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ABSTRACT Following the growing availability of video surveillance cameras and the need for techniques
to automatically identify events in video footages, there is an increasing interest towards automatic
violence detection in videos. Deep learning-based architectures, such as 3D Convolutional Neural Networks,
demonstrated their capability of extracting spatio-temporal features from videos, being effective in violence
detection. However, friendly behaviours or fast moves such as hugs, small hits, claps, high fives, etc., can still
cause false positives, interpreting a harmless action as violent. To this end, we present three deep-learning
based models for violence detection and test them on the AIRTLab dataset, a novel dataset designed to check
the robustness of algorithms against false positives. The objective is twofold: on one hand, we compute
accuracy metrics on the three proposed models (two are based on transfer learning and one is trained from
scratch), building a baseline of metrics for the AIRTLab dataset; on the other hand, we validate the capability
of the proposed dataset of challenging the robustness to false positives. The results of the proposed models
are in line with the scientific literature, in terms of accuracy, with transfer learning-based networks exhibiting
better generalization capabilities than the trained from scratch network. Moreover, the tests highlighted that
most of the classification errors concern the identification of non-violent clips, validating the design of
the proposed dataset. Finally, to demonstrate the significance of the proposed models, the paper presents
a comparison with the related literature, as well as with models based on well-established pre-trained 2D
Convolutional Neural Networks 2D CNNs. Such comparison highlights that 3D models get better accuracy
performance than time distributed 2D CNNs (merged with a recurrent model) in processing the spatio-
temporal features of video clips. The source code of the experiments and the AIRTLab dataset are available
in public repositories.

INDEX TERMS Convolutional Long Short-Term Memory, Convolutional Neural Network, Deep Learning,
Support Vector Machine, Violence Detection

I. INTRODUCTION

Public video surveillance systems are common all over the
world, being capable of providing accurate and rich in-
formation in many security applications [1]. However, the
need of watching hours of video footages undermines the
chance to take decisions in a short time, which is essential
in video surveillance for crime and violence prevention [2].
In this regard, several studies about automatic detection of
violent scenes in videos have been presented, with the aim
to unburden authorities from the need of watching hours of
videos to identify events lasting few seconds. Whilst early

research works used hand-crafted features and flow descrip-
tors typical of traditional action recognition methods [3]–
[5], recent works highlighted the accuracy of deep learning-
based approaches in violence detection [6]–[8]. In fact, deep
learning techniques have been proven effective in extracting
spatio-temporal features from videos [9], [10], i.e. features
that represent the motion information contained in a sequence
of frames, in addition to the spatial information contained in
a single frame.

Among the deep learning-based techniques for violence
detection, in our previous research [11] we showed the ef-
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fectiveness of the combination of 3D Convolutional Neural
Networks (3D CNN) and Support Vector Machines (SVM)
to detect both person-to-person fights and crowd violence in
videos. Nevertheless, we highlighted that there are still false
positives, detecting friendly behaviours or rapid moves such
as hugs, small hits, claps, and high fives as violent. To further
investigate in such direction, this paper presents a comparison
of three different deep learning models on a novel dataset,
the AIRTLab dataset [12], that we built to include, as non-
violent samples, video clips that can cause false positives.
Specifically, this paper adds the following contributions to
the state of the art of automatic violence detection in videos:

• it describes a new dataset intended to train and bench-
mark techniques for automatic violence detection in
videos. The dataset is specifically tailored to test the
performance against false positives;

• it proposes two transfer learning-based models and one
“trained from scratch” model, testing them on the pre-
sented dataset. The results serve as a baseline to bench-
mark the performance of violence detection techniques
applied to the proposed dataset;

• it compares the performance of the proposed models
with well-defined pre-trained 2D Convolutional Neural
Networks (2D CNN) on the task of violence detection.
Specifically, it tests the performance of VGG16 and
VGG19 [13], ResNet50 version 2 [14], Xception [15],
and NASNet Mobile [16]. Being 2D, these networks
have been adapted to be applied frame-by-frame to
videos and process spatio-temporal information, in or-
der to be compared with the proposed models. As a
side effect of such comparison, this paper provides a
benchmark of well-established networks on the task of
violence detection;

• it provides the implementation of all the described mod-
els and experiments, as the source code of the tests is
publicly available in a GitHub repository1, to ensure the
reproducibility of the experiments. Moreover, the AIRT-
Lab dataset is also available in a public repository2.

In fact, the datasets traditionally used to compare violence
detection techniques, such as the Hockey Fight Dataset [17],
the Movie Fight Dataset [17], and the Crowd Violence
Dataset [3], usually include few videos, recorded at a low
resolution; in many cases such videos are registered in too
specific environments (such as hockey arenas and football
stadiums). Instead, the dataset proposed in this paper includes
350 Full HD clips, at 30 frame per seconds.

Moreover, following our previous research, C3D, an ex-
isting 3D CNN pre-trained to classify sport categories in
videos [18], is used as a feature extractor in the transfer
learning models. In the first model, the classification task
is performed by a SVM classifier. In the second model, the

1Source code of the experiments: https://github.com/airtlab/violence-
detection-tests-on-the-airtlab-dataset

2AIRTLab dataset: https://github.com/airtlab/A-Dataset-for-Automatic-
Violence-Detection-in-Videos

classification is done by fully connected layers. Instead, the
model which was trained from scratch is based on the Con-
volutional Long Short-Term Memory (ConvLSTM) architec-
ture [19] to extract the spatio-temporal features of the videos;
the classification task is performed by fully connected layers
following the ConvLSTM. We tested these three models on
the AIRTLab dataset, in order to compare their performance.
Rather than proposing novel recognition architectures and
models, we want to validate that the proposed dataset is
capable of challenging the robustness to false positives of
the violence detection techniques, testing architectures which
already showed a good classification performance. In fact,
we tested our models also on the Hockey Fight and Crowd
Violence datasets, building a comparison over the existing
literature. Finally, by comparing the proposed models against
the performance got by end-to-end models based on pre-
trained 2D CNNs, we also provide an extended baseline of
results of well-established networks on the AIRTLab dataset,
as well as on the Hockey Fight and Crowd Violence datasets.

The rest of this paper is organized as follows. Section II
lists related research papers, highlighting similarities and
differences with the presented research. Section III describes
the used deep learning techniques, providing the necessary
background, detailing the dataset structure, and explaining
the architectures of the three proposed models. Section IV
presents and discusses the experimental results and the main
findings, describing the tests on the proposed dataset as well
as the results got on other datasets. Finally, Section V draws
the conclusions of this research.

II. RELATED WORKS
Concerning the violence detection techniques, in recent years
deep learning models showed their potential on the listed
datasets, achieving top level performance in terms of clas-
sification accuracy. Among these techniques, 3D CNNs and
ConvLSTMs have been proven effective in learning the
spatio-temporal information contained in videos [20]. In this
regard, Table 1 lists the accuracy of some deep learning-
based violence detection techniques on the Hockey Fight
and Crowd Violence datasets. Among the datasets used to
compare violence detection techniques, the Hockey Fight
Dataset [17], the Movie Fight Dataset [17], and the Crowd
Violence Dataset [3] had been widely adopted. The Hockey
Fight Dataset includes 1000 clips equally divided into “fight”
and “no-fight”. Each clip has between 41 and 50 frames
(as also reportedin [21]), originally at a resolution of 720 x
576 pixels, even if the 320 x 240 pixels version as proposed
in [22] is commonly used. The Movie Fight Dataset includes
200 clips extracted from movies, 100 labeled as “fight” and
100 as “no-fight”. Similarly to the Hockey Fight Dataset,
each clip is composed of 50 frames at 720 x 576 and 720
x 480 pixels. The Crowd Violence Dataset is composed of
246 clips downloaded from Youtube (123 violent, 123 non-
violent), at a resolution of 320 x 240 clips and with an
average length of 3.6 seconds. All these datasets includes
low resolution videos; the Hockey Fight and Crowd Violence
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datasets include clips recorded in very specific environments
(such as hockey arenas and football stadiums); the Movie
Fight Dataset contains few frames (10000) and most of
the recent studies achieved 100% accuracy on it (see, for
example, [23] and [24]). Recently, Cheng et al. [25] proposed
a dataset to overcome these issues, the RWF-2000, with
2000 clips of surveillance camera videos collected from
youtube, at various resolutions. Similarly to the RWF-2000,
the dataset that we propose overcomes the limitations of
the traditional datasets, offering 350 clips of various length
(mean 5.36 seconds), in Full HD (1920 x 1080 pixels)
resolution. However, differently from the other datasets, the
AIRTLab dataset includes in the non-violent clips actions
such as hugging, giving high fives and clapping, exulting, and
gesticulating which might result into false positives, due to
fast movements and similarity with some violent behaviours.
Therefore, the AIRTLab dataset is designed to test violence
detection techniques robustness against false positives. In this
regard, 350 clips might seem few compared to other tasks
of computer vision and to the 1000 clips of the Hockey
Fight. However, we must highlight that the average clip
length (5.63 seconds) is higher than the Hockey Fight (around
2 seconds) and Crowd Violence (3.6 seconds), including
more frames than these two datasets. Specifically, Ding et
al. [26] proposed to use a 9-layer 3D CNN for violence
detection: processing 40 frames at a time, with a resolution
of 60 x 90 pixels, three 3D convolutional layers alternated
with two pooling layers, two fully connected layers and a
softmax layer for classification achieved a 91% accuracy on
the Hockey Fight Dataset. More recently, Song et al. [21]
achieved 99.6% accuracy on the Hockey Fight Dataset, and
94.3% on the Crowd Violence, training from scratch a 3D
CNN reproducing the C3D architecture and improving the
sampling method. Similarly, Li et al. [24], with a 10-layer
3D CNN alternating dense and transitional layers after a
convolutional layer, achieved 98.3% accuracy on the Hokey
Fight, and 97.2% on the Crowd Violence. However, transfer
learning approaches based on 3D CNNs achieved even better
results by using models pre-trained with different classifica-
tion tasks. Ullah et al. [8] implemented a pre-trained model
based on C3D until the second fully connected layer (“fc7”)
with a two-classes softmax layer to perform the classification,
achieving good performance in both the Hockey Fight (96%
accuracy) and Crowd Violence (98%) datasets. Similary, in
our previous work [11], we used the pre-trained C3D until the
first fully connected layer (“fc6”) as a feature extractor, and
a SVM classifier for the violence detection tasks, achieving
excellent performance on both the Hockey Fight (98.5%
accuracy) and Crow Violence (99.2%) datasets. Also the use
of the ConvLSTM architecture in violence detection models
achieved promising results. For example, Sudhakaran and
Lanz. [23] proposed to aggregate the spatial information
extracted from the frames by 2D CNNs with a ConvLSTM, to
extract the temporal information. With such architecture, they
achieved 97.1% accuracy on the Hockey Fight dataset, and
94.5% on the Crowd Violence dataset. A similar approach

was proposed by Hanson et al. [27] who combined the
VGG13 CNN [13] with a ConvLSTM layer to achieve 98.1%
accuracy on the Hockey Fight dataset, and 96.3% on the
Crowd Violence dataset.

III. MATERIALS AND METHODS
As pointed out in the Introduction and the Related Works
sections, deep learning-based architectures and, specifically,
3D CNNs and ConvLSTMs, are capable of modeling the
spatio-temporal features of videos, and demonstrated their
accuracy on violence detection. For this reason, we based
the classifiers proposed in this paper on such neural network
architectures, comparing:

• end-to-end networks, i.e. a unique model to execute the
classification, with a model composed of a 3D CNN and
an SVM;

• the training of a model from scratch with two networks
based on a transfer learning approach, i.e. the use of
models already trained on a large dataset to execute a
different classification task.

Figure 1 shows the workflow followed for the study pre-
sented in this paper. We propose three deep learning models
(two are based on transfer learning and one is trained from
scratch) to perform violence detection in videos. We intro-
duce a dataset, the AIRTLab dataset, and present the perfor-
mance of the proposed models on such dataset. To build a
comparison over the existing literature, we test their perfor-
mance on the Hockey Fight and Crowd Violence datasets, tra-
ditionally used in literature to benchmark violence detection
techniques. Finally, to prove the significance of the proposed
classifiers, we compare our models to the performance got
by well-established pre-trained 2D CNNs such as VGG16,
VGG19, and ResNet50, adapted to be applied to videos
(which are 3D, being composed of multiple frames).

To this end, we provide some background notions about
the 3D CNN and the ConvLSTM architectures (III-A), we
present the AIRTLab dataset, used to test the proposed clas-
sifiers (III-B), and we describe the classifier architectures
(III-C).

A. BACKGROUND: 3D CNN AND CONVLSTM
As highlighted in the seminal work of LeCun and Ben-
gio [28], in a 2D CNN each unit of a layer receives inputs
from a set of units located in a small neighborhood (the local
receptive field) in the previous layer, by convoluting with
a set of kernels composed of shared weights. Ji et al [29]
extended this concept by proposing to use 3D CNNs. The 3D
convolution is obtained using a 3D kernel on the cube formed
by stacking more adjacent frames together. In this way, the
resulting feature map represents the temporal information
available in sample data, in addition to the spatial information
usually modeled by a 2D CNN.

In this work, we use an existing 3D CNN, C3D [18],
which is trained on the Sports-1M dataset [30] to recognize
sport categories in videos. Since it has been proven useful
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TABLE 1: Accuracy of deep learning-based violence detection techniques on the Hockey Fight and Crowd Violence datasets.
The last row reports the results of our previous work [11], based on the combination of the pre-trained C3D network with an
SVM classifier.

Authors Architecture Hockey Fight Crowd Violence
Ding et al. (2014) [26] 3D CNN 91.0% -
Song et al. (2019) [21] 3D CNN 99.6% 94.3%
Li et al. (2019) [24] 3D CNN 98.3% 97.2%
Ullah et al. (2019) [8] C3D + Fully connected layers 96.0% 98.0%
Sudhakaran and Lanz. (2017) [23] 2D CNN + ConvLSTM 97.1% 94.5%
Hanson et al (2018) [27] 2D CNN + ConvLSTM 98.1% 96.3%
Accattoli et al. (2020) [11] C3D + SVM 98.5% 99.2%

Definition of three violence detection models

Definition of the AIRTLab dataset

Tests on the AIRTLab dataset

Comparison with results on the Hockey Fights and Crowd
Violence datasets

Comparison with well-known pre-trained CNNs

FIGURE 1: The workflow of the study proposed in this paper.

to extract spatio-temporal features from videos, we use C3D
as a feature extractor, using the weights until the first fully
connected layer (“fc6”), in a transfer learning fashion.

Whilst C3D is used in two of the three proposed models,
the last model is based on the ConvLSTM that has also
been proven useful to represent spatio-temporal features.
Specifically, we use the formulation of Shi et al. [19], who ex-
tended the LSTM architecture [31] by adding convolutional
structures to state transition. Specifically, a LSTM hidden
unit is composed by a self-recurrent cell, called memory cell,
whose input/output is regulated by three multiplicative gates,
i.e. the input gate, the output gate, and the forget gate [32].

As Shi et al. pointed out, the LSTM architecture is ad-

equate to extract temporal features, but includes too much
redundancy for spatial features. In this regard, they proposed
to add convolutional structures in the transitions between the
input gate and the memory cell, and in the self-recurrency of
the memory cell, regulated by the forget gate.

B. THE AIRTLAB DATASET
To evaluate the three proposed deep learning models, we de-
veloped a dataset, called the AIRTLab dataset, to specifically
test the robustness of violence detection techniques against
false positives in non-violent clips with rapid moves (such as
hugs, claps, high-fives, etc.). The dataset is publicly available
as a GitHub repository.

The dataset is composed of 350 clips which are MP4
video files (H.264 codec) of a mean length of 5.63 seconds,
with the shortest video lasting 2 seconds and the longest
14 seconds. For all the clips, the resolution is 1920 x 1080
pixels and the frame rate 30 fps. The dataset is split into
two main directories, “non-violent” and “violent”, labeling
the included clips as showing non-violent behaviours and
violent behaviours respectively. The directories are split into
two subdirectories, “cam1” and “cam2”:

• “non-violent/cam1” includes 60 clips representing non-
violent behaviours;

• “non-violent/cam2” includes 60 clips with the same
non-violent behaviours in “non-violent/cam1”, but
recorded from a different point of view;

• “violent/cam1” includes 115 clips representing violent
behaviours;

• “violent/cam2” includes 115 clips with the same violent
behaviours in “violent/cam1”, but recorded from a dif-
ferent point of view.

All the clips were recorded in the same room, with natural
lighting conditions, placing two cameras into two different
spots (the top left corner in front of the room door, and the
top right corner on the door side).

The clips were performed by a group of non-professional
actors, varying from 2 to 4 per clip. For the violent clips,
the actors were asked to simulate actions frequent in brawls,
such as kicks, punches, slapping, clubbing (beating with a
cane), stabbing, and gun shots. For the non-violent clips, the
actors were asked to simulate actions which can result in false
positives by violence detection techniques due to the speed
of movements or the similarity with violent actions. Specif-
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ically, the non-violent clips include actions such as hugging,
giving high fives and clapping, exulting, and gesticulating.
All the actions in both violent and non-violent clips have
been manually annotated. The complete dataset specification
is available in a dedicated open-access data paper [12].

In terms of average clip length and total number of frames,
the proposed dataset is bigger than the datasets generally used
for the comparison of violence detection techniques, such as
the Hockey Fight and Crowd Violence datasets. However,
it seems relative small when compared with other datasets
used in computer vision and video classification, such as the
Sports-1M. Whilst scraping more videos from the internet
would be possible, requiring bundersome manual checks
and annotations, the proposed dataset is tailored to specifi-
cally test the robustness against false positives. Therefore, to
achieve such objective, the dataset needs to be designed on
purpose.

C. PROPOSED MODELS
In this paper we propose three different deep learning-based
models to classify violence detection in videos and we test
their accuracy on the AIRTLab datasets. Specifically:

1) the first model consists of C3D, as a feature extractor,
and a linear SVM to classify clips into violent and non-
violent;

2) the second model also uses C3D as a feature extractor,
but the classification is done by two extra fully con-
nected layers, building an end-to-end model;

3) the third model is trained from scratch and is based on
the ConvLSTM architecture.

In two out of the three proposed models, the C3D network
trained on the Sports-1M dataset is used as a feature extractor,
in a transfer learning fashion. In fact, transfer learning can
achieve better generalization than a dedicated training from
scratch and prevent overfitting [33], [34]. In the original defi-
nition of Tran et al. [18], C3D uses 3x3x3 kernels (with stride
equal to 1) in a total of eight convolution layers alternated
with five pooling layers, followed by two fully connected
layers and a softmax output layer to compute the probability
distribution over the sport categories. All the neurons in the
convolution layers use the rectified linear activation function
(ReLu). Table 2 lists the layers of C3D used in this work: we
used all the original convolution and pooling layers and we
take the output of the first fully connected layer (called “fc6”
by the C3D authors ) as a feature descriptor of the original
input, removing the second fully connected layer and the final
softmax layer. C3D takes as input sequences of 16 frames
at a resolution of 112x112 pixels. Hence, we kept this input
format for all the violence detection models proposed in this
paper.

Figure 2 depicts the schematic of the proposed models.
The clips given as input to the three models are divided into
16-frames chunks and resized at the resolution of 112x112
pixels, to be compliant with the C3D input.

In the first of the three proposed models (Figure 2a), the
4096 feature descriptor given as output by the first fully con-

nected layer of C3D is fed into an SVM, with linear kernel
and C = 1, in order to classify the 16 frames sequence as
violent or not. In fact, in our previous work [11], we already
demonstrated the capability of this model on the Hockey
Fight and Crow Violence datasets, obtaining a 98.51% and
a 99.29% accuracy respectively.

Table 3 shows the architecture of the second proposed
model. Differently from the previous model, we built an
end-to-end architecture, extending the portion of C3D used
as a feature extractor with additional layers (Figure 2b).
Specifically, we added a dropout layer, with a rate of 0.5,
to prevent overfitting [35]. Subsequently we added a fully
connected layer with 512 neurons using the rectified linear
activation function. After another 0.5 dropout, the final layer
composed by a neuron with the sigmoid activation performs
the actual classification of the 16-frames clips into violent or
not. Also in this model, the used C3D layers are trained on
the Sports-1M dataset. Instead, the added layers were trained
from scratch on the available training data, as explained in
Section IV.

The third proposed model (Figure 2c) is based on the
ConvLSTM architecture, and it is trained end-to-end from
scratch. The layers are listed in Table 4. The first layer is
a ConvLSTM composed of 64 3x3 filters, with a total of
154,624 trainable parameters. After a 0.5 dropout to prevent
overfitting, we flatten the ConvLSTM output and add a fully
connected layer with 256 neurons, using the rectified linear
activation function. Finally, after another 0.5 dropout, the
final classification into violent or not is computed by a neuron
with the sigmoid activation function. To allow a comparison
with the models based on C3D, the input of the ConvLSTM-
based network is also composed of sequences of 16 video
frames at a resolution of 112x112 pixels.

To prove the significance of the proposed models, we carry
out a comparison with the performance of well-established
2D CNNs, namely VGG16, VGG19, ResNet50V2, Xcep-
tion, and NASNet Mobile, pre-trained on the ImageNet
database [36]. Figure 3 describes the schematic of the models
based on such 2D CNNs. In order to be applied to videos
and process the related spatio-temporal information, the 2D
CNNs are time distributed over the 16 frames composing an
input chunk and combined with a recurrent layer, whereas
two fully connected layers implement the final classification.
ConvLSTM and Bidirectional-LSTM (Bi-LSTM) were both
tested as the recurrent layer. Specifically, Table 5 includes
the layers composing the models with the pre-trained 2D
CNNs and the ConvLSTM layer as the recurrent module. The
ConvLSTM layer was composed of 64 3x3 filters, followed
by a fully connected layer with 256 ReLu neurons, a 0.5
dropout and a fully connected neuron with sigmoid activation
to perform the final classification. Table 6 describes the layers
composing the models with the pre-trained 2D CNNs and the
Bi-LSTM layer as the recurrent module. The Bi-LSTM was
composed of 128 hidden units, followed by a 0.5 dropout,
a fully connected layer with 128 ReLu neurons, another 0.5
dropout and a fully connected sigmoid neuron for the final
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TABLE 2: Layers of C3D used as a feature extractor in two of the proposed models. We used C3D until the first full connected
(i.e. dense) layer, called by its autors “fc6” [18].

Layer Architecture Output Shape Params #
Conv3D 64 filters, 3x3x3 (stride 1), ReLu (16, 112, 112, 64) 5248
MaxPooling3D 1x2x2 (16, 56, 56, 64) 0
Conv3D 128 filters, 3x3x3 (stride 1), ReLu (16, 56, 56, 128) 221312
MaxPooling3D 2x2x2 (8, 28, 28, 128) 0
Conv3D 256 filters, 3x3x3 (stride 1), ReLu (8, 28, 28, 256) 884992
Conv3D 256 filters, 3x3x3 (stride 1), ReLu (8, 28, 28, 256) 1769728
MaxPooling3D 2x2x2 (4, 14, 14, 256) 0
Conv3D 512 filters, 3x3x3 (stride 1), ReLu (4, 14, 14, 512) 3539456
Conv3D 512 filters, 3x3x3 (stride 1), ReLu (4, 14, 14, 512) 7078400
MaxPooling3D 2x2x2 (2, 7, 7, 512) 0
Conv3D 512 filters, 3x3x3 (stride 1), ReLu (2, 7, 7, 512) 7078400
Conv3D 512 filters, 3x3x3 (stride 1), ReLu (2, 7, 7, 512) 7078400
ZeroPadding3D (0, 0), (0, 1), (0, 1) (2, 8, 8, 512) 0
MaxPooling3D 2x2x2 (1, 4, 4, 512) 0
Flatten - (8192) 0
Dense 4096 units, ReLu (4096) 33558528

Preprocessing
(Resizing)

16-frames chunk Resized 16-frames chunk Feature Extraction
(C3D)

Violent

Non-violentSVM

Classifier (SVM)

(a)

Preprocessing
(Resizing)

16-frames chunk Resized 16-frames chunk Feature Extraction
(C3D)

Violent

Non-violent

Classifier
(Fully Connected Layers)

(b)

Preprocessing
(Resizing)

16-frames chunk Resized 16-frames chunk Feature Extraction
(ConvLSTM)

Violent

Non-violent

Classifier
(Fully Connected Layers)

LSTM

(c)

FIGURE 2: The schematic of the three models proposed in this paper. All the models process sequences composed of 16 frames
(16-frames chunks) resized to 112 x 112 pixels. The first proposed model (a) uses the pre-trained C3D network as a feature
extractor and an SVM classifier to label the chunks as violent or not. The second model (b) also uses C3D as a feature extractor,
and the classifier is made of fully connected layers. The third model (c) uses a ConvLSTM layer trained from scratch, with
fully connected layers for the final classification.
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TABLE 3: The second proposed model. It is an end-to-end
model which adds two fully connected layers to C3D (until
“fc6”). C3D is not trained again, therefore the total number
of trained parameters is 2,098,177 which are the weights of
the final fully connected layers.

Layer Architecture Output Shape Params #
C3D until “fc6” (see Table 2) (4096) 61214464
Dropout 0.5 rate (4096) 0
Dense 512 units, ReLu (512) 2097664
Dropout 0.5 rate (512) 0
Dense 1 unit, Sigmoid (1) 513

TABLE 4: The third proposed model. It is an end-to-end
model based on the ConvLSTM architecture. It is trained
from scratch and the total number of trained parameters is
198,401,537.

Layer Architecture Output Shape Params #
ConvLSTM2D 64 filters, 3x3 (110, 110, 64) 154624
Dropout 0.5 rate (110, 110, 64) 0
Flatten - (774400) 0
Dense 256 units, ReLu (256) 198246656
Dropout 0.5 rate (256) 0
Dense 1 unit, Sigmoid (1) 257

classification.
With the models based on the pre-trained 2D CNNs,

the input frames were resized to 224x224 pixels instead of
112x112. In fact, most of the tested 2D CNNs uses 224x224
as the default input dimension; moreover, an input size of
112x112 led to a significantly lower accuracy with the pre-
trained 2D CNNs.

IV. EXPERIMENTAL EVALUATION
We evaluated the proposed deep-learning models by collect-
ing the classification results over the AIRTLab dataset, in
addition to the tests on the Hockey Fight and Crowd Violence
datasets. The objective is twofold: on one hand, we want to
compare the accuracy of our models in identifying violent
scenes; on the other hand, we want to create a benchmark
with baseline metrics on the proposed dataset, and validate
its design intended to check the technique robustness against

TABLE 5: The model based on pre-trained 2D CNNs and
ConvLSTM. The ConvLSTM and two fully connected layers
were added to well-defined 2D CNNs (VGG16, VGG19,
ResNet50V2, Xception, NASNet Mobile), pre-trained on
ImageNet. The 2D CNNs were time distributed in order to be
applied to a 3D input, i.e. the videos of the datasets. Note that
the number of parameters of the ConvLSTM layer depends
on the previous 2D CNN architecture.

Layer Architecture Output Shape Params #
Time Distr. 2D CNN - - -
ConvLSTM2D 64 filters, 3x3 (5, 5, 64) -
Flatten - (1600) 0
Dense 256 units, ReLu (256) 409856
Dropout 0.5 rate (256) 0
Dense 1 unit, Sigmoid (1) 257

TABLE 6: The model based on pre-trained 2D CNNs and
Bi-LSTM. The Bi-LSTM and two fully connected layers
were added to well-defined 2D CNNs (VGG16, VGG19,
ResNet50V2, Xception, NASNet Mobile), pre-trained on
ImageNet. The 2D CNNs were time distributed in order to
be applied to a 3D input, i.e. the videos of the datasets. Note
that the output shape of the time distributed flatten layer and
the number of parameters of the Bi-LSTM depend on the
previous 2D CNN architecture.

Layer Architecture Output Shape Params #
Time Distr. 2D CNN - - -
Time Distr. Flatten - - 0
Bi-LSTM 128 units (256) -
Dropout 0.5 rate (256) 0
Dense 128 units, ReLu (128) 32896
Dropout 0.5 rate (128) 0
Dense 1 units, Sigmoid (1) 129

false positives. To this end, in the following subsections we
present the experimental setup (IV-A) and the results of the
evaluation (IV-B). Of course, the obtained results present
some limitations, as explained in Subsection IV-C.

A. EXPERIMENTAL SETUP AND EVALUATION METRICS
We tested the three proposed models on the AIRTLab dataset,
by applying a stratified shuffle split cross-validation scheme.
To this end, we repeated a randomized 80-20 split 5 times,
using the 80% of the data as the training set, and the 20% as
the test set, preserving the percentage of samples from each
class, in each split. The data splits were the same for all the
tested models, to implement a fair comparison. Given that the
inputs for the models are sequences composed of 16 frames
and the clips in the dataset include a total of 3537 of such
sequences, 2829 samples (i.e. 16 frames chunks) were used
for training, and 708 for testing, in each split. The 12.5% of
the training data, i.e. the 10% of the entire dataset, was used
as validation data for the training of the two end-to-end neural
networks based on C3D and ConvLSTM. In addition, to
compare the proposed models with the literature on violence
detection presented in Section II, we used the same 80-20
stratified shuffle split cross-validation to test on the Hockey
Fight and Crowd Violence datasets. Finally, we compared
the results of the proposed models on the AIRTLab, Hockey
Fight and Crowd Violence datasets, with those obtained by
the models based on pre-trained 2D CNNs. For the tests, we
used the same 80-20 stratified shuffle split cross-validation
used to measure the performance of the proposed models.

For the two end-to-end models, we used the Adam opti-
mizer to minimize the Binary Cross-Entropy loss function
during the training of the neural networks. The number of
training epochs varied for each split, as we early stopped
the training after 5 epochs without an improvement on the
minimum validation loss, restoring the weights correspond-
ing to the best validation loss. Table 7 shows the number of
training epochs in each split, for each neural network, on
the AIRTLab dataset. The mean number of training epochs
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FIGURE 3: The schematic representation of the 2D CNN-based models, developed to compare the proposed models against
the performance of well-established pre-trained 2D CNNs, such as VGG16, VGG19, and ResNet50. To apply the 2D CNNs to
videos, they were time-distributed on the 16-frames chunks used as input and combined to recurrent layers (ConvLSTM and
Bidirectional-LSTM (Bi-LSTM).

TABLE 7: Number of training epochs in each split (S1-S5)
of the AIRTLab dataset for the two end-to-end model i.e.
C3D with two fully connected layers (C3D + FC) and the
ConvLSTM-based architecture.

S1 S2 S3 S4 S5 Mean
C3D + FC 19 26 21 30 21 23.40 ± 4.03

ConvLSTM 10 8 6 15 8 9.40 ± 3.07

was 23.4 (± 4.03) for the model based on C3D and the fully
connected layers, and 9.4 (± 3.07) for the ConvLSTM-based
networks. The batch size was 32 samples for the C3D-based
model, and 8 for the ConvLSTM-based model.

As highlighted in the Introduction section, two Jupyter
notebooks with the described experiments are available in
a GitHub public repository, in order to guarantee the repro-
ducibility of the tests. The tests ran on Google Colab with
the GPU runtime, using Keras 2.4.3, TensorFlow 2.4.1, and
scikit-learn 0.22.2.post1.

Labeling as 0 (negative) the 16-frames chunks of the non-
violent clips and as 1 (positive) the chunks of the violent
clips, we computed the following metrics over the test set
in each split of the stratified shuffle split cross validation
scheme:

• sensitivity (True Positive Rate – TPR), i.e. the portion
of positives that are correctly identified (over all the
available positives);

• specificity (True Negative Rate – TNR), i.e. the portion
of negatives that are correctly identified (over all the
available negatives);

• accuracy, i.e. the portion of samples that are correctly
identified (over all the available samples);

• F1 score, i.e. the armonic mean of precision (the ratio
between the positives correctly identified and all the
identified positives) and sensitivity.

These metrics can be formulated in terms of true positives
(TP), true negatives (TN), false positives (FP), and false

negatives (FN) according to the following equations:

sensitivity =
TP

TP + FN
(1)

specificity =
TN

TN + FP
(2)

accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1 score =
TP

TP + 1
2 (FP + FN)

(4)

Moreover, in each split, we computed the Receiver Operating
Characteristic (ROC) curve and the Area Under the Curve
(AUC), showing the TPR against the False Positive Rate
(FPR = 1 - TNR) when the classification threshold varies, to
understand the diagnostic capability of each model. Finally,
for each end-to-end model (i.e. all the models but the C3D +
SVM model), we also report the value of the Binary Cross-
Entropy loss function computed on the test set.

B. RESULTS AND DISCUSSION
We discuss in this subsection the metrics got by the three
proposed models on the AIRTLab dataset as well as on
the Hockey Fight and Crowd Violence datasets (to compare
against the existing literature). Finally, in the last part of this
Subsection, we present the results got by the pre-trained 2D
CNNs on the datasets, in order to highlight the significance
of the three proposed models.

1) Tests on the AIRTLab dataset
For each of the proposed models we report the results ob-
tained on each split of the AIRTLab dataset in Tables 8, 9,
and 10, in addition to the average computed for all the metrics
(Table 11). The results on each split allow to understand to
which extent the model is stable and independent from a
particular split of the data.

Table 8 shows the metrics computed on the AIRTLab
dataset for the model composed of C3D and the SVM
classifier, in each of the splits of the stratified shuffle split
cross-validation scheme. The specificity is lower than the
sensitivity in each split, ranging from 92.24% in the second
split to 96.12% in the third split. These results confirm that
most of the errors are in the non-violent class, with the
classifier giving some false positives in output. For example,
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TABLE 8: The results of the model composed of C3D and
the SVM, computed for each split of the stratified shuffle-
split cross validation scheme, on the AIRTLab dataset.

Split 1 Split 2 Split 3 Split 4 Split 5
Sensitivity 97.90% 97.06% 97.90% 95.80% 96.64%
Specificity 93.53% 92.24% 96.12% 95.69% 93.10%
Accuracy 96.47% 95.48% 97.32% 95.76% 95.48%
F1 score 97.39% 96.65% 98.00% 96.82% 96.64%

AUC 99.44% 98.89% 99.46% 99.45% 99.15%

TABLE 9: The results of the model composed of C3D and the
fully connected layers for classification, computed for each
split of the stratified shuffle-split cross validation scheme, on
the AIRTLab dataset.

Split 1 Split 2 Split 3 Split 4 Split 5
Loss 0.1471 0.0996 0.1135 0.1358 0.1113

Sensitivity 97.90% 98.32% 97.27% 98.74% 96.85%
Specificity 89.66% 92.24% 92.24% 87.93% 93.53%
Accuracy 95.20% 96.33% 95.62% 95.20% 95.76%
F1 score 96.48% 97.30% 96.76% 96.51% 96.85%

AUC 98.32% 99.21% 99.05% 98.98% 99.08%

in the second split, there are 18 false positives, with 214
out of 232 non-violent 16-frames chunks correctly classified
as non-violent. Instead, in the same split, 462 over 476
violent chunks are correctly labeled as violent, with only 14
false negatives. Of course, these results might be partially
affected by the fact that the two classes are unbalanced in the
AIRTLab dataset. The accuracy is in line with our previous
work, getting a 97.32% in the best split.

Table 9 lists the results on the AIRTLab dataset got by
the model composed of C3D and two fully connected layers.
The trend in the metrics is similar to the model which uses
C3D and the SVM classifier. However, with C3D and the
fully connected layers, the difference between the sensitivity
and the specificity is higher than the previous model. For
example, in the fourth split, which has the highest difference
(98.74% sensitivity, 87.93% specificity), 204 non-violent
chunks are correctly classified, while there are 28 false pos-
itives. Instead, 470 violent chunks out of 476 are correctly
classified. A significant difference between sensitivity and
specificity is visible also in the other splits of the cross-
validation scheme. In fact, the AUC of this model is slightly
lower than the model based on C3D and the SVM classifier.
Moreover, split 1 and split 4 present the highest number of
false positives and the lowest accuracy as confirmed by the
loss value, greater than the other splits.

Table 10 shows the results achieved by the ConvLSTM-
based model on the AIRTLab dataset. The difference be-
tween sensitivity and specificity depends much more on
the data split than the previous two models, showing that
the ConvLSTM might have too many parameters given the
amount of training data. In fact, in the first two splits, this
difference is significant, being around 6% and 9%. Instead,
in the third, fourth and fifth splits, sensitivity and specificity
are much more closer, and the model seems robust to false
positives and false negatives as well. The loss values on

TABLE 10: The results of the model based on the Con-
vLSTM architecture, computed for each split of the strati-
fied shuffle-split cross validation scheme, on the AIRTLab
dataset.

Split 1 Split 2 Split 3 Split 4 Split 5
Loss 0.1041 0.1004 0.0511 0.0759 0.0576

Sensitivity 97.48% 99.58% 98.53% 97.90% 97.90%
Specificity 91.38% 90.09% 97.41% 97.84% 97.41%
Accuracy 95.48% 96.47% 98.16% 97.88% 97.74%
F1 score 96.67% 97.43% 98.63% 98.42% 98.31%

AUC 99.40% 99.47% 99.83% 99.77% 99.83%

the test set are slightly lower than those obtained by the
model composed of C3D and the fully connected layers,
highlighting that the ConvLSTM tends to adapt to the dataset
(in fact, the model is trained from scratch).

The results on the AIRTLab dataset are summarized in
Table 11, which includes a comparison of the three models,
showing the mean and the population standard deviation of
the sensitivity, specificity, accuracy, F1 score, and AUC, in
addition to the loss for the two end-to-end models. In terms
of accuracy, F1 score, and AUC the model based on the Con-
vLSTM is slightly better than the others, with 97.15% and
97.89% respectively. However, it is worth noting that this is
the only model trained from scratch on the AIRTLab dataset
and, therefore, it might overfit on the dataset, even if the val-
idation split and the early stopping should limit overfitting.
This is confirmed also by the lowest loss on the test set. The
other two models exhibit a slightly lower accuracy, but, being
based on a transfer learning methodology, their results can
be interpreted as more general. The model composed of C3D
and SVM is the one with the lowest difference between the
sensitivity (97.06%) and specificity (94.14%), showing stable
results both with violent and non-violent videos. The model
composed of C3D and the fully connected layers exhibits the
lowest metrics (only the sensitivity is slightly better than the
SVM classifier). Nevertheless, the three models show similar
diagnostic capability on identifying the violent videos, with
very similar ROC curves and AUC, as highlighted in Fig. 4.
The sensitivity is greater than the specificity for all the three
models, validating the purpose of the proposed dataset. In
fact, the non-violent videos contain fast movements and
contacts between the subject with the objective of testing the
robustness of violence detection techniques, while preserving
the capability of identifying violent scenes.

2) Tests on the Hockey Fight and Crowd Violence datasets
To compare the proposed models to those available in litera-
ture and described in Section II, we carried out the tests also
on the Hockey Fight and Crowd Violence datasets. To this
end, Table 12 lists the mean results got by the three models
on the Hockey Fight dataset, while Table 13 includes the
results on the Crowd Violence dataset. The model based on
C3D and SVM confirms the good performance showed in our
previous work: the accuracy is around 98% on the Hockey
Fight dataset and above 99% on the Crowd Violence. The
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TABLE 11: The mean values of the metrics computed on the AIRTLab dataset over the five splits of the stratified shuffle split,
for each of the proposed models.

Loss Sensitivity Specificity Accuracy F1 score AUC
C3D + SVM - 97.06 ± 0.80% 94.14 ± 1.51% 96.10 ± 0.71% 97.10 ± 0.53% 99.30 ± 0.23%
C3D + FC 0.1215 ± 0.0174 97.82 ± 0.69% 91.12 ± 2.03% 95.62 ± 0.42% 96.78 ± 0.30% 98.94 ± 0.31%

ConvLSTM 0.0779 ± 0.0215 98.28 ± 0.73% 94.83 ± 3.37% 97.15 ± 1.02% 97.89 ± 0.74% 99.67 ± 0.19%
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FIGURE 4: ROC curve and AUC for the C3D + SVM (a), the C3D + FC (b) and the ConvLSTM (c) models, on the AIRTLab
dataset.

end-to-end model composed by C3D and two fully connected
layers scores similar results: the accuracy is almost 97%
on the Hockey Fight, and 99% on the Crowd Violence. In
fact, the Crowd Violence is the smallest tested dataset: it
includes 1265 16-frames chunks, while the Hockey Fight
and the AIRTLab include 2007 and 3537 chunks respec-
tively. Therefore, despite the 80-20 stratified shuffle split
strategy, the models might overfit on the Crowd Violence.
The ConvLSTM-based model behaves similarly to the other
models on the Hockey Fight dataset, getting a 96.57% mean
accuracy. However, on the Crowd Violence, the accuracy
of the ConvLSTM-based models drops to 84.19%. Such
model has more than 198 million of parameters, and might
be too complex to converge to a relatively small dataset as
the Crowd Violence, as also highlighted by the loss value
computed on the test set, which is significantly greater than
the loss of the model composed of C3D and fully connected
layers. Moreover, most of the errors of the ConvLSTM are
false positives: on the Crowd Violence, the mean specificity
is 69.16% while the mean sensitivity is 95.21%. In fact,
the videos of the Crowd Violence are quite similar on the
two classes and, due to the smaller number of samples, the
ConvLSTM struggles to converge.

Therefore, on the Hockey Fight and Crowd Violence
datasets, the model based on C3D and SVM gets the best
performance. Moreover, the two C3D-based models demon-
strated able to perform the classification on different datasets,
confirming the generalization capability of transfer learning
methodologies. The detailed results on the Hockey Fight
and Crowd Violence are available in Appendix A and Ap-

pendix B respectively, including the metrics on each split of
the datasets.

The experimental results collected on the Hockey Fight
and Crowd Violence datasets allow comparing our models
with the related research works described in Section II. To
this end, we reported their accuracy in Table 1. While the
trained-from-scratch 3D CNNs proposed by Song et al. [21]
and Li et al. [24] achieved a very good accuracy on the
Hockey Fight dataset (99.6% and 98.3% respectively), they
got lower results on the Crowd Violence dataset (94.3% and
97.2%). Instead, our model based on transfer learning with
C3D combined with the SVM gets an excellent accuracy
performance on both datasets, with 97.9% on the Hockey
Fight and 99.6% on the Crowd Violence, confirming the
results of our previous work [11]. The other proposed model
based on C3D also has good results on both datasets, with
96.7% on the Hockey Fight and 99% on the Crowd Violence.
However, the 3D CNN model proposed by Li et al. has fewer
parameters than the C3D model we used and, therefore, it
requires lower computational resources to detect violence in
videos. Similarly to our work, Ullah et al. [8] proposed to
use transfer learning with C3D, but they use the output of the
second fully connected layer (“fc7”) as a feature descriptor
instead of the first (“fc6”) as we did in our work. In fact,
their accuracy (96% on Hockey Fight and 98% on Crowd
Violence) is slightly lower than the one got by our models
based on C3D. Furthermore, our model based on C3D and
SVM is more balanced on both datasets than multi-stream
networks, such as the one proposed by Sudhakaran and
Lanz [23] which uses pre-trained 2D CNNs (AlexNet [37])
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TABLE 12: The mean values of the metrics computed on the Hockey Fight dataset over the five splits of the stratified shuffle
split, for each of the proposed models.

Loss Sensitivity Specificity Accuracy F1 score AUC
C3D + SVM - 97.82 ± 0.80% 97.90 ± 1.24% 97.86 ± 0.56% 97.87 ± 0.55% 99.62 ± 0.30%
C3D + FC 0.1276 ± 0.0662 96.93 ± 1.75% 96.40 ± 0.97% 96.67 ± 1.15% 96.69 ± 1.16% 99.27 ± 0.40%

ConvLSTM 0.1492 ± 0.0839 96.44 ± 1.19% 96.70 ± 1.54% 96.57 ± 0.79% 96.58 ± 0.78% 99.31 ± 0.32%

TABLE 13: The mean values of the metrics computed on the Crowd Violence dataset over the five splits of the stratified shuffle
split, for each of the proposed models.

Loss Sensitivity Specificity Accuracy F1 score AUC
C3D + SVM - 100.00 ± 0.00% 99.07 ± 1.18% 99.60 ± 0.50% 99.66 ± 0.43% 100.00 ± 0.01%
C3D + FC 0.0356 ± 0.0323 99.59 ± 0.55% 98.32 ± 0.70% 99.05 ± 0.54% 99.18 ± 0.46% 99.94 ± 0.11%

ConvLSTM 0.3535 ± 0.0726 95.21 ± 1.37% 69.16 ± 15.15% 84.19 ± 5.95% 87.63 ± 3.89% 94.43 ± 2.15%

to process the videos frame by frame and than a ConvLSTM
trained from scratch to detect violence in the sequence of
frames. In fact, they scored 97.1% accuracy on the Hockey
Fight dataset, and 94.5% on the Crowd Violence dataset.
Moreover, the multi-stream network based on the pre-trained
VGG13 and the ConvLSTM proposed by Hanson et al. [27]
scores similarly to our models on the Hockey Fight (98.1%
accuracy), but it is still far from our results on the Crowd
Violence dataset (96.3%).

Therefore, our models confirm the effectiveness of trans-
fer learning-based architectures for violence detection, even
when compared to the existing literature.

3) Comparison with models based on pre-trained 2D CNNs
To demonstrate the effectiveness of the three models pro-
posed in this paper, we compare their performance with the
metrics obtained by five well-established 2D CNNs, pre-
trained on ImageNet and combined with a recurrent layer
for feature extraction. The pre-trained 2D CNNs are VGG16,
VGG19, ResNet50V2, Xception, and NASNet Mobile. As
explained in Subsection III-C, we built five models by com-
bining these 2D CNNs with a Bi-LSTM layer (and two fully
connected layers for the final classification) and other five
models by combining the 2D CNNs with a ConvLSTM layer
(and two fully connected layers for the final classification).
Therefore, in addition to our three models, we tested other ten
models on the AIRTLab, Hockey Fight, and Crowd Violence
datasets.

Table 14 includes the mean values of the metrics computed
for the models composed of the 2D CNNs and the Bi-LSTM
layer, tested on the AIRTLab dataset; instead, Table 15 lists
the metrics for the models composed of the 2D CNNs and
the ConvLSTM layer. Among the models based on the 2D
CNNs, those using VGG16 get the best accuracy: VGG16
and the ConvLSTM has a mean accuracy of 95.62% (±
0.56%) whereas VGG16 and the Bi-LSTM gets 94.92%
(± 0.51%). However, none of the 2D CNN-based models
performs better than the models proposed in this paper, on the
AIRTLab dataset. In fact, both the C3D plus SVM model and
the ConvLSTM-based model get better accuracy, F1 score,
and AUC than all the 2D CNN-based models. The model
composed of C3D and fully connected layers also has the

same accuracy as VGG16 and the ConvLSTM.
Among the other 2D CNN-based models, the one using

ResNet50V2 completely fails the training on the AIRTLab
dataset, as highlighted by the high loss value (0.63). In
fact, the model wrongly classifies all the negative samples,
labeling them as positive, as the specificity is equal to 0 in
all the splits of the stratified shuffle split cross-validation
scheme. The specificity is lower than the sensitivity for all the
2D CNNs, meaning that most of the errors are false positives.

Table 16 and Table 17 list the results of the 2D CNNs
with the Bi-LSTM layer and the 2D CNNs with the Con-
vLSTM layer on the Hockey Fight Dataset. Among the 2D
CNNs, VGG16 with the ConvLSTM layer gets the best
accuracy (97.31% ± 0.40%), followed by VGG19 with
the ConvLSTM layer (96.36% ± 1.39%) and VGG16 with
the Bi-LSTM layer (95.47% ± 1.17%). However, as hap-
pened on the AIRTLab dataset, the model composed of
C3D and the SVM classifier has the highest accuracy. The
model composed of C3D and fully connected layers and the
ConvLSTM-based model get a slightly lower accuracy than
VGG16 plus the ConvLSTM layer, but they perform better
than any other tested 2D CNN).

ResNet50V2 gets bad results also on the Hockey Fight
dataset, with an accuracy similar to a random classifier
when combined with the Bi-LSTM, increasing up to 77.91%
when combined with the ConvLSTM. The models based on
VGG16 and VGG19 score a specificity lower the sensitivity
(with more false positives than false negatives). Instead, the
models based on Xception and NASNet Mobile have similar
sensitivity and specificity on the Hockey Fight, even if they
are in general worse classifier, in terms of accuracy, F1 score,
and AUC than the VGG-based models.

Table 18 and Table 19 list the results of the 2D CNN
models with the Bi-LSTM and the ConvLSTM on the Crowd
Violence dataset. The models based on VGG16 and VGG19
get a significantly better accuracy than the other 2D CNNs.
The best model is the one based on VGG19 and the Con-
vLSTM layer, with an accuracy equal to 98.74% (± 0.81%).
However, our models based on C3D behaved, as classifiers,
better than all the 2D CNNs, getting a better accuracy, F1

score, and AUC on the Crowd Violence dataset. Only the
ConvLSTM-based model struggled to train on such dataset,
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TABLE 14: The mean values of the metrics computed on the AIRTLab dataset over the five splits of the stratified shuffle split,
for the models composed of pre-trained 2D CNNs and the Bi-LSTM for the feature extraction.

Loss Sensitivity Specificity Accuracy F1 score AUC
VGG16 + Bi-LSTM 0.1314 ± 0.0142 96.93 ± 0.90% 90.78 ± 2.34% 94.92 ± 0.51% 96.25 ± 0.36% 98.91 ± 0.19%
VGG19 + Bi-LSTM 0.3554 ± 0.0910 94.03 ± 3.30% 71.63 ± 15.52% 86.69 ± 6.07% 90.57 ± 3.97% 92.12 ± 3.44%

ResNet50V2 + Bi-LSTM 0.6331 ± 0.0006 100.00 ± 0.00% 0.00 ± 0.00% 67.23 ± 0.00% 80.41 ± 0.00% 51.07 ± 1.67%
Xception + Bi-LSTM 0.6298 ± 0.0034 100.00 ± 0.00% 0.00 ± 0.00% 67.23 ± 0.00% 80.41 ± 0.00% 55.47 ± 4.11%
NASNet + Bi-LSTM 0.3776 ± 0.0461 91.85 ± 3.27% 64.48 ± 17.73% 82.88 ± 3.92% 87.93 ± 2.11% 90.41 ± 2.42%

TABLE 15: The mean values of the metrics computed on the AIRTLab dataset over the five splits of the stratified shuffle split,
for the models composed of pre-trained 2D CNNs and the ConvLSTM for the feature extraction.

Loss Sensitivity Specificity Accuracy F1 score AUC
VGG16 + ConvLSTM 0.1169 ± 0.0201 97.48 ± 1.09% 91.81 ± 3.17% 95.62 ± 0.56% 96.77 ± 3.88% 99.11 ± 0.24%
VGG19 + ConvLSTM 0.1105 ± 0.0221 96.63 ± 1.39% 93.01 ± 2.01% 95.45 ± 0.85% 96.62 ± 2.01% 99.14 ± 0.27%

ResNet50V2 + ConvLSTM 0.6331 ± 0.0006 100.00 ± 0.00% 0.00 ± 0.00% 67.23 ± 0.00% 80.41 ± 0.00% 51.07 ± 1.67%
Xception + ConvLSTM 0.2450 ± 0.0344 95.13 ± 2.27% 80.17 ± 2.68% 90.23 ± 1.92% 92.89 ± 1.44% 95.61 ± 1.10%
NASNet + ConvLSTM 0.2972 ± 0.0192 91.93 ± 3.62% 79.05 ± 7.63% 87.71 ± 1.17% 90.95 ± 0.91% 94.77 ± 0.48%

TABLE 16: The mean values of the metrics computed on the Hockey Fight dataset over the five splits of the stratified shuffle
split, for the models composed of pre-trained 2D CNNs and the Bi-LSTM for the feature extraction.

Loss Sensitivity Specificity Accuracy F1 score AUC
VGG16 + Bi-LSTM 0.1389 ± 0.0280 96.63 ± 0.73% 94.30 ± 2.06% 95.47 ± 1.17% 95.55 ± 1.11% 98.75 ± 0.49%
VGG19 + Bi-LSTM 0.1538 ± 0.0398 95.05 ± 1.66% 94.90 ± 3.10% 94.98 ± 1.80% 95.02 ± 1.73% 98.42 ± 0.74%

ResNet50V2 + Bi-LSTM 0.6906 ± 0.0061 46.93 ± 45.07% 59.40 ± 48.51% 53.13 ± 6.27% 36.95 ± 30.40% 53.45 ± 7.12%
Xception + Bi-LSTM 0.3767 ± 0.0456 86.14 ± 7.61% 87.50 ± 5.27% 86.82 ± 3.08% 86.65 ± 3.66% 92.51 ± 1.75%
NASNet + Bi-LSTM 0.3336 ± 0.0355 86.93 ± 3.71% 87.60 ± 3.87% 87.26 ± 1.69% 87.27 ± 1.77% 93.33 ± 1.26%

TABLE 17: The mean values of the metrics computed on the Hockey Fight dataset over the five splits of the stratified shuffle
split, for the models composed of pre-trained 2D CNNs and the ConvLSTM for the feature extraction.

Loss Sensitivity Specificity Accuracy F1 score AUC
VGG16 + ConvLSTM 0.0965 ± 0.0290 98.12 ± 1.58% 96.51 ± 1.14% 97.31 ± 0.40% 97.34 ± 0.42% 99.63 ± 0.15%
VGG19 + ConvLSTM 0.1129 ± 0.0337 97.82 ± 1.61% 94.90 ± 2.20% 96.36 ± 1.39% 96.44 ± 1.35% 99.50 ± 0.32%

ResNet50V2 + ConvLSTM 0.5925 ± 0.0348 76.93 ± 14.95% 78.90 ± 10.33% 77.91 ± 3.55% 77.11 ± 5.96% 86.78 ± 1.22%
Xception + ConvLSTM 0.2491 ± 0.0244 92.47 ± 2.45% 92.70 ± 1.21% 92.59 ± 1.02% 92.60 ± 1.11% 96.01 ± 0.80%
NASNet + ConvLSTM 0.2787 ± 0.0615 91.58 ± 1.63% 91.00 ± 3.00% 91.29 ± 1.63% 91.33 ± 1.74% 96.21 ± 0.77%

with an accuracy similar to the one obtained by Xception and
NASNet Mobile with the ConvLSTM layer.

The model based on ResNet50V2 failed to learn the clas-
sification task also on the Crowd Violence dataset, getting
the highest loss value and failing to correctly identifying the
negative samples.

To summarize, among the pre-trained 2D CNNs tested in
this paper, VGG16 and VGG19 get the best results on all
the datasets, specifically when combined with a ConvLSTM
layer. Xception and NASNet Mobile got significantly lower
results, while ResNet50V2 had a very poor performance. In
general, the 2D CNNs with the ConvLSTM obtain slightly
better results than the 2D CNNs with the Bi-LSTM layer.
Comparing the 2D CNN-based models with the models
available in the literature and listed in Table 1, the effective-
ness of transfer learning in the task of violence detection is
confirmed. For example, the model combining VGG19 and
ConvLSTM scores slightly better than the model proposed
by Ullah et al. [8]. However, the models originally proposed
in this paper get better results on the AIRTLab dataset, where
the worst proposed model (C3D and the fully connected
layers) gets the same accuracy of the best 2D CNN-based
models; the two C3D-based proposed models get better per-

formance than the 2D CNNs on the Crowd Violence; finally,
the model based on C3D and the SVM classifier has the
best accuracy on the Hockey Fight dataset; the ConvLSTM-
based model, and the model composed of C3D and the fully
connected layers get better accuracy than nine 2D CNNs-
based models out of ten.

C. LIMITATIONS
The results of the research described in this paper are promis-
ing, but include some limitations. Concerning the proposed
dataset, the videos were recorded by non-professional actors
and, therefore, do not include real violence. For this reason,
whilst the metrics computed for the proposed deep learning-
based models are promising, the results cannot be considered
general. Nevertheless, the proposed models were validated
on the real videos of the Hockey Fight and Crowd Violence
datasets, in addition to being rooted in action recognition and
violence detection literature.

Concerning the presented results, we built our model on
the results of our previous work as well on the research
related to violence detection, as explained in the Related
Works section. However, a systematic study on alternative
hyperparameters and models as well as a comparison on more
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TABLE 18: The mean values of the metrics computed on the Crowd Violence dataset over the five splits of the stratified shuffle
split, for the models composed of pre-trained 2D CNNs and the Bi-LSTM for the feature extraction.

Loss Sensitivity Specificity Accuracy F1 score AUC
VGG16 + Bi-LSTM 0.0703 ± 0.0185 99.58 ± 0.82% 94.39 ± 3.30% 97.39 ± 1.02% 97.79 ± 0.84% 99.84 ± 0.10%
VGG19 + Bi-LSTM 0.0817 ± 0.0193 97.53 ± 0.93% 96.07 ± 1.91% 96.92 ± 1.13% 97.34 ± 0.97% 99.61 ± 0.19%

ResNet50V2 + Bi-LSTM 0.6817 ± 0.0006 100.00 ± 0.00% 0.00 ± 0.00% 57.71 ± 0.00% 73.18 ± 0.00% 51.27 ± 2.02%
Xception + Bi-LSTM 0.5838 ± 0.0384 82.47 ± 6.32% 58.88 ± 12.23% 72.49 ± 3.76% 77.56 ± 2.87% 78.36 ± 2.66%
NASNet + Bi-LSTM 0.4427 ± 0.0489 89.32 ± 4.32% 66.17 ± 8.39% 79.53 ± 3.72% 83.45 ± 2.92% 86.72 ± 3.42%

TABLE 19: The mean values of the metrics computed on the Crowd Violence dataset over the five splits of the stratified shuffle
split, for the models composed of pre-trained 2D CNNs and the ConvLSTM for the feature extraction.

Loss Sensitivity Specificity Accuracy F1 score AUC
VGG16 + ConvLSTM 0.0781 ± 0.0265 97.26 ± 1.44% 96.64 ± 3.95% 97.00 ± 0.96% 97.41 ± 0.76% 99.80 ± 0.16%
VGG19 + ConvLSTM 0.0434 ± 0.0214 98.63 ± 1.06% 98.88 ± 1.50% 98.74 ± 0.81% 98.90 ± 0.70% 99.93 ± 0.05%

ResNet50V2 + ConvLSTM 0.5634 ± 0.0714 92.33 ± 6.36% 44.85 ± 26.35% 72.25 ± 8.44% 79.69 ± 4.20% 76.93 ± 14.14%
Xception + ConvLSTM 0.3691 ± 0.0742 89.45 ± 5.81% 82.05 ± 3.26% 86.32 ± 3.77% 88.23 ± 3.45% 93.19 ± 2.96%
NASNet + ConvLSTM 0.3961 ± 0.0640 90.27 ± 3.61% 82.05 ± 4.24% 86.80 ± 1.57% 88.73 ± 1.46% 93.99 ± 1.70%

datasets should be performed to get more general results, and
therefore fully validate our methods.

Moreover, we tested our model on sequences composed of
16 frames taken from short video clips (the average length of
a clip from the AIRTLab dataset is 5.6 seconds). In fact, most
of the literature is based on tests with short video. However,
the accuracy on full length, real videos should be evaluated
before going into production. Evaluating short sequences of
frames taken from long videos might result in too many
false positives, interfering in practical uses of the proposed
techniques. Therefore, in order to maximize the accuracy on
full length videos, results on the sub-sequences of frames
should be merged together. In this regard, a simple strategy
might be to label a part of a long video as positive only when
a fixed number of consecutive 16-frames sub-sequences are
labeled as positive.

V. CONCLUSIONS
We presented the architecture of three deep learning-based
models for violence detection in videos: we tested them on
the clips of the novel AIRTLab dataset, specifically designed
to check the robustness against false positives, as well as
on the Hockey Fight and Crowd Violence datasets, tradi-
tionally used in literature to benchmark violence detection
techniques. The experiments presented in this paper allow
drawing two main conclusions:

• the proposed transfer learning-based models (C3D com-
bined with an SVM classifier and C3D combined with
new fully connected layers) get stable accuracy results
on all the three tested dataset, being better, in many
cases, than the related works tested on the Hockey
Fight and Crowd Violence. This suggests to persist with
transfer learning-based models for the task of violence
detection;

• our models based on 3D CNNs perform better than
well-known 2D CNNs pre-trained on ImageNet and
combined with a recurrent module to extract the spatio-
temporal features of the videos in the datasets, suggest-
ing continuing the research about 3D architectures for

violence detection.
Moreover, all the proposed models demonstrated more

capable of identifying violent videos than non-violent, given
that most of the errors are false positives. Whilst this be-
haviour is partially affected by the fact that the samples from
the two classes are unbalanced, it also validates the design of
the AIRTLab dataset in checking the robustness against false
positives.

In addition to dealing with the limitations of the described
research, future works will address a deeper comparison
between transfer learning-based models and trained from
scratch models for violence detection, both on the AIRTLab
dataset and on the other datasets available in scientific litera-
ture.

APPENDIX A. RESULTS ON THE HOCKEY FIGHT
DATASET
To test the proposed models on the clips of the Hockey Fight
dataset, we followed the same experimental protocol applied
on the AIRTLab dataset. Therefore, we applied a stratified
shuffle split cross-validation scheme, randomizing a 80-20
split 5 times, with 80% of the data serving as the training
set and 20% of the data serving as the test set. With the two
end-to-end models, 12.5% of the training data was used as the
validation set. The 1000 videos of the Hockey Fight dataset
include 2007 16-frames chunks in total.

Table 20 lists the number of training epochs in each split
of the data, for each end-to-end model. While the mean
number of epochs is 13.2 for both models, the one based on
C3D varied the number of training epochs in each split more
significantly (standard deviation 6.18) than the ConvLSTM
model (standard deviation 2.48). The batch size was 32 for
the C3D model and 8 for the ConvLSTM model.

Table 21 includes the results obtained by the model com-
posed of C3D and the SVM classifier in each split of the
Hockey Fight dataset. The classifier is independent from the
specific data split, as the results are similar across all the
splits. With this dataset, the specificity is usually similar
or higher than the sensitivity (except in split number 5).
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TABLE 20: Number of training epochs in each split (S1-
S5) for the two end-to-end models i.e. C3D with two fully
connected layers (C3D + FC) and the ConvLSTM-based
architecture on the Hockey Fight dataset

S1 S2 S3 S4 S5 Mean
C3D + FC 7 16 24 9 10 13.20 ± 6.18

ConvLSTM 12 12 13 18 11 13.20 ± 2.48

TABLE 21: The results of the model composed of C3D and
the SVM, computed for each split of the stratified shuffle-
split cross validation scheme on the Hockey Fight dataset.

Split 1 Split 2 Split 3 Split 4 Split 5
Sensitivity 97.03% 97.03% 97.52% 98.51% 99.01%
Specificity 97.50% 99.50% 97.50% 99.00% 96.00%
Accuracy 97.26% 98.26% 97.51% 98.76% 97.51%
F1 score 97.27% 98.25% 97.52% 98.76% 97.56%

AUC 99.01% 99.82% 99.62% 99.80% 99.78%

In fact, differently from the AIRTLab dataset, the Hockey
Fight dataset is not tailored to specifically challenge the
violence detection in labeling as non-violent rapid moves and
behaviors which might resemble violent. However, in split 5,
8 out of 10 classification errors are false positives, with the 8
non-violent 16-frames chunks labeled as violent.

Table 22 shows the metrics computed for the C3D-based
end-to-end model on the splits of the Hockey Fight dataset.
The results are similar to those obtained with the model
based on C3D and SVM. Sensitivity and specificity are
similar across all the splits, even if, in most of the splits, the
specificity is slightly lower, highlighting a greater number of
false positives.

Table 23 lists the results of the end-to-end model based
on the ConvLSTM architecture, on the splits of the Hockey
Fight dataset. The ConvLSTM-based network obtains a
slightly lower sensitivity than the previous two models. Such
model might be too complex to train from scratch on the
1405 16-frames chunks used as training data, being unable
to correctly identify the violent samples. As the previous
two models, the ConvLSTM architecture does not highlight
a significant difference between false positives and false
negatives, in terms of classification errors.

TABLE 22: The results of the model composed of C3D
and the fully connected layers for classification, computed
for each split of the stratified shuffle-split cross validation
scheme on the Hockey Fight dataset.

Split 1 Split 2 Split 3 Split 4 Split 5
Loss 0.2556 0.0972 0.0675 0.1217 0.0961

Sensitivity 95.54% 98.02% 99.50% 97.03% 94.55%
Specificity 95.00% 97.50% 97.00% 95.50% 97.00%
Accuracy 95.27% 97.76% 98.26% 96.27% 95.77%
F1 score 95.31% 97.78% 98.29% 96.31% 95.74%

AUC 98.59% 99.29% 99.72% 99.09% 99.60%

TABLE 23: The results of the model based on the ConvL-
STM architecture, computed for each split of the stratified
shuffle-split cross validation scheme on the Hockey Fight
dataset.

Split 1 Split 2 Split 3 Split 4 Split 5
Loss 0.3141 0.0886 0.0944 0.1177 0.1311

Sensitivity 95.54% 95.54% 97.03% 98.51% 95.54%
Specificity 96.00% 99.00% 98.00% 95.00% 95.50%
Accuracy 95.77% 97.26% 97.51% 96.77% 95.52%
F1 score 95.78% 97.23% 97.51% 96.84% 95.54%

AUC 98.68% 99.52% 99.43% 99.42% 99.03%

TABLE 24: Number of training epochs in each split (S1-
S5) for the two end-to-end models i.e. C3D with two fully
connected layers (C3D + FC) and the ConvLSTM-based
architecture on the Crowd Violence dataset.

S1 S2 S3 S4 S5 Mean
C3D + FC 8 8 8 15 14 10.60 ± 3.20

ConvLSTM 8 8 13 12 8 9.80 ± 2.23

APPENDIX B. RESULTS ON THE CROWD VIOLENCE
DATASET
To test the proposed models on the clips of the Crowd
Violence dataset, we followed the same experimental pro-
tocol applied on the AIRTLab and Hockey Fight datasets:
we applied a stratified shuffle split cross-validation scheme,
randomizing a 80-20 split 5 times, with 80% of the data
serving as the training set and 20% of the data serving as
the test set. With the two end-to-end models, 12.5% of the
training data was used as the validation set. The Crowd
Violence dataset includes a total of 1265 16-frames chunks.

Table 24 includes the number of training epochs in each
split of the data, for each end-to-end model. The model based
on C3D exhibits the lowest mean number of training epochs
of all the datasets: 10.6 (± 3.2). In fact, the Crowd Violence
dataset has the lowest number of samples, which results in
a faster convergence of the neural network on the training
set. The mean number of training epochs for the ConvLSTM-
based model is 9.8 (± 2.23). The batch size was 32 for the
C3D model and 8 for the ConvLSTM model.

Table 25 shows the results obtained by the model com-
posed of C3D and SVM on the Crowd Violence dataset.
Due to the low number of samples, the architecture performs
extremely well in terms of accuracy. All the few classification
errors are false positives. Specifically, 2 chunks in split 2 and
3 chunks in split 5 were wrongly identified as violent.

Table 26 lists the results got on the Crowd Violence dataset

TABLE 25: The results of the model composed of C3D and
the SVM, computed for each split of the stratified shuffle-
split cross validation scheme on the Crowd Violence dataset.

Split 1 Split 2 Split 3 Split 4 Split 5
Sensitivity 100.00% 100.00% 100.00% 100.00% 100.00%
Specificity 100.00% 98.13% 100.00% 100.00% 97.20%
Accuracy 100.00% 99.21% 100.00% 100.00% 98.81%
F1 score 100.00% 99.32% 100.00% 100.00% 98.98%

AUC 100.00% 99.98% 100.00% 100.00% 100.00%
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TABLE 26: The results of the model composed of C3D
and the fully connected layers for classification, computed
for each split of the stratified shuffle-split cross validation
scheme on the Crowd Violence dataset.

Split 1 Split 2 Split 3 Split 4 Split 5
Loss 0.0909 0.0161 0.0535 0.0107 0.0070

Sensitivity 99.32% 100.00% 98.63% 100.00% 100.00%
Specificity 97.20% 98.13% 98.13% 99.07% 99.07%
Accuracy 98.42% 99.21% 98.42% 99.60% 99.60%
F1 score 98.64% 99.32% 98.63% 99.66% 99.66%

AUC 99.72% 99.98% 99.86% 99.99% 100.00%

by the end-to-end model based on C3D. In terms of accuracy,
the model behaves similarly to the one based on C3D and
SVM, with few classification errors. The loss is also less than
0.1 on the test set in all the splits, demonstrating the model’s
capability of classifying on the Crowd Violence dataset. Split
1 and split 3 exhibit the lowest accuracy 98.42% with 4
classification errors out of 353 testing samples. Specifically,
in split 1, there are 3 false positives and 1 false negative;
instead, in split 3, both the numbers of false negatives and
positives is equal to 2.

Table 27 includes the results of the ConvLSTM-based end-
to-end model on the Crowd Violence dataset. While the two
C3D-based models performed extremely well, to the point
that they seem to overfit the data, the ConvLSTM-based
model struggles in terms of classification accuracy. In fact,
the model is too complex (198 million of parameters) for
the low number of samples of the Crowd Violence dataset,
as also the loss on the test set is very high compared to the
values obtained by the model based on C3D and the fully
connected layers. In addition, the similarity between violent
and non-violent clips, as well as the low resolution, might
have a role as the model tends to label samples as violent.
This is evident in split 1: 63 out of the 107 negative samples
are misclassified, while only 8 out of 146 positive samples
are misclassified.

TABLE 27: The results of the model based on the ConvL-
STM architecture, computed for each split of the stratified
shuffle-split cross validation scheme on the Hockey Fight
dataset.

Split 1 Split 2 Split 3 Split 4 Split 5
Loss 0.4845 0.2876 0.3780 0.3195 0.2977

Sensitivity 97.26% 94.52% 95.21% 93.15% 95.89%
Specificity 41.12% 81.31% 67.29% 72.90% 83.18%
Accuracy 73.52% 88.93% 83.40% 84.58% 90.51%
F1 score 80.91% 90.79% 86.88% 87.46% 92.11%

AUC 90.47% 96.78% 93.91% 94.85% 95.74%
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