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Abstract— Carpal tunnel syndrome (CTS) is the most com-
mon entrapment neuropathy. Ultrasound imaging (US) may
help to diagnose and assess CTS, through the evaluation of
median nerve morphology. To support sonographers, this paper
proposes a fully-automatic deep-learning approach to median
nerve segmentation from US images. The approach relies on
Mask R-CNN, a convolutional neural network that is trained
end-to-end. The segmentation head of Mask R-CNN is here
evaluated with three different configurations, with the goal of
studying the effect of the segmentation-head output resolution
on the overall Mask R-CNN segmentation performance. For
this study, we collected and annotated a dataset of 151 images
acquired in the actual clinical practice from 53 subjects with
CTS. To our knowledge, this is the largest dataset in the field
in terms of subjects. We achieved a median Dice similarity
coefficient equal to 0.931 (IQR = 0.027), demonstrating the
potentiality of the proposed approach. These results are a
promising step towards providing an effective tool for CTS
assessment in the actual clinical practice.

I. INTRODUCTION

Carpal tunnel syndrome (CTS) is the most frequent pe-
ripheral neuropathy worldwide [1], with a prevalence of
0.2–4% [2]. CTS is caused by the compression of the
median nerve at wrist, as the nerve passes through the
carpal tunnel [1]. CTS is encountered with several diseases,
including diabetes mellitus, hypothyroidism and rheumatoid
arthritis, but cases of idiopathic CTS are also frequent [3].
The diagnosis of CTS is based on clinical history and
physical examination [3]. Ultrasound (US) imaging, which
is a low-cost and non-invasive procedure, may be used when
there is a clinical suspicion of CTS, especially in unclear
cases. Specifically, US imaging allows the visualization of
the median nerve cross-section, which may be significantly
larger in patients with CTS compared to healthy subjects [2].

Performing CTS assessment from US imaging is challeng-
ing: US imaging is highly operator dependent and this may
lead to low inter-observer reliability [2]. Moreover, as shown
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Fig. 1: Sample US images (left column) and associated
ground-truth, manually segmented, binary mask of the me-
dian nerve (right column). The images are from the same
patient. Only the left hand (top row) is affected by CTS.

in Fig. 1, US images have often low quality, with inten-
sity inhomogeneities, presence of shadows and high noise
level. To assist sonographers, the medical-image-analysis
community has developed in the years several methods for
median nerve segmentation from US images. Hafiane et
al. combined a convolutional neural network (CNN) with
probabilistic gradient vector flow to delineate the median
nerve contour [4]. The method relies on a dataset of US
images extracted from 10 videos, each with 500 frames, from
10 patients. In a recent study by Wang et al. [5], a multi-input
similarity CNN to track the median nerve was presented.
The approach was tested on 100 videos of 6 seconds, each
with 180 frames. The videos were collected from 50 patients,
which were asked to perform specific wrist motions. In
Horng et al. [6], U-Net integrated with a convolutional long
short-term memory (LSTM) network was used to process US
videos. Ten patients were involved, for a total of 24 videos,
each with 420 frames.

Despite the promising results, the main limitation of these
methods is that they require the manual identification of
a region of interest (ROI) around the median nerve. This
poses issues relevant to time consumption and inter-clinician
variability. To overcome this problem, this work proposes
a fully-automatic end-to-end deep-learning approach to ac-
curately detect and segment the median nerve in US images
acquired in daily US practice. The contributions of this paper
are summarized as follows:
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TABLE I: Proposed segmentation head. Conv2D: 2D con-
volution; Conv2DTranspose: transposed 2D convolution.

Operator Kernel size No. of filters Feature size
Conv2D 3x3 256 14x14
Conv2D 3x3 256 14x14
Conv2D 3x3 256 14x14
Conv2D 3x3 256 14x14

Conv2DTranspose 2x2 256 28x28
Conv2DTranspose 2x2 256 56x56
Conv2DTranspose 2x2 256 112x112

Conv2D 1x1 256 112x112

1) Development of an automatic algorithm for median
nerve segmentation from US images (Sec. II): Mask
R-CNN [7], an end-to-end state-of-art CNN, was
studied using different network configurations;

2) Validation in the actual clinical practice (Sec. III): A
comprehensive study was conducted collecting in clin-
ical practice 151 images from 53 subjects. This is the
largest dataset in terms of patients in the field.

II. METHODS

In this work, we deployed an end-to-end deep-learning
algorithm, Mask R-CNN [7], for median nerve semantic
segmentation from US images. Mask R-CNN is a CNN made
of backbone, Region Proposal Network (RPN), ROIAlign
and three heads, for classification, bounding-box regression
and segmentation. In this work, architectural changes from
the original Mask R-CNN are introduced at the segmentation
head to improve output mask resolution.

We use Resnet101 [8] in combination with the Feature
Pyramid Network (FPN) [9] as backbone. The FPN allows
median nerve detection at multiple scales. The RPN is used
to generate proposals, i.e. rectangular regions in the US
image with a high probability of containing the median
nerve. As in the original implementation, the proposals are
predicted starting from anchors, which are here built with 5
different sizes and 3 different scales. The selected proposals
are processed by the ROIAlign layer, which adjusts the
size of the proposals before they are fed to the Mask R-
CNN heads. The classification and regression heads, each
made of fully connected layers, predict the proposal class
(i.e., median nerve or background) and the bounding box
regression values, respectively, thus localizing the median
nerve in the image.

The architecture of our segmentation head is shown in
Table I and Fig. 2. It is made of four 3x3 convolutional layers
with 256 filters. The output of each convolution is activated
with the rectified linear unit (ReLU). To recover spatial
resolution, upsampling is performed with three transposed
convolutions with 256 2x2 filters, ReLU activated. We use
three transposed convolution layers, instead of only one as in
the original Mask R-CNN, to increase the output resolution
and deal with the fragmented and low-contrasted edges of
the median nerve. The last layer performs 1x1 convolution
and it is activated with the sigmoid function.

Fig. 2: Visual representation of the segmentation head. The
feature-map size is reported. Orange blocks: 2D convolution
with 256 3x3 filters, ReLU-activated; Blue blocks: trans-
posed 2D convolution with 256 2x2 filters and stride equal to
2, ReLU-activated; Gray block: 2D convolution with 2 1x1
filters, activated by a sigmoid function.

TABLE II: Performance evaluation metrics. Mean average
precision (mAP ), Recall (Rec), Precision (Prec) are re-
ported.

mAP Rec Prec
Mask28 0.896± 0.304 0.875± 0.261 0.896± 0.304
Mask56 0.871± 0.341 0.879± 0.331 0.848± 0.342
Proposed 0.903± 0.296 0.903± 0.296 0.903± 0.296

III. EXPERIMENTAL PROTOCOL

A. Dataset

The US images used in this study were acquired at the
Rheumatology Unit of “Carlo Urbani” Hospital, in Jesi (An-
cona, Italy) in accordance with the Helsinki Declaration and
with the approval of the local ethics committee (Comitato
Etico Regione Marche, number 262). All patients signed
informed consent. The US assessment was carried out using
a MyLab Class C (Esaote SpA, Genoa, Italy) US system
working with a 6–18 MHz linear probe, and only transverse
scans at the carpal tunnel proximal inlet were taken into
account. The dataset consists of 151 US images from 53
patients with an image size equal to 606x468 pixels. Each
US image was manually annotated by an expert sonographer
with the median nerve contour. The dataset was split over
patients, considering 95 images from 36 subjects for training,
25 images from 9 subjects for validation and 31 images from
8 subjects for testing. The US images and their corresponding
annotation masks were resized to 512×512 pixels and zero-
padded at right-most and bottom-most edges to get squared
images with a size multiple of 32, as required by the FPN.
In this way, the original aspect ratio was preserved.

B. Training settings

During training, data augmentation was performed on-
the-fly by randomly scaling to a value of 80% to 120%
of original size and translating of -20% to 20% in both
directions, and performing random rotation between (-10◦,
10◦) and shearing between (-2◦, 2◦).

Considering the relatively small size of our dataset, trans-
fer learning was used by initializing all layers of the model
except for the input layers of the network heads with weights
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computed on the COCO (Common Objects in Context)
dataset [10]. The training was performed using the Stochastic
Gradient Descent as optimizer for 150 epochs with an initial
learning rate of 0.001 and momentum of 0.9. A total of
256 anchors per image was used, with varying size (32, 64,
128, 256 and 512) and aspect ratios (1:1, 2:1, 1:2). These
values were chosen considering the median nerve section
dimension. The ROIAlign resized proposals to a fixed size
of 14x14. Hence, the output of the proposed segmentation
had a resolution of 112x112.

The network was trained under multi-task cross-entropy
loss function combining the loss of classification, localiza-
tion, and segmentation mask: L = Lcls + Lbbox + Lmask,
where Lcls and Lbbox are class and bounding box losses
of Faster R-CNN, respectively, and Lmask is the mask loss
defined in [11].

C. Performance metrics and ablation study

To evaluate the performance in median nerve localization,
Precision (Prec) and Recall (Rec) were computed as:

Prec =
TP

TP + FP
(1)

Rec =
TP

TP + FN
(2)

where TP , FP and FN denote the number of true pos-
itives, false positives and false negatives, respectively. We
considered a TP prediction if the detected bounding box
overlapped the bounding box surrounding the ground-truth
segmentation for at least 70% and had confidence higher than
0.98. Otherwise, the nerve detection was considered as FP .
We considered a FN when no bounding box was predicted
at all. Mean Average Precision (mAP ), which represents the
average of the area under the Recall-Precision curve, was
also computed.

The median nerve segmentation performance was mea-
sured using the Dice similarity coefficient (DSC), which is
defined as:

DSC =
2× | Agt ∩Amask |
| Agt | + | Amask |

(3)

where Agt and Amask are the ground truth and predicted
segmentation, respectively. When computing the DSC, only
TPs were considered.

As ablation study, we evaluated the effect of having a dif-
ferent number of transposed convolutions in the segmentation
head. This was done to assess the effects of an increased
resolution of the output of the segmentation head on the
overall segmentation performance. The segmentation head
was tested with one (Mask28) and two (Mask56) transposed
convolutional layers, leading to the output size of the head
of 28x28 and 56x56, respectively.

IV. RESULTS

The mAP , Rec and Prec computed on the test set for the
proposed model and the ablation-study models are reported
in Table II. The best performing model was the proposed

Fig. 3: Boxplot of the Dice similarity coefficient (DSC)
computed against the ground-truth manual annotation.

one, with mAP = 0.903± 0.296, Rec = 0.903± 0.296 and
Prec = 0.903 ± 0.296. The low standard deviation shows
the stability of the model. Specifically, on our 31 test images,
the proposed model achieved the highest number of correct
detection (28 TP ). The median nerve was not identified in
only 3 images, all from the same subject. Mask28 produced
28 TP , 3 FN and 2 FP , while Mask56 resulted as the
worst performing model, with 27 TP , 4 FN and 4 FP .

The proposed model achieved a median value of DSC
with the narrowest interquartile range (IQR), equal to 0.931
and with IQR = 0.027, overcoming both Mask28 and
Mask56 as represented in Fig. 3. Sample segmentation results
are shown in Fig. 4 to visually compare the results of
proposed model with the ground truth and the other models.

V. DISCUSSION

The end-to-end model proposed in this work proved to be
a reliable tool for the automatic segmentation of the median
nerve in US images. From the experimental results shown in
Table II, increasing the output resolution of the segmentation
head to 112x112 improved the overall performance. In ad-
dition, the proposed model obtained a median DSC (0.931)
with the lowest IQR (0.027), thus demonstrating the higher
reliability in comparison with Mask28 and Mask56.

The increased output resolution of the segmentation head
did not produce any FP , which instead were present both for
Mask28 and Mask56, as shown in Fig. 4. The bottom row in
Fig. 4 shows an image from the only subject for which the
median nerve was not detected by any of the tested models:
the poor definition of nerve borders, the contiguity with a
vessel of abnormal size and the inhomogeneities of the nerve
section could be the causes of the missed detection.

Even if the achieved results are promising, a limitation
of this work can be seen in the size of the dataset, even
though our dataset is to date the largest in terms of patients
in comparison with literature. An original aspect of our
work is related to the ability of Mask R-CNN to learn
median nerve location and segmentation, without any manual
intervention in ROI identification or nerve contour definition.
Nevertheless, segmentation performance may be boosted
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Fig. 4: Visual samples of the segmentation results. From left to right: raw US images, ground truth annotations, predictions
obtained with Mask28, Mask56 and the proposed method. First row: all the tested models achieved correct identification of
the median nerve; second-third rows: false positives were present for Mask28 and Mask56; last row: sample image from
the only patient for which the nerve was not identified by any of the tested models.

further by processing also temporal information naturally
encoded in US videos. So far, we focused our analysis on still
US images to prevent model overfitting having few patients
involved. We are currently working to collect a larger dataset
to perform an analysis based on US temporal clips and mimic
what is currently done in the actual US practice. This can be
done by exploiting spatio-temporal features [12]. Distance-
field regression for accurate nerve delineation could be
investigated, too, considering the promising results achieved
in close fields [13].

VI. CONCLUSION

This work proposed an end-to-end deep-learning approach
to median nerve segmentation from US images to help sono-
graphers during carpal tunnel scanning. The obtained results
show the potentiality of the proposed approach, opening up to
further improvements to fully support real-time US practice.
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