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A new approach to model predictive control based
on two degrees of freedom control and B-splines

input shaping
Leopoldo Jetto, Valentina Orsini, Raffaele Romagnoli

Abstract—The purpose of this paper is to reduce some technical
difficulties related to the complexity of stability and feasibility
analysis of MPC as well as to reduce the complexity of the relative
optimization procedure. The new approach is based on a two
Degrees of Freedom (2DoF) control scheme where the output
r(k) of a feedforward Input Estimator (IE) is used as input
forcing the closed loop system Σf . This latter is given by the
feedback connection of a plant with a dynamic output controller.
The task of the controller is to guarantee the stability of Σf , as
well as the fulfillment of hard constraints for any r(k) satisfying
an ”a priori” determined admissibility condition. The input r(k)
is computed through the on-line minimization of a quadratic
cost functional and is applied to Σf according to the usual MPC
strategy. To simplify the constrained optimization problem, the
input r(k) forcing Σf is assumed to be given by a B-spline
function. This greatly decreases the number of decision variables
of the on-line optimization procedure because B-splines are
universal approximators which admit a parsimonious parametric
representation. Moreover such parametrization allows us to
reformulate the minimization of the cost functional as a box
constrained least square problem. It is shown that stability and
recursive feasibility of the adopted MPC strategy are guaranteed
in advance, regardless the chosen prediction horizon.

Index Terms—Predictive control for linear systems, Con-
strained control, Linear systems, LMIs

I. INTRODUCTION

The complexity of stability and feasibility analysis and the
demanding on-line computational burden are the major issues
of MPC. As for the stability problem, two main approaches
exist: finite, sufficiently large, prediction horizon with terminal
constraints (see e.g. [1]- [4]), infinite prediction horizon (see
e.g. [5]- [8]). A comprehensive review of research dealing
with stability and feasibility is reported in [9]. As the length
of the prediction horizon is a predominant factor determining
the on-line numerical effort required by MPC, several authors
dealt with the problem of estimating a ”suitable length” for the
prediction horizon [10]- [13]. A review of practical guidelines
for tuning the prediction horizon is given in [14].

A drastic reduction of the on-line computational burden is
obtained using explicit MPC [15]. By exploiting multipara-
metric programming techniques, the explicit MPC approach
computes the optimal control action off line and the on-line
operations reduce to a simple function evaluation. However,
explicit formulation of MPC requires the partition of the
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state space into polyhedral regions whose number can grow
exponentially with the problem size, thus implying a very
rapidly increasing memory usage.

The purpose of the alternative approach proposed in this
paper is to simplify dealing with the three aforementioned
fundamental issues. The two basic features of the new method
are the adoption of an MPC strategy in a 2DOF control scheme
and the parametrization as a B-spline function of the input
r(k). In practice, the present method works according to the
following two steps procedure:
Step 1. Let Σp be a discrete time LTI plant affected by an
unmeasurable constant disturbance d(k) with ‖d(k)‖22 ≤ γd.
An LTI feedback controller Σg is designed to guarantee the
asymptotic stability of the closed-loop system Σf . Moreover
Σg must guarantee that for any admissible norm bounded input

w(k)
4
=

[
r(k)
d(k)

]
(i.e. ‖w(k)‖22 ≤ γ for a suitably computed γ)

forcing Σf , the hard constraints imposed on some physical
variables are satisfied.
Step 2. The MPC strategy is applied to Σf . Over each
prediction interval, the admissible sequence r(k) minimizing
a quadratic cost functional is searched in the linear space
generated by B-spline functions of a fixed degree. This second
step is executed by the feedforward IE.

The above two steps approach implies the following remark-
able advantages:
1) Stability and recursive feasibility of the adopted MPC
strategy are guaranteed in advance, regardless the chosen
prediction horizon. In fact, the internal stability of Σf and
the admissibility condition on r(k) assure both the uniform
boundedness of any internal variable of the 2DoF control
scheme Σ2DoF and the fulfillment of all constraints at any
time instant.
2) Endowing Σg of a suitable internal model guarantees
exact asymptotic tracking of the desired reference ȳd(k) to be
tracked even in the case of plant-model mismatch (provided
stability is preserved). This greatly simplifies the alternative
solutions which are mostly based on augmenting the model
of the plant, which in turn implies an increase of the decision
variables involved in the optimization problem (see e.g. [16]
and references therein). The internal model also yields a Σf
with a diagonal static gain matrix, so that it guarantees the
remarkable advantage of an exact static decoupling [17].
3) Modeling r(k) as a B-spline decreases the number of
decision variables involved in the optimization because these
functions admit a parsimonious parametric representation [18].
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Under the assumption of a measurable state vector, pre-
stabilizing state feedback strategies are often used in the MPC.
They are exploited to improve numerical conditioning in the
optimization procedure (see e.g. [19], [20] and references
therein) but do not guarantee either stability or recursive
feasibility of the overall MPC scheme.
Improving numerical efficiency of MPC through a parametric
representation of the control effort directly forcing the plant
has been proposed in [21], where Laguerre functions are used.
B-splines are used here because of their significant advantages:
first, they admit a more parsimonious parametric representa-
tion and are more suitable to fit curves which exhibit different
shapes over different time-intervals; second, B-splines belong
to the convex hull defined by the relative control points [18].
This property allows the transfer of any amplitude constraint
defined on a B-spline function to its control points. As a
consequence (see Section VI), the constrained minimization
of the cost functional can be formulated as a least square
estimation problem with only box constraints on the unknowns
(the control points defining the admissible B-spline function
r(k)). Furthermore, the convexity property enables us to
directly prove the internal stability of Σ2DoF (see Theorem
3), while in [21], further assumptions are needed.
It is also mentioned that, in a different context, the use of
B-splines together with MPC has been proposed in [22]. This
reference deals with the trajectory generation problem and uses
B-spline functions to parametrize the reference trajectory to be
tracked. MPC is used to iteratively correct the initially chosen
reference trajectory with the purpose of ensuring constraints
satisfaction.
The paper is organized in the following way. A brief glossary
is given in Section II. Some mathematical preliminaries are
recalled in Section III, the problem setting is defined in Section
IV, the design of the internal feedback controller is illustrated
in Section V. The constrained on line estimation of the input
r(k) is explained in Section VI. A numerical example is
reported in Section VII. Some concluding remarks are given
in Section VIII.

II. GLOSSARY

• IR denotes the set of real number
• diag[A B · · · ] denotes a block diagonal matrix
• the apex ′ denotes transposition
• ‖ · ‖2 denotes the euclidean norm
• λmin{A} (λmax{A}) denotes the minimum (maximum)

eigenvalue of A
• the bold symbol 0 denotes a null matrix of suitable

dimensions, 0 denotes the null scalar.

III. MATHEMATICAL BACKGROUND

A. B-spline functions [18]

Analytic B-splines are defined in the following way:

s(v) =
∑̀
i=1

ciBi,d(v), v ∈ [v̂1, v̂`+d+1] ⊆ IR, (1)

where the ci’s are real numbers representing the control points
of s(v), d is the degree of the spline, the (v̂i)

`+d+1
i=1 are the

non decreasing knot points, and the Bi,d(v) are given by the
Cox-de Boor recursion formula [18].

Convex hull property. Any value assumed by s(v), ∀v ∈
[v̂j , v̂j+1], j > d, lies in the convex hull of its d+ 1 control
points cj−d, · · · , cj .

Smoothness property. Suppose that v̂i < v̂i+1 = · · · =
v̂i+m < v̂i+m+1, with 1 ≤ m ≤ d + 1 then the B-spline
function s(v) has continuous derivative up to order d−m at
knot v̂i+1. This property implies that the spline smoothness
can be changed using multiple knot points. It is common
choice to set m = d+1 multiple knot points for the initial and
the last knot points and to evenly distribute the other ones. In
this way (1) assumes the first and the final control points as
initial and final values.

Identifying the parameter v of (1) with the time instant t,
the sampled B-spline s(k Tc) is obtained by direct uniform
sampling of the corresponding analytic B-spline.

The discrete B-spline s(k) (omitting the explicit dependence
on Tc) can be used to represent a scalar discrete time signal.
Defining

c
4
= [c1 · · · c`]′ , Bd(k)

4
= [B1,d(k) · · ·B`,d(k)] , (2)

where each Bi,d(k) is obtained setting v = k and v̂i = k̂i, i =
1, · · · , d+`+1, the sampled B-spline s(k) can be represented
as

s(k) = Bd(k)c, k ∈ [k̂1, k̂`+d+1]. (3)

For a q-component vector s(k) = [s1(k) · · · sq(k)]′, a compact
B-splines representation can be used

s(k) = B̄d(k)c̄, k ∈ [k̂1, k̂`+d+1], (4)

where: c̄
4
=
[
c′1 · · · c′q

]′
, B̄d(k)

4
= diag [Bd(k) · · ·Bd(k)].

Each ci
4
= [ci,1 · · · ci,`]′ , i = 1, · · · , q, is defined as in (2).

The dimensions of c̄ are (q`×1). The dimensions of the block
diagonal matrix B̄d(k) are (q × q`).
Remark 1. From (3) it is apparent that, once the degree d
and the knot points k̂i have been fixed, the scalar B-spline
s(k), k ∈ [k̂1, k̂`+d+1], is completely determined by the
corresponding vector c of ` control points. As, in general,
` << kM , where kM is the number of sampled instants
of [k̂1, k̂`+d+1], B-splines are said to admit a parsimonious
parametric representation.

B. Constrained Least Squares

The discrete-time constrained least square problem has the
general form

min
f
J
4
= min

f
‖e‖22 = min

f
‖b−Df‖22 (5)

where e ∈ IRr is the residual vector, b ∈ IRr is the observation
vector, D ∈ IRr×s, r ≥ s, is the design matrix and f ∈ IRs is
the vector of model parameters.

Box constraints on the parameters vector to be estimated
are represented as: fmin ≤ f ≤ fmax, where fmin (fmax) is
the lower (upper) bound of the parameter vector f .

The constrained least square problem does not admit the
well-known closed-form solution given by the pseudo-inverse
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(see e.g. [23]). Specific numeric algorithms can be found in
[24], [25]. The numerical algorithm given in [25] is imple-
mented by the MatLab function lsqlin.

C. System constraints and invariant sets

Consider the LTI system (Σ, x)

x(k + 1) = Ax(k) +Bw(k), y(k) = C x(k) +Dw(k), (6)

where: x(k) ∈ IRn, y(k) ∈ IRny and w(k) ∈ IRnw . The input
w(k)

4
= [r(k)′, d(k)′]′ includes a manipulable component r(k)

and an unmeasurable disturbance d(k). An invariant γ-feasible
set of (6) is a convex compact set X containing the origin,
such that, for every input w(k), k ≥ 0 satisfying the following
admissibility condition

‖w(k)‖22 = ‖r(k)‖22 + ‖d(k)‖22 ≤ γ, (7)

one has x(k) ∈ X ⇒ Ax(k) +Bw(k) ∈ X and the following
constraints are satisfied

|zi(k)| = ‖zi(k)‖2 ≤ z̄i, i = 1, · · · , h, (8)

where zi(k) is the i-th element of the constrained variables
vector z(k) ∈ IRh and z̄i is the corresponding pre-specified
hard constraint. The vector z(k)

4
= Czx(k) represents any

vector of variables linearly depending on the state.
Here X is assumed to be an ellipsoid set defined as

E(P, γ) = {x(k) |x′(k)Px(k) ≤ γ}, where P
4
= Q−1 is a

positive definite matrix.

IV. PROBLEM SETUP

The new approach makes reference to the 2DoF control
scheme Σ2DoF shown in Fig. 1 where: ȳd(k) is the piecewise

(Σ𝑓, 𝑥𝑓)I𝐸

𝑥(f(k)

𝑦,d(k) 𝑟(k) 𝑦(k)

(Σ𝑑, 𝑥𝑑)

d(k)

𝑥(d(k)

Σ2𝐷𝑜𝐹

Fig. 1. The 2DoF control scheme

constant desired reference to be tracked, y(k) is the output,
r(k) is the manipulable input and d(k) is an unmeasurable
constant disturbance satisfying ‖d(k)‖22 ≤ γd for some known
γd. It is produced as free output response of (Σd, xd) starting
from an unknown initial state xd(0). The input of Σf is
w(k)

4
= [r′(k) d′(k)]′.

The block (Σf , xf ) is the feedback connection of a discrete-
time LTI plant (Σp, xp) with an LTI dynamic output controller

(Σg, xg) including a linear observer (Σo,

[
x̂p
x̂d

]
) and an internal

model (Σc, xc) of constant signals.

The purpose of Σg is to guarantee the fulfillment of the
following requirements: r1) asymptotic stability of Σf ; r2)
the existence of an invariant γ-feasible set X for Σf ≡
(Af , Bf , Cf , Df ), such that xf (k) ∈ X ⇒ Afxf (k) +
Bfw(k) ∈ X , and constraints like (8) are satisfied by each
component of the vector of constrained variables zf (k) =
Czfxf (k), for any admissible input w(k) satisfying (7). The
inputs of IE are ȳd(k), the current state estimates x̂f (k)
(defined later), and x̂d(k). This information is exploited by the
IE to compute the manipulable input r(k). The output of the
IE is obtained solving the following constrained optimization
problem (COP) at each k

(COP) min
[r(k),··· ,r(k+Ny−1)]

J (9)

J
4
= λ1(k)

Ny∑
i=1

e′y(k + i|k)Qy(k)ey(k + i|k)

+ λ2(k)

Ny−1∑
i=0

e′r(k + i|k)Qr(k)er(k + i|k),

where

ey(k + i|k)
4
= ȳd(k)− y(k + i|k), (10)

er(k + i|k)
4
= ȳd(k)− r(k + i), (11)

subject to

rmin ≤ r(k + i) ≤ rmax, i = 0, · · · , Ny − 1 (12)

where: λ1(k) ≥ 0, λ2(k) ≥ 0, ∀k ≥ 0, rmin and rmax are
computed so as to satisfy (7), Qr(k) and Qy(k) are positive
definite matrices, y(k+ i|k) is the predicted output and Ny is
the length of the prediction horizon.
Remark 2. Some considerations on the cost functional J are
in order.
− No term on the control effort u(k) forcing the plant is
included in J because, as shown in the next section, Σg is
designed so that u(k) obey constraint of the kind (8).
− In (10),(11), the desired reference is evaluated at time
instant k to avoid undesired anticipative effects on y(k) due
to possible set point changes inside the prediction horizon.
− Parameters λ1(k) and λ2(k) drive the convergence of y(k)
and r(k) respectively towards the current desired set point. At
the first time instants following any set point reset, λ1(k) and
λ2(k) should be chosen so that λ(k)

4
= λ1(k)/λ2(k) >> 1,

because this allows r(k) to freely vary over all the admissible
range. After the transition period has elapsed, λ2(k) should
be increased to speed up the convergence of r(k) to the
new desired fixed set point. In fact, owing to the presence
of the internal model Σc, an r(k) converging to the actual set
point guarantees exact asymptotic tracking. This is particularly
important in the case of piecewise constant signals ȳd(k)
which are not frozen on a fixed set point for a sufficiently long
time interval and tracking precision is the dominant criterion.
In practice, a good practical tuning rule is to put λ1(k) = 1,
∀k, and to choose a λ2(k) increasing according to an S-shaped
membership function starting from λ2(0) = 0 and converging
to an λ̄2 > 0 such that 1/λ̄2 ≤ 1.
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− The positive definite matrices Qy(k) and Qr(k) have a
diagonal form. Different values of the entries on the main
diagonal are useful to modulate the effect of λ1(k) and λ2(k)
on the components of ey(k+ i|k) and er(k+ i|k) respectively.
− As the length Ny of the prediction horizon is decoupled
from stability and feasibility considerations, it can be mainly
chosen on the basis of considerations on the computational
burden. 4

The considerations developed in this section clearly show
the idea underlying the present approach and the relative
advantages of the resulting MPC procedure. Designing Σg
according to r1 guarantees the uniform boundedness of xf (k)
for any uniformly bounded r(k), independently of Ny , λ1(k),
λ2(k), Qr(k) and Qy(k). This releases the stability issue
from the prediction horizon and other tuning parameters.
Requirement r2 allows us to transfer any constraint on zf (k)
of the kind (8) on a corresponding upper bound γ on ‖w(k)‖22.
As ‖d(k)‖22 ≤ γd, γr

4
= γ − γd represents the admissibility

bound to be imposed on ‖r(k)‖22. Such γr is explicitly taken
into account in the COP by suitably defining rmin and rmax
in (12). As it will be formally stated in Theorem 3 of Section
VI, the above implies that the proposed two-step procedure
yields a recursively feasible MPC strategy with guarantee of
internal stability for the system Σ2DoF shown in Fig. 1.

V. STEP 1: DESIGN OF Σg

Let Σp be the LTI plant given by

xp(k + 1) = Apxp(k) +Bpu(k) +Bdd(k), (13)
y(k) = Cp xp(k) +Dd d(k), (14)

where xp(k) ∈ IRnp is the state, u(k) ∈ IRm is the control
input, and y(k) ∈ IRq is the output. The triplet (Ap, Bp, Cp) is
reachable and observable. The unknown constant disturbance
d(k) is generated as free output response of Σd according to:

xd(k + 1) = xd(k), d(k) = xd(k), xd(k) ∈ IRnd . (15)

In view of an exact asymptotic tracking requirement for
constant signals, the following assumptions on Σp are made:
A1) Σp has not a transmission zero at z = 1; A2) q ≤ m;

A3) rank
[
I −Ap −Bd
Cp Dd

]
= np + nd.

Let (Σ̄p, x̄p) with x̄p =
[
x′p x′d

]′
be the augmented plant

x̄p(k + 1) = Āpx̄p(k) + B̄pu(k) (16)
y(k) = C̄px̄p(k) (17)

where Āp =

[
Ap Bd
0 I

]
, B̄p =

[
Bp
0

]
and C̄p =

[
Cp Dd

]
.

By A3) and the observability of (Cp, Ap), also the pair
(C̄p, Āp) is observable [26] and the following observer
(Σo, ˆ̄xp) of Σ̄p with ˆ̄xp

4
=
[
x̂′p x̂′d

]′
can be defined:

ˆ̄xp(k + 1) = Āp ˆ̄xp(k) + B̄pu(k) +

[
Lp
Ld

] (
y(k)− C̄p ˆ̄xp(k)

)
.

(18)

The state space representation of Σc is xc(k + 1) = xc(k) +
(r(k) − y(k)) with xc(k) ∈ IRnc , r(k) ∈ IRq and nc = q.
According to [27], the control input forcing Σp is given by

u(k) = −Kpx̂p(k) +Kcxc(k). (19)

The state space representation (Af , Bf , Cf , Df ) of the closed
loop system Σf is

xf (k + 1) (20)

=


Ap −BpKp BpKc LpCp LpDd −Bd
−Cp I −Cp 0

0 0 Ap − LpCp Bd − LpDd

0 0 −LdCp I − LdDd

xf (k)

+


0 Bd
I −Dd

0 0
0 0

w(k),

y(k) =
[
Cp 0 Cp 0

]
xf (k) +

[
0 Dd

]
w(k), (21)

with xf (k)
4
= [x̂′p(k) x′c(k) x′p(k)−x̂′p(k) x′d(k)−x̂′d(k)]′ ∈

IRn and n
4
= 2np + nd + nc.

The constrained variables vector is

zf (k)
4
= [z′u(k) z′xf

(k)]′, zu(k) ∈ IRnu , zxf
(k) ∈ IRnxf

(22)
where the respective components zu,r(k) and zxf ,l(k) ( r =
1, · · · , nu, l = 1, · · · , nxf

) have to satisfy constraints like
(8) for some given z̄u,r and z̄xf ,l respectively. Typically
zu(k) = Czuxf (k) = u(k), so that, by (19), nu = m and
Czu =

[
−Kp Kc 0 0

] 4
= K̂ while zxf

(k) = Czxf
xf (k)

represents any vector of variables linearly depending on the
state.

It is remarked that the above distinction between zu(k) and
zxf

(k), is necessary because, unlike zxf
(k), zu(k) depends on

xf (k) through of a matrix which is a design parameter. Such
a matrix has to be determined imposing the fulfillment of the
control specifications.
Once Σc has been designed according to the internal model
principle, the controller gain matrices are computed as speci-
fied beneath.

A. Design of the observer gain

The observer gain L̄
4
=

[
Lp
Ld

]
is designed so as to impose

a suitable decay rate to the state estimation error x̄p(k) −
ˆ̄xp(k)

4
= ε(k) which satisfies ε(k + 1) = (Āp − L̄C̄p)ε(k).

Let V (ε(k)) = ε′(k)Sε(k), with S = S′ > 0, be a Lyapunov
function such that

V (ε(k + 1))− ρV (ε(k)) < 0, for some ρ ∈ (0, 1). (23)

From (23) it directly follows that V (ε(k)) < ρkV (ε(0)),
whence ‖ε(k)‖22 < ρk λmax{S}

λmin{S} ‖ε(0)‖22 = ρkκ(S)‖ε(0)‖22,
where κ(S) is the condition number of S.

The observer gain L̄ is computed solving the following
optimization problem:

(OP) : minimize κ(S) subject to (23)
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which can be formulated in terms of LMIs as shown in the
following theorem.
Theorem 1 For any fixed ρ ∈ (0, 1), OP is equivalent to the
following semidefinite programming problem

minimize ζ subject to:[
−S1 S1 Āp − Z1C̄p

Ā′p S1 − C̄ ′p Z ′1 −ρS1

]
< 0, I ≤ S1 ≤ ζ I (24)

in the variables ζ ∈ IR, S1 = S′1 ∈ IR(np+nd)×(np+nd) and
Z1 ∈ IR(np+nd)×q. The observer gain L̄ is given by L̄ =
S−11 Z1.
Proof of Theorem 1 Applying the Schur complement and the
change of variable SL̄

4
= Z, one has

(23) holds ⇐⇒ (Āp − L̄C̄p)′SS−1S(Āp − L̄C̄p)− ρS < 0

⇐⇒
[

−S S Āp − ZC̄p
Ā′p S − C̄ ′p Z ′ −ρS

]
< 0. (25)

By (25), (OP) can be reformulated as:

minimize ζ subject to:[
−S S Āp − ZC̄p

Ā′p S − C̄ ′p Z ′ −ρS

]
< 0 (26)

µ > 0, µI ≤ S ≤ µζI (27)

where µ
4
= λmin{S}. Defining the new variables ν = 1

µ , S1 =
νS and Z1 = νZ, conditions (26)-(27) are equivalent to (24)
( [28], p. 38) and L̄

4
= S−1Z can be written as L̄ = S−11 Z1.

4

B. Design of the feedback gain

For any fixed matrix L̄ of the observer, the gain matrix[
−Kp Kc 0 0

] 4
= K̂, defining the control law u(k) =

K̂xf (k), can be computed observing that by (20) the closed
loop dynamical matrix Af can be rewritten as Af

4
= Â+B̂K̂,

where the pair

Â
4
=


Ap 0 LpCp LpDd −Bd
−Cp I −Cp 0

0 0 Ap − LpCp Bd − LpDd

0 0 −LdCp I − LdDd

 , B̂ 4=

Bp
0
0
0

 ,
(28)

is stabilizable.
The following problem is now formulated.
P1 Given the pair (Â, B̂) in (28) with L̄ = S−11 Z1, find a
matrix K̂ and the maximum invariant γ-feasible set X (where
also γ is maximized), such that the following conditions are
satisfied: i) Σf ≡ (Â+ B̂K̂, Bf , Cf , Df ) is internally stable,
ii) constraints on zf (k) are fulfilled ∀xf (0) ∈ X and every
admissible input w(k) satisfying (7). 4
Remark 3 Since in the augmented state xf only the plant
state, xp, is of interest, instead of maximizing the entire
ellipsoid volume only the ellipsoid projection on xp subspace
is maximized. The projection of X onto xp is given by
Xxp

4
= Exp(P, γ) = {xp(k) |x′p(k)(TxpQTx′

p
)−1xp(k) ≤ γ}

with Txp
defined by xp(k) = Txp

xf (k). 4
Theorem 2 Consider the pair (Â, B̂) in (28) and define

η as η
4
= γ−1. Stability and the invariant γ feasible set

X (where both Xxp and γ are maximized) for Σf subject
to constraints on zf (k) of the kind (8) and forced by any
w(k) satisfying (7), are obtained by solving the following
semidefinite programming problem:

minimize (-log(det(Txp
QT ′xp

))β1 + ηβ2) subject to (29)
Q 0 αQ QÂ′ + Y ′B̂′

0 αI 0 B′f
αQ 0 αQ 0

ÂQ+ B̂Y Bf 0 Q

 ≥ 0 (30)

[
Q Y ′I ′r
IrY z̄2u,rη

]
≥ 0, r = 1, · · · ,m (31)[

Q (QÂ′ + Y ′B̂′)C ′zxf
I ′l

Il Czxf
(ÂQ+ B̂Y ) Σ

]
≥ 0 (32)

l = 1, · · · , nxf

where: Σ
4
= z̄2xf ,l

η − IlCzxf
BfB

′
fC
′
zxf

I ′l , β1 and β2 are
fixed positive weighting scalars, 0 < α < 1, Q = Q′ =
diag[Q1 Q2] ∈ IRn×n, Y = [Y1 0] ∈ IRm×n are the variables
where n = 2np+nc+nd. The row vector Ir (Il) is composed
of all null elements save the element 1 in the r-th (l-th)
position.
If the set of inequalities admits a solution then the stabilizing
feedback gain K̂ = Y Q−1 is found. The maximum admissible
value γ = η−1 is found for w(k) and the invariant γ-feasible
set X ≡ E(P, γ) with P = Q−1 for Σf is obtained.
Proof of Theorem 2. For the sake of brevity, the details
of the proof are not reported. The theorem can be proved
along the lines provided in [29] (see Theorem 1) with some
modifications due to: 1) according to Remark 4, a projected
ellipsoid is here used, 2) in [29] ‖w‖22 is overbounded by
1, here ‖w‖22 is overbounded by a scalar γ which is not
fixed ”a priori” but is maximized including η = γ−1 in the
functional to be minimized; 3) in [29] an euclidean norm
bound is imposed to the constrained variables vector z(k), here
component-wise bounds are more realistically considered. 4
Remark 4 The presence of α makes inequality (30) a BMI,
which can be transformed into a LMI through a gridding over
the interval (0, 1) where α takes values. 4
Remark 5 Some considerations on the above synthesis pro-
cedure are now in order. Ellipsoidal invariant sets have been
used because of their closed relation to quadratic Lyapunov
functions leading to LMIs based conditions. Due to the need
to satisfy hard constraints, only sufficient conditions have been
derived for the computation of the feedback gain K̂. Pre-
computing L̄ permits the definition of an augmented open-loop
plant with a stabilizable pair (Â, B̂). This, in turn, directly
allows the derivation of sufficient conditions for the existence
of the invariant set X and the stabilizing state-feedback gain
K̂ in presence of hard constraints. The optimum criterion (29)
has been introduced to maximize the value of γ (γ = η−1)
and the volume of Xxp compatibly with (30)-(32). This allows
enlarging the sets of admissible w(k) and of admissible initial
conditions thus reducing the conservatism due to: 1) the
off line computation of the invariant set; 2) the ”a priori”
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guarantee of recursive feasibility.
It is mentioned that sufficient conditions for the simultaneous
design of observer and controller gains have recently been
proposed in [30]- [31] for continuous-time Takagi-Sugeno
fuzzy affine dynamic model and discrete-time semi-Markov
jump linear plants respectively. These methods are not directly
applicable in the present case where also the fulfillment of hard
constraints on some physical variables and the construction of
the invariant γ feasible set are required. 4

VI. STEP 2: COMPUTATION OF r(k)

The computation of the manipulable input r(k) is performed
solving the COP defined in Section IV.
Let x̂f (k) =

[
x̂′p(k) x′c(k) 0 0

]′
be the current estimate

of xf (k). Expressing the manipulable input r(j) as r(j) =
B̄d (j)c̄ according to (4), the predicted output is given by

y(k + i|k) = CfA
i
f x̂f (k) +

k+i−1∑
j=k

CfA
k+i−j−1
f Bf,1B̄d (j)c̄

+
k+i−1∑
j=k

CfA
k+i−j−1
f Bf,2d(j|k) +Ddd(k + i|k), (33)

where: d(·|k) is the predicted disturbance and Bf,i, i = 1, 2
denotes the i-th column of Bf .

Taking into account that, by (15) d(j|k) = d(k + i|k) =
x̂d(k), the predicted errors ey(k+ i|k) and er(k+ i|k), given
by (10)-(11) respectively, can be rewritten as

ey(k + i|k) = by(k + i|k)−Dy(k + i|k)f (34)
er(k + i|k) = br(k + i|k)−Dr(k + i|k)f (35)

where

by(k + i|k)
4
= ȳd(k)− CfAif x̂f (k)

−
k+i−1∑
j=k

CfA
k+i−j−1
f Bf,2x̂d(k)

−Ddx̂d(k)

Dy(k + i|k)
4
=
k+i−1∑
j=k

CfA
k+i−j−1
f Bf B̄d(j),

br(k + i|k)
4
= ȳd(k), Dr(k + i|k)

4
= B̄d(k + i),

f
4
= c̄

Define the following vectors e
4
= [e′y e

′
r]
′, g

4
= [g′y g

′
r]
′, and

matrices D
4
=

[
Dy

Dr

]
, Qe

4
=

[
Qy 0
0 Qr

]
where:

ey
4
=
[
e′y(k + 1|k) · · e′y(k +Ny|k)

]′
,

by
4
=
[
b′y(k + 1|k) · · b′y(k +Ny|k)

]′
,

Dy
4
=
[
D′y(k + 1|k) · · D′y(k +Ny|k)

]′
,

Qy
4
= λ1(k) diag[Qy(k) · · · Qy(k)].

An analogous definition applies to vectors er, br and matrices
Dr and Qr.
From the above definitions, it directly follows that the 2qNy

scalar equations (34)-(35) can be written in the compact form
e = b−Df and functional (9) can be written as J

4
= J(eq) =

‖eq‖22, where eq = Q
1/2
e e. Recalling the convex hull property

of B-splines and defining bq
4
= Q

1/2
e b and Dq

4
= Q

1/2
e D, it

is evident that the COP is equivalent to solve the following
box-constrained least square problem

min
f
‖Dqf − bq‖22, (36)

subject to fmin ≤ f ≤ fmax (37)

The bounds fmin
4
= cmin and fmax

4
= cmax relative to the

vector c̄
4
= f of control points are chosen so as to satisfy

‖r(k)‖22 ≤ γr
4
= γ − γd where γ = η−1 results from the

minimization of functional (29).
At each k, the parameter vector c̄ of control points is estimated
as explained in Section III B. The corresponding B-spline input
r(k) results to be known over [k, k+Ny−1], but only the first
sample is applied to Σf according to the usual MPC strategy.

Feasibility and stability properties of the whole control
strategy proposed here can be now formally stated in the
following theorem.
Theorem 3. Assume that the problem P1 stated in Section V
is solvable and that the input r(k) of Σf is computed as the
solution of the box-constrained RLS problem (36),(37), then
the proposed two-step procedure yields a recursively feasible
MPC strategy and an asymptotically internally stable Σ2DoF .
Proof of Theorem 3. Recursive feasibility is a direct conse-
quence of computing r(k) as the solution of an optimization
problem where the feasible box-constraints (37) are imposed
on a vector of variables which is the same one with respect
to the optimization problem has to be solved. Moreover the
fulfillment of (37) directly implies that also the components of
zf (k) satisfy constraints like (8). Internal asymptotic stability
of the resulting overall control system Σ2DoF is a direct
consequence of the internal asymptotic stability of Σf and
of the uniform boundedness of r(k) resulting from (37).

VII. DC SERVOMOTOR WITH CONSTRAINT ON THE SHAFT
TORSIONAL TORQUE.

The position servomechanism considered in [32] consists
of a DC motor, gearbox, elastic shaft and load. This example
is extended here to the case of an unmeasurable constant
disturbance affecting the plant. Denoting by θM and θL,
respectively, the motor and the load angle, and by setting
xp
4
= [θL, θ̇L, θM , θ̇M ]T , the following state space represen-

tation is derived from the model equations:

ẋp =


0 1 0 0

−kTJL −βL

JL
kT
ρ JL

0

0 0 0 1

kT
ρ JM

0 kT
ρ2 JM

−βM+
k2
M
R

JM

xp (38)

+


0
0
0
kM
RJM

u+ 0.5


0
1
0
1

 d
θL = Cpxp+Ddd =

[
1 0 0 0

]
xp + 0.1 d (39)
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where u = V (voltage) is the control input, θL (load angular
position) is the output and d is the constant disturbance
satisfying ‖d(k)‖22 ≤ γd = 0.04.
The physical parameter values are reported in [32] (Section
1, page 90). It is easily seen that plant (38)-(39) satisfies the
same assumptions of plant (13)-(14).
The controller must set the angular position of the load, θL,
at the desired set-point value (1 rad).
The sampled data representation of the DC servomotor
is obtained by sampling with Tc = 0.1 sec and using
a zero order holder on the input voltage V . Technical
specifications involves constraints on the input voltage
|V | ≤ 220 V as well as on the shaft torsional torque
T = CTxp =

[
kT 0 −kTρ 0

]
xp which is required to

satisfy the constraint |T | ≤ 78.5398 Nm. According to (22),
the constrained variables are zu = V ∈ IR and zxf

= T ∈ IR,
with bounds z̄u,1 = 220 and z̄xf ,1 = 78.5398, respectively.
The first step is to design Σg . According to the procedure
described in Section V.A, the observer gain L̄ is computed
solving OP.
By Theorem 1, choosing ρ = 0.5 a feasible
solution for OP is given by L = S−11 Z1 =[
−14.6037 3.9338 −337.5358 29.7487 162.1898

]′
.

Given the pair (Â, B̂) in (28), the feedback gain
K̂ = [−Kp Kc 0 0] and the invariant γ-feasible
set X for Σf are determined solving the semidefinite
programming problem of Theorem 2. Taking into account
that zxf

= Czxf
xf = T , the matrix Czxf

in (32) is defined
as Czxf

=
[
CT 0 CT 0

]
. According to Remark 4,

the scalar parameter α is fixed to transform (30) in an
LMI. Choosing β1 = 1 and β2 = 100 in (29), it is found
that, for α = 0.04, the stabilizing feedback gain is K̂ =[
921.212 144.842 −52.493 −5.393 2.411 0 0

]
.

The invariant γ-feasible set X ≡ E(P, γ) with P = Q−1 (not
reported for brevity) and γ = η−1 = 4.6515 are computed
for the resulting closed loop system Σf .
Next step is to determine the trajectory of the manipulable
input r(k), subject to ‖r(k)‖22 ≤ γr

4
= γ − γd = 4.6115,

optimally driving the output transition from 0 to the set point
value 1 at time t = 1s. To this end r(k) ∈ IRq (q = 1)
is modeled as a scalar sampled B-spline. The following
parameters are set: d = 1 (order of B-spline), ` = 3 (number
of control points), 5

4
= `+ d+ 1 (number of knot points k̂i),

Qy(k)
4
= I , Qr(k)

4
= I , ∀ k ≥ 0, Ny = 10 and λ1(k) = 1

∀k ≥ 0. According to Remark 2, the S-shaped membership
function chosen for λ2(k) starts from a null initial value
and converges to λ̄2 = 1 over the transient period following
any set point reset. The vector c̄ of decision variables to be
estimated at each k is composed by `q = 3 control points.
As γr = 4.6115 and r(k) is scalar, the bounds of inequalities
(37) are |cmin| = cmax =

[
2.1474 2.1474 2.1474

]′
.

The simulation has been carried out assuming: xp(0) = 0
and d(k) = 0.2, ∀k ≥ 0. The obtained input r(k) and the
controlled output θL are shown in figures 2 and 3 (solid line)
respectively. The behaviors of both constrained variables V
and T are shown in figures 4-5 respectively. The design of

an MPC controller for the same position servomechanism in
the simpler disturbance free case is proposed in [32] (Section
1 page 96) setting: Tc = 0.1 (sampling time), Ny = 20 and
Nu = 5.

For a comparison with [32] from the computational point
of view, the following considerations should be taken into
account.
- The choice of an halved prediction horizon (Ny = 10)
emphasizes two significant aspects of the proposed algorithm:
the number of operations to be executed at each k in the on-
line optimization procedure is significantly reduced and the
stability of the overall 2DoF scheme is not compromised.
- At each k the number of decision variables (control points of
r(k)) involved in the proposed on-line optimization procedure
is q` = 3 < qNy = 10, and the total number of constraints
(37) to be imposed is 2(q`) = 6. For the traditional MPC
controller implemented in [32], the number of decision vari-
ables involved at each k is mNu = 5 and the number of
constraints to be imposed is 2Ny + 2mNu + 2mNu = 60
(namely 2Ny = 40 for |T | ≤ 78.5398 , 2mNu = 10 for
|V | ≤ 220 and 2mNu = 10 for the input voltage rate).
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Fig. 2. The manipulable input r(k) (scalar B-spline of order d = 1 with 3

control points and 5
4
= `+ d+ knots points).
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Fig. 3. The desired set point (dashed line) and the controlled output θL (solid
line).

VIII. CONCLUSIONS

This paper has shown how to reduce some technical difficul-
ties of MPC related to the complexity of stability and feasibil-
ity analysis as well as to the demanding computational effort.
Stability and feasibility problems are essentially solved by the
formulation of the MPC through a 2DoF control scheme. Also
the tracking problem is greatly simplified and an exact static
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Fig. 4. The constrained input voltage V .
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Fig. 5. The constrained shaft torsional torque T .

decoupling is achieved. This latter feature is of a noticeable
importance in industrial control because allows multiple set
points to meet their target independently of each other. The
numerical effort is significantly curtailed for the two following
reasons: 1) the closed-loop formulation releases the choice of
the prediction horizon from stability considerations, 2) the use
of B-splines transforms the constrained optimization problem
in the constrained least-square estimation of a largely reduced
number of parameters. The numerical example confirmed the
validity of the approach.
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