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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract: To schedule precedence task graphs in a more realistic framework, we
introduce an efficient fault tolerant scheduling algorithm that is both contention-
aware and capable of supporting ε arbitrary fail-silent (fail-stop) processor failures.
The design of the proposed algorithm which we call Iso-Level CAFT, is motivated by
(i) the search for a better load-balance and (ii) the generation of fewer communica-
tions. These goals are achieved by scheduling a chunk of ready tasks simultaneously,
which enables for a global view of the potential communications. Our goal is to
minimize the total execution time, or latency, while tolerating an arbitrary number
of processor failures. Our approach is based on an active replication scheme to mask
failures, so that there is no need for detecting and handling such failures. Major
achievements include a low complexity, and a drastic reduction of the number of ad-
ditional communications induced by the replication mechanism. The experimental
results fully demonstrate the usefulness of Iso-Level CAFT.

Key-words: Communication contention, fault tolerance, multi-criteria scheduling,
heterogeneous systems.

This text is also available as a research report of the Laboratoire de l’Informatique du Paral-
lélisme http://www.ens-lyon.fr/LIP.



Iso-Level CAFT:

How to Tackle the Combination of Communication

Overhead Reduction and Fault Tolerance Scheduling

Résumé :
Dans cet article, nous présentons un nouveau mécanisme d’ordonnancement

tolérant aux pannes sur des plates-formes de calcul plus réalistes (modèle 1-Port).
Cet algorithme que nous appelons Iso-Level CAFT est motivé par (i) la recherche
d’un meilleur équilibrage de charge et (ii) la génération de moins de communications.
Ces objectifs sont atteints par le traitement d’un ensemble de tâches prêtes (plutôt
qu’une seule) simultanément afin d’assurer d’une façon incrémentale un meilleur
équilibrage de charge, et de minimiser les communications. Notre approche est classé
dans la catégorie des solutions logicielles basée sur la réplication active. Le choix
de la réplication active est justifié par des raisons multiples : i) pouvoir répondre
aux attentes des industriels qui exigent de moindre coûts de conception, ii) les or-
donnancements obtenus sont statiques, ce qui facilite la vérification de la contrainte
de latence, iii) le déploiement du système ne requiert pas de mécanisme d’exécution
compliqué pour la détection/correction des fautes. Les pannes sont de type silence
sur défaillance (fail-silent/fail-stop). C’est à dire qu’un composant matériel est ou
bien saint et délivre toujours des sorties correctes et à temps, ou bien défaillant et
ne produit plus aucune sortie. De plus, la durée des défaillances est quelconque. Les
résultats expérimentaux montrent l’utilité et l’efficacité d’Iso-Level CAFT en dépit
de sa faible complexité temporelle.

Mots-clés : Contentions des communications, tolérance aux pannes, ordonnance-
ment multi-critère, ressources hétérogènes.



Iso-Level CAFT 3

1 Introduction

With the advent of large-scale heterogeneous platforms such as clusters and grids,
resource failures (processors/links) are more likely to occur and have an adverse
effect on the applications. Consequently, there is an increasing need for developing
techniques to achieve fault tolerance, i.e., to tolerate an arbitrary number of failures
during execution. Scheduling for heterogeneous platforms and fault tolerance are
difficult problems in their own, and aiming at solving them together makes the
problem even harder. For instance, the latency of the application will increase if we
want to tolerate several failures, even if no actual failure happens during execution.

In this paper, we introduce the Iso-Level Contention-Aware Fault Tolerant (Iso-
Level CAFT) scheduling algorithm (a new version of CAFT [3] that were initially
designed to address both problems of network contention and fault-tolerance schedul-
ing) that aims at tolerating multiple processor failures without sacrificing the latency.
Iso-Level CAFT is based on an active replication scheme to mask failures, so that
there is no need for detecting and handling such failures. Our choice for the active
replication scheme is motivated by two important advantages. On the one hand,
the schedules obtained are static, thus it is easy to have a guarantee on the latency
of the schedule. On the other hand, the deployment of the system does not require
complicated mechanisms for failure detection. Major achievements include a low
complexity, and a drastic reduction of the number of additional communications
induced by the replication mechanism.

We suggest to use the bi-directional one-port architectural model, where each
processor can communicate (send and/or receive) with at most one other proces-
sor at a given time-step. In other words, a given processor can simultaneously
send a message, receive another message, and perform some computation. The bi-
directional one-port model seems closer to the actual capabilities of modern networks
(see the discussion of related work in [3, 4]). Indeed, it seems to fit the performance
of some current MPI implementations, which serialize asynchronous MPI sends as
soon as message sizes exceed a few megabytes [3].

The review of related work on fault tolerance scheduling and contention aware-
ness is provided in the research report [3].

The rest of the paper is organized as follows: Section 2 presents basic defini-
tions and assumptions. Then we describe the principle of the new Iso-Level CAFT
algorithm in Section 3. We experimentally compare Iso-Lvel CAFT with its initial

RR n° 6607



4 A. Benoit, M. Hakem, Y. Robert

version CAFT in Section 4; the results assess the very good behavior of the new
algorithm. Finally, we conclude in Section 5.

2 Framework

The execution model for a task graph is represented as a weighted Directed Acyclic
Graph (DAG) G = (V,E), where V is the set of nodes corresponding to the tasks,
and E is the set of edges corresponding to the precedence relations between the
tasks. In the following we use the term node or task indifferently; v = |V | is the
number of nodes, and e = |E| is the number of edges. In a DAG, a node without any
predecessor is called an entry node, while a node without any successor is an exit
node. For a task t in G, Γ−(t) is the set of immediate predecessors and Γ+(t) denotes
its immediate successors. A task is called ready if it is unscheduled and all of its
predecessors are scheduled. We target a heterogeneous platform with m processors
P = {P1, P2, . . . , Pm}, fully interconnected. The link between processors Pk and Ph

is denoted by lkh. Note that we do not need to have a physical link between any
processor pair. Instead, we may have a switch, or even a path composed of several
physical links, to interconnect Pk and Ph; in the latter case we would retain the
bandwidth of the slowest link in the path for the bandwidth of lkh. For a given
graph G and processor set P, g(G,P) is the granularity, i.e., the ratio of the sum
of slowest computation times of each task, to the sum of slowest communication
times along each edge. H(α) is the head function which returns the first task from
a sorted list α, where the list is sorted according to tasks priorities (ties are broken
randomly). The number of tasks that can be simultaneously ready at each step in
the scheduling process is bounded by the width ω of the task graph (the maximum
number of tasks that are independent in G). This, implies that |α| ≤ ω.

Our goal is to minimize the latency L(G), while tolerating an arbitrary number ε

of processor failures. Our approach is based on an active replication scheme, capable
of supporting ε arbitrary fail-silent (a faulty processor does not produce any output)
and fail-stop (no processor recovery) processor failures.

3 The Iso-Level CAFT scheduling algorithm

In the previous version of CAFT algorithm [3], we consider only one ready task
(the one with highest priority) at each step, and we assign all its replicas to the
currently best available resources. Instead of considering a single task, we may deal

INRIA



Iso-Level CAFT 5

with a chunk of several ready tasks, and assign all their replicas in the same decision
making procedure. The intuition is that such a “global” assignment would lead to
better load balance processor and link usage.

We introduce a parameter B for the chunk size: B is the maximal number of
ready tasks that will be considered at each step. We select the B tasks with the
higher bottom levels bℓ(t) (the length of the longest path starting at t to an exit
node in the graph) and we allocate them in the same step. Then, we update the set
of ready tasks (indeed some new tasks may have become ready), and we sort them
again, according to bottom levels. Thus, we expect that the tasks on a critical path
will be processed as soon as possible.

The difference between CAFT and the new version, which we call Iso-Level
CAFT (or ILC), is sketched in Algorithm 3.1. With CAFT we take the ready task
with highest priority all allocate all its replicas before proceeding to the next ready
task. In contrast, with Iso-Level CAFT, the second replicas of tasks in the same
chunk are allocated only after all first replicas have been placed. Intuitively, this
more global strategy will balance best resources across all tasks in the chunk, while
CAFT may assign the ε+1 best resources to the current task, at the risk of sacrificing
the next one, even though it may have the same bottom level.

We point out that we face a difficult tradeoff for choosing an appropriate value
for B. On the one hand, if B is large, it will be possible to better balance the load
and minimize communication costs. On the other hand, a small value of B will
enable us to process the tasks on the critical path faster. In the experiments (see
Section 4) we observe that choosing B = m, the number of processors, leads to good
results.

Algorithm 3.1 CAFT vs Iso-Level CAFT (ILC)
1: initialization; U ← V ;
2: while U 6= ∅ do

3: T ← H(α); ILC: repeat B times (*CAFT: |T | = 1 | ILC: |T | = B*)
4: for 1 ≤ i ≤ ε + 1 do

5: for t ∈ T do

6: allocate task-replica t(i) to processor with shortest finish time
7: end for

8: end for

9: end while

Theorem 3.1 The time complexity of Iso-Level CAFT is

O
(

em(ε + 1)2 log(ε + 1) + v log ω
)

RR n° 6607



6 A. Benoit, M. Hakem, Y. Robert

Proof: The proof is similar to that of CAFT (see [3]). Note that since ε < m, we
can derive the upper bound O

(

em3 log m + v log ω
)

. �

Notice that, allocating many copies of each task will severely increase the total
number of communications required by the algorithm: we move from e communi-
cations (one per edge) in a mapping with no replication (fault free schedule), to
e(ε + 1)2 with replication (fault tolerant schedule), a quadratic increase. In fact,
duplicating each task ε + 1 times is an absolute requirement to resist to ε failures,
but duplicating each precedence edge e(ε + 1)2 times is not mandatory. We can de-
crease the total number of communications from e(ε+1)2 down to e(ε+1) as it was
proved in [3]. Unfortunatly, this reduction does not work all the time. The linear
number of communications e(ε + 1) holds only in special cases, typically for tasks
having a unique predecessor, or when every replica of all predecessors are mapped
onto distinct processors or when all the replicas belonging to the same processor
communicate with only the same successor-replica.

The problem becomes more complex when tasks have more than one predecessor
and several replicas of predecessors mapped on the same processor communicate with
different successor-replicas. In the following, we show how to reduce this overhead
in the design of Iso-Level CAFT.

3.1 Reducing communication overhead

When dealing with realistic model platforms, contention should be considered in
order to obtain improved schedules. We account for communication overhead during
the mapping process by removing some of the communications. To do so, we propose
the following mapping scheme.

Let t be the current task to be scheduled. Consider a predecessor tj of t, j ∈
Γ−(t), that has been replicated on ε+1 distinct processors. We denote by Du the set
of replicas assigned to processor Pu, and ηu = |Du| its cardinality. The maximum
cardinality is η = max1≤u≤m ηu. Also we denote by N the number of processors
involved/used by all replicas of tasks in Γ−(t).

We would like to reduce the number of communications from all predecessors tj
to t when possible. The idea is to attempt to place each replica on the non-locked
(locked processors are already either involved in a communication with a replica of
t, or processing it) processor which currently contains the most predecessor replicas.
To this purpose, we sort processors by non increasing order of number of replicas
ηu, 1 ≤ u ≤ m, assigned to them. At each step in the mapping process, we try to

INRIA



Iso-Level CAFT 7

take communications from replicas belonging to the non-locked processors, whenever
possible. If not, we insert ε additional communications.

(0) (1)

(2) (3)

Figure 1: Iso-Level CAFT Scheduling Steps

Fig. 1 illustrates this procedure. We set ε = 2 in this example. At step (0), no
processor is blocked. The three predecessors of the current task t, namely t1, t2 and
t3, are assigned. At step (1), we place the first replica t(1) on P1, which becomes
locked. This is represented in the figure with a superscript ∗, and the processor is
also hatched in the figure. No communication is added in this case. At step (2),
we need to add a communication from P3 to P2, and thus we have three locked
processors. At step (3), we place replica t(3) on the only non-locked processor which
is P3, and we need to add extra communication since all processors are locked.

It may happen that at some step in the scheduling process, if we lock a processor,
then there is no processor left for the mapping of the remaining replicas. In such a
case, we add ε additional communications and release the processors involved in a
communication with a replica of t. This special case is illustrated in Fig. 2, where
current task t has four predecessors. At step (2), instead of locking P4, we add
communications from all replicas of task t2 to t(2). Thus it is possible to place at
step (3) replica t(3) on P4.

RR n° 6607



8 A. Benoit, M. Hakem, Y. Robert

(0) (1)

(2) (3)

Figure 2: Iso-Level CAFT Scheduling Steps

Theorem 3.2 The schedule generated by Iso-Level CAFT algorithm is valid and
resists to ε failures.

Proof: The proof is similar to that of CAFT (see [3]) �

In the following, we give an analytical expression of the actual number of com-
munications induced by the Iso-Level CAFT algorithm. First we give an interesting
upper bound for special graphs, and then we derive an upper bound for the general
case.

Special graphs
First, we bound the number of communications induced by Iso-Level CAFT for spe-
cial graphs like classical kernels representing various types of parallel algorithms [1].
The selected task graphs are:

(a) LU: LU decomposition

(b) LAPLACE: Laplace equation solver

(c) STENCIL: stencil algorithm

(d) DOOLITTLE: Doolittle reduction

(e) LDMt: LDMt decomposition

INRIA
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(a) LU (b) Laplace (c) Stencil

(d) Doolittle (e) DLMt

Figure 3: Classical kernels of parallel algorithms

Miniature versions of each task graph are given in Fig. 3.

Proposition 3.1 The number of messages generated by Iso-LevelCAFT for the
above special graphs is at most

V2(ε + 1) + V3

(

ε

⌈

(ε + 2)

2

⌉

+ 2

)

,

where V2 ≤ ⌊ e
2⌋ is the number of nodes of in-degree 2 and V3 ≤ ⌊ e

3⌋ is the number
of nodes of in-degree 3 in the graph.

Proof: One feature of the special graphs is that the in-degree of every task is at
most 3. At each step when scheduling current task t, we have three cases to consider,

RR n° 6607



10 A. Benoit, M. Hakem, Y. Robert

depending upon its in-degree (the cardinal of Γ−(t)). Recall that processors are
ordered by non increasing ηu values, where ηu. is the number of replicas already
assigned to Pu, hence which do not need to be communicated again.

(1) |Γ−(t)| = 1. In this case, in order to pay no communication, we just need to
place each replica of t with a replica of its predecessor.

(2) |Γ−(t)| = 2. The two redecessor tasks of t are denoted t1 and t2. If replicas

of t1 and t2 are mapped on the same processor (P(t
(z)
1 ) = P(t

(z′)
2 ) = P for some

1 ≤ z, z′ ≤ ε + 1), then there is no need for any additional communication. Other
replicas of t1 and t2 which does not satisfy the previous property are thus mapped
onto singleton processors. We perform the one-to-one mapping algorithm to allocate
the corresponding other replicas of t. For each replica, at most one communication
is added.

(3) |Γ−(t)| = 3. Here we consider the number of replicas allocated to processor Pu,
denoted as ηu.� We place a replica on each processor with ηu = 3, thus no communication need

to be paid for� Consider a processor with ηu = 2. When allocating a replica of t on such
a processor Pu, we need to receive data from the third predecessor allocated
to Pv 6= Pu. Pv may be either a singleton processor (ηv = 1) or it may handle
two predecessors (ηv = 2).

- if ηv = 1, then we need only one communication for mapping the replica of t.
In this case Pv communicates only to Pu.

- if ηv = 2, then we may need to add extra communications. For the first
⌈

ε+1
2

⌉

replicas of t, we add only one communication per replica, and lock
processors accordingly. But for the remaining set

⌊

ε+1
2

⌋

of replicas, we will
have to generate ε + 1 communications for each of these replicas. Overall, the
number of communications is at most

⌈

ε + 1

2

⌉

+ (ε + 1)

⌊

ε + 1

2

⌋

Let X =
⌈

ε+1
2

⌉

+ (ε + 1)
⌊

ε+1
2

⌋

. Let Y = ε
⌈

(ε+2)
2

⌉

+ 1. If ε = 2k is even,

then X = 2k2 + k + 1 ≤ 2k2 + 2k + 1 = Y . If ε = 2k + 1 is odd, then
X = 2k2 + 2k + 1 ≤ 2k2 + 3k + 1 = Y . In all cases X ≤ Y , hence the number
of communications is at most Y .

INRIA



Iso-Level CAFT 11� Now, all remaining processors have at most one replica (η = 1). Thus task t

needs its data from two other replicas. So we have to take at most two com-
munications for each replicas mapped. Thus for the mapping of ε+ 1 replicas,
we will have at most a number of communications equal to 2(ε+1). Note that

2(ε + 1) ≤ Y + 1 = ε
⌈

(ε+2)
2

⌉

+ 2 for all ε, hence the result.

�

General graphs

Proposition 3.2 For general graphs, the number of messages generated by Iso-Level
CAFT is at most

e

(

ε

⌈

(ε + 2)

2

⌉

+ 1

)

Proof: At each step when scheduling current task t:

(i) For the first
⌈

ε+1
2

⌉

replicas, we generate at most
∑

l

(ε+1)
2

m

u=1 (|Γ−(t)| − ηu)
communications (recall that ηu is the number of replicas already assigned to Pu,
hence which do not need to be communicated again). Altogether, we have at most
⌈

(ε+1)
2

⌉

|Γ−(t)| communications for these replicas.

(ii) We still have to map the remaining
⌊

ε+1
2

⌋

of t replicas. In the worst case,
each replica placed will generate ε + 1 communications (this is because processors
may be locked in this case). Thus for this remaining set of replicas, the number of
communications is at most

(ε + 1)

ε+1
∑

u=
l

(ε+1)
2

m

+1

(

|Γ−(t)| − ηu

)

≤ (ε + 1)

⌊

ε + 1

2

⌋

|Γ−(t)|

From (i) and (ii), we have a total number of communications of |Γ−(t)|X, where
X =

⌈

ε+1
2

⌉

+(ε+1)
⌊

ε+1
2

⌋

. As in the proof of Proposition 3.1, we knwo that X ≤ Y ,

where Y = ε
⌈

(ε+2)
2

⌉

+ 1. Hence the number of communications is at most Y .

Thus, summing up for all the v tasks in G, the total number of messages is at
most

v
∑

u=1

|Γ−(t)|

(

ε

⌈

(ε + 2)

2

⌉

+ 1

)

= e

(

ε

⌈

(ε + 2)

2

⌉

+ 1

)

�
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12 A. Benoit, M. Hakem, Y. Robert

The following last proposition deals with disjoint and complementary replica
sets. In fact, the number of communications can be drastically reduced in such a
case:

Proposition 3.3 For general graphs, if at each step when scheduling a task t, wee
can determine replica sets Du that are both disjoint (Du ∩ Du′ = ∅ if u 6= u′) and
complementary (σm

u=1|Du| = |Γ−(t)|, or in other words ∪1≤u≤mDu contains a replica
of each predecessor of t), then the number of messages is at most e(ε + 1).

Proof: We map a replica on Du and add communications from all complementary
sets, which generates at most |Γ−(t)| − |Du| = | ∪1≤u′≤m,u′ 6=u Du′ | ≤ |Γ−(t)|.

Thus, for the mapping of ε + 1 replicas, and summing up for the set V of tasks
in G, the total number of messages is at most

∑

t∈V |Γ−(t)|(ε + 1) = e(ε + 1). �

Fig. 4 illustrates, for the mapping of the first replica t(1) we have |Γ−(t)|−|D1| =
5−3 = 2 = |D3|. In addition, both D1 and D3 are mutually complementary/disjoints
and they form a complete instance of all predecessors. Also, for the mapping of the
second replica t(2), we have |Γ−(t)| − |D2| = 5 − 2 = 3 = |D4 ∪ D5|. Similarly, the
condition of complementarity/disjunction of the sets D2, D4 and D5 holds.

Figure 4: Complementary/disjoint sets of replicas

INRIA



Iso-Level CAFT 13

4 Experimental results

We assess the practical significance and usefulness of the Iso-Level CAFT algorithm
through simulation studies. We compare the performance of Iso-Level CAFT with
its initial version CAFT algorithm. We use randomly generated graphs, whose
parameters are consistent with those used in the literature [3]. We characterize these
random graphs with three parameters: (i) the number of tasks, chosen uniformly
from the range [80, 120]; (ii) the number of incoming/outgoing edges per task, which
is set in [1, 3]; and (iii) the granularity of the task graph g(G). We consider two
types of graphs, with a granularity (a) in [0.2, 2.0] and increments of 0.2, and (b)
in [1, 10] and increments of 1. Two types of platforms are considered, first with
10 processors and ε = 1 or ε = 3, and then with 20 processors and ε = 5. To
account for communication heterogeneity in the system, the unit message delay of
the links and the message volume between two tasks are chosen uniformly from
the ranges [0.5, 1] and [50, 150] respectively. Each point in the figures represents
the mean of executions on 60 random graphs. The metrics which characterize the
performance of the algorithms are the latency and the overhead due to the active
replication scheme. The fault free schedule is defined as the schedule generated
without replication, assuming that the system is completely safe. Recall that the
upper bounds of the schedules are computed as explained in [2]. Each algorithm is
evaluated in terms of achieved latency and fault tolerance overhead

CAFT0|Iso-Level CAFT0|CAFTc|Iso-Level CAFTc − Iso-Level CAFT∗

Iso-Level CAFT∗

, where the superscripts ∗, c and 0 respectively denote the latency achieved by the
fault free schedule, the latency achieved by the schedule when processors effectively
fail (crash) and the latency achieved with 0 crash. We have also compared the behav-
ior of each algorithm when processors crash down by computing the real execution
time for a given schedule rather than just bounds (upper bound and latency with 0
crash).

Comparing the results of Iso-Level CAFT to the results of CAFT, we observe in
Fig. 5 and 6 that Iso-Level CAFT gives the best performance. It always improves the
latency significantly in all figures. This is because the Iso-Level CAFT algorithm
tries incrementally to ensure a certain degree of load balancing for processors by
scheduling a chunk of ready tasks before considering their corresponding replicas.
This better load balancing also decreases communications between tasks. Conse-
quently, this leads to minimize the final latency of the schedule. Similarly, Iso-Level
CAFT achieves much better results than CAFT when considering larger platforms,
as shown in Fig. 7.

RR n° 6607



14 A. Benoit, M. Hakem, Y. Robert

We also find in Fig. 8, 9 and 10 that the performance difference between CAFT
and Iso-Level CAFT increases when the granularity increases. This interesting re-
sult comes from the fact that larger granularity indicates that we are dealing with
intensive computations applications in heterogeneous platforms. Thus, in order to
reduce the latency for such applications, it is important to better parallelize the
application. That is why we changed the backbone of CAFT to perfectly balance
the load of processors at each step of the scheduling process.

Finally, we readily observe from all figures that we deal with two conflicting
objectives. Indeed, the fault tolerance overhead increases together with the number
of supported failures. We also see that latency increases together with granularity,
as expected. In addition, it is interesting to note that when the number of failures
increases, there is not really much difference in the increase of the latency achieved
by CAFT and Iso-Level CAFT, compared to the schedule length generated with
0 crash. This is explained by the fact that the increase in the schedule length is
already absorbed by the replication done previously, in order to resist to eventual
failures.

5 Conclusion

In this paper, an efficient fault-tolerant scheduling algorithm (Iso-Level CAFT) for
heteorgeneous systems is studied and analysed. Iso-Level CAFT is based on an ac-
tive replication scheme, and is able to drastically reduce the communication overhead
induced by task replication, which turns out a key factor in improving performance
when dealing with realistic, communication contention aware, platform models. The
design of Iso-Level CAFT is motivated by (i) the search for a better load-balance and
(ii) the generation of fewer communications. These goals are achieved by scheduling
a chunk of ready tasks simultaneously, which enables for a global view of the po-
tential communications. To assess the performance of Iso-Level CAFT, simulation
studies were conducted to compare it with CAFT, which seems to be its main direct
competitor from the literature. We have shown that Iso-Level CAFT is very efficient
both in terms of computational complexity and quality of the resulting schedule.

An extension of Iso-Level CAFT would be to extend it to the context of pipelined
workflows made up of collections of identical task graphs (rather than dealing with a
single graph as in this paper). We would then need to solve a challenging tri-criteria
optimization problem (latency, throughput and fault-tolerance).
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Figure 5: Average normalized latency and overhead comparison between Iso-Level-
CAFT and CAFT (Bound and Crash cases, ε = 1)
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Figure 6: Average normalized latency and overhead comparison between Iso-Level-
CAFT and CAFT (Bound and Crash cases, ε = 3)
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Figure 7: Average normalized latency and overhead comparison between Iso-Level-
CAFT and CAFT (Bound and Crash cases, ε = 5)
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Figure 8: Average normalized latency and overhead comparison between Iso-Level-
CAFT and CAFT (Bound and Crash cases, ε = 1)
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Figure 9: Average normalized latency and overhead comparison between Iso-Level-
CAFT and CAFT (Bound and Crash cases, ε = 3)
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Figure 10: Average normalized latency and overhead comparison between Iso-Level-
CAFT and CAFT (Bound and Crash cases, ε = 5)
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