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 2 

NPM1 encodes for a nucleolar multifunctional protein and is the most frequently 34 

mutated gene in adult acute myeloid leukemia (AML). NPM1 mutations cause the 35 

aberrant accumulation of mutant NPM1 (NPM1c) in the cytoplasm of leukemic cells, 36 

that is mediated by the nuclear exporter Exportin-1 (XPO1). Recent work has 37 

demonstrated that the interaction between NPM1c and XPO1 promotes high 38 

homeobox (HOX) genes expression, which is critical for maintaining the leukemic 39 

state of NPM1-mutated cells. However, the XPO1 inhibitor Selinexor administered 40 

once or twice/week in early-phase clinical trials did not translate into clinical benefit 41 

for NPM1-mutated AML patients. Here, we demonstrate that this dosing strategy 42 

results in only temporary disruption of the XPO1-NPM1c interaction and transient 43 

HOX genes downregulation, limiting the efficacy of Selinexor in the context of NPM1-44 

mutated AML. Since second-generation XPO1 inhibitors can be administered more 45 

frequently, we compared intermittent (twice/week) versus prolonged (5 days/week) 46 

XPO1 inhibition in NPM1-mutated AML models. Integrating in vitro and in vivo data, 47 

we show that only prolonged XPO1 inhibition results in stable HOX downregulation, 48 

cell differentiation and remarkable anti-leukemic activity. This study lays the 49 

groundwork for the accurate design of clinical trials with second-generation XPO1 50 

inhibitors in NPM1-mutated AML.  51 
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Introduction 68 

NPM1-mutated acute myeloid leukemia (AML) accounts for about one third of AML 69 

in adults1,2. The most distinguishing feature of NPM1-mutated cells is the aberrant 70 

localization of mutant NPM1 (NPM1c) in the cytoplasm1, caused by the loss of a 71 

nucleolar localization signal and the gain of a nuclear export signal within the C-72 

terminal end of NPM13,4. Both NPM1c nuclear export and cytoplasmic accumulation 73 

are dependent on its interaction with the nuclear exporter Exportin-1 (XPO1)3,4. 74 

Another unique property of NPM1-mutated AML is the high expression of homeobox 75 

(HOX) genes and their cofactors MEIS1 and PBX3 (hereafter referred as to 76 

HOX/MEIS)5,6. We recently found that high HOX/MEIS levels are required to 77 

maintain the undifferentiated state of leukemic cells7 and that HOX/MEIS expression 78 

is directly dependent on the interaction between NPM1c and XPO17. 79 

The selective inhibitors of nuclear export Selinexor and Eltanexor covalently 80 

bind XPO1 and disrupt the interaction with its cargo proteins8, including NPM1c7. 81 

Preclinical studies have demonstrated that XPO1 inhibition cause NPM1c nuclear 82 

relocation, loss of HOX expression, differentiation, and growth arrest of NPM1-83 

mutated cells7,9,10. However, patients with NPM1-mutated AML showed suboptimal 84 

responses to Selinexor in early-phase clinical trials11-14. As Selinexor has a half-life 85 

of 6 hours11 and was administered once or twice/week, we hypothesized that 86 

intermittent dosing may not stably inhibit the NPM1c-XPO1 interaction, limiting its 87 

efficacy. In contrast, Eltanexor, currently tested in early-phase trials, can be 88 

administered more frequently (i.e. 5 days/week)15. Therefore, we asked whether 89 

prolonged XPO1 inhibition by Eltanexor could elicit a more pronounced anti-leukemic 90 

activity in NPM1-mutated cells. 91 

 92 

Methods 93 

Selinexor and Eltanexor were evaluated in cellular and animal models of NPM1-94 

mutated AML. Parental OCI-AML3, NPM1c-GFP OCI-AML3 (in-frame knock-in of 95 

GFP at the NPM1c endogenous locus)7 and NPM1c-FKBP(F36V)-GFP OCI-AML3 96 

(in-frame knock-in of FKBP(F36V) and GFP at the NPM1c endogenous locus)7 cells 97 

were used for in vitro experiments. Patient-derived xenograft (PDX) of two NPM1-98 

mutated AML patients were used for in vivo and in vitro experiments. RNA-99 

sequencing data were analyzed applying the ARPIR pipeline and are available at 100 

GEO (GSE181176)16. Detailed methods are provided in the supplemental materials. 101 
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 102 

Results and discussion 103 

We first addressed the impact of intermittent XPO1 inhibition on the NPM1c-XPO1 104 

interaction. As NPM1c subcellular localization is dependent on its binding to XPO1 105 

(i.e. cytoplasmic when interacting with XPO1, nuclear when XPO1 is inhibited), we 106 

tracked the subcellular localization of endogenous NPM1c fused to GFP (NPM1c-107 

GFP) in OCI-AML3 cells upon intermittent XPO1 inhibition. As expected, NPM1c-108 

GFP was completely relocated to the nucleus after 12-hour Selinexor incubation.  109 

However, drug withdrawal caused cytoplasmic relocation over the following 24 110 

hours, demonstrating quick recovery of the NPM1c-XPO1 interaction after transient 111 

XPO1 inhibition (Figure 1A).  112 

As in NPM1-mutated cells high HOX/MEIS expression depends on the 113 

NPM1c-XPO1 interaction7, we hypothesized that early loss of XPO1 inhibition may 114 

result in inefficient HOX/MEIS downregulation. We determined HOXA9, HOXA10 115 

and MEIS1 expression at 24 and 72 hours in cells treated with Selinexor for 24 hours 116 

(short treatment, ST) or for 72 hours (continuous treatment, CT). While ST caused 117 

only transient downregulation of HOX/MEIS expression, CT resulted in stable loss of 118 

these targets (supplemental Figure S1A). Next, to determine the impact of transient 119 

and stable XPO1 inhibition on the transcriptome, we performed RNA-sequencing in 120 

parental OCI-AML3 cells applying the same treatment strategy. After 24-hour 121 

incubation with Selinexor, the transcriptome was clearly perturbed, including 122 

downregulated HOX/MEIS (Figures 1B, supplemental Figures 1B, 1C, supplemental 123 

Table 1). However, drug withdrawal reduced transcriptional perturbation in the 124 

following 48 hours with only 57 residual differentially expressed genes (Figures 1B, 125 

1C, supplemental Figures 1B, 1C, supplemental Table 1). Conversely, CT for 72 126 

hours caused persistent downregulation of HOX/MEIS, combined with upregulation 127 

of genes related to myeloid differentiation and TP53 downstreams (Figures 1B, 1C, 128 

supplemental Figures 1C, 1D, supplemental Table 1). As XPO1 interacts with 129 

multiple cargo proteins8, to corroborate the hypothesis that the changes observed 130 

were mainly due to the loss of NPM1c-XPO1 interaction, we tested the effects of 131 

intermittent (2 days/week, e.g. Monday and Thursday) and prolonged (5 days/week, 132 

e.g. Monday to Friday) selective NPM1c degradation in CRISPR-engineered OCI-133 

AML3 cells with endogenous NPM1c fused to the FKBP(F36V) degron tag and 134 

GFP7. Only prolonged NPM1c degradation caused stable HOX/MEIS downregulation 135 
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at 72 hours and significant differentiation, mimicking what observed upon XPO1 136 

inhibition (Figures 1D, 1E, supplemental Figures 1F, 1G). Altogether, these results 137 

clearly indicate that only prolonged loss of the NPM1c-XPO1 interaction can induce 138 

stable HOX/MEIS downregulation and differentiation in NPM1-mutated AML cells. 139 

Next, we compared the ability of intermittent and prolonged XPO1 inhibition to 140 

induce differentiation of NPM1-mutated AML cells in vitro. Prolonged XPO1 inhibition 141 

with 50 nM of either Selinexor or Eltanexor induced differentiation of OCI-AML3 and 142 

NPM1-mutated PDX cells (PDX2)7, while 2 days/week treatment resulted in 143 

negligible changes (Figures 1F-1G, supplemental Figure S1H). Doubling the 144 

concentration of Selinexor to 100 nM 2 days/week did not significantly increase 145 

differentiation (Figure 1G). Importantly, ectopic expression of HOXA9 and MEIS1 146 

significantly rescued differentiation upon prolonged XPO1 inhibition (Figure 1I, 147 

supplemental Figure S1I), confirming that persistent HOX/MEIS downregulation is 148 

required to achieve differentiation of NPM1-mutated cells.  149 

Finally, we assessed the anti-leukemic potential of intermittent and prolonged 150 

XPO1 inhibition in vivo using two highly aggressive NPM1/FLT3/DNMT3A triple-151 

mutated luciferase-expressing PDX models (PDX2 and PDX3).  First, we treated 152 

NSG mice engrafted with PDX2 cells with either vehicle, Selinexor 2 days/week, 153 

Selinexor 5 days/week and Eltanexor 5 days/week (Figure 2A). HOX/MEIS 154 

expression and differentiation in sorted leukemic cells was analyzed after one week 155 

of treatment. While Selinexor 2 days/week did not induce changes of HOXA9, 156 

HOXA10 and MEIS1 nor of CD11b levels, both Selinexor and Eltanexor 5 days/week 157 

caused remarkable HOX/MEIS downregulation and differentiation (Figure 2B and 158 

2C). Next, we investigated the leukemic engraftment of PDX2 cells by flow-cytometry 159 

and immunohistochemistry in the bone marrow following two weeks of treatment. 160 

Both 5 days/week regimens caused significant engraftment reduction, while 2 161 

days/week Selinexor did not (Figure 2D and 2E), demonstrating that only prolonged 162 

XPO1 inhibition is effective against NPM1-mutated cells in vivo. Finally, to test the 163 

impact of prolonged XPO1 inhibition on AML growth in vivo and on survival, we 164 

treated both PDX2 and PDX3 mice with Eltanexor 5 days/week for 4 consecutive 165 

weeks. Eltanexor resulted in significant reduction of bioluminescence and prolonged 166 

survival compared to vehicle in both PDX models (Figures 2F-2I). Treatment was 167 

well tolerated with no progressive weight loss reported (supplemental Figures 2C 168 

and 2D). 169 
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 NPM1-mutated AML is genetically well-characterized and is now included as  170 

distinct entity in the World Health Organization classification of myeloid neoplasms17. 171 

Therefore, there is growing interest in developing molecular targeted therapies for 172 

this AML variant18, including drugs interfering with HOX/MEIS expression, such as 173 

Menin-MLL19-21 and XPO1 inhibitors7. This study clearly demonstrates that 5 174 

days/week XPO1 inhibition stably downregulates HOX/MEIS, induces differentiation 175 

and results into prolonged survival of NPM1-mutated PDX mice. In contrast, 176 

twice/week XPO1 inhibition does not elicit robust antileukemic activity in vitro and in 177 

vivo in NPM1-mutated AML, likely explaining the lack of benefit of Selinexor in 178 

patients with this leukemia. How XPO1 inhibition results in HOX/MEIS 179 

downregulation remains unclear. Possible hypotheses include nuclear relocation of 180 

NPM1c interactors with transcriptional repressive properties2 and displacement of 181 

NPM1c from XPO1 bound at HOX/MEIS loci2,22. Furthermore, mechanisms other 182 

than those mediated by NPM1c, e.g. TP53 activation (supplemental Figure 1D and 183 

9), may contribute to the anti-leukemic effects of XPO1 inhibitors in NPM1-mutated 184 

cells. In conclusion, as Phase 1 data of Eltanexor have shown it can be safely 185 

administered 5 days/week15, this study lays the groundwork for the appropriate 186 

design of new clinical trials with XPO1 inhibitors in NPM1-mutated AML.  187 
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Figure legends 305 

Figure 1. Prolonged XPO1 inhibition is necessary to elicit significant 306 

antileukemic activity in NPM1-mutated AML in vitro.  307 

A) Fluorescence microscopy of NPM1c-GFP OCI-AML3 treated for 12 hours with 308 

Selinexor 100nM. After 12 hours, Selinexor was removed from medium and cells left 309 

in culture for the following 24 hours taking pictures at 2, 4, 6, 20 and 24 hours after 310 

drug washout. Hoechst 33342 was used to stain nuclei of the cells. 100X 311 

magnification. Scale bar, 20 μm. B) Principal component analysis (PCA) plot derived 312 

from the means (N=2) of the FPKM values of parental OCI-AML3 cells collected at 313 

24 hours treated with either DMSO or Selinexor 50 nM, and OCI-AML3 cells 314 

collected at 72 hours treated with either DMSO, Selinexor 50 nM short treatment 315 

(ST, 24h Selinexor + 48h fresh medium) or Selinexor 50 nM continuous treatment 316 

(CT, 72h Selinexor 50 nM). C) Volcano plots depicting differentially expressed genes 317 

in parental OCI-AML3 cells treated with 72h Selinexor continuous treatment (CT, 72h 318 

Selinexor 50 nM) and 72h Selinexor short treatment (ST, 24h Selinexor 50 nM + 48h 319 

fresh medium), compared to DMSO. Log2FC and Log10 p values are shown on the X 320 

and Y axis, respectively. Genes belonging to the HOXA (red) HOXB (blue) and 321 

MEIS/PBX (green) families are highlighted. D) HOXA9, HOXA10 and MEIS1 322 

expression by qPCR in NPM1c-FKBP(F36V)-GFP OCI-AML3 cells after 24 hours 323 

treatment with either DMSO or dTAG and 72h treatment with either DMSO, dTAG-13 324 

ST (short treatment, 24h dTAG-13 + 48h fresh medium) or dTAG-13 CT (continuous 325 

treatment, 72h dTAG-13). N=3. Mean ± SEM. Tukey multiple comparison test. E) 326 

Flow-cytometry quantification of CD11b, expressed as MFI fold change relative to 327 

DMSO, in NPM1c-FKBP(F36V)-GFP OCI-AML3 cells at day 11 following treatment 328 

with either DMSO, dTAG-13 2 days/week or dTAG-13 5 days/week. N=4. Mean ± 329 

SEM. Tukey multiple comparison test. F) May-Grünwald Giemsa staining of OCI-330 

AML3 cells at day 11 following treatment with either DMSO, Selinexor 2 days/week, 331 

Selinexor 5 days/week or Eltanexor 5 days/week. 40X magnification. G) Flow-332 

cytometry quantification of CD11b, expressed as MFI fold change relative to DMSO, 333 

in OCI-AML3 cells at day 11 of treatment with either DMSO, Selinexor 50 nM 2 334 

days/week, Selinexor 100 nM 2 days/week, Selinexor 50 nM 5 days/week and 335 

Eltanexor 50 nM 5 days/week. N=3. Mean ± SEM. Tukey multiple comparison test. 336 

H) Flow-cytometry quantification of CD11b, expressed as MFI fold change relative to 337 
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DMSO, in PDX2 cells at day 11 of treatment with either DMSO, Selinexor 50 nM 2 338 

days/week, Selinexor 100 nM 2 days/week, Selinexor 50 nM 5 days/week or 339 

Eltanexor 50 nM 5 days/week. N=3 for DMSO and Eltanexor, N=2 for the other 340 

groups. Mean ± SEM. Tukey multiple comparison test. I) Flow-cytometry 341 

quantification of CD11b, expressed as MFI fold change relative to DMSO, in 342 

untransduced and HOXA9/MEIS1-transduced OCI-AML3 cells after 7 days of 343 

continuous treatment with either DMSO or Selinexor 50nM. N=4. Mean ± SEM. 344 

Tukey multiple comparison test.  345 

H33342, Hoechst 33342; PC, principal component; FC, fold change; padjust, 346 

adjusted p value, MFI, Median Fluorescence Intensity; H9/M1, HOXA9/MEIS1; Seli, 347 

Selinexor. Elta, Eltanexor 348 

 349 

Figure 2: Prolonged XPO1 inhibition is necessary to elicit significant 350 

antileukemic activity in NPM1-mutated AML in vivo.  351 

A) Schematic overview of the in vivo experiments. Each NSG mouse was 352 

transplanted with 1x106 GFP-Luc positive PDX cells. B) HOXA9, HOXA10, MEIS1 353 

and PBX3 expression by qPCR in sorted PDX2 cells after 7 days of treatment with 354 

either vehicle, Selinexor 5 mg/kg 2 days/week, Selinexor 5 mg/kg 5 days/week and 355 

Eltanexor 10 mg/kg 5 days/week. N=4 mice per group. Mean ± SEM. Dunnett 356 

multiple comparison test. C) Flow-cytometry quantification of human CD11b, 357 

expressed as MFI fold change relative to vehicle, in sorted PDX2 cells after 7 days of 358 

treatment with either vehicle, Selinexor 5 mg/kg 2 days/week, Selinexor 5 mg/kg 5 359 

days/week and Eltanexor 10 mg/kg 5 days/week. N=4 mice per group. Mean ± SEM. 360 

Tukey multiple comparison test. D) Bone marrow engraftment of PDX2 cells 361 

measured as human CD45 percent of positive cells after two weeks of treatment with 362 

either vehicle, Selinexor 5 mg/kg 2 days/week, Selinexor 5 mg/kg 5 days/week and 363 

Eltanexor 10 mg/kg 5 days/week. N=3 mice per group. Mean ± SEM. Tukey multiple 364 

comparison test. E) Representative images of BM histological sections stained for 365 

human CD45 after 14 days of treatment with either vehicle, Selinexor 5 mg/kg 2 366 

days/week, Selinexor 5 mg/kg 5 days/week and Eltanexor 10 mg/kg 5 days/wee. 367 

40X magnification. Scale bars, 20μm. F) Representative bioluminescence images of 368 

NSG mice transplanted with PDX2 cells treated with either vehicle (N=6) or 369 

Eltanexor 10 mg/kg (N=7) 5 days/week for 4 weeks. G) Kaplan-Meier curves of 370 
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 12 

PDX2 mice treated with either vehicle (N=6) or Eltanexor 10 mg/kg (N=7) 5 371 

days/week for 4 weeks. Treatment time is shown in light grey. Long-rank (Mantel-372 

Cox) test. H) Representative bioluminescence images of NSG mice transplanted 373 

with PDX3 cells and treated with either vehicle (N=6) or Eltanexor 10 mg/kg (N=7) 5 374 

days/week for 4 weeks. I) Kaplan-Meier curves of PDX3 mice treated with either 375 

vehicle (N=6) or Eltanexor 10 mg/kg (N=7) 5 days/week for 4 weeks. Treatment time 376 

is shown in light grey. Long-rank (Mantel-Cox) test. 377 

BM, bone marrow; Seli, Selinexor; Elta, Eltanexor; HR; hazard ratio. 378 
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