
Generating high-performance arithmetic operators for

FPGAs

Florent De Dinechin, Cristian Klein, Bogdan Pasca

To cite this version:

Florent De Dinechin, Cristian Klein, Bogdan Pasca. Generating high-performance arithmetic
operators for FPGAs. LIP research report 2008-28. 2008. <ensl-00321209>

HAL Id: ensl-00321209

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00321209

Submitted on 12 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52326914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00321209


Generating high-performance arithmetic operators for FPGAs

LIP research report 2008-28

Florent de Dinechin, Cristian Klein and Bogdan Pasca ∗

LIP (CNRS/INRIA/ENS-Lyon/UCBL), Université de Lyon

École Normale Supérieure de Lyon
46 allée d’Italie, 69364 Lyon cedex

Abstract

This article addresses the development of com-
plex, heavily parameterized and flexible operators
to be used in FPGA-based floating-point acceler-
ators. Languages such as VHDL or Verilog are
not ideally suited for this task. The main problem
is the automation of problems such as parameter-
directed or target-directed architectural optimiza-
tion, pipeline optimization, and generation of rele-
vant test benches. This article introduces FloPoCo,
an open object-oriented software framework designed
to address these issues. Written in C++, it inputs op-
erator specifications, a target FPGA and and an ob-
jective frequency, and outputs synthesisable VHDL
fine-tuned for this FPGA at this frequency. Its de-
sign choices are discussed and validated on various
operators.

1 Arithmetic operator design

1.1 Floating-point and FPGAs

FPGA-based coprocessors are available from a va-
riety of vendors, and it is natural to try and use
them for accelerating floating-point (FP) applica-
tions. On floating-point matrix multiplication, their

∗This work was partly supported by the XtremeData uni-
versity programme, the ANR EVAFlo project and the Egide
Brâncuşi programme 14914RL.

floating-point performance slightly surpasses that of
a contemporary processor [6], using tens of operators
on the FPGA to compensate their much slower fre-
quency (almost one order of magnitude). However,
FPGAs are no match to GPUs here. For other FP
operations that are performed in software in a proces-
sor (for instance all the elementary functions such as
exp, log, trigonometric...) there is much more speed-
up potential: One may design a dedicated pipelined
architecture on an FPGA that outperforms the corre-
sponding processor code by one order of magnitude
while consuming a fraction of the FPGA resources
[4]. Implementing the same architecture in a pro-
cesssor would be wasted silicon, since even the log-
arithm is a relatively rare function typical processor
workloads. For the same reason, GPUs have hard-
ware acceleration for a limited set of functions and in
single precision only. In an FPGA, you pay the price
of this architecture only if your application needs it.
Besides, operators can also be specialized in FPGAs.
For example, a squarer theoretically requires half the
logic of a multiplier; A floating-point multiplication
by the constant 2.0 boils down to adding one to the
exponent (a 12-bit addition in double-precision), and
shouldn’t use a full-blown FP multiplier as it does
in a processor. Actually it is possible to build an
optimized architecture for any multiplication by a
constant [2]. Finally, operators can be fused on an

FPGA, for example the Euclidean norm
√

x2 + y2

can be implemented more efficiently than by linking

1



two squarers, one adder and one square root opera-
tor.

There are many more opportunities for floating-
point on FPGAs [3]. The object of the FloPoCo
project1 is to study and develop such FPGA-specific
Floating-Point Cores.

1.2 From libraries to generators

FloPoCo is not a library but a generator of operators.
Indeed, it is the successor to FPLibrary, a library of
operators written in VHDL. Many parts of FPLibrary
were actually generated by as many ad-hoc programs,
and FloPoco started as an attempt to bring all these
programs in a unified framework.

A first reason is that it is not possible, for instance,
to write by hand, directly in VHDL or Verilog, an op-
timized multiplier by a constant for each of an infinite
number of constants. However, this task is easy to
automate in a program that inputs the constant.

Another reason is the need for flexibility. Whether
the best operator is a slow and small one or a faster
but larger one depends on the context. FPGAs also
allow flexibility in precision: arithmetic cores are pa-
rameterized by the bit-widths of their inputs and out-
puts. Flexibility also makes it possible to optimize for
different hardware targets, with different LUT struc-
ture, memory and DSP features, etc. Thus, the more
flexible an operator, the more future-proof.

Finally, for complex operators such as elementary
function evaluators, the optimal design is the result
of a costly design-space exploration, which is best
performed by a computer.

VHDL and Verilog are good for describing a li-
brary of operators optimized for a given context, but
the more flexibility and the more design-space explo-
ration one wants, the more difficult it gets. It is natu-
ral to write operator generators instead. A generator
inputs user specifications, performs any relevant ar-
chitectural exploration and construction (sometimes
down to pre-placement), and outputs the architec-
ture in a synthesizable format. To our knowledge,
this approach was pioneered by Xilinx with their core

1www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

generator tool2.

An architecture generator needs a back-end to ac-
tually implement the resulting circuit. The most ele-
gant solution is to write an operator generator as an
overlay on a software-based HDL such as SystemC,
JBits, HandelC or JHDL (among many others). The
advantages are a preexisting abstraction of a circuit,
and simple integration with a one-step compilation
process. The inconvenient is that most of these lan-
guages are still relatively confidential and restricted
in the FPGAs they support. Basing FloPoCo on
a vendor generator would be an option, but would
mean restricting it to one FPGA family.

FloPoCo therefore took a less elegant, but more
universal route. The generator is written in a main-
stream programming language (we chose C++), and
it outputs operators in a mainstream HDL (we chose
standard synthesisable VHDL). Thus, the FloPoCo
generator is portable, and the generated operators
can be integrated into most projects, simulated us-
ing mainstream simulators, and synthesized for any
FPGA using the vendor back-end tools. Section 2.2
will show how they can nevertheless be optimized to
a given FPGA target.

The inconvenient of this approach is that we had to
develop a framework, instead of reusing one. Section
2 describes this framework and the way it evolved in
a very practical and bottom-up way.

1.3 The arithmetic context

It is important to understand that this framework
was developed only with arithmetic operators in view.
An arithmetic operator is the implementation of a
mathematical function, and this underlying mathe-
matical nature is exploited pervasively in FloPoCo.
For instance, an operator may be combinational or
pipelined, but will usually involve no feedback loop
or state machine (the only current exception is an
accumulator). With this restriction, we are able to
implement a simple, efficient and automatic approach
to pipelining (see section 3) and testbench generation
(see section 4). As another example, when generating

2We would welcome any feedback on early architecture gen-
erators



test benches, relevant test patterns may be defined by
function analysis, and the expected output is defined
as a mathematical function of the input, composed
with a well-defined rounding function [1]. These are
only a few examples. The design-space exploration
for complex operators is based on automated error
analysis [4], which is also specific to the arithmetic
context.

FloPoCo is not only a generator framework, it is
also a generator of arithmetic cores using this frame-
work. It currently offers about 20 operators, from
simple ones such as shifters or integer adders to very
complex ones such as floating-point exp and log. This
article is not about these operators, but will be il-
lustrated by actual examples of already implemented
operators. FloPoCo is distributed under the LGPL,
and interested readers are welcome to try it, use it
and improve it.

2 The FloPoCo framework

The FloPoCo generator inputs (currently in the
command-line) a list of operator specifications, inter-
nally builds a list of Operator objects (some of which
may be sub-components of the specified operators),
then outputs the corresponding VHDL.

2.1 Operators

The core class of FloPoCo is Operator. From the
circuit point of view, an Operator corresponds to a
VHDL entity, but again, with restrictions and ex-
tensions specific to the arithmetic context. All the
operators of FloPoCo extend this class.

The main method of of Operator is outputVHDL(),
which outputs the VHDL code of an operator. To im-
plement this virtual method for an operator, one may
simply embed some existing VHDL code in the C++.
However, with many parameters, GENERATE constructs
in VHDL are best replaced with loops and tests in the
C++ code, which makes the VHDL code simpler and
easier to debug. In addition, the Operator class pro-
vides many helper methods which relieve the designer
from repetitive or error-prone work, for example en-

tity and component declaration, signal3 declaration,
signal registering, etc .

In short, Operator provides black box function-
ality for known VHDL recipes, but otherwise re-
quires manual output of VHDL code. This approach
allowed us to quickly backport existing generators.
More importantly, we may tinker with the framework
without having to rework existing cores.

Design space exploration, if any, is done in the op-
erator constructor. The input specification (input
and output widths, etc.) and the deployment and
performance constraints (e.g. VirtexIV, 300MHz) are
analysed, and operator attributes are set to be used
later by ouptutVHDL(). For instance, the construc-
tor of an integer constant multiplier internally builds
and pipelines a directed acyclic graph (see Figure 1)
with several labels on each node [2].
Operator also defines other virtual methods for

the purpose of pipelining and testbench generation.
These will be considered in due course.

2.2 Targets

The Target class abstracts the features of actual
FPGA chips. Classes representing real FPGA chips
extend this class (we currently have classes for two
very different FPGAs, Xilinx VirtexIV and Altera
StratixII). The idea is to declare abstract methods
in Target, which are implemented in its subclasses,
so that the same generator code fits all the targets4.
To this purpose, a Target is given as argument to
the constructor of an operator – it also receives an
objective frequency, this will be detailed in section 3.

The methods provided by the Target class can be
semantically split into two categories:

• Architecture-related methods provide infor-
mation about the architecture of the FPGA and
are used in architectural exploration. For in-
stance, lutInputs() returns the number of in-
puts of the FPGA’s LUTs.

3There is a Signal class, but it has currently no real signal
semantic (it doesn’t checks for pending signals, short circuits,
etc), it just makes writing outputVHDL() easier, and we will
not detail it any further.

4Of course, it is also possible to have a big if that runs
completely different code depending on the target.



• Delay-related methods provide approxi-
mative informations about the delays for
signals traveling the FPGA. For example,
adderDelay(int n) returns the delay of an
n-bit addition. These methods will be used
for automatic pipelining, see section 3. Some
of these methods have an architecture-related
dual, for example suggestAdderSize(double

delay) that returns the size of an adder that
will have the required delay.

The difficulty here is to find the right abstraction
level for Target. On one hand, we do not hope to
provide an exhaustive and detailed description of all
the existing – and future – FPGAs. On the other
hand, we do not need to: Vendor tools are very good
at fitting a design to a given target, and we should
rely on them. The complexity of exploiting the de-
tails of the target should be left to the back-end tools.

To understand how we approach this issue in
FloPoCo, consider the example of integer multiplica-
tion support in FPGA. Early FPGAs were logic-only,
then came hard multipliers embedded in the FPGA
fabric, then these multipliers were promoted to DSP
blocks with the addition of accumulators. Current
DSP blocks are very complex and differ widely from
FPGA to FPGA. Some contain 18x18 multipliers,
some 18x24, some 36x36 which can be split in sev-
eral 18x18 or 9x9 multipliers, with subtle restrictions.
All contain internal registers levels, and some an ac-
cumulator. What is the best way to abstract this
complexity and variety, in a way both concise and
generally useful?

The current – probably not definitive – answer is
a method called suggestSubmultSize() which takes
the objective frequency as an argument and returns
the input sizes of the largest (possibly rectangular)
sub-multiplier that, when written as a * in VHDL,
runs at the objective frequency on this target. This
abstract method will be implemented very differently
in subclasses of Target that describe actual FPGAs,
depending on the availability or not of DSP blocks
and on the capabilities of these blocks. With this sim-
ple interface, we are able to generate large floating-
point multipliers (build by assembling several DSP
blocks) whose performance and resource consump-

tion almost match (and sometimes even surpass) the
vendor-generated ones, while being more flexible.

For the design-space exploration of future oper-
ators, we will need other methods, for example a
method that inputs a multiplier size and returns an
estimation of its area. And of course, the question of
target abstraction will remain an open one forever,
as new FPGA features keep appearing and new op-
erators present new problems.

3 Automatic pipelining

Pipelining a given arithmetic operator for a given
context is relatively easy, if tedious. What is im-
portant is to evaluate the number of pipeline levels
and their approximate location, but the details are
best left to the back-end tools, which will actually
place the registers after logic optimization as part of
the technology mapping step. Recent tools apply, to
various extent, retiming techniques (moving registers
around to improve the critical path without changing
the functionnality of the circuit) [5]. This is also best
done after technology mapping.

3.1 Frequency-directed pipelining

Currently, FloPoCo implements frequency-directed
pipelining using variations on the following generic
algorithm, which is simple (greedy), and linear in
the size of the operator. The constructor, work-
ing from the output to the input (or the other
way round, depending what is expected to give the
best results), accumulates estimations of the critical
path delay (provided by the Target class), and in-
serts register levels when the current critical path
exceeds the reciprocal of the objective frequency.
When this process is finished, the constructor sets
the pipelineDepth attribute of the Operator class.
When an operator instantiates a sub-component (e.g.
FPMultiplier instantiates IntMultiplier), it may
obtain its pipelineDepth, which allows it to delay
signals accordingly – this works recursively.

FloPoCo does not provide any special framework
for the computation of critical paths or the distri-
bution of registers: an ad-hoc program needs to be



written by hand for each operator to implement the
previous generic algorithm. This is about as tedious
as pipelining VHDL code, but needs to be done only
once. In addition, FloPoCo has several facilities for
inserting multiple delays on signals which help pre-
vent bugs due to lack of synchronization. The test-
bench generation framework also takes into account
the pipeline depth of the unit under test automati-
cally.

3.2 Discussion

This part of the framework is still being improved. It
is not clear yet if we want it to eventually end up as a
generic retiming engine using a generic abstraction of
an arithmetic circuit. Firstly, it would be a tremen-
dous amount of work to get it right, and we choose
to focus our efforts on operator developement. Sec-
ondly, it is not obvious that it would be useful. The
ad-hoc, per-operator approach is more flexible and
more powerful in the design exploration phase, for
instance.

Critical path delay estimations are necessarily in-
accurate: actual values can only be obtained after
placement and routing of the complete application in
which the operator takes place, something which is
out of the scope of FloPoCo. No guarantee is there-
fore given that the operator will actually function at
the objective frequency. What is easy to ensure, how-
ever, is that when the objective frequency is raised,
the number of pipeline stages increases and the crit-
ical path delay does not increase.

The real question is, do we need to actually place
registers, which is the bulk of the work? If all the
back-ends implemented retiming [5] efficiently (which
is not the case yet), we would just have to evalu-
ate the pipeline depth as a function of the frequency
(a comparatively simple task) and place the corre-
sponding number of register levels at the output of
the operator, leaving to the tools the task to push
them in. Still, retiming is a costly iterative process,
and considering its local nature, it should be sped up
by a good initial placement. We have little practi-
cal experience on this subject and would appreciate
feedback.

+++

++ −

0

+5X(27 bits)+1169X(35 bits)

−X(25 bits)

−5X(27 bits)

+
−75X (32 bits)

+
+9576373X(48 bits)

+

+17X(28 bits) +9X(28 bits)

+26353589X(49 bits)

X

*

* *

<<9 <<2 <<2

<<4

<<4

<<24

<<13

<<3

Figure 1: Multiplier by 26353589 pipelined for
200MHz.

-frequency= latency frequency area

100 2 146 MHz 176 sl
200 4 264 MHz 199 sl
300 5 373 MHz 218 sl

Table 1: Synthesis results for pipelined operators

3.3 A detailed example

The command
flopoco -frequency=200 -target=VirtexIV

IntConstMult 24 26353589

builds a multiplier of a 24-bit integer with the con-
stant 26353589 (the 24 first bits of π), with objective
frequency 200MHz, for a VirtexIV. Figure 1 shows
the obtained architecture. Note that some adders are
much larger than the others. With -frequency=100,
only the two last levels of registers (marked with a
*) are generated: The lower levels are grouped in a
single pipeline stage. Table 1 provides some synthe-
sis results for Xilinx VirtexIV using ISE 9.1, for three
values of the objective frequency.

In this example, the reported frequency is much
better than the specified one. This is because the
automatic pipeline program for this operator works
at the adder level, not at the bit level (splitting



the adders into sub-adders). The current framework
would allow for bit-level pipelining for these opera-
tors, but it would be much more complex and we
currently feel this effort is not justified. We however
pipeline adders when they are too large to reach the
objective frequency, because we can use for that the
existing pipelined IntAdder operator.

4 Test case generation

In order to make sure that no bugs leak into the
VHDL code generated for each arithmetic operator,
FloPoCo was also designed to automate test case gen-
eration. Due to the large number of parameters that
can be customised, writing test benches by hand for
each operator is not an option.

Test benches are pieces of VHDL code (possibly
with a few associated data files) which run from a
VHDL simulator, give certain inputs (test cases) to
the arithmetic operators and test the correctness of
the outputs.

Test cases are operator-specific and are generated
by doing the equivalent computation in software.
We deliberately avoid duplicating the hardware algo-
rithms in software in order to avoid introducing the
same bugs. Instead, we relied on well tested libraries
such as GMP and MPFR.

Small operators can be exhaustively tested, but it
becomes impossible to exhaustively test larger ones,
in particular double-precision ones. Instead, our
strategy consists in maximising the number of data
paths and signal combinations that are tested.

A FloPoCo test bench basically generates two
types of test cases. The first is random test cases.
The Operator class is able to generate uniform ran-
dom inputs, but it should most of the cases be over-
riden in an operator-dependent way that focuses the
test on the interesting domains of input. For instance,
a double-precision exponential returns +∞ for all in-
puts larger than 1024 and returns 0 for all inputs
smaller than −1024. In other terms, the most inter-
esting test domain for this function is when the input
exponent is between −10 and 10, a tiny fraction of
the full double-precision exponent domain (−1024 to
1023). Generating random 64-bit integers and us-

ing them as floating-point inputs would mean testing
mostly the overflow/underflow logic, which is a tiny
part of the operator. Similarly, in a floating-point
adder, if the difference between the exponents of the
two operands is large, the adder will simply return the
biggest of the two, and again this is the most probable
situation when taking two random operands. Here
it is better to generate random cases where the two
operands have close exponents.

In addition to random test cases, there are also
mandatory test cases which test specific situations
which a random test would have little chance to hit.
Again, these test cases are operator-specific.

5 Conclusion

This article introduced FloPoCo, an open-source soft-
ware framework for generating high-quality, highly
parameterized, pipelined and flexible operators for
FPGAs. This framework evolved (and still evolves) in
a deliberately bottom-up and practical way focussed
on the needs of arithmetic cores. It uses a low-level,
highly flexible printf-based approach to VHDL gen-
eration.

In its current state, FloPoCo is already an invalu-
able booster for the core focus of our research, which
is to develop new arithmetic operators. In the future,
a wider range of design objectives may be added: op-
timizing for power, for a given pipeline depth, for
memory, etc. In addition, we will refine and extend
the FPGA model as new needs appear, for instance
to model the internal memory resources.

FloPoCo’s automatic pipeline framework can in
principle be used to build larger computation
pipelines composed of many operators, in a way that
automatically delays signals to match the pipelines
of the various operators, and does so even when the
designer, to optimize resource usage, changes the pre-
cision of some operators. We also intend to explore
this possibility.

References

[1] ANSI/IEEE. Standard 754-1985 for Binary Floating-
Point Arithmetic (also IEC 60559). 1985.



[2] N. Brisebarre, F. de Dinechin, and J.-M. Muller. In-
teger and floating-point constant multipliers for FP-
GAs. In Application-specific Systems, Architectures
and Processors, pages 239–244. IEEE, 2008.

[3] F. de Dinechin, J. Detrey, I. Trestian, O. Creţ, and
R. Tudoran. When FPGAs are better at floating-
point than microprocessors. Technical Report ensl-
00174627, École Normale Supérieure de Lyon, 2007.
http://prunel.ccsd.cnrs.fr/ensl-00174627.

[4] J. Detrey, F. de Dinechin, and X. Pujol. Return of the
hardware floating-point elementary function. In 18th
Symposium on Computer Arithmetic, pages 161–168.
IEEE, 2007.

[5] C. E. Leiserson and J. B. Saxe. Retiming synchronous
circuitry. Algorithmica, 6(1):5 – 35, 1991.

[6] D. Strenski, J. Simkins, R. Walke, and R. Wittig.
Revaluating FPGAs for 64-bit floating-point calcula-
tions. HPC wire, May 2008.


