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Abstract
In this paper, we study a class of (p, q)-Schrödinger–Kirchhoff type equations involving a 
continuous positive potential satisfying del Pino–Felmer type conditions and a continuous 
nonlinearity with subcritical growth at infinity. By applying variational methods, penaliza-
tion techniques and Lusternik–Schnirelman category theory, we relate the number of posi-
tive solutions with the topology of the set where the potential attains its minimum values.

Keywords  (p · q)-Laplacian problem · Penalization technique · Lusternik–Schnirelman 
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1  Introduction

1.1 � Background and motivations

In this paper, we consider the following class of (p,  q)-Schrödinger–Kirchhoff type 
problems:

where 𝜀 > 0 is a small parameter, a, b > 0 , 1 < p < q < N < 2q , Δru = div (|∇u|r−2∇u) , 
with r ∈ {p, q} , is the r-Laplacian operator, the potential V ∶ ℝ

N
→ ℝ and the nonlinearity 

f ∶ ℝ → ℝ are continuous functions.

(1)

⎧
⎪⎨⎪⎩

−

�
1 + a∫

ℝN

�∇u�p dx
�
Δpu −

�
1 + b∫

ℝN

�∇u�q dx
�
Δqu + V(𝜀x)(up−1 + uq−1) = f (u) in ℝ

N ,

u ∈ W1,p(ℝN ) ∩W1,q(ℝN ), u > 0 in ℝN ,
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When a = b = 0 , the equation in (1) becomes a (p, q)-Schrödinger equation of the form

whose study is motivated by the general reaction diffusion system

where D(u) = |∇u|p−2 + |∇u|q−2 . This system has a wide range of applications in physics 
and related sciences such as biophysics, plasma physics and chemical reaction design. In 
these applications, the function u describes a concentration; the first term on the right-hand 
side of (2) corresponds to the diffusion with a diffusion coefficient Du, whereas the second 
one is the reaction and relates to source and loss processes. Typically, in chemical and 
biological applications, the reaction term c(x, u) has a polynomial form with respect to the 
concentration u; see [14] for more details about the applications.

We point out that several existence, multiplicity and regularity results for (2) have been 
established in these last years by several authors. In [28], the authors established some regu-
larity results for (2). By combining concentration-compactness principle and mountain pass 
theorem, an existence result has been obtained in [29]. The author in [22] proved the exist-
ence of a ground-state positive solution for a (p, q)-Schrödinger equation with critical growth. 
The multiplicity and concentration of nontrivial solutions for (2) have been established in [3]. 
The authors in [39] combined refined variational methods based on critical point theory with 
Morse theory and truncation techniques to obtain a multiplicity result for a (p, q)-Laplacian 
problem in bounded domains. For other interesting results, one can consult [2, 7, 8, 34, 40, 44] 
and references therein.

When p = q , (2) boils down a p-Schrödinger equation of the type

for which different and interesting results have been obtained in the literature; see for 
instance [3, 4, 19, 23, 52]. Note that, in the case p = q = 2 , Eq. (3) reduces to the well-
known Schrödinger equation which has been widely studied in the last three decades; see 
for example [18, 25, 43, 48, 50].

When a = b ≠ 0 , p = q = 2 and N = 3 , problem (1) becomes a Kirchhoff equation of the 
form

Equation (4) is related to the stationary analog of the Kirchhoff equation [32]

where Ω ⊂ ℝ
N is a smooth bounded domain, 𝛼 > 0 , � ≥ 0 , and u satisfies some bound-

ary conditions, which was proposed by Kirchhoff in 1883 as a nonlinear extension of 
D’Alembert’s wave equation for free vibration of elastic strings

(2)−Δpu − Δqu + V(x)(up−1 + uq−1) = f (x, u) in ℝN ,

ut = div [D(u)∇u] + c(x, u)

(3)−Δpu + V(x)up−1 = f (x, u) in ℝ
N ,

(4)−

(
1 + a∫

ℝ3

|∇u|2 dx
)
Δu + V(x)u = f (x, u) in ℝ3.

utt −

(
� + � ∫Ω

|∇u|2 dx
)
Δu = f (x, u) in Ω,

(5)�utt −

(
p0

h
+

E

2L ∫
L

0

||ux||2dx
)
uxx = 0.



A multiplicity result for a (p, q)‑Schrödinger–Kirchhoff t…

1 3

Here, u = u(x, t) is the transverse string displacement at the space coordinate x and the time 
t, L is the length of the string, h is the area of the cross section, E is the Young’s modulus 
of the material, � is the mass density and p0 is the initial axial tension.

From a purely mathematical point of view, it is important to mention that the early stud-
ies dedicated to the Kirchhoff equation (5) were given by Bernstein [10] and Pohozaev 
[42]. However, the Kirchhoff equation (5) began to attract the attention of more researchers 
only after the paper by Lions [36], in which a functional analysis approach was proposed 
to attack it. For some interesting results on Kirchhoff problems, we refer to [13, 24, 30, 41, 
49].

Finally, if a = b ≠ 0 , p = q > 1 and N = 3 in (1), we have the following p-Laplacian 
Kirchhoff type equation

which has been investigated in several works; see for instance [15, 16, 27, 35, 51].
Due to the interest shared by the mathematical community toward quasilinear problems 

and Kirchhoff type equations, in [12, 31], the authors studied Kirchhoff type equations 
involving the (p, q)-Laplacian operator with p ≠ q , in a bounded domain and in the whole 
of ℝ3 , respectively.

Motivated by the above works, the purpose of this paper is to study the multiplicity and 
the concentration of solutions for (1).

1.2 � Assumptions and main result

For simplicity, we assume that a = b = 1 in (1). Let us now introduce the hypotheses on the 
potential V and the nonlinearity f that we are going to consider throughout the paper.

Let V ∶ ℝ
N
→ ℝ be a continuous function that satisfies the following assumptions due 

to del Pino–Felmer [18]: 

(V1)	� there exists V0 > 0 such that V0 = inf
x∈ℝN

V(x);
(V2)	� there exists an open bounded set Λ ⊂ ℝ

N such that 

 Assume that f ∶ ℝ → ℝ is a continuous function such that f (t) = 0 for t ≤ 0 and fulfills 
the following hypotheses: 

(f1)	� lim|t|→0

|f (t)|
|t|2p−1 = 0;

(f2)	� there exists � ∈ (2q, q∗) such that lim|t|→∞

|f (t)|
|t|�−1 = 0 , where q∗ = Nq

N−q
;

(f3)	� there exists � ∈ (2q, �) such that 0 < 𝜇F(t) = 𝜇 �
t

0

f (𝜏) d𝜏 ≤ tf (t) for all t > 0;

(f4)	� the map t ↦
f (t)

t2q−1
 is increasing for t > 0.

 In order to give the precise statement of our main theorem, let us recall that, for any 
closed subset Y of a topological space X, the Lusternik–Schnirelman category of Y in 

(6)−

(
1 + a∫

ℝ3

|∇u|p dx
)
Δpu + V(x)|u|p−2u = f (x, u) in ℝ3,

V0 < min
𝜕Λ

V and 0 ∈ M = {x ∈ Λ ∶ V(x) = V0}.
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X, catX(Y) , stands for the least number of closed and contractible sets in X which cover 
Y; see [50]. Then, we can state the following result.

Theorem 1  Let V satisfy (V1) and (V2) , and let f be a continuous function such that the 
hypotheses (f0)–(f4) hold. Then, for any 𝛿 > 0 such that

there exists 𝜀𝛿 > 0 such that, for any � ∈ (0, ��) , problem (1) has at least catM�
(M) positive 

solutions. Moreover, if u� denotes one of these solutions and x� ∈ ℝ
N is a global maximum 

point of u� , then

1.3 � Main difficulties and ideas

Due to the lack of information about the behavior of the potential V at infinity and 
the fact that our problem is set in an unbounded domain, we adapt the local mountain 
pass argument introduced by del Pino and Felmer [18]. It consists in making a suitable 
modification on f, solving a modified problem, whose corresponding energy functional 
has a nice geometric structure, and then checking that, for 𝜀 > 0 small enough, the 
solutions of the new problem are indeed solutions of the original one. We note that, 
because of the presence of the (p,  q)-Laplacian operators and Kirchhoff terms, even 
for the corresponding modified energy functional, it is hard to obtain compactness, 
and an accurate analysis will be done to prove a first existence result for the modi-
fied problem; see Lemmas 5, 6 and 7. Secondly, we make use of a technique given by 
Benci and Cerami [9] to establish a relationship between the category of the set M 
and the number of solutions for the modified problem. We underline that, since f is 
merely continuous, standard C1-Nehari manifold arguments as in [2–5, 30, 50] do not 
work in our setting, and so we take advantage of some abstract results due to Szulkin 
and Weth [46]. Note that, this type of approach has been also used in [24] where a 
Schrödinger–Kirchhoff elliptic equation was considered. Clearly, with respect to [24], 
a more careful analysis will be needed and some refined estimates will be used to over-
come some technical difficulties. Finally, to obtain a uniform L∞-estimate for an appro-
priate translated sequence of solutions to the modified problem, we do not use the clas-
sical Moser iteration argument [38] as in [3, 19, 23, 24, 30], because such technique 
does not seem to work well in our situation, but we follow some arguments found in [2, 
21, 26, 33] which are inspired by the well-known method pioneered by De Giorgi [17]; 
see Lemma 15.

As far as we know, all results presented in this work are new in the literature. Moreo-
ver, we believe that the ideas developed here can be applied in other situation to study 
(p, q)-Schrödinger–Kirchhoff type problems involving potentials satisfying local condi-
tions and continuous nonlinearities.

The outline of the paper is the following. In Sect. 2, we introduce the modified prob-
lem. Section 3 is devoted to the study of the autonomous problem associated with (1). In 
Sect. 4, we prove a multiplicity result for the modified problem. The proof of Theorem 1 
is given in Sect. 5.

M𝛿 =
{
x ∈ ℝ

N ∶ dist(x,M) ≤ 𝛿
}
⊂ Λ,

lim
�→0

V(�x�) = V0.
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2 � The modified problem

2.1 � Notations and preliminary results

In order to simplify the presentation, we denote by C a generic positive constant, which 
may change from line to line, but does not depend on crucial quantities. Let A be a measur-
able subset of ℝN . By Ac, we denote the complement of A. Let 1 ≤ r ≤ ∞ . We will use the 
notation | ⋅ |Lr(A) for the norm in Lr(A) , and when A = ℝ

N , we simply write | ⋅ |r . By Br(x0), 
we indicate the open ball in ℝN centered at x0 ∈ ℝ

N and radius r > 0 . In the case x0 = 0, 
we simply write Br.

Let 1 < r < ∞ and N > r . By D1,r(ℝN), we mean the closure of C∞
c
(ℝN) functions with 

respect to the norm

By W1,r(ℝN), we denote the Sobolev space equipped with the norm

The following embeddings are well known.

Theorem 2  [1] Let p ∈ (1,∞) and N > p . Then, there exists a constant S∗ > 0 such that, 
for any u ∈ D1,p(ℝN),

Moreover, W1,p(ℝN) is continuously embedded in Lt(ℝN) for any t ∈ [p, p∗] and compactly 
in Lt(BR) , for all R > 0 and any t ∈ [1, p∗).

For the reader’s convenience, we also recall the following vanishing lemma.

Lemma 1  [37] Let p ∈ (1,∞) , N > p and r ∈ [p, p∗) . If {un}n∈ℕ is a bounded sequence in 
W1,p(ℝN) and if

where R > 0 , then un → 0 in Lt(ℝN) for all t ∈ (p, p∗).

Let p, q ∈ (1,∞) and set

endowed with the norm

For any 𝜀 > 0 , we introduce the space

|∇u|r
r
= ∫

ℝN

|∇u|rdx.

‖u‖W1,r(ℝN ) =
��u�r

r
+ �∇u�r

r

� 1

r .

|u|p
p∗
≤ S−1

∗
|∇u|p

p
.

lim
n→∞

sup
y∈ℝN ∫BR(y)

|un|rdx = 0,

Wp,q = W1,p(ℝN) ∩W1,q(ℝN)

‖u‖Wp,q = ‖u‖W1,p(ℝN ) + ‖u‖W1,q(ℝN ).
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endowed with the norm

where

Finally, we recall the following well-known elementary inequalities [45] which will be 
used in the sequel: for any �, � ∈ ℝ

N , we have

for some c1, c2 > 0 constants. In particular,

Note that, when 1 < r < 2 using (8) and the following elementary inequality

we deduce that there exists c3 > 0 such that for any �, � ∈ ℝ
N , the following relation 

satisfies

2.2 � The penalization approach

To deal with (1), we use a del Pino–Felmer penalization type approach [18]. Firstly, we note 
that the map t ↦ f (t)

tp−1+tq−1
 is increasing in (0,∞) . Indeed, once we write

then, by (f4), we know that t ↦ f (t)

t2q−1
 is increasing in (0,∞) , and since 2q > p, we deduce 

that t ↦ t2q−1

tp−1+tq−1
 is increasing in (0,∞).

𝕎𝜀 =

{
u ∈ Wp,q ∶ ∫

ℝN

V(𝜀x)(|u|p + |u|q) dx < ∞

}

‖u‖
��

= ‖u‖V� ,p
+ ‖u‖V� ,q

,

‖u‖V� ,r
=

�
�∇u�r

r
+ ∫

ℝN

V(�x)�u�r dx
� 1

r

for all r ∈ (1,∞).

(7)(|�|r−2� − |�|r−2�) ⋅ (� − �) ≥ c1|� − �|r for r ≥ 2,

(8)(|𝜉|r−2𝜉 − |𝜂|r−2𝜂) ⋅ (𝜉 − 𝜂) ≥ c2
|𝜉 − 𝜂|2

(|𝜉| + |𝜂|)2−r for 1 < r < 2,

(9)(|𝜉|r−2𝜉 − |𝜂|r−2𝜂) ⋅ (𝜉 − 𝜂) > 0 for all 𝜉 ≠ 𝜂.

(|�| + |�|)r ≤ 2r−1(|�|r + |�|r) for all �, � ∈ ℝ
N ,

(10)[(|𝜉|r−2𝜉 − |𝜂|r−2𝜂) ⋅ (𝜉 − 𝜂)]
r

2 ≥ c3
|𝜉 − 𝜂|r

(|𝜉|r + |𝜂|r) 2−r

2

for 1 < r < 2.

f (t)

tp−1 + tq−1
=

f (t)

t2q−1
t2q−1

tp−1 + tq−1
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Take

and let a > 0 be such that

Consider the function f̃ ∶ ℝ → ℝ given by

Denote by �A the characteristic function of A ⊂ ℝ
N , and define the function 

g ∶ ℝ
N ×ℝ → ℝ as

Using the hypotheses on f, we infer that g is a Carathéodory function such that 

(g1)	� lim
t→0

g(x, t)

t2p−1
= 0 uniformly with respect to x ∈ ℝ

N,
(g2)	� g(x, t) ≤ f (t) for all x ∈ ℝ

N and t > 0,

(g3)	� (i) 0 < 𝜇G(x, t) ≤ g(x, t)t for all x ∈ Λ and t > 0 , where G(x, t) = ∫
t

0

g(x, �) d�,

	� (ii) 0 ≤ pG(x, t) ≤ g(x, t)t ≤ V0

K
(tp + tq) for all x ∈ Λc and t > 0,

(g4)	� for each x ∈ Λ, the function t ↦
g(x, t)

(tp−1 + tq−1)
 is increasing in (0,∞) , and for each 

x ∈ Λc, the function t ↦
g(x, t)

(tp−1 + tq−1)
 is increasing in (0, a).

 We point that, from (g1) , (g2) , (f1) and (f2) , for any 𝜁 > 0, there exists C𝜁 > 0 such that

Let us introduce the following auxiliary problem:

K >
q

p

(
𝜇 − p

𝜇 − q

)
> 1,

f (a) =
V0

K
(ap−1 + aq−1).

f̃ (t) =

{
f (t) if t ≤ a,
V0

K
(tp−1 + tq−1) if t > a.

g(x, t) =

{
𝜒Λ(x)f (t) + (1 − 𝜒Λ(x))f̃ (t) if t > 0,

0 if t ≤ 0.

(11)|g(x, t)| ≤ � |t|p−1 + C� |t|�−1 for all (x, t) ∈ ℝ
N ×ℝ.

(12)

⎧⎪⎨⎪⎩

−

�
1 + ∫

ℝN

�∇u�p dx
�
Δpu −

�
1 + ∫

ℝN

�∇u�q dx
�
Δqu + V(𝜀x)(up−1 + uq−1) = g(𝜀x, u) in ℝN ,

u ∈ Wp,q, u > 0 in ℝN .
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Define the set Λ� = {x ∈ ℝ
N ∶ �x ∈ Λ} . We underline that if u� is a solution to (12) satis-

fying u�(x) ≤ a for all x ∈ Λc
�
 , then u� is also a solution to (1).

Let us introduce the functional L� ∶ 𝕎� → ℝ associated with (12), that is

We note that L� ∈ C1(𝕎�,ℝ) and

for any u,� ∈ ��.
The Nehari manifold associated with L� is given by

and let

Let �� =
�
u ∈ �� ∶ ‖u‖

��
= 1

�
 be the unit sphere in �� , and set �+

�
= �� ∩�

+
�

 , where 
�

+
�

 stands for the open set

Note that, �+
�
 is an incomplete C1,1-manifold of codimension one. Hence, for all u ∈ �

+
�
 , 

𝕎𝜀 = Tu𝕊
+
𝜀
⊕ℝu , where

First, we show that L� has a mountain pass geometry [6].

Lemma 2  The functional L� has the following properties:

	 (i)	 There exist 𝛼, 𝜌 > 0 such that L�(u) ≥ � for ‖u‖
��

= �.
	 (ii)	 There exists e ∈ �� with ‖e‖

�𝜀
> 𝜌 and L𝜀(e) < 0.

L�(u) =
1

p
‖u‖p

V� ,p
+

1

2p
�∇u�2p

p
+

1

q
‖u‖q

V�,q
+

1

2q
�∇u�2q

q
− ∫

ℝN

G(�x, u) dx.

⟨L�
�
(u),�⟩ = (1 + �∇u�p

p
)∫

ℝN

�∇u�p−2∇u ⋅ ∇� dx + (1 + �∇u�q
q
)∫

ℝN

�∇u�q−2∇u ⋅ ∇� dx

+ ∫
ℝN

V(�x)�u�p−2u� dx + ∫
ℝN

V(�x)�u�q−2u� dx − ∫
ℝN

g(�x, u)� dx

N� =
�
u ∈ �� ∶ ⟨L�

�
(u), u⟩ = 0

�
,

c� = inf
u∈N�

L�(u).

�
+
𝜀
= {u ∈ �𝜀 ∶ |supp(u+) ∩ Λ𝜀| > 0}.

Tu𝕊
+
�
=

{
v ∈ 𝕎� ∶ (1 + |∇u|p

p
)∫

ℝN

|∇u|p−2∇u ⋅ ∇v dx

+ (1 + |∇u|q
q
)∫

ℝN

|∇u|q−2∇u ⋅ ∇v dx

+∫
ℝN

V(�x)(|u|p−2uv + |u|q−2uv) dx = 0

}
.
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Proof  (i) Fix � ∈ (0,V0) . From (11), we have

Choosing ‖u‖
��

= � ∈ (0, 1) and using 1 < p < q , we have ‖u‖V𝜀 ,p
< 1 and thus 

‖u‖p
V� ,p

≥ ‖u‖q
V�,p

 . Recalling that

and using Theorem 2, we find

Since 𝜈 > q , there exists 𝛼 > 0 such that L�(u) ≥ � for ‖u‖
��

= �.
(ii) By (f3), we deduce that

Then, for all u ∈ �
+
�

 and t > 0 , we have

and observing that 𝜇 > 2q > 2p we deduce that L�(tu) → −∞ as t → ∞ . 	�  ◻

In order to overcome the non-differentiability of N� and the incompleteness of �+
�
 , we 

prove the following results.

Lemma 3  Under the assumptions (V1)–(V2) and (f1)–(f4) , the following properties hold:

	 (i)	 For each u ∈ �
+
�

 , there exists a unique tu > 0 such that if �u(t) = L�(tu) , then 
𝛼�
u
(t) > 0 for 0 < t < tu and 𝛼�

u
(t) < 0 for t > tu.

	 (ii)	 There exists 𝜏 > 0 independent of u such that tu ≥ � for any u ∈ �
+
�
 and for each com-

pact set W ⊂ �
+
𝜀
 , there is a positive constant CW such that tu ≤ CW for any u ∈ W.

	 (iii)	 The map m̂𝜀 ∶ �
+
𝜀
→ N𝜀 given by m̂𝜀(u) = tuu is continuous and m𝜀 = m̂𝜀|�+

𝜀
 is a 

homeomorphism between �+
�
 and N� . Moreover, m−1

�
(u) =

u

‖u‖
��

.
	 (iv)	 If there is a sequence {un}n∈ℕ ⊂ 𝕊

+
𝜀
 such that dist(un, ��+

�
) → 0, then ‖m�(un)‖��

→ ∞ 
and L�(m�(un)) → ∞.

Proof  (i) Similar to the proof of Lemma 2, we can see that �u(0) = 0 , 𝛼u(t) > 0 for t > 0 
small enough and 𝛼u(t) < 0 for t > 0 sufficiently large. Then, there exists a global maxi-
mum point tu > 0 for �u in [0,∞) such that ��

u
(tu) = 0 and tuu ∈ N� . We claim that tu > 0 

L�(u) ≥ C1‖u‖pV�,p
+

1

q
‖u‖q

V�,q
−

C�

�
�u��

�
.

at + bt ≥ Ct(a + b)t for all a, b ≥ 0, t > 1,

L�(u) ≥ C2‖u‖q��
−

C�

�
�u��

�
≥ C2‖u‖q��

− C3‖u‖���
.

F(t) ≥ At𝜇 − B for all t > 0.

L�(tu) ≤ tp

p
‖u‖p

�,p
+

t2p

2p
�∇u�2p

p
+

tq

q
‖u‖q

�,q
+

t2q

2q
�∇u�2q

q

− At� �Λ�

(u+)� dx + B�supp(u+) ∩ Λ��,
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is unique. We argue by contradiction and suppose that there exist t1 > t2 > 0 such that 
��
u
(t1) = ��

u
(t2) = 0 . Therefore,

and

From the definition of g, (g4) and (f4) , we get

Multiplying both sides by (t1t2)
2q−p

t
2q−p

2
−t

2q−p

1

< 0 (since t1 > t2 ), we have

‖u‖p
V� ,p

t
2q−p

1

+
‖u‖q

V�,q

t
q

1

+
�∇u�2pp
t
2q−2p

1

+ �∇u�2q
q

= ∫
ℝN

g(�x, t1u)

(t1u)
2q−1

u2qdx,

‖u‖p
V� ,p

t
2q−p

2

+
‖u‖q

V�,q

t
q

2

+
�∇u�2pp
t
2q−2p

2

+ �∇u�2q
q

= ∫
ℝN

g(�x, t2u)

(t2u)
2q−1

u2qdx.

�
1

t
2q−p

1

−
1

t
2q−p

2

�
‖u‖p

V𝜀,p
+

�
1

t
q

1

−
1

t
q

2

�
‖u‖q

V𝜀 ,q
+

�
1

t
2q−2p

1

−
1

t
2q−2p

2

�
�∇u�2p

p

= �
ℝN

�
g(𝜀x, t1u)

(t1u)
2q−1

−
g(𝜀x, t2u)

(t2u)
2q−1

�
u2qdx

≥ �Λc
𝜀
∩{t2u>a}

�
g(𝜀x, t1u)

(t1u)
2q−1

−
g(𝜀x, t2u)

(t2u)
2q−1

�
u2qdx

+ �Λc
𝜀
∩{t2u≤a<t1u}

�
g(𝜀x, t1u)

(t1u)
2q−1

−
g(𝜀x, t2u)

(t2u)
2q−1

�
u2qdx

+ �Λc
𝜀
∩{t1u<a}

�
g(𝜀x, t1u)

(t1u)
2q−1

−
g(𝜀x, t2u)

(t2u)
2q−1

�
u2qdx

≥ V0

K �Λc
𝜀
∩{t2u>a}

��
1

(t1u)
2q−p

−
1

(t2u)
2q−p

�
+

�
1

(t1u)
q
−

1

(t2u)
q

��
u2qdx

+ �Λc
𝜀
∩{t2u≤a<t1u}

�
V0

K

�
1

(t1u)
2q−p

+
1

(t1u)
q

�
−

f (t2u)

(t2u)
2q−1

�
u2qdx.
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where we used the fact that (f4) and our choice of the constant a give

‖u‖p
V𝜀 ,p

+
(t1t2)

q−p

t
2q−p

2
− t

2q−p

1

(t
q

2
− t

q

1
)‖u‖q

V𝜀 ,q

= ‖u‖p
V𝜀 ,p

+
(t1t2)

2q−p

t
2q−p

2
− t

2q−p

1

t
q

2
− t

q

1

(t1t2)
q
‖u‖q

V𝜀 ,q

≤ V0

K �Λc
𝜀
∩{t2u>a}

updx +
V0

K

(t1t2)
2q−p

t
2q−p

2
− t

2q−p

1

t
q

2
− t

q

1

(t2t1)
q �Λc

𝜀
∩{t2u>a}

uqdx

+
(t1t2)

2q−p

t
2q−p

2
− t

2q−p

1
�Λc

𝜀
∩{t2u≤a<t1u}

�
V0

K

�
1

(t1u)
2q−p

+
1

(t1u)
q

�
−

f (t2u)

(t2u)
2q−1

�
u2qdx

≤ V0

K �Λc
𝜀
∩{t2u>a}

updx +
V0

K

(t1t2)
q−p

t
2q−p

2
− t

2q−p

1

(t
q

2
− t

q

1
)�Λc

𝜀
∩{t2u>a}

uqdx

+
V0

K

t
2q−p

2

t
2q−p

2
− t

2q−p

1
�Λc

𝜀
∩{t2u≤a<t1u}

up dx +
V0

K

t
q−p

1
t
2q−p

2

t
2q−p

2
− t

2q−p

1
�Λc

𝜀
∩{t2u≤a<t1u}

uq dx

−
(t1t2)

2q−p

t
2q−p

2
− t

2q−p

1
�Λc

𝜀
∩{t2u≤a<t1u}

f (t2u)

(t2u)
2q−1

u2qdx

≤ V0

K �Λc
𝜀
∩{t2u>a}

updx +
V0

K

(t1t2)
q−p

t
2q−p

2
− t

2q−p

1

(t
q

2
− t

q

1
)�Λc

𝜀
∩{t2u>a}

uqdx

+
V0

K

t
2q−p

2

t
2q−p

2
− t

2q−p

1
�Λc

𝜀
∩{t2u≤a<t1u}

up dx +
V0

K

t
q−p

1
t
2q−p

2

t
2q−p

2
− t

2q−p

1
�Λc

𝜀
∩{t2u≤a<t1u}

uq dx

−
V0

K

t
2q−p

1

t
2q−p

2
− t

2q−p

1
�Λc

𝜀
∩{t2u≤a<t1u}

up dx −
V0

K

t
2q−p

1
t
q−p

2

t
2q−p

2
− t

2q−p

1
�Λc

𝜀
∩{t2u≤a<t1u}

uq dx

=
V0

K �Λc
𝜀
∩{t2u>a}

updx +
V0

K

(t1t2)
q−p

t
2q−p

2
− t

2q−p

1

(t
q

2
− t

q

1
)�Λc

𝜀
∩{t2u>a}

uqdx

+
V0

K

t
2q−p

2

t
2q−p

2
− t

2q−p

1
�Λc

𝜀
∩{t2u≤a<t1u}

up dx +
V0

K

t
q−p

1
t
2q−p

2

t
2q−p

2
− t

2q−p

1
�Λc

𝜀
∩{t2u≤a<t1u}

uq dx

−
V0

K

t
2q−p

1

t
2q−p

2
− t

2q−p

1
�Λc

𝜀
∩{t2u≤a<t1u}

up dx −
V0

K

t
2q−p

1
t
q−p

2

t
2q−p

2
− t

2q−p

1
�Λc

𝜀
∩{t2u≤a<t1u}

uq dx

≤ V0

K �Λc
𝜀

up dx +
V0

K

(t1t2)
q−p

t
2q−p

2
− t

2q−p

1

(t
q

2
− t

q

1
)�Λc

𝜀

uqdx

≤ 1

K
‖u‖p

V𝜀 ,p
+

1

K

(t1t2)
q−p

t
2q−p

2
− t

2q−p

1

(t
q

2
− t

q

1
)‖u‖q

V𝜀 ,q
,
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Since u ≠ 0 and K > 1 , we get a contradiction.
(ii) Let u ∈ �

+
�
 . Using (i), we can find tu > 0 such that ��

u
(tu) = 0 , that is

Fix 𝜁 > 0 . By (11) and Theorem 2, we have

Taking 𝜁 > 0 sufficiently small, we find

Now, if tu ≤ 1 , then tq−1u ≤ t
p−1
u  , and using the facts that 1 = ‖u‖

��
≥ ‖u‖V� ,p

 and q > p 
imply that ‖u‖p

V� ,p
≥ ‖u‖q

V�,p
 , we can see that

Thanks to 𝜈 > q , we can find 𝜏 > 0 , independent of u, such that tu ≥ �.
When tu > 1 , then tq−1u > t

p−1
u  , and noting that 1 = ‖u‖

��
≥ ‖u‖V� ,p

 and q > p imply 
‖u‖p

V� ,p
≥ ‖u‖q

V�,p
 , we obtain

Since 𝜈 > q > p , there exists 𝜏 > 0 , independent of u, such that tu ≥ �.
Now, let W ⊂ �

+
𝜀
 be a compact set and assume by contradiction that there exists a 

sequence {un}n∈ℕ ⊂ W such that tn = tun → ∞ . Then, there exists u ∈ W such that un → u 
in �� . From (ii) of Lemma 2, we have that

On the other hand, if v ∈ N� , by ⟨L�
�
(v), v⟩ = 0 and (g3) , we have that

Taking vn = tunun ∈ N� in the above inequality, we find

Since ‖vn‖��
= tn → ∞ and ‖vn‖��

= ‖vn‖�,p + ‖vn‖�,q , we can use (13) to get a 
contradiction.

f (t2u)

(t2u)
2q−1

=
f (t2u)

(t2u)
p−1 + (t2u)

q−1

(t2u)
p−1 + (t2u)

q−1

(t2u)
2q−1

≤ f (a)

ap−1 + aq−1

(t2u)
p−1 + (t2u)

q−1

(t2u)
2q−1

=
V0

K

(
1

(t2u)
2q−p

+
1

(t2u)
q

)
in Λc

𝜀
∩ {t2u ≤ a < t1u}.

tp−1
u

‖u‖p
V� ,p

+ tq−1
u

‖u‖q
V� ,q

+ t2p−1
u

�∇u�2p
p
+ t2q−1

u
�∇u�2q

q
= ∫

ℝN

g(�x, tuu) u dx.

tp−1
u

‖u‖p
V� ,p

+ tq−1
u

‖u‖q
V� ,q

≤ �
ℝ3

g(�x, tuu) u dx ≤ � tp−1
u

‖u‖p
V�,p

+ C� t
�−1
u

‖u‖�
V� ,q

.

Ctp−1
u

‖u‖p
V� ,p

+ tq−1
u

‖u‖q
V�,q

≤ Ct�−1
u

‖u‖�
V� ,q

≤ Ct�−1
u

.

Ctq−1
u

= Ctq−1
u

‖u‖q
��

≤ tq−1
u

(C‖u‖q
V� ,p

+ ‖u‖q
V� ,q

) ≤ tq−1
u

(C‖u‖p
V� ,p

+ ‖u‖q
V�,q

) ≤ Ct�−1
u

.

Ctp−1
u

= Ctp−1
u

‖u‖q
��

≤ tp−1
u

(C‖u‖q
V� ,p

+ ‖u‖q
V� ,q

) ≤ tp−1
u

(C‖u‖p
V� ,p

+ ‖u‖q
V�,q

) ≤ Ct�−1
u

.

(13)L�(tnun) → −∞.

L𝜀(v) = L𝜀(v) −
1

𝜇
⟨L�

𝜀
(v), v⟩ ≥ C̃(‖v‖p

V𝜀,p
+ ‖v‖q

V𝜀 ,q
).

L𝜀(tnun) ≥ C̃(‖vn‖pV𝜀,p
+ ‖vn‖qV𝜀 ,q

).



A multiplicity result for a (p, q)‑Schrödinger–Kirchhoff t…

1 3

(iii) Let us observe that m̂𝜀 , m� and m−1
�

 are well defined. Indeed, by (i), for each u ∈ �
+
�
, 

there is a unique m�(u) ∈ N� . On the other hand, if u ∈ N�, then u ∈ �
+
�

 . Otherwise, we 
have

and by (g3)-(ii), we deduce that

which is impossible due to K > 1 and u ≠ 0 . Therefore, m−1
�
(u) =

u

‖u‖
��

∈ �
+
�
 is well 

defined and continuous. From

we infer that m� is a bijection. To prove that m̂𝜀 ∶ �
+
𝜀
→ N𝜀 is continuous, let 

{un}n∈ℕ ⊂ 𝕎
+
𝜀

 and u ∈ �
+
�

 be such that un → u in �� . Since m̂(tu) = m̂(u) for all t > 0 , 
we may assume that ‖un‖��

= ‖u‖
��

= 1 for all n ∈ ℕ . By (ii), there exists t0 > 0 such that 
tn = tun → t0 . Since tnun ∈ N�,

and passing to the limit as n → ∞, we obtain

which yields t0u ∈ N� . From (i), tu = t0 , and this means that m̂𝜀(un) → m̂𝜀(u) in �+
�

 . Thus, 
m̂𝜀 and m� are continuous functions.

(iv) Let {un}n∈ℕ ⊂ 𝕊
+
𝜀
 be a sequence such that dist(un, ��+

�
) → 0 . Then, for each v ∈ ��+

�
 

and n ∈ ℕ , we have u+
n
≤ |un − v| a.e. in Λ� . Therefore, by (V1) , (V2) and Theorem 2, we 

can see that for each r ∈ [p, q∗
s
], there exists Cr > 0 such that

By virtue of (g1) , (g2) , (g3)-(ii) and q > p , we get, for all t > 0,

| supp (u+) ∩ Λ�| = 0,

‖u‖p
V� ,p

+ ‖u‖q
V�,q

≤ �
ℝN

g(�x, u) u dx = �Λc
�

g(�x, u) u dx + �Λ�

g(�x, u) u dx

= �Λc
�

g(�x, u+) u+ dx

≤ 1

K �Λc
�

V(�x)(�u�p + �u�q)dx

≤ 1

K

�
‖u‖p

V� ,p
+ ‖u‖q

V� ,q

�

m−1
�
(m�(u)) = m−1

�
(tuu) =

tuu

‖tuu‖��

=
u

‖u‖
��

= u for all u ∈ �
+
�
,

tp
n
‖un‖pV�,p

+ tq
n
‖un‖qV�,q

+ t2p
n
�∇un�2pp + t2q

n
�∇un�2qq = ∫

ℝN

g(�x, tnun) tnun dx,

t
p

0
‖u‖p

V� ,p
+ t

q

0
‖u‖q

V� ,q
+ t

2p

0
�∇u�2p

p
+ t

2q

0
�∇u�2q

q
= ∫

ℝN

g(�x, t0u) t0u dx,

�u+
n
�Lr(Λ�)

≤ inf
v∈�𝕊+

�

�un − v�Lr(Λ�)
≤ Cr inf

v∈�𝕊+
�

‖un − v‖
𝕎�

for all n ∈ ℕ.
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Therefore,

Now, we note that K > 1 , and that 1 = ‖un‖��
≥ ‖un‖V� ,p

 implies that ‖un‖pV� ,p
≥ ‖un‖qV�,p

 . 
Then, for all t > 1 , we obtain that

Bearing in mind the definition of m�(un) and using (14), (15), we find

By sending t → ∞ , we get L�(m�(un)) → ∞ as n → ∞ . On the other hand, by the definition 
of L� , we see that for all n ∈ ℕ

�
ℝN

G(�x, tun) dx = �Λc
�

G(�x, tun) dx + �Λ�

G(�x, tun) dx

≤ V0

Kp �Λc
�

(tp|un|p + tq|un|q)dx + �Λ�

F(tun) dx

≤ tp

Kp �
ℝN

V(�x)|un|p dx + tq

Kp �
ℝN

V(�x)|un|q dx

+ C1t
p �Λ�

(u+
n
)pdx + C2t

� �Λ�

(u+
n
)�dx

≤ tp

Kp �
ℝN

V(�x)|un|p dx + tq

Kp �
ℝN

V(�x)|un|q dx
+ C�

p
tpdist(un, �𝕊

+
�
)p + C�

�
t�dist(un, �𝕊

+
�
)� .

(14)�
ℝN

G(�x, tun) dx ≤ tp

Kp �
ℝN

V(�x)|un|p dx + tq

Kp �
ℝN

V(�x)|un|q dx + on(1).

(15)

tp

p
‖un‖pV�,p

+
tq

q
‖un‖qV� ,q

−
tp

Kp �
ℝN

V(�x)�un�p dx − tq

Kp �
ℝN

V(�x)�un�q dx

=
tp

p
�∇un�pp + tp

�
1

p
−

1

Kp

�
�
ℝN

V(�x)�un�p dx + tq

q
�∇un�qq

+ tq
�
1

q
−

1

Kp

�
�
ℝN

V(�x)�un�q dx
≥ C1t

p‖un‖pV� ,p
+ C2t

q‖un‖qV�,q

≥ C1t
p‖un‖qV� ,p

+ C2t
q‖un‖qV�,q

≥ C1t
p‖un‖qV� ,p

+ C2t
p‖un‖qV�,q

≥ C3t
p(‖un‖V� ,p

+ ‖un‖V� ,q
)q = C3t

p.

lim inf
n→∞

L𝜀(m𝜀(un)) ≥ lim inf
n→∞

L𝜀(tun)

≥ lim inf
n→∞

�
tp

p
‖un‖pV𝜀,p

+
tq

q
‖un‖qV𝜀,q

− �
ℝN

G(𝜀x, tun) dx

�
≥ C3t

p for all t > 1.
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which implies that ‖m�(un)‖��
→ ∞ as n → ∞ . 	�  ◻

Remark 1  If u ∈ N� , it follows from (11) and Theorem 2 that

Choosing � ∈ (0,V0) we find ‖u‖V� ,q
≥ � = (C�

�
)
−

1

q∗−q which implies that ‖u‖� ≥ ‖u‖V� ,q
≥ �.

Define the maps

by 𝜓̂𝜀(u) = L𝜀(m̂𝜀(u)) and 𝜓𝜀 = 𝜓̂𝜀|�+
𝜀
 . From Lemma 3 and arguing as in the proofs of Prop-

osition 9 and Corollary 10 in [46], we may obtain the following result.

Proposition 1  Assume that (V1)–(V2) and (f1)–(f4) are satisfied. Then,

(a)	 𝜓̂𝜀 ∈ C1(𝕎+
𝜀
,ℝ) and

(b)	 �� ∈ C1(𝕊+
�
,ℝ) and

(c)	 If {un}n∈ℕ is a (PS)c sequence for �� , then {m�(un)}n∈ℕ is a (PS)c sequence for L� . If 
{un}n∈ℕ ⊂ N𝜀 is a bounded (PS)c sequence for L� , then {m−1

�
(un)}n∈ℕ is a (PS)c sequence 

for ��.
(d)	 u is a critical point of �� if, and only if, m�(u) is a critical point for L� . Moreover, the 

corresponding critical values coincide and

Remark 2  As in [46], we have the following variational characterization of the infimum of 
L� over N�:

Next, we claim that L� satisfies the Palais–Smale condition. First of all, we have the fol-
lowing result.

Lemma 4  Let {un}n∈ℕ ⊂ 𝕎𝜀 be a (PS)c sequence for L� . Then, {un}n∈ℕ is bounded in ��.

1

p
‖m�(un)‖pV�,p

(1 + ‖m�(un)‖pV� ,p
) +

1

q
‖m�(un)‖qV�,q

(1 + ‖m�(un)‖qV�,q
)

≥ 1

p
‖m�(un)‖pV�,p

+
1

2p
�∇m�(un)�2pp +

1

q
‖m�(un)‖qV� ,q

+
1

2q
�∇m�(un)�2qq ≥ L�(m�(un))

‖u‖p
V�,p

+ ‖u‖q
V�,q

≤ �
ℝN

g(�x, u) u dx ≤ � �u�p
p
+ C� �u�q

∗

q∗
≤ �

V0

‖u‖p
V�,p

+ C�
�
‖u‖q∗

V�,q
.

𝜓̂𝜀 ∶ 𝕎
+
𝜀
→ ℝ and 𝜓𝜀 ∶ 𝕊

+
𝜀
→ ℝ,

⟨𝜓̂ �
𝜀
(u), v⟩ = ‖m̂𝜀(u)‖�𝜀

‖u‖
�𝜀

⟨L�
𝜀
(m̂𝜀(u)), v⟩ for all u ∈ �

+
𝜀
, v ∈ �𝜀.

⟨� �
�
(u), v⟩ = ‖m�(u)‖��

⟨L�
�
(m�(u)), v⟩, for all v ∈ Tu�

+
�
.

inf
u∈�+

�

��(u) = inf
u∈N�

L�(u).

c𝜀 = inf
u∈N𝜀

L𝜀(u) = inf
u∈�+

𝜀

max
t>0

L𝜀(tu) = inf
u∈�+

𝜀

max
t>0

L𝜀(tu).
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Proof  From (g3) , q > p and 𝜇 > 2q , we have that

where C̃ =
(

1

q
−

1

𝜇

)
−
(

1

p
−

1

𝜇

)
1

K
> 0 since K >

(
𝜇−p

𝜇−q

)
q

p
.

Now, we assume by contradiction that ‖un‖��
→ ∞ and consider the following cases: 

(1)	 ‖un‖V� ,p
→ ∞ and ‖un‖V� ,q

→ ∞;
(2)	 ‖un‖V� ,p

→ ∞ and ‖un‖V� ,q
 is bounded;

(3)	 ‖un‖V� ,q
→ ∞ and ‖un‖V� ,p

 is bounded.

In case (1), for n large, we have ‖un‖q−pV� ,q
≥ 1 , that is ‖un‖qV� ,q

≥ ‖un‖pV�,q
 . Therefore,

that is an absurd. In case (2), we have

and consequently

Since p > 1 and passing to the limit as n → ∞ , we obtain 0 < C̃ ≤ 0 which is impossible. 
The last case is similar to the case (2), so we omit the details. Consequently, {un}n∈ℕ is 
bounded in �� . 	�  ◻

Lemma 5  Let {un}n∈ℕ ⊂ 𝕎𝜀 be a (PS)c sequence for L� . Then, for any 𝜂 > 0, there exists 
R = R(𝜂) > 0 such that

C(1 + ‖un‖𝜀) ≥ L𝜀(un) −
1

𝜇
⟨L�

𝜀
(un), un⟩

=

�
1

p
−

1

𝜇

�
‖un‖pV𝜀,p

+

�
1

2p
−

1

𝜇

�
�∇un�2pp +

�
1

q
−

1

𝜇

�
‖un‖qV𝜀 ,q

+

�
1

2q
−

1

𝜇

�
�∇un�2qq

+
1

𝜇 �Λc
𝜀

[g(𝜀x, un)un − 𝜇G(𝜀x, un)] dx +
1

𝜇 �Λ𝜀

[g(𝜀x, un)un − 𝜇G(𝜀x, un)] dx

≥
�
1

q
−

1

𝜇

�
[‖un‖pV𝜀,p

+ ‖un‖qV𝜀,q
] −

�
1

p
−

1

𝜇

�
1

K �Λc
𝜀

V(𝜀x)(�un�p + �un�q) dx

≥
��

1

q
−

1

𝜇

�
−

�
1

p
−

1

𝜇

�
1

K

�
(‖un‖pV𝜀,p

+ ‖un‖qV𝜀,q
)

= C̃(‖un‖pV𝜀,p
+ ‖un‖qV𝜀,q

),

C0(1 + ‖un‖�𝜀
) ≥ C̃(‖un‖pV𝜀 ,p

+ ‖un‖pV𝜀 ,q
) ≥ C1(‖un‖V𝜀 ,p

+ ‖un‖V𝜀 ,q
)p = C1‖un‖p�𝜀

C0(1 + ‖un‖V𝜀,p
+ ‖un‖V𝜀,q

) = C0(1 + ‖un‖�𝜀
) ≥ C̃‖un‖pV𝜀 ,p

C0

⎛⎜⎜⎝
1

‖un‖pV𝜀,p

+
1

‖un‖p−1V𝜀,p

+
‖un‖V𝜀 ,q

‖un‖pV𝜀 ,p

⎞⎟⎟⎠
≥ C̃.

(16)lim sup
n→∞ ∫Bc

R

|∇un|p + |∇un|q + V(𝜀x)(|un|p + |un|q) dx < 𝜂.
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Proof  For R > 0 , let �R ∈ C∞(ℝN) be such that 0 ≤ �R ≤ 1 , �R = 0 in B R

2

 , �R = 1 in Bc
R
 , 

and |∇�R| ≤ C

R
 , for some constant C > 0 independent of R. From the boundedness of 

{�Run}n∈ℕ in �� , it follows that ⟨L�
�
(un),�Run⟩ = on(1) , namely

Take R > 0 such that Λ𝜀 ⊂ B R

2

 . From the definition of �R and (g3)-(ii), we see that

Now, using the Hölder inequality and the boundedness of {un}n∈ℕ in �� , we have, for 
t ∈ {p, q},

which implies that

Thanks to (17) and (18), we deduce that (16) holds true. 	� ◻

Due to the presence of the Kirchhoff terms, the following lemma plays a crucial role 
to get the strong convergence of bounded Palais–Smale sequences.

Lemma 6  Let {un}n∈ℕ ⊂ 𝕎𝜀 be a (PS)c sequence for L� , and let R > 0 . Then,

Proof  Take �� ∈ C∞(ℝN) such that

(1 + |∇un|pp)∫
ℝN

|∇un|p�R dx + (1 + |∇un|qq)∫
ℝN

|∇un|q�R dx

+ ∫
ℝN

V(�x)|un|p�R dx + ∫
ℝN

V(�x)|un|q�R dx

= on(1) + ∫
ℝN

g(�x, un)�Run dx − (1 + |∇un|pp)∫
ℝN

|∇un|p−2∇un ⋅ ∇�Run dx

− (1 + |∇un|qq)∫
ℝN

|∇un|q−2∇un ⋅ ∇�Run dx.

(17)

�Bc
R

|∇un|p dx + �Bc
R

|∇un|q dx +
(
1 −

1

K

)
�Bc

R

V(�x)(|un|p + |un|q) dx

≤ on(1) − (1 + |∇un|pp)�
ℝN

|∇un|p−2∇un ⋅ ∇�Run dx

− (1 + |∇un|qq)�
ℝN

|∇un|q−2∇un ⋅ ∇�Run dx.

||||�ℝN

|∇un|t−2∇un ⋅ ∇�Run dx
|||| ≤

C

R
|∇un|t−1t

|un|t ≤ C

R

(18)lim
R→∞

lim sup
n→∞

||||∫ℝN

|∇un|t−2∇un ⋅ ∇�Run dx
|||| = 0.

(19)

lim
n→∞∫BR

|∇un|p + |∇un|q + V(�x)(|un|p + |un|q) dx

= ∫BR

|∇u|p + |∇u|q + V(�x)(|u|p + |u|q) dx.
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with 0 ≤ ��(x) ≤ 1 and |∇��| ≤ 2

�
 . Since {un}n∈ℕ is bounded in �� (by Lemma 4), we may 

assume that

Fix R > 0 and take 𝜌 > R . For t ∈ {p, q} and n ∈ ℕ , define

By (9), we note that At
n
≥ 0 . Moreover, we see that

Set

��(x) =

{
1 for x ∈ B�,

0 for x ∉ B2�,

(20)|∇un|pp → Tp and |∇un|qq → Tq as n → ∞.

At
n
=
(
1 + |∇un|tt

)
∫BR

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅ (∇un − ∇u
)
dx

+ ∫BR

V(�x)
(|un|t−2un − |u|t−2u)(un − u

)
dx.

0 ≤ At
n
=
(
1 + |∇un|tt

)
�BR

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅ (∇un − ∇u
)
�� dx

+ �BR

V(�x)
(|un|t−2un − |u|t−2u)(un − u

)
�� dx

≤ (
1 + |∇un|tt

)
�
ℝN

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅ (∇un − ∇u
)
�� dx

+ �
ℝN

V(�x)
(|un|t−2un − |u|t−2u)(un − u

)
�� dx

=
(
1 + |∇un|tt

)
�
ℝN

|∇un|t�� dx + �
ℝN

V(�x)|un|t�� dx

+
(
1 + |∇un|tt

)
�
ℝN

|∇u|t�� dx + �
ℝN

V(�x)|u|t�� dx

−

[(
1 + |∇un|tt

)
�
ℝN

|∇un|t−2∇un ⋅ ∇u�� dx + �
ℝN

V(�x)|un|t−2unu�� dx
]

−

[(
1 + |∇un|tt

)
�
ℝN

|∇u|t−2∇u ⋅ ∇un�� dx + �
ℝN

V(�x)|u|t−2uun�� dx
]
.



A multiplicity result for a (p, q)‑Schrödinger–Kirchhoff t…

1 3

and

Then, we have

We note that

and since {un��}n∈ℕ is bounded in �� , we have ⟨L�
�
(un), un��⟩ = on(1) . A direct computa-

tion and (20) yield

and so

On the other hand, the weak convergence and (20) imply

I1
n,�

=
(
1 + |∇un|pp

)
∫
ℝN

|∇un|p�� dx + ∫
ℝN

V(�x)|un|p�� dx

+
(
1 + |∇un|qq

)
∫
ℝN

|∇un|q�� dx + ∫
ℝN

V(�x)|un|q�� dx − ∫
ℝN

g(�x, un)un�� dx,

I2
n,�

=
(
1 + |∇un|pp

)
∫
ℝN

|∇u|p�� dx + ∫
ℝN

V(�x)|u|p�� dx

−
(
1 + |∇un|pp

)
∫
ℝN

|∇u|p−2∇u ⋅ ∇un�� dx + ∫
ℝN

V(�x)|u|p−2uun�� dx

+
(
1 + |∇un|qq

)
∫
ℝN

|∇u|q�� dx + ∫
ℝN

V(�x)|u|q�� dx

−
(
1 + |∇un|qq

)
∫
ℝN

|∇u|q−2∇u ⋅ ∇un�� dx + ∫
ℝN

V(�x)|u|q−2uun�� dx,

I3
n,�

=
(
1 + |∇un|pp

)
∫
ℝN

|∇un|p−2∇un ⋅ ∇u�� dx + ∫
ℝN

V(�x)|un|p−2unu�� dx

+
(
1 + |∇un|qq

)
∫
ℝN

|∇un|q−2∇un ⋅ ∇u�� dx + ∫
ℝN

V(�x)|un|q−2unu�� dx

− ∫
ℝN

g(�x, un)u�� dx

I4
n,�

= ∫
ℝN

g(�x, un)(un − u)�� dx.

(21)0 ≤ Ap
n
+ Aq

n
≤ |I1

n,�
| + |I2

n,�
| + |I3

n,�
| + |I4

n,�
|.

I1
n,�

=⟨L�
�
(un), un��⟩ −

��
1 + �∇un�pp

�
∫
ℝN

�∇un�p−2∇unun∇�� dx

+
�
1 + �∇un�qq

�
∫
ℝN

�∇un�q−2∇unun∇�� dx
�

(22)lim
�→∞

[
lim sup
n→∞

||||
(
1 + |∇un|tt

)
∫
ℝN

|∇un|t−2∇unun∇�� dx
||||
]
= 0 for t ∈ {p, q},

(23)lim
�→∞

[
lim sup
n→∞

|||I
1
n,�

|||
]
= 0.
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Furthermore,

and by (20), (22) and ⟨L�
�
(un), u��⟩ = on(1) , we deduce

Finally, from the growth assumptions on g and Theorem 2, we see that

Combining (21), (23), (24), we get

Consequently,

In particular, if t ≥ 2 , from (7), we have

When 1 < t < 2 , by (10) and Hölder inequality, we obtain

lim
n→∞

|I2
n,�
| = lim

n→∞

||||
(
1 + |∇un|pp

)
∫
ℝN

|∇u|p−2∇u ⋅ (∇un − ∇u)�� dx

+ ∫
ℝN

V(�x)|u|p−2u(un − u)�� dx

+
(
1 + |∇un|qq

)
∫
ℝN

|∇u|q−2∇u ⋅ (∇un − ∇u)�� dx

+∫
ℝN

V(�x)|u|q−2u(un − u)�� dx
|||| = 0.

I3
n,�

=⟨L�
�
(un), u��⟩ −

��
1 + �∇un�pp

�
∫
ℝN

�∇un�p−2∇unu∇�� dx

+
�
1 + �∇un�qq

�
∫
ℝN

�∇un�q−2∇unu∇�� dx
�
,

lim
�→∞

[
lim sup
n→∞

|I3
n,�
|
]
= 0.

(24)lim
n→∞

|I4
n,𝜌
| = 0 for any 𝜌 > R.

0 ≤ lim sup
n→∞

(
Ap
n
+ Aq

n

) ≤ 0.

lim
n→∞

[
∫BR

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅ (∇un − ∇u
)
dx

+∫BR

V(�x)
(|un|t−2un − |u|t−2u)(un − u

)
dx

]
= 0 for t ∈ {p, q}.

�BR

|∇un − ∇u|t dx ≤ C �BR

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅ (∇un − ∇u
)
dx → 0.
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Arguing as before, we deduce that for t ∈ {p, q}

Accordingly, for t ∈ {p, q} , we get

which gives (19). 	�  ◻

Now, we show that L� verifies the Palais–Smale compactness condition.

Lemma 7  L� satisfies the Palais–Smale condition at any level c ∈ ℝ.

Proof  Let {un}n∈ℕ ⊂ 𝕎𝜀 be a (PS)c sequence for L� . From Lemma 4, we know that {un}n∈ℕ 
is bounded in �� . Up to a subsequence, we may assume that un ⇀ u in �� and un → u in 
Lr
loc
(ℝN) for all r ∈ [1, q∗) . By Lemma 5, for each 𝜂 > 0, there exists R = R(𝜂) >

C

𝜂
 , with 

C > 0 independent of � , such that (19) is satisfied. This together with Lemma 6 implies that

Since R → ∞ when � → 0 , it follows that

�BR

|∇un − ∇u|t dx

≤ C

[
�BR

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅ (∇un − ∇u
)
dx

] t

2 [|∇un|tt + |∇u|t
t

] 2−t

2

≤ C

[
�BR

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅ (∇un − ∇u
)
dx

] t

2

→ 0.

∫BR

V(�x)|un − u|t dx → 0 as n → ∞.

lim
n→∞∫BR

[|∇un|t + V(�x)|un|t
]
dx = ∫BR

[|∇u|t + V(�x)|u|t] dx,

‖u‖p
V𝜀 ,p

+ ‖u‖q
V𝜀 ,q

≤ lim inf
n→∞

(‖un‖pV𝜀 ,p
+ ‖un‖qV𝜀 ,q

)

≤ lim sup
n→∞

(‖un‖pV𝜀,p
+ ‖un‖qV𝜀 ,q

)

= lim sup
n→∞

�
�BR

�∇un�p + �∇un�q + V(𝜀x)(�un�p + �un�q) dx

+�Bc
R

�∇un�p + �∇un�q + V(𝜀x)(�un�p + �un�q) dx
�

= �BR

�∇u�p + �∇u�q + V(𝜀x)(�u�p + �u�q) dx

+ lim sup
n→∞

�
�Bc

R

�∇un�p + �∇un�q + V(𝜀x)(�un�p + �un�q) dx
�

< �BR

�∇u�p + �∇u�q + V(𝜀x)(�u�p + �u�q) dx + 𝜂.
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and thus

From the Brezis–Lieb lemma [11], we have

and

Therefore,

which yields un → u in �� as n → ∞ . 	�  ◻

Remark 3  We can assume that any (PS) sequence {un}n∈ℕ of L� is nonnegative. To see this, 
from ⟨L�

�
(un), u

−
n
⟩ = on(1) and g(�x, t) = 0 for t ≤ 0 , we have

where u−
n
= min{un, 0} , and then

namely u−
n
→ 0 in �� . In particular, {u+

n
}n∈ℕ is bounded in �� . Since 

|∇un|tt = |∇u+
n
|t
t
+ on(1) and ‖un‖V� ,t

= ‖u+
n
‖V� ,t

+ on(1) for t ∈ {p, q} , we deduce that 
L�(un) = L�(u

+
n
) + on(1) and L�

�
(un) = L�

�
(u+

n
) + on(1) . Hence, L�(u+n ) → c and L�

�
(u+

n
) → 0 

as n → ∞.

Corollary 1  The functional �� satisfies the Palais–Smale condition on �+
�
 at any level 

c ∈ ℝ.

Proof  Let {un}n∈ℕ ⊂ 𝕊
+
𝜀
 be a Palais–Smale sequence for �� at the level c. Then,

By Proposition 1-(c), we see that {m𝜀(un)}n∈ℕ ⊂ 𝕎𝜀 is a Palais–Smale sequence for L� at 
the level c. From Lemma 7, we deduce that L� satisfies the (PS)c condition in �� . Then, up 
to a subsequence, we can find u ∈ �

+
�
 such that

‖u‖p
V� ,p

+ ‖u‖q
V� ,q

≤ lim inf
n→∞

(‖un‖pV�,p
+ ‖un‖qV� ,q

)

≤ lim sup
n→∞

(‖un‖pV�,p
+ ‖un‖qV�,q

)

≤ ‖u‖p
V�,p

+ ‖u‖q
V�,q

‖un‖pV�,p
+ ‖un‖qV�,q

= ‖u‖p
V� ,p

+ ‖u‖q
V� ,q

+ on(1).

‖un − u‖p
V� ,p

= ‖un‖pV�,p
− ‖u‖p

V�,p
+ on(1)

‖un − u‖q
V�,q

= ‖un‖qV�,q
− ‖u‖q

V�,q
+ on(1).

‖un − u‖p
V�,p

+ ‖un − u‖q
V�,q

= on(1)

(1 + |∇un|pp)∫
ℝN

|∇un|p−2∇un ⋅ ∇u−n dx + (1 + |∇un|qq)∫
ℝN

|∇un|q−2∇un ⋅ ∇u−n dx

+ ∫
ℝN

V(�x)(|un|p−2un + |un|q−2un) u−n dx = on(1),

‖u−
n
‖p
V� ,p

+ ‖u−
n
‖q
V�,q

= on(1),

��(un) → c and � �
�
(un) → 0 in (Tun�

+
�
)�.
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In view of Lemma 3-(iii), we conclude that un → u in �+
�
 . 	�  ◻

3 � The autonomous problem

In this section, we consider the following autonomous problem related to (1):

Set 𝕐V0
= W1,p(ℝN) ∩W1,q(ℝN) endowed with the norm

where

Let LV0
∶ 𝕐V0

→ ℝ be the energy functional associated with (25), then

It is easy to check that LV0
∈ C1(𝕐V0

,ℝ) and that

for any u,� ∈ �V0
.

The Nehari manifold MV0
 associated with LV0

 is

and we set

Denote by �V0
 the unit sphere of �V0

 and set �+
V0

= �V0
∩ �

+
V0

 , where

Note that, �+
V0

 is an incomplete C1,1-manifold of codimension one contained in � +
V0

 . Thus, 
𝕐V0

= Tu𝕊
+
V0

⊕ℝu for each u ∈ �
+
V0

 , where

m�(un) → m�(u) in��.

(25)

⎧⎪⎨⎪⎩

−

�
1 + ∫

ℝN

�∇u�p dx
�
Δpu −

�
1 + ∫

ℝN

�∇u�q dx
�
Δqu + V0(u

p−1 + uq−1) = f (u) in ℝN ,

u ∈ W1,p(ℝN) ∩W1,q(ℝN), u > 0 in ℝN .

‖u‖
�V0

= ‖u‖1,p + ‖u‖1,q,

‖u‖1,t =
��∇u�t

t
+ V0�u�tt

� 1

t for all t ∈ {p, q}.

LV0
(u) =

1

p
‖u‖p

1,p
+

1

2p
�∇u�2p

p
+

1

q
‖u‖q

1,q
+

1

2q
�∇u�2q

q
− ∫

ℝN

F(u) dx.

⟨L�
V0
(u),�⟩ = (1 + �∇u�p

p
)∫

ℝN

�∇u�p−2∇u ⋅ ∇� dx + (1 + �∇u�q
q
)∫

ℝN

�∇u�q−2∇u ⋅ ∇� dx

+ V0

�
∫
ℝN

�u�p−2u� dx + ∫
ℝN

�u�q−2u� dx

�
− ∫

ℝN

f (u)� dx

MV0
=
�
u ∈ �V0

⧵ {0} ∶ ⟨L�
V0
(u), u⟩ = 0

�
,

dV0
= inf

u∈MV0

LV0
(u).

�
+
V0

=
{
u ∈ �V0

∶ | supp (u+)| > 0
}
.
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Arguing as in Sect. 2, we can see that the following results hold.

Lemma 8  Under the assumptions (f1)-(f4) , the following properties hold:

	 (i)	 For each u ∈ �
+
V0

 , there exists a unique tu > 0 such that if �u(t) = LV0
(tu) , then 

𝛼�
u
(t) > 0 for 0 < t < tu and 𝛼�

u
(t) < 0 for t > tu.

	 (ii)	 There exists 𝜏 > 0 independent of u such that tu ≥ � for any u ∈ �
+
V0

 and for each 
compact set W ⊂ �

+
V0
, there is a positive constant CW such that tu ≤ CW for any 

u ∈ W.
	 (iii)	 The map m̂V0

∶ �
+
V0

→ MV0
 given by m̂V0

(u) = tuu is continuous and mV0
= m̂V0

|
�
+
V0

 
is a homeomorphism between �+

V0
 and MV0

 . Moreover, m−1
V0
(u) =

u

‖u‖
�V0

.

	 (iv)	 If there is a sequence {un}n∈ℕ ⊂ 𝕊
+
V0

 such that dist(un, ��+
V0
) → 0, then 

‖mV0
(un)‖�V0 → ∞ and LV0

(mV0
(un)) → ∞.

Let us consider the maps

defined as 𝜓̂V0
(u) = LV0

(m̂V0
(u)) and 𝜓V0

= 𝜓̂V0
|
�
+
V0

.

Proposition 2  Assume that (f1)-(f4) are satisfied. Then,

(a)	 𝜓̂V0
∈ C1(𝕐 +

V0
,ℝ) and

(b)	 �V0
∈ C1(𝕊+

V0
,ℝ) and

(c)	 If {un}n∈ℕ is a (PS)d sequence for �V0
 , then {mV0

(un)}n∈ℕ is a (PS)d sequence for LV0
 . If 

{un}n∈ℕ ⊂ MV0
 is a bounded (PS)d sequence for LV0

 , then {m−1
V0
(un)}n∈ℕ is a (PS)d 

sequence for �V0
.

(d)	 u is a critical point of �V0
 if, and only if, mV0

(u) is a nontrivial critical point for LV0
 . 

Moreover, the corresponding critical values coincide and

Remark 4  As in [46], we have the following characterization of the infimum of LV0
 over 

MV0
:

Tu𝕊
+
V0

=

{
v ∈ 𝕐V0

∶ (1 + |∇u|p
p
)∫

ℝN

|∇u|p−2∇u ⋅ ∇v dx + (1 + |∇u|q
q
)∫

ℝN

|∇u|q−2∇u ⋅ ∇v dx

+V0 ∫
ℝN

(|u|p−2u + |u|q−2u)v dx = 0

}
.

𝜓̂V0
∶ 𝕐

+
V0

→ ℝ and 𝜓V0
∶ 𝕊

+
V0

→ ℝ,

⟨𝜓̂ �
V0
(u), v⟩ =

‖m̂V0
(u)‖

�V0

‖u‖
�V0

⟨L�
V0
(m̂V0

(u)), v⟩ ∀u ∈ �
+
V0
,∀v ∈ �V0

.

⟨� �
V0
(u), v⟩ = ‖mV0

(u)‖
�V0

⟨L�
V0
(mV0

(u)), v⟩, ∀v ∈ Tu�
+
V0
.

inf
u∈�+

V0

�V0
(u) = inf

u∈MV0

LV0
(u).
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The next lemma allows us to assume that the weak limit of a (PS)dV0 sequence of LV0
 is 

nontrivial.

Lemma 9  Let {un}n∈ℕ ⊂ 𝕐V0
 be a (PS)dV0 sequence for LV0

 such that un ⇀ 0 in �V0
 . Then, 

one and only one of the following alternatives occurs:

(a)	 un → 0 in �V0
 , or

(b)	 there is a sequence {yn}n∈ℕ ⊂ ℝ
N and constants R, 𝛽 > 0 such that

Proof  Assume that (b) does not hold. Since {un}n∈ℕ is bounded in �V0
 , we can apply 

Lemma 1 to see that

In particular, by (f1)–(f2) , it follows that

Recalling that ⟨L�
V0
(un), un⟩ = on(1) , we have

that is ‖un‖�V0 → 0 as n → ∞ and the item (a) holds true. 	�  ◻

Remark 5  From the above result, we deduce that if u is the weak limit of a (PS)dV0 sequence 
for LV0

 , then we can assume u ≠ 0 . In fact, if un ⇀ 0 in �V0
 and, if un ↛ 0 in �V0

 , by Lemma 
9, we can find {yn}n∈ℕ ⊂ ℝ

N and R, 𝛽 > 0 such that

Set vn(x) = un(x + yn) . Then, using the invariance of ℝN by translation, we see that {vn}n∈ℕ 
is a bounded (PS)dV0 sequence for LV0

 such that vn ⇀ v in �V0
 for some v ≠ 0.

In what follows, we prove the existence of a positive ground-state solution for (25).

Theorem 3  Let {un}n∈ℕ ⊂ 𝕐V0
 be a Palais–Smale sequence of LV0

 at the level dV0
 . Then, 

there exists u ∈ �V0
⧵ {0} with u ≥ 0 such that, up to a subsequence, un → u in �V0

 . Moreo-
ver, u is a positive ground-state solution to (25).

Proof  As in the proof of Lemma 7, we can see that {un}n∈ℕ is a bounded sequence in �V0
 

so, going if necessary to a subsequence, we may assume that

0 < dV0
= inf

u∈MV0

LV0
(u) = inf

u∈� +
V0

max
t>0

LV0
(tu) = inf

u∈�+
V0

max
t>0

LV0
(tu).

lim inf
n→∞ �BR(yn)

|un|q dx ≥ �.

un → 0 in Lr(ℝN) for all r ∈ (p, q∗).

∫
ℝN

f (un)un dx = on(1) as n → ∞.

‖un‖p1,p + ‖un‖q1,q ≤ �
ℝN

f (un)un dx = on(1),

lim inf
n→∞ �BR(yn)

|un|q dx ≥ �.
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From Remark 5, we may suppose that u ≠ 0 . Moreover, we may assume that

Step 1 ∇un → ∇u a.e. in ℝN.
Fix � ∈ C∞

c
(ℝN) . Since un ⇀ u in �V0

 and L�
V0
(un) → 0 , we have that 

⟨L�
V0
(un) − L�

V0
(u), (un − u)�⟩ = on(1) . Therefore,

By using (26) and the boundedness of {un}n∈ℕ in �V0
 , it is easy to check that, for t ∈ {p, q},

(26)
un ⇀ u in 𝕐V0

,

un → u in Lr
loc
(ℝN) for all r ∈ [1, p∗).

|∇un|pp → t1 and |∇un|qq → t2.

(27)

on(1) = ⟨L�
V0
(un) − L�

V0
(u), (un − u)�⟩

= (1 + �∇un�pp)∫
ℝN

(�∇un�p−2∇un − �∇u�p−2∇u) ⋅ ∇[(un − u)�] dx

+ (1 + �∇un�qq)∫
ℝN

(�∇un�q−2∇un − �∇u�q−2∇u) ⋅ ∇[(un − u)�] dx

+ [(1 + �∇un�pp) − (1 + �∇u�p
p
)]∫

ℝN

�∇u�p−2∇u ⋅ ∇[(un − u)�] dx

+ [(1 + �∇un�qq) − (1 + �∇u�q
q
)]∫

ℝN

�∇u�q−2∇u ⋅ ∇[(un − u)�] dx

+ ∫
ℝN

V0�un�p−2un(un − u)� dx + ∫
ℝN

V0�un�q−2un(un − u)� dx

− ∫
ℝN

f (un)(un − u)� dx

+ (1 + �∇u�p
p
)∫

ℝN

�∇u�p−2∇u ⋅ ∇[(un − u)�] dx

+ (1 + �∇u�q
q
)∫

ℝN

�∇u�q−2∇u ⋅ ∇[(un − u)�] dx + on(1)

= (1 + �∇un�pp)∫
ℝN

(�∇un�p−2∇un − �∇u�p−2∇u) ⋅ ∇[(un − u)�] dx

+ (1 + �∇un�qq)∫
ℝN

(�∇un�q−2∇un − �∇u�q−2∇u) ⋅ ∇[(un − u)�] dx

+ (1 + �∇un�pp)∫
ℝN

�∇u�p−2∇u ⋅ ∇[(un − u)�] dx

+ (1 + �∇un�qq)∫
ℝN

�∇u�q−2∇u ⋅ ∇[(un − u)�] dx

+ ∫
ℝN

V0�un�p−2un(un − u)� dx + ∫
ℝN

V0�un�q−2un(un − u)� dx

− ∫
ℝN

f (un)(un − u)� dx + on(1)

= Ap
n
+Aq

n
+ Bp

n
+ Bq

n
+ Cp

n
+ Cq

n
−Dn + on(1).
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In particular, from the boundedness of {|∇un|t}n∈ℕ in ℝ together with (28) and (29), we 
deduce that

Hence, by combining (27)–(33), we have

from which

for t ∈ {p, q} . Now, if t ≥ 2 , from (7), we get

When 1 < t < 2 , from (7), we obtain

Therefore, for t ∈ {p, q} , we have

(28)∫
ℝN

|∇u|t−2∇u ⋅ (∇un − ∇u)� dx → 0,

(29)∫
ℝN

|∇u|t−2∇u ⋅ ∇�(un − u) dx → 0,

(30)∫
ℝN

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅ ∇�(un − u) dx → 0,

(31)Ct
n
= ∫

ℝN

V0|un|t−2un(un − u)� dx → 0,

(32)Dn = ∫
ℝN

f (un)(un − u)� dx → 0.

(33)

(1 + |∇un|tt)∫
ℝN

|∇u|t−2∇u ⋅ (∇[(un − u)�]) dx

= (1 + |∇un|tt)
[
∫
ℝN

|∇u|t−2∇u ⋅ (∇un − ∇u)� dx + ∫
ℝN

|∇u|t−2∇u ⋅ ∇�(un − u) dx

]
→ 0.

on(1) = Ap
n
+Aq

n
+ on(1),

∫
ℝN

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅ (∇un − ∇u)� dx → 0

�
ℝN

|∇un − ∇u|t� dx ≤ C �
ℝN

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅ (∇un − ∇u)� dx → 0.

(
�
ℝN

|∇un − ∇u|t� dx

) 2

t ≤
(
�
ℝN

|∇un − ∇u|2
(|∇un| + |∇u|)2−t� dx

)(
�
ℝN

(|∇un| + |∇u|t)� dx

) 2−t

t

≤ C �
ℝN

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅ (∇un − ∇u
)
� dx → 0.

∫
ℝN

|∇un − ∇u|t� dx → 0.
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Then, for some subsequence of {un}n∈ℕ , we have ∇un → ∇u a.e. in ℝN.
Step 2 |∇un|t → |∇u|t for t ∈ {p, q}.
By Step 1 and Fatou’s lemma, we know that |∇u|pp ≤ t1 and |∇u|qq ≤ t2 . Now, we show 

that

Assume by contradiction that |∇u|pp < t1 and |∇u|qq ≤ t2 . Since ⟨L�
V0
(un),�⟩ → 0 for all 

� ∈ C∞
c
(ℝN) and C∞

c
(ℝN) is dense in �V0

 , we see that

Hence,

which implies that ⟨L�
V0
(u), u⟩ < 0 . Using (f1) and (f2) , we see that ⟨L�

V0
(t0u), t0u⟩ > 0 for 

some 0 < t0 ≪ 1 . Then, we can find � ∈ (t0, 1) such that ⟨L�
V0
(�u), �u⟩ = 0 . This fact 

together with the characterization of dV0
 , t ↦ 1

2q
f (t)t − F(t) is increasing (by (f3) and (f4) ), 

the Fatou’s lemma gives

and this is an absurd. Consequently, |∇un|t → |∇u|t for t ∈ {p, q} and we have L�
V0
(u) = 0.

Step 3 u is positive.
Using ⟨L�

V0
(u), u−⟩ = 0 , where u− = min{u, 0} , and f (t) = 0 for t ≤ 0 , we have

which gives u− = 0 , that is u ≥ 0 in ℝN . Therefore, u ≥ 0 and u ≢ 0 in ℝN . Arguing as in 
[28], we deduce that u ∈ L∞(ℝN) ∩ C

1,�
loc
(ℝN) and |u(x)| → 0 as |x| → ∞ . By means of the 

Harnack inequality [47], we conclude that u > 0 in ℝN . 	�  ◻

The next compactness result will be used in the sequel.

Lemma 10  Let {un}n∈ℕ ⊂ MV0
 be a sequence such that LV0

(un) → dV0
 . Then, {un}n∈ℕ has a 

convergent subsequence in �V0
.

Proof  By Lemma 8-(iii), Proposition 2-(d) and the definition of dV0
 we have that

|∇u|p
p
= t1 and |∇u|q

q
= t2.

(1 + t1)|∇u|pp + (1 + t2)|∇u|qq + V0(|u|pp + |u|q
q
) = ∫

ℝN

f (u)u dx.

(1 + |∇u|p
p
)|∇u|p

p
+ (1 + |∇u|q

q
)|∇u|q

q
+ V0(|u|pp + |u|q

q
) − ∫

ℝN

f (u)u dx

< (1 + t1)|∇u|pp + (1 + t2)|∇u|qq + V0(|u|pp + |u|q
q
) − ∫

ℝN

f (u)u dx = 0,

dV0
≤ LV0

(𝜏u) = LV0
(𝜏u) −

1

2q
⟨L�

V0
(𝜏u), 𝜏u⟩

< LV0
(u) −

1

2q
⟨L�

V0
(u), u⟩

≤ lim inf
n→∞

�
LV0

(un) −
1

2q
⟨L�

V0
(un), un⟩

�
= dV0

,

‖u−‖p
1,p

+ ‖u−‖q
1,q

≤ 0
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and

Note that, (�
+

V0
, �V0

) , where �V0
(u, v) = ‖u − v‖

�V0
 , is a complete metric space. Consider the 

map G ∶ 𝕊
+

V0
→ ℝ ∪ {∞} given by

By Lemma 8-(iv), G ∈ C(𝕊
+

V0
,ℝ ∪ {∞}) , and by Proposition 2-(d), we have that G is 

bounded below. Then, we can apply Ekeland’s variational principle [20] to deduce that 
there exists a sequence {v̂n}n∈ℕ ⊂ 𝕊

+
V0

 such that {v̂n}n∈ℕ is a (PS)dV0 sequence for �V0
 at the 

level dV0
 and ‖v̂n − vn‖�V0 = on(1) . At this point, the proof follows from Proposition 2, The-

orem 3, and arguing as in the proof of Corollary 1. 	�  ◻

For the minimax levels c� and dV0
 , we have the following relation.

Lemma 11  lim�→0 c� = dV0
.

Proof  By Theorem 3, we know that there exists a positive ground-state � of (25). Define 
��(x) = ��(x)�(x) , where ��(x) = �(�x) with � ∈ C∞

c
(ℝN) such that 0 ≤ � ≤ 1 , �(x) = 1 

if |x| ≤ 1 and �(x) = 0 if |x| ≥ 2 . We also assume that supp(𝜓) ⊂ B2 ⊂ Λ . By the domi-
nated convergence theorem, it follows that

Now, for each 𝜀 > 0, there exists t𝜀 > 0 such that

Consequently, ⟨L�
�
(t���),��⟩ = 0 , that is

Let us prove that t� → t0 ∈ (0,∞) . Assume by contradiction that t� → ∞ . Since

vn = m−1
V0
(un) =

un

‖un‖𝕐V0
∈ 𝕊

+
V0

for all n ∈ ℕ

�V0
(vn) = LV0

(un) → dV0
= inf

v∈�+
V0

�V0
(v).

G(u) =

{
�V0

(u) if u ∈ �
+
V0
,

∞ if u ∈ ��+
V0
.

(34)�� → � in Wp,q and LV0
(��) → LV0

(�) = dV0
as � → 0.

L�(t���) = max
t≥0 L�(t��).

tp
�
|∇��|pp + t2p

�
|∇��|2pp + tq

�
|∇��|qq + t2q

�
|∇��|2qq

+ tp
� ∫

ℝN

V(�x)�p
�
dx + tq

� ∫
ℝN

V(�x)�q
�
dx = ∫

ℝN

f (t���)t��� dx.

(35)
tp−2q
�

|∇��|pp + t2p−2q
�

|∇��|2pp + t−q|∇��|qq + |∇��|2qq
+ tp−2q

� ∫
ℝN

V(�x)�p
�
dx + t−q ∫

ℝN

V(�x)�q
�
dx = ∫

ℝN

f (t���)

(t���)
2q−1

�2q
�
dx,
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using (34), p < 2q and (f3) , we deduce that |∇�|2qq = ∞ which is impossible. Hence, 
t0 ∈ [0,∞) . If by contradiction t0 = 0 , from (f1) and (f2) , we see that, for � ∈ (0,V0) fixed, 
we have

This combined with q > p gives ‖�‖p
1,p

= 0 , that is a contradiction.
Now, letting � → 0 in (35), we obtain

Using 2q > q > p , (f4) and � ∈ MV0
, we conclude that t0 = 1.

Finally, we observe that

Since V(�⋅) is bounded on the support of �� , we use the dominated convergence theorem, 
(34) and the above inequality to see that lim sup�→0 c� ≤ dV0

 . On the other hand, it follows 
from (V1) that lim inf�→0 c� ≥ dV0

 . In conclusion, lim�→0 c� = dV0
 . 	� ◻

4 � Multiplicity of solutions to (12)

In this section, we collect some technical results which will be used to implement the bar-
ycenter machinery below. Take 𝛿 > 0 such that

and choose a non-increasing function � ∈ C∞([0,∞), [0, 1]) such that �(t) = 1 if 0 ≤ t ≤ �

2
 , 

�(t) = 0 if t ≥ � and |��(t)| ≤ c for some c > 0 . For any y ∈ M , we define

and take t𝜀 > 0 satisfying

where w ∈ �V0
 is a positive ground-state solution to (25) whose existence is guaranteed by 

Theorem 3.
Let Φ� ∶ M → N� be given by

�
1 −

�

V0

�
‖��‖pV�,p

+ tq−p
�

‖��‖qV�,q
≤ C� t

q−p
�

‖��‖q
∗

V�,q
.

t
p−2q

0
|∇�|p

p
+ t

2p−2q

0
|∇�|2p

p
+ t

−q

0
|∇�|q

q
+ |∇�|2q

q

+ t
p−2q

0 ∫
ℝN

V0�
p dx + t

−q

0 ∫
ℝN

V0�
q dx = ∫

ℝN

f (t0�)

(t0�)
2q−1

�2q dx.

c� ≤ max
t≥0 L�(t��) =L�(t���) = LV0

(t���) +
t
p
�

p �
ℝN

(V�(x) − V0)�
p
�
dx

+
t
q
�

q �
ℝN

(V�(x) − V0)�
q
�
dx.

M𝛿 =
{
x ∈ ℝ

N ∶ dist(x,M) ≤ 𝛿
}
⊂ Λ,

Ψ�,y(x) = �(|�x − y|)w
(�x − y

�

)
,

max
t≥0 L�(tΨ�,y) = L�(t�Ψ�,y),

Φ�(y) = t�Ψ�,y.
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By construction, Φ�(y) has compact support for any y ∈ M.

Lemma 12  The functional Φ� verifies the following limit:

Proof  Suppose that the thesis of the lemma is false. Then, we can find 𝛿0 > 0 , {yn}n∈ℕ ⊂ M 
and �n → 0 such that

Now, for each n ∈ ℕ and for all z ∈ B �

�n

 , we have �nz ∈ B� , and so

Using the definition of Φ�n
(yn) , that G = F in Λ ×ℝ and taking the change of variable 

z =
�nx−yn

�n
 , we have

Our purpose is to show that t�n → 1 as n → ∞ . First, we prove that t�n → t0 ∈ [0,∞) . Note 
that, ⟨L�

�n
(Φ�n

(yn)),Φ�n
(yn)⟩ = 0 and g = f  on Λ ×ℝ yield

Since �(|x|) = 1 for x ∈ B �

2

 and B 𝛿

2

⊂ B 𝛿

𝜀n

 for all n large enough, from (38) we deduce that

lim
�→0

L�(Φ�(y)) = dV0
uniformly in y ∈ M.

(36)|L�n (Φ�n
(yn)) − dV0

| ≥ �0.

𝜀nz + yn ∈ B𝛿(yn) ⊂ M𝛿 ⊂ Λ.

(37)

L�n (Φ�n
(yn)) =

t
p
�n

p
‖Ψ�n ,yn

‖p
V�n

,p
+

t
2p
�n

2p
�∇Ψ�n,yn

�2p
p
+

t
q
�n

q
‖Ψ�n,yn

‖q
V�n

,q
+

t
2p
�n

2q
�∇Ψ�n,yn

�2q
q

− ∫
ℝN

G(�nx, t�nΨ�n,yn
) dx

=
t
p
�n

p

�
�∇(�(��n ⋅ �)w)�pp + ∫

ℝN

V(�nz + yn)(�(��nz�)w(z))p dz
�

+
t
2p
�n

2p
�∇(�(��n ⋅ �)w)�2pp

+
t
q
�n

q

�
�∇(�(��n ⋅ �)w)�qq + ∫

ℝN

V(�nz + yn)(�(��nz�)w(z))q dz
�

+
t
2q
�n

2q
�∇(�(��n ⋅ �)w)�2qq

− ∫
ℝN

F(t�n�(��nz�)w(z)) dz.

(38)

1

t
2q−p
�n

‖Ψ�n ,yn
‖p
V�n

,p
+

1

t
2q−2p
�

�∇Ψ�n,yn
�2p
p
+

1

t
q
�

‖Ψ�n ,yn
‖q
V�n

,q
+ �∇Ψ�n,yn

�2q
q

= ∫
ℝN

� f (t�n�(��nz�)w(z))
(t�n�(��nz�)w(z))2q−1

�
(�(��nz�)w(z))2q dz.
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Then, using (f4) , we obtain

where w(ẑ) = min
z∈B 𝛿

2

w(z) > 0 (w is continuous and positive in ℝN ). If, by contradiction, 

t�n → ∞ , using 2q > q > p and the dominated convergence theorem, we have

and

On the other hand, condition (f3) gives

In view of (39), (41) and (42), we obtain an absurd. Therefore, {t�n}n∈ℕ is bounded, and 
we may suppose that t�n → t0 for some t0 ≥ 0 . Taking into account (38), (40), (f1)–(f2) , we 
deduce that t0 ∈ (0,∞) . Now, letting n → ∞ in (38), and using (40) and the dominated con-
vergence theorem, we obtain that

Since w ∈ MV0
 , then

Combining the above identities, we find

and using 2q > q > p and (f4) , we deduce that t0 = 1 and the claim is proved.
By sending n → ∞ in (37), we have that

1

t
2q−p
�n

‖Ψ�n ,yn
‖p
V�n

,p
+

1

t
2q−2p
�

�∇Ψ�n,yn
�2p
p
+

1

t
q
�

‖Ψ�n ,yn
‖q
V�n

,q
+ �∇Ψ�n,yn

�2q
q

≥ �B �
2

�
f (t�nw(z))

(t�nw(z))
2q−1

�
�w(z)�2q dz.

(39)

1

t
2q−p
𝜀n

‖Ψ𝜀n ,yn
‖p
V𝜀n

,p
+

1

t
2q−2p
𝜀

�∇Ψ𝜀n,yn
�2p
p
+

1

t
q
𝜀

‖Ψ𝜀n ,yn
‖q
V𝜀n

,q
+ �∇Ψ𝜀n,yn

�2q
q

≥ � f (t𝜀nw(ẑ))

(t𝜀nw(ẑ))
2q−1

�
�w(ẑ)�2q�B 𝛿

2

�,

(40)‖Ψ�n,yn
‖V�n

,r → ‖w‖1,r ∈ (0,∞) ∀r ∈ {p, q},

(41)
1

t
2q−p
�n

‖Ψ�n ,yn
‖p
V�n

,p
+

1

t
2q−2p
�

�∇Ψ�n,yn
�2p
p
+

1

t
q
�

‖Ψ�n ,yn
‖q
V�n

,q
+ �∇Ψ�n,yn

�2q
q

→ �∇��2q
q
.

(42)lim
n→∞

f (t𝜀nw(ẑ))

(t𝜀nw(ẑ))
2q−1

= ∞.

t
p−2q

0
‖w‖p

1,p
+ t

2p−2q

0
�∇w�2p

p
+ t

−q

0
‖w‖q

1,q
+ �∇w�2q

q
= ∫

ℝN

f (t0w)

(t0w)
2q−1

w2q dx.

‖w‖p
1,p

+ �∇w�2p
p
+ ‖w‖q

1,q
+ �∇w�2q

q
= ∫

ℝN

f (w)w dx,

(t
p−2q

0
− 1)‖w‖p

1,p
+ (t

2p−2q

0
− 1)�∇w�2p

p
+ (t

−q

0
− 1)�∇w�2q

q

= ∫
ℝN

�
f (t0w)

(t0w)
2q−1

−
f (w)

w2q−1

�
w2q dx,
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which is in contrast with (36). This completes the proof of the lemma. 	�  ◻

Let 𝜌 = 𝜌(𝛿) > 0 be such that M𝛿 ⊂ B𝜌 . Define � ∶ ℝ
N
→ ℝ

N as � (x) = x for |x| < 𝜌 
and � (x) =

�x

|x| for |x| > 𝜌 . Finally, we introduce the barycenter map �� ∶ N� → ℝ
N given 

by

Since M ⊂ B𝜌 , by the definition of �  and applying the dominated convergence theorem, we 
conclude that

The next compactness result is fundamental for showing that the solutions of (12) are solu-
tions of (1).

Lemma 13  Let �n → 0 and {un}n∈ℕ ⊂ N𝜀n
 be such that L�n (un) → dV0

 . Then, there exists 
{ỹn}n∈ℕ ⊂ ℝ

N such that vn(x) = un(x + ỹn) has a convergent subsequence in �V0
 . Moreover, 

up to a subsequence, {yn}n∈ℕ = {𝜀nỹn}n∈ℕ is such that yn → y0 ∈ M.

Proof  As in the proof of Lemma 7, we can prove that {un}n∈ℕ is bounded in �V0
 . In view of 

dV0
> 0 , we have that ‖un‖��n

↛ 0 . Arguing as in the proof of Lemma 9 and Remark 5, we 
can find {ỹn}n∈ℕ ⊂ ℝ

N and R, 𝛽 > 0 such that

Putting vn(x) = un(x + ỹn) , we see that {vn}n∈ℕ is bounded in �V0
 , and, up to a subsequence, 

we may suppose that vn ⇀ v ≢ 0 in �V0
 . Take tn > 0 such that ṽn = tnvn ∈ MV0

 and set 
yn = 𝜀nỹn . Using un ∈ N�n

 and (g2) , we get

Hence,

lim
n→∞

L�n (Φ�n,yn
) = LV0

(w) = dV0
,

��(u) =
∫
ℝN

� (�x)(|u(x)|p + |u(x)|q) dx

∫
ℝN

|u(x)|p + |u(x)|q dx
.

(43)lim
�→0

��(Φ�(y)) = y uniformly in y ∈ M.

lim inf
n→∞ �BR(ỹn)

|un|qdx ≥ 𝛽.

dV0
≤ LV0

(ṽn)

≤ 1

p
|∇ṽn|pp + 1

2p
|∇ṽn|2pp +

1

q
|∇ṽn|qq + 1

2q
|∇ṽn|2qq + �

ℝN

V(𝜀nx + yn)

(
1

p
|ṽn|p + 1

q
|ṽn|q

)
dx

− �
ℝN

F(ṽn) dx

≤ t
p
n

p
|∇un|pp +

t
2p
n

2p
|∇un|2pp +

t
q
n

q
|∇un|qq +

t
2q
n

2q
|∇un|2qq + �

ℝN

V(𝜀nx)

(
t
p
n

p
|un|p + t

q
n

q
|un|q

)
dx

− �
ℝN

G(𝜀nx, tnun) dx

= L𝜀n (tnun) ≤ L𝜀n (un) = dV0
+ on(1).
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Moreover, {ṽn}n∈ℕ is bounded in �V0
 and we may suppose that ṽn ⇀ ṽ . We may assume that 

tn → t0 ∈ (0,∞) . From the uniqueness of the weak limit, we have that ṽ = t0v ≢ 0 . By (44) 
and Lemma 10, ṽn → ṽ in �V0

 and thus vn → v in �V0
 . In particular,

Next, we prove that {yn}n∈ℕ admits a bounded subsequence. Assume, by contradiction, that 
there exists a subsequence of {yn}n∈ℕ , still denoted by itself, such that |yn| → ∞ . Let R > 0 
be such that Λ ⊂ BR . Then, for n large enough, we have |yn| > 2R , and for each x ∈ B R

�n

 we 
obtain

Then, taking into account that vn → v in �V0
 , the definition of g, and the dominated conver-

gence theorem, we deduce that

which implies that

and this gives a contradiction because of vn → v ≢ 0 in �V0
 . Therefore, {yn}n∈ℕ is bounded 

in ℝN and, up to a subsequence, we may assume that yn → y0 . If y0 ∉ Λ , we can proceed as 
above to conclude vn → 0 in �V0

 . Hence, y ∈ Λ . In order to prove that V(y0) = V0 , we sup-
pose, by contradiction, that V(y0) > V0 . Then, using ṽn → ṽ in �V0

 , Fatou’s lemma and the 
invariance of ℝN by translations, we deduce that

which yields a contradiction. Thus, V(y0) = V0 and y0 ∈ M . From (V2), we get that y0 ∉ �M 
and so y0 ∈ M . 	�  ◻

We now define the following subset of the Nehari manifold

(44)LV0
(ṽn) → dV0

and {ṽn}n∈ℕ ⊂ MV0
.

LV0
(ṽ) = dV0

and ⟨L�
V0
(ṽ), ṽ⟩ = 0.

|𝜀nx + yn| ≥ |yn| − |𝜀nx| > R.

‖vn‖p1,p + ‖vn‖q1,q ≤ �
ℝN

g(𝜀nx + yn, vn)vn dx

≤ �B R
𝜀n

f̃ (vn)vn dx + �Bc
R
𝜀n

f (vn)vn dx

≤ 1

K �B R
𝜀n

V0(�vn�p + �vn�q) dx + on(1)

�
1 −

1

K

��
‖vn‖p1,p + ‖vn‖q1,q

� ≤ on(1),

dV0
= LV0

(ṽ)

< lim inf
n→∞

[
1

p
|∇ṽn|pp + 1

2p
|∇ṽn|2pp +

1

q
|∇ṽn|qq + 1

2q
|∇ṽn|2qq

+�
ℝN

V(𝜀nx + yn)

(
1

p
|ṽn|p + 1

q
|ṽn|q

)
dx − �

ℝN

F(ṽn) dx

]

≤ lim inf
n→∞

L𝜀n (tnun) ≤ lim inf
n→∞

L𝜀n (un) = dV0
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where �(�) = supy∈M |L�(Φ�(y)) − dV0
| . By Lemma 12, we deduce that �(�) → 0 as � → 0 . 

By the definition of �(�) , we have that, for all y ∈ M and 𝜀 > 0 , Φ�(y) ∈ Ñ� and Ñ� ≠ ∅.
In what follows, we provide an interesting relation between Ñ� and the barycenter map.

Lemma 14  For any 𝛿 > 0 , there holds that

Proof  Let �n → 0 as n → ∞ . By definition, there exists {un}n∈ℕ ⊂ �N𝜀n
 be such that

Then, it is enough to find a sequence {yn}n∈ℕ ⊂ M𝛿 such that

Since LV0
(tun) ≤ L�n (tun) and {un}n∈ℕ ⊂ �N𝜀n

⊂ N𝜀n
 , we have that

from which L�n (un) → dV0
 . Then, we can apply Lemma 13 to find {ỹn} ⊂ ℝ

N such that 
yn = 𝜀nỹn ∈ M𝛿 for n large enough. Hence,

Since un(⋅ + ỹn) strongly converges in �V0
 and �nz + yn → y ∈ M� for all z ∈ ℝ

N , we deduce 
that ��n (un) = yn + on(1) . Therefore, {yn}n∈ℕ satisfies the required property and the lemma 
is proved. 	�  ◻

5 � Proof of the main result

In this section, we give the proof of the main result of this work. We start by proving a 
multiplicity result for (12). Note that, since �+

�
 is not a complete metric space, we cannot 

use directly an abstract result as in [2–5, 23]. However, we can apply the abstract category 
result in [46] to deduce the following result.

Theorem  4  Assume that (V1)–(V2) and (f1)–(f4) hold. Then, for any given 𝛿 > 0 such 
that M𝛿 ⊂ Λ , there exists 𝜀̄𝛿 > 0 such that, for any 𝜀 ∈ (0, 𝜀̄𝛿) , problem (12) has at least 
catM�

(M) positive solutions.

Proof  For each 𝜀 > 0 , we consider �� ∶ M → �
+
�
 given by

Ñ� =
{
u ∈ N� ∶ L�(u) ≤ dV0

+ �(�)
}
,

lim
�→0

sup
u∈Ñ�

dist(��(u),M�) = 0.

dist(��n (un),M�) = sup
u∈Ñ�n

dist(��n (u),M�) + on(1).

lim
n→∞

|��n (un) − yn| = 0.

dV0
≤ c�n ≤ L�n (un) ≤ dV0

+ h(�n)

𝛽𝜀n (un) = yn +
∫
ℝN

[𝛶 (𝜀nz + yn) − yn](|un(z + ỹn)|p + |un(z + ỹn)|q) dz

∫
ℝN

(|un(z + ỹn)|p + |un(z + ỹn)|q) dz
.
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By Lemma 12, we get

Hence, there exists 𝜀̂ > 0 such that

for all 𝜀 ∈ (0, 𝜀̂) , in view of 𝜓𝜀(M) ⊂ �S
+

𝜀
 . Here, �(�) = supy∈M |��(��(y)) − dV0

| → 0 as 
� → 0.

From the above considerations, and using Lemma 12, Lemma 3-(iii), Lemma 14 and 
(43), we can find 𝜀̄ = 𝜀̄𝛿 > 0 such that the diagram of continuous mappings below is well 
defined for 𝜀 ∈ (0, 𝜀̄):

From (43), we can choose a function �(�, y) with |𝜍(𝜀, y)| < 𝛿

2
 uniformly in y ∈ M and 

for all 𝜀 ∈ (0, 𝜀̄) , such that ��(Φ�(y)) = y + �(�, y) for all y ∈ M . Therefore, the map 
H ∶ [0, 1] ×M → M� given by H(t, y) = y + (1 − t)�(�, y), with (t, y) ∈ [0, 1] ×M is a 
homotopy between ��◦Φ� = (��◦m�)◦(m

−1
�
◦Φ�) and the inclusion map id ∶ M → M� . 

Consequently,

Applying Corollary 1, Lemma 11, and Theorem 27 in [46], with c = c� ≤ dV0
+ �(�) = d 

and K = ��(M) , we deduce that Ψ� has at least cat��(M)��(M) critical points on S̃
+

�
 . Then, by 

Proposition 1-(d) and (45), we can infer that L� admits at least catM�
(M) critical points in 

Ñ� . 	�  ◻

The next result will be crucial to study the behavior of the maximum points of the solu-
tions. The proof is based on some arguments found in [2, 21, 26, 33].

Lemma 15  Let �n → 0 and un ∈ Ñ�n
 be a solution to (12). Then, L�n (un) → dV0

 , and there 
exists {ỹn}n∈ℕ ⊂ ℝ

N such that vn = un(⋅ + ỹn) ∈ L∞(ℝN) and for some C̄ > 0 it holds

Moreover,

Proof  Observing that L�n (un) ≤ dV0
+ �(�n) with �(�n) → 0 as n → ∞ , we can repeat the 

same arguments used at the beginning of the proof of Lemma 13 to show that L�n (un) → dV0
 . 

Then, applying Lemma 13, there exists {ỹn}n∈ℕ ⊂ ℝ
N such that vn = un(⋅ + ỹn) → v in �V0

 
for some v ∈ �V0

⧵ {0} and 𝜀nỹn → y0 ∈ M.
Let x0 ∈ ℝ

N , R0 > 1 , 0 < t < s < 1 < R0 and � ∈ C∞
c
(ℝN) such that

��(y) = m−1
�
(Φ�(y)).

lim
�→0

��(��(y)) = lim
�→0

L�(Φ�(y)) = dV0
uniformly in y ∈ M.

S̃
+

�
= {w ∈ �

+
�
∶ ��(w) ≤ dV0

+ �(�)} ≠ �

M
Φ�

−−→Φ�(M)
m−1

�

−−−→��(M)
m�

−−→Φ�(M)
��
−−→M� .

(45)cat��(M)��(M) ≥ catM�
(M).

|vn|∞ ≤ C̄ for all n ∈ ℕ.

(46)vn(x) → 0 as |x| → ∞ uniformly in n ∈ ℕ.

0 ≤ 𝜉 ≤ 1, supp 𝜉 ⊂ Bs(x0), 𝜉 ≡ 1 on Bt(x0), |∇𝜉| ≤ 2

s − t
.
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For � ≥ 1 , set An,𝜁 ,𝜌 = {x ∈ B𝜌(x0) ∶ vn(x) > 𝜁} and

Note that, vn satisfies

for all � ∈ �� , where An = 1 + |∇vn|pp and Bn = 1 + |∇vn|qq . Taking �n = �q(vn − � )+ as test 
function, we obtain

Let us observe that vn → v ≢ 0 in �V0
 so that 1 ≤ An ≤ C1 and 1 ≤ Bn ≤ C2 for some 

C1,C2 > 0 . Therefore, by (V1) , we get

Using the growth assumptions on g, for any 𝛼 > 0 there exists C𝛼 > 0 such that

Then, choosing 𝛼 > 0 sufficiently small, we find

Proceeding similarly to the proof of Lemma 3.4 in [2], we get

Exploiting the definition of � , we can infer that

Qn = ∫An,� ,s

(|∇vn|p + |∇vn|q
)
�q dx.

An ∫
ℝN

|∇vn|p−2∇vn ⋅ ∇� dx + Bn ∫
ℝN

|∇vn|q−2∇vn ⋅ ∇� dx

+ ∫
ℝN

Vn(x)(v
p−1
n

+ vq−1
n

)� dx = ∫
ℝN

gn(x, vn)� dx,

An

[
q∫

An,� ,s

�q−1(vn − � )+|∇vn|p−2∇vn ⋅ ∇� dx + ∫
An,� ,s

�q|∇vn|p dx
]

+ Bn

[
q∫

An,� ,s

�q−1(vn − � )+|∇vn|q−2∇vn ⋅ ∇� dx + ∫
An,� ,s

�q|∇vn|q dx
]

+ ∫
An,� ,s

Vn(v
p−1
n

+ vq−1
n

)�q(vn − � )+ dx

= ∫
An,� ,s

gn(x, vn)�
q(vn − � )+ dx.

Qn ≤ C �
An,� ,s

�q−1(vn − � )+|∇�|(|∇vn|p−1 + |∇vn|q−1
)
dx

− �
An,� ,s

V0�
q−1(vn − � )+(vp−1

n
+ vq−1

n
) dx + �

An,� ,s

gn(x, vn)�
q(vn − � )+ dx.

|g(x, t)| ≤ �|t|p−1 + C�|t|q∗−1 for all (x, t) ∈ ℝ
N ×ℝ.

Qn ≤ C �
An,� ,s

�q−1(vn − � )+|∇�|(|∇vn|p−1 + |∇vn|q−1
)
dx + �

An,� ,s

vq
∗−1

n
�q(vn − � )+ dx.

Qn ≤ C

(
�An,� ,s

||||
vn − �

s − t

||||
q∗

dx + (�q
∗

+ 1)|An,� ,s|
)
.
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where C does not depend on � and � ≥ �0 ≥ 1 , for some constant �0.
Now, fix R1 > 0 and define

Then, arguing as in Step 1 in Lemma 3.5 in [2], we can see that for each n ∈ ℕ

where C, 𝜏 > 0 are independent of n and A > 1 . Since vn → v in �V0
 , we see that

Then, there exists n0 ∈ ℕ and 𝜁∗
0
> 0 such that

Exploiting Lemma 4.7 in [33], we have that limj→∞ Qj,n = 0 for n ≥ n0 . On the other hand,

Hence,

and so, for all n ≥ n0,

From the arbitrariness of x0 ∈ ℝ
N , we deduce that vn(x) ≤ �0

2
 for a.e. x ∈ ℝ

N and for all 
n ≥ n0 , that is

�An,� ,t

|∇vn|q dx ≤ C

(
�An,� ,s

||||
vn − �

s − t

||||
q∗

dx + (�q
∗

+ 1)|An,� ,s|
)

𝜎j =
R1

2

(
1 +

1

2j

)
,

𝜎̄j =
1

2

(
𝜎j + 𝜎j+1

)
,

𝜁j =
𝜁0

2

(
1 −

1

2j+1

)
,

Qj,n = ∫
An,𝜁j ,𝜎j

(
(vn − 𝜁j)

+
)q∗

dx.

Qj,n ≤ CA�Q1+�
j,n

for all j ∈ ℕ ∪ {0},

lim sup
�0→∞

(
lim sup
n→∞

Q0,n

)
= lim sup

�0→∞

(
lim sup
n→∞ ∫

An,�0�0

((
vn −

�0

4

)+)q∗

dx

)
= 0.

Q0,n ≤ C
1

� A
−

1

�2 for n ≥ n0 and �0 ≥ �∗
0
.

lim
j→∞

Qj,n = lim
j→∞∫

An,Kn ,�n

(
(vn − �j)

+
)q∗

dx = ∫
A
n,

�
2
,
R1
2

((
vn −

�0

2

)+)q∗

dx.

�
A
n,

�0
2

,
R1
2

((
vn −

�0

2

)+)q∗

dx = 0 for all n ≥ n0,

vn(x) ≤ �0

2
for a.e. x ∈ B R1

2

(x0).

|vn|∞ ≤ �0

2
, for all n ≥ n0.
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Setting C̄ = max
{

𝜁0

2
, |v1|∞,… , |vn0−1|∞

}
 , we find that |vn|∞ ≤ C̄ for all n ∈ ℕ . Combin-

ing this estimate with the regularity results in [28], we can see that {vn}n∈ℕ ⊂ C
1,𝛼
loc
(ℝN).

Finally, we show that vn(x) → 0 as |x| → ∞ uniformly in n ∈ ℕ . Arguing as before, we 
can see that for each 𝛿 > 0, we have that

Therefore, applying lemma Lemma 4.7 in [33], there exist R∗ > 0 and n0 ∈ ℕ such that

which yields

Now, increasing R∗ if necessary, it holds

This completes the proof of the lemma. 	�  ◻

We are now ready to provide the main result of this section.

Proof of  Theorem  1  Fix 𝛿 > 0 such that M𝛿 ⊂ Λ . We first claim that there exists 𝜀̃𝛿 > 0 
such that for any 𝜀 ∈ (0, 𝜀̃𝛿) and any solution u� ∈ Ñ� of (12), it holds

Suppose, by contradiction, that for some sequence �n → 0 we can find un = u�n ∈ Ñ�n
 such 

that L�
�n
(u�n ) = 0 and

As in Lemma 13, we have that L�n (un) → dV0
 and therefore we can use Lemma 13 to find a 

sequence {ỹn}n∈ℕ ⊂ ℝ
N such that vn = un(⋅ + ỹn) → v in �V0

 and 𝜀nỹn → y0 ∈ M.
Take r > 0 such that Br(y0) ⊂ B2r(y0) ⊂ Λ , and so B r

𝜀n

(
y0

𝜀n
) ⊂ Λ𝜀n

 . Then, for any 
y ∈ B r

𝜀n

(ỹn) , it holds

For these values of n, we have that Λc
𝜀n
⊂ Bc

r

𝜀n

(ỹn) . In view of (46), there exists R > 0 such 

that

from which

lim sup
|x0|→∞

(
lim sup
n→∞

Q0,n

)
= lim sup

|x0|→∞

(
lim sup
n→∞ ∫

An,K0,�0

((
vn −

�

4

)+)q∗

dx

)
= 0.

lim
j→∞

Qj,n = 0 if |x0| > R∗, for n ≥ n0,

vn(x) ≤ 𝛿

4
for x ∈ B R1

2

(x0) and |x0| > R∗, for all n ≥ n0.

vn(x) ≤ 𝛿

4
for |x| > R∗, for all n ≥ n0.

(47)|u𝜀|L∞(Λc
𝜀
) < a.

(48)|un|L∞(Λc
�n
) ≥ a.

||||y −
y0

𝜀n

|||| ≤ |y − ỹn| +
||||ỹn −

y0

𝜀n

|||| <
1

𝜀n
(r + on(1)) <

2r

𝜀n
for n sufficiently large.

vn(x) < a for any |x| ≥ R , n ∈ ℕ,
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On the other hand, there exists � ∈ ℕ such that for any n ≥ � it holds

Consequently, un(x) < a for any x ∈ Λc
�n

 and n ≥ � , which contradicts (48).
Let 𝜀̄𝛿 > 0 be given by Theorem 4 and set 𝜀𝛿 = min{𝜀̃𝛿 , 𝜀̄𝛿} . Take � ∈ (0, ��) . By Theo-

rem  4, we obtain at least catM�
(M) positive solutions to (12). If u� is one of these solu-

tions, we have that u� ∈ Ñ� , and we can use (47) and the definition of g to deduce that 
g(�x, u�) = f (u�) . This means that u� is also a solution of (1). Therefore, (1) has at least 
catM�

(M) solutions.
Now, we consider �n → 0 and take a sequence {un}n∈ℕ ⊂ 𝕎𝜀n

 of solutions to (12) as 
above. In order to study the behavior of the maximum points of un , we first note that, by the 
definition of g and (g1) , there exists � ∈ (0, a) sufficiently small such that

As before, we can take R > 0 such that

Up to a subsequence, we may also assume that

Otherwise, if this is not the case, we see that |un|∞ < 𝜎 . Then, it follows from 
⟨L�

�n
(un), un⟩ = 0 and (49) that

which implies that ‖un‖pV�n
,p
, ‖un‖qV�n

,q
→ 0 , and thus L�(un) → 0 . This last fact is impossi-

ble because L𝜀(un) → dV0
> 0 . Hence, (51) holds.

By virtue of (50) and (51), we can see that if pn is a global maximum point of un , then 
pn = ỹn + qn for some qn ∈ BR . Recalling that 𝜀nỹn → y0 ∈ M and using the fact that 
{qn}n∈ℕ ⊂ BR , we obtain that �npn → y0 . Since V is a continuous function, we deduce that

This completes the proof of Theorem 1. 	�  ◻
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un(x) < a for any x ∈ Bc
R
(ỹn) , n ∈ ℕ.

Λc
𝜀n
⊂ Bc

r

𝜀n

(ỹn) ⊂ Bc
R
(ỹn).

(49)g(�x, t)t ≤ V0

K
(tp + tq) for any x ∈ ℝ

N , 0 ≤ t ≤ �.

(50)|un|L∞(Bc
R
(ỹn))

< 𝜎.

(51)|un|L∞(BR(ỹn))
≥ 𝜎.

‖un‖pV�n
,p
+ ‖un‖qV�n

,q
≤ �

ℝN

g(�nx, un)un dx ≤ V0

K �
ℝN

(�un�p + �un�q) dx

lim
n→∞

V(�npn) = V(y0) = V0.
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