mask
obtained (c) is used to find analyse the crack image histogram (d) and calculate
the crack contrast h (e) by calculating the distance between histogram peaks.
Then the developed Filling Level algorithm is applied to the image and σF L is
calculated. In the end, Steger algorithm is applied to the image with optimal
parameters and the ŵ is obtained. The ŵ turns out to be 2 mm, exactly like
what the crack ruler reads. Also in this case the developed system proved to be
suitable for the measurement of cracks in a working environment and was able,
through the acquisition of a single image, to localize and measure the crack.

In order to test the device in uncontrolled lighting conditions, the analysis of
cracks in bridge inspections was considered. The bridge chosen for the inspection
is located on the "Centro Cadore" Lake (46.44909, 12.40585). An approximately
1.5 mm lesion measured through the crack ruler was found in the lateral support
structure of the bridge (Figure 6.8).
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Figure 6.4: The cracks present on the panels are barely visible, therefore it is
necessary to use the high spatial resolution system.

Figure 6.5: Comparison between the proposed method, on the left, and the
traditional method with a ruler, on the right. In both cases the
device returns the measurement of 0.1mm.
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Figure 6.6: Due to the high roughness it is impossible to apply targets on the
surface, therefore it is necessary to use the device equipped with a
depth sensor.
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Figure 6.7: Complete calculation flow for the measurement of the average width
of the crack in the surface in the tunnel.
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Figure 6.8: The bridge chosen for the inspections in conditions of natural light
is located on the "Centro Cadore" Lake

Analogously to the previous case, the figure 6.9 shows the complete calculation
flow for the measurement of the average width of the crack located in the lateral
support structure of the bridge. Unlike what was acquired in the tunnel, however,
in this case, it was possible to carry out the acquisition through the system
with and without the use of a depth sensor. In both cases, an average thickness
along the crack of 1.4mm was measured.
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Figure 6.9: Complete calculation flow for the measurement of the average width
of the crack located in the lateral support structure of the bridge.
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Chapter 7

Conclusions and future work

7.1 Conclusions
This thesis work proposes a novel automatic image-based approach able to
locate and measure cracks on concrete surfaces respecting the metrological
constraint imposed by UNI EN 1992-1-1:2005 standard. Using only one image,
the developed method is able to automatically and rapidly locate and measure
the average width and length of a crack in an existing concrete structure. The
measurement system developed exploits a single camera working in the visible
range to acquire a digitized image of the structure being inspected. The software
component of the system receives as input the single image framing the crack
and gives as output an augmented image where the crack is highlighted as
well as its average/max width and length. The measure of the crack width is
performed perpendicularly to the crack central line with sub-pixel accuracy.
The measurement system has been deployed on a smartphone for operator-based
manual inspections as well on embedded systems for remote inspection with
robots or Unmanned Aerial Vehicles (UAVs). The methodology is validated and
characterized from the metrological point of view by means of multi-operator
analysis of variance and type-A uncertainty estimation. The metrological
characterization of the proposed system is performed through a structured test,
where for each acquired image the relative angles between the sensor surface
and the target surface are known 4.1, and a test that does not adopt any type
of control, thus simulating a real-scale application of the measuring device 4.2.
In the first type of test, an anthropomorphic robot is used to acquire images at
known angles and define the working range of the developed device. This type
of test made it possible to demonstrate that:

• the error in calculating the crack width does not depend on the distance,
and therefore on the number of pixels representing the crack in the framed
image.

• the error increases as the angular misalignment between the measuring
plane and the sensor plane increases.
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• By varying the angle of installation between ±30◦ the maximum error
is always below 0.1 mm, regardless of the distance and therefore of the
number of pixels that represent the crack in the framed image.

• The standard deviation of the measurement increases as the angle of
misalignment increases in a quadratic manner. With a maximum angle of
misalignment of 5◦ a standard deviation of 0.0025mm is obtained, while
with 30◦ you get a standard deviation of 0.03mm.

• Based on the thickness of the crack in pixels, it is possible to establish
sigma ranges of optimal functioning of the algorithm within which the
optimal sigma falls when the laying angle varies, with a maximum range
allowed between ±30◦.

• The standard deviation associated with the 100 measurements carried out
on the same reference sample by an operator is equal to 0.013mm.

Subsequently the results obtained from these tests will be compared with
the results obtained through uncontrolled measurements in a real-case scenario.
The tests carried out on a real crack demonstrate that the standard deviation
associated with the 100 measurements carried out on the same reference sample
by an operator is equal to 0.02mm.

Furthermore, the Sigma Optimization algorithm, developed in chapter 3.1.2,
led to the creation of an innovative optimization technique for C. Steger’s line
detection algorithm for lab-scale controlled environments. However, there are
some aspects to be improved:

• the algorithm that identifies the plateau in the Filling Level trend is
currently based on interpolation and gradient concepts. The use of a
neural network that, through an inferential approach, leads to the accurate
selection of the σF L position could lead to improvements and reduce the
uncertainty associated to the estimation of this parameter.

• The algorithm that calculates the contrast of the crack is based on the
calculation of the distance of the peaks in the histogram of the image.
Although its proven effectiveness, in some particular cases may fails.
Exactly as in the case of the identification of the σF L, it would be possible
to exploit an inferential approach as a further control and prediction of
the parameter to be selected.

• The algorithm developed cannot handle large variations in contrast along
the detected line. This means that if the crack involves several materials
of different colours, or is crossed by different contrast scenes on the same
material, there would be an error in the estimation of the line width.
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This problem could be overcome through different hardware and software
approaches. From the software point of view, a logic could be implemented
for which the identified line is considered as the union of several lines with
different contrast, in this way the thickness would be calculated separately
for each line and then joined subsequently. From the hardware point of
view, one could think of an approach based on hyper-spectral imaging.
Thanks to the use of hypercubes, in fact, the effect of the variation in
contrast of the image could be greatly attenuated and concentrated solely
on the target crack by excluding extraneous elements from the scene.

• Although the trained neural network has proved to be extremely effective
in all situations, in a perspective of large-scale use, it would be necessary
to develop a control procedure on semantic segmentation step. In the
event of an error in the segmentation, a manual correction could be simply
made by the operator who is performing the measurement via the touch
screen of the device.

7.2 Future work

Given the ease of use of the developed system, it has stimulated interest in the
device also within the BIM2TWIN research project where UNIPM is partner and
leader of work package 4 "Progress and quality monitoring of surface/textural
work". From a survey conducted as part of the project, which involved more
than 300 companies in the construction sector from 15 different countries from
all over the world, the importance of having measurement systems characterized
by high ease of use, rapidity of execution and possibility of remote access to
data. It also emerged that the use of smartphones within the construction
site to collect data and carry out reports in relation to reporting defects and
deviations from the initial project has become increasingly widespread. For
this reasons, the next step of this work will certainly be to integrate the entire
developed method on portable devices with integrated LIDAR (e.g., iPhone 13
pro or iPad pro). In this way you can guarantee maximum performance and all
the necessary sensors in a single device.

The strategies developed in this thesis work can be easily extended from
concrete inspection applications to any other context where a surface quality
control targeted to the identification of eventual damages/defects is required.
The method has proved to be particularly valid in the automatic detection of
defects, scratches and non-conformities on surfaces of various kinds, such as for
example the surfaces of car frames or rims. The developed algorithm will be used
within the European research project BIM2TWIN for the inspection of masonry
constructions, in particular the assessment of mortar joint thickness deviation,
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mortar join position deviation and mortar joint alignment deviation. In this
project the possibility of increasing the algorithm performance through hyper-
spectral imaging technology will also be investigated. In fact, it is thought that
exploiting particular wavelengths it is possible to investigate other properties of
the crack. BIM2TWIN project will try to take a step forward implementing the
use of hyper-spectral imaging to detect chemical species or moisture penetration
that can reduce the service life of the building.
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Appendix

1 Gage RR study

Figure 1: Gage R&R study assessed by asking 3 different operators to perform
10 measurements each in 3 different target cracks with maximum
angle admitted equal to 5◦.
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ANOVA TABLE
Source DoF SS MS F p

Crack ID 2 1.46 0.73 654.103 0
Operator 2 0.009 0.005 4.274 0.1

Interaction 4 0.004 0.001 20.523 0
Repeatability 81 0.004 0

Total 89 1.479

Source Variance % Contr
Total Gage R&R 0.0004 0.98

Repeatability 0 0.22
Reproducibility 0.0004 0.93

Operator 0.0003 0.5
Interaction 0.0001 0.43

Part to Part 0.0311 98.85
Total Variation 0.0315 100

Source SD SV (6 sigma) % SV
Total Gage R&R 0.0168 0.1008 9.99

Repeatability 0.0074 0.0443 4.7
Reproducibility 0.0151 0.0906 9.63

Operator 0.011 0.0662 7.04
Interaction 0.0103 0.0618 6.57

Part to Part 0.1559 0.9353 99.42
Total Variation 0.1568 0.9408 100

Number of Distinct Categories = 15

Table 1: Gage R&R study assessed by asking 3 different operators to perform
10 measurements each in 3 different target cracks with maximum angle
admitted equal to 5◦.
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1 Gage RR study

ANOVA TABLE
Source DoF SS MS F p

Crack ID 2 1.87 0.935 799.031 0
Operator 2 0.018 0.009 7.743 0.04

Interaction 4 0.005 0.001 26.053 0
Repeatability 81 0.004 0

Total 89 1.897

Source Variance % Contr
Total Gage R&R 0.0004 1.33

Repeatability 0 0.14
Reproducibility 0.0004 1.19

Operator 0.0003 0.83
Interaction 0.0001 0.36

Part to Part 0.0311 98.67
Total Variation 0.0315 100

Source SD SV (6 sigma) % SV
Total Gage R&R 0.0205 0.123 11.54

Repeatability 0.0067 0.0402 3.77
Reproducibility 0.0194 0.1163 10.91

Operator 0.0162 0.0973 9.13
Interaction 0.0106 0.0637 5.97

Part to Part 0.1764 1.0586 99.33
Total Variation 0.1776 1.0657 100

Number of Distinct Categories = 13

Table 2: Gage R&R study assessed by asking 3 different operators to perform
10 measurements each in 3 different target cracks with maximum angle
admitted equal to 10◦.
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ANOVA TABLE
Source DoF SS MS F p

Crack ID 2 1.35 0.675 122.811 0
Operator 2 0.023 0.012 2.119 0.24

Interaction 4 0.022 0.005 36.601 0
Repeatability 81 0.012 0

Total 89 1.407

Source Variance % Contr
Total Gage R&R 0.0009 3.83

Repeatability 0.0002 0.65
Reproducibility 0.0007 3.19

Operator 0.0002 0.88
Interaction 0.0005 2.3

Part to Part 0.0223 96.17
Total Variation 0.0232 100

Source SD SV (6 sigma) % SV
Total Gage R&R 0.0298 0.179 19.58

Repeatability 0.0123 0.0735 8.04
Reproducibility 0.0272 0.1632 17.85

Operator 0.0143 0.0859 9.4
Interaction 0.0231 0.1387 15.18

Part to Part 0.1494 0.8962 98.06
Total Variation 0.1523 0.9139 100

Number of Distinct Categories = 7

Table 3: Gage R&R study assessed by asking 3 different operators to perform
10 measurements each in 3 different target cracks with maximum angle
admitted equal to 15◦.
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1 Gage RR study

ANOVA TABLE
Source DoF SS MS F p

Crack ID 2 1.498 0.749 46.354 0
Operator 2 0.096 0.048 2.983 0.16

Interaction 4 0.065 0.016 64.894 0
Repeatability 81 0.02 0

Total 89 1.679

Source Variance % Contr
Total Gage R&R 0.0029 10.64

Repeatability 0.0002 0.91
Reproducibility 0.0027 9.73

Operator 0.0011 3.91
Interaction 0.0016 5.82

Part to Part 0.0244 89.36
Total Variation 0.0273 100

Source SD SV (6 sigma) % SV
Total Gage R&R 0.0539 0.3235 32.62

Repeatability 0.0158 0.0947 9.54
Reproducibility 0.0516 0.3094 31.19

Operator 0.0327 0.1961 19.77
Interaction 0.0399 0.2393 24.12

Part to Part 0.1563 0.9377 94.53
Total Variation 0.1653 0.992 100

Number of Distinct Categories = 4

Table 4: Gage R&R study assessed by asking 3 different operators to perform
10 measurements each in 3 different target cracks with maximum angle
admitted equal to 20◦.

149



Appendix

ANOVA TABLE
Source DoF SS MS F p

Crack ID 2 1.368 0.684 93.356 0
Operator 2 0.035 0.017 2.367 0.21

Interaction 4 0.029 0.007 14.077 0
Repeatability 81 0.042 0.001

Total 89 1.475

Source Variance % Contr
Total Gage R&R 0.0015 6.37

Repeatability 0.0005 2.16
Reproducibility 0.001 4.21

Operator 0.0003 1.39
Interaction 0.0007 2.83

Part to Part 0.0226 93.63
Total Variation 0.0241 100

Source SD SV (6 sigma) % SV
Total Gage R&R 0.0392 0.2351 25.24

Repeatability 0.0228 0.1369 14.7
Reproducibility 0.0319 0.1911 20.52

Operator 0.0183 0.1096 11.77
Interaction 0.0261 0.1566 16.81

Part to Part 0.1502 0.9013 96.76
Total Variation 0.1552 0.9314 100

Number of Distinct Categories = 5

Table 5: Gage R&R study assessed by asking 3 different operators to perform
10 measurements each in 3 different target cracks with maximum angle
admitted equal to 25◦.
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1 Gage RR study

ANOVA TABLE
Source DoF SS MS F p

Crack ID 2 1.368 0.684 28.075 0
Operator 2 0.077 0.038 1.571 0.31

Interaction 4 0.097 0.024 70.439 0
Repeatability 81 0.028 0

Total 89 1.57

Source Variance % Contr
Total Gage R&R 0.0032 12.74

Repeatability 0.0003 1.37
Reproducibility 0.0029 11.37

Operator 0.0005 1.84
Interaction 0.0024 9.53

Part to Part 0.022 87.26
Total Variation 0.0252 100

Source SD SV (6 sigma) % SV
Total Gage R&R 0.0567 0.34 35.7

Repeatability 0.0186 0.1116 11.72
Reproducibility 0.0535 0.3212 33.72

Operator 0.0215 0.1292 13.56
Interaction 0.049 0.2941 30.87

Part to Part 0.1483 0.8898 93.41
Total Variation 0.1588 0.9525 100

Number of Distinct Categories = 3

Table 6: Gage R&R study assessed by asking 3 different operators to perform
10 measurements each in 3 different target cracks with maximum angle
admitted equal to 30◦.
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Figure 2: Gage R&R study assessed by asking 3 different operators to perform
10 measurements each in 3 different target cracks with maximum
angle admitted equal to 10◦.
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1 Gage RR study

Figure 3: Gage R&R study assessed by asking 3 different operators to perform
10 measurements each in 3 different target cracks with maximum
angle admitted equal to 15◦.
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Figure 4: Gage R&R study assessed by asking 3 different operators to perform
10 measurements each in 3 different target cracks with maximum
angle admitted equal to 20◦.
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1 Gage RR study

Figure 5: Gage R&R study assessed by asking 3 different operators to perform
10 measurements each in 3 different target cracks with maximum
angle admitted equal to 25◦.
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Figure 6: Gage R&R study assessed by asking 3 different operators to perform
10 measurements each in 3 different target cracks with maximum
angle admitted equal to 30◦.
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1 Gage RR study
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