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Glucagon is secreted from the pancreatic alpha cells and plays an important role in the
maintenance of glucose homeostasis, by interacting with insulin. The plasma glucose
levels determine whether glucagon secretion or insulin secretion is activated or inhibited.
Despite its relevance, some aspects of glucagon secretion and kinetics remain unclear. To
gain insight into this, we aimed to develop a mathematical model of the glucagon kinetics
during an oral glucose tolerance test, which is sufficiently simple to be used in the clinical
practice. The proposed model included two first-order differential equations -one
describing glucagon and the other describing C-peptide in a compartment remote from
plasma - and yielded a parameter of possible clinical relevance (i.e., SGLUCA(t), glucagon-
inhibition sensitivity to glucose-induced insulin secretion). Model was validated on mean
glucagon data derived from the scientific literature, yielding values for SGLUCA(t) ranging
from -15.03 to 2.75 (ng of glucagon·nmol of C-peptide-1). A further validation on a total of
100 virtual subjects provided reliable results (mean residuals between -1.5 and 1.5 ng·L-1)
and a negative significant linear correlation (r = -0.74, p < 0.0001, 95% CI: -0.82 – -0.64)
between SGLUCA(t) and the ratio between the areas under the curve of suprabasal remote
C-peptide and glucagon. Model reliability was also proven by the ability to capture different
patterns in glucagon kinetics. In conclusion, the proposed model reliably reproduces
glucagon kinetics and is characterized by sufficient simplicity to be possibly used in the
clinical practice, for the estimation in the single individual of some glucagon-
related parameters.

Keywords: alpha-cell insulin sensitivity, glucagon secretion, glucose challenge, minimal model, parameter
estimation, glucose homeostasis
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INTRODUCTION

Glucagon is secreted from the pancreatic alpha cells and plays an
important role in the maintenance of glucose homeostasis. In
fact, glucagon and insulin interact to maintain euglycemia. The
plasma glucose levels determine whether glucagon secretion or
insulin secretion is activated or inhibited. Low plasma glucose
and related decrease in plasma insulin stimulates glucagon
secretion, which in turn promotes hepatic glucose production,
through gluconeogenesis and glycogenolysis, to normalize the
glucose levels (1–3). As reviewed in (4), regulation of glucagon
secretion is a complex phenomenon and involves endocrine/
paracrine mechanisms—the so-called “intra-islet interaction”
(5, 6)—as well as intrinsic mechanisms in the alpha cell related
to glucose sensing.

Glucagon also plays a role in the pathophysiology of type 2
diabetes (T2DM). Indeed, in patients with T2DM elevated
plasma glucagon levels have been observed in the fasting state,
and defective suppression of glucagon secretion exists in the
postprandial state, resulting in elevated plasma glucagon levels
(7), which have been shown to reflect an altered insulin
inhibition of alpha-cell glucagon exocytosis (8). Such kind of
alterations appears already at an early stage of T2DM
development. In fact, defective suppression has been also
found in impaired glucose tolerance (9). Moreover, increased
fasting glucagon and delayed glucagon suppression have been
shown to go along with insulin resistance in individuals with
normal and impaired glucose regulation (10). The interest for
the study of glucagon is also due to the reason that in patients
with diabetes suffering for severe hypoglycemic events the
administration of glucagon, by either injection or nasal intake,
is an important therapeutic option (11). However, despite
the relevance of glucagon in glucose metabolism and as
pharmacological agent in glucometabolic diseases, some
aspects of its secretion and kinetics remain unclear. To gain
insight into this, we aimed to develop a mathematical model,
with features adequate for possible use in the clinical settings.

A relatively large set of mathematical models were developed
with focus on glucagon secretion at cellular level (12–21). Other
models were developed for whole-body analyses, but they were
complex and with the inclusion of several parameters hard to
assess in the single individual, thus useful for simulation
purposes rather than for clinical applications (22, 23). Similar
considerations hold for studies where a glucagon model was
included as a block of a more general model of blood glucose
regulation, such as in studies (24, 25).

Studies presenting models analyzing glucagon kinetics for
possible clinical applications are rare. One study analyzed the
kinetics of glucagon administered exogenously (26), without
however accounting for the interplay with insulin or glucose;
another study performed similar analyses for the case of therapy
based on glucagon (plus insulin) infusion (27). Some other
studies developed models for the analysis of the glucagon
challenge test, which is however not widely used (28, 29). The
Abbreviations:OGTT, oral glucose tolerance test; T2DM, type 2 diabetes; IVGTT,
intravenous glucose tolerance test; SD, standard deviation; CI, confidence interval.
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study (30) had purposes more similar to those of our study, but
the developed model analyzed glucagon kinetics during an
intravenous glucose tolerance test (IVGTT), or an insulin-
infusion test. To our knowledge, no study has been focused on
modeling the glucagon kinetics during an oral glucose tolerance
test (OGTT), despite the fact that OGTT has remarkable
advantages compared to the IVGTT (or other glucose
tolerance tests) in terms of simplicity, and hence applicability
in the clinical context.

The specific aim of this study was therefore to develop a
mathematical model of the glucagon kinetics during an OGTT,
which is sufficiently simple to be used in the clinical practice. For
the model development, we exploited glucagon data derived
from the study (31). In more details, our main aim was to
develop a “minimal model” allowing estimation of glucagon-
related parameters in single individuals, with specific interest for
one parameter with considerable potential for clinical
applications, i.e., the sensitivity to glucose-induced insulin
secretion of the glucagon inhibition. This may be denoted as
alpha-cell insulin sensitivity.
MATERIALS AND METHODS

Model Formulation
Model Equations
The proposed mathematical model of glucagon kinetics during
an OGTT is based on the hypothesis of the “intra-islet
interaction” (5, 6). This hypothesis assumes that inhibition of
glucagon secretion during an OGTT—which reflects at plasma
level in a suppression of plasma glucagon concentration—is
mainly determined by glucose-induced insulin secretion. To
model insulin secretion, plasma C-peptide concentration has
been exploited, since plasma C-peptide is the best marker of
insulin secretion at plasma level. In fact, C-peptide is co-secreted
with insulin by the beta cells but, differently from insulin, it is not
significantly affected by degradation operated by the liver.

The model (Figure 1) is composed by two compartments,
namely plasma glucagon compartment and remote (from
plasma) C-peptide compartment, described by the following
two ordinary differential equations:

dGluca(t)
dt

= −KGLUCA · Gluca(t) − SGLUCA(t)

·
dDCPremote(t)

dt
     Gluca(0)¼Glucab (1)

dDCPremote(t)
dt = −KDCPREM · DCPremote(t)

+(CPplasma(t) − Cpb) DCPremote(0) = 0
(2)

where Gluca(t) (ng·L-1) is the glucagon concentration in the plasma
compartment, SGLUCA(t) (ng of glucagon·nmol of C-peptide-1) is a
time-varying parameter expressing glucagon-inhibition sensitivity
to glucose-induced insulin secretion during the test (i.e., alpha-cell
insulin sensitivity) and KGLUCA (min-1) represents the glucagon
elimination rate from plasma due to clearance operated by liver and
March 2021 | Volume 12 | Article 611147
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kidneys (32, 33); Glucab represents the basal plasma glucagon
concentration measured during the test. DCPremote(t) (nmol·L-1) is
the suprabasal C-peptide concentration in a compartment remote
from plasma, which represents a delayed version of suprabasal
plasma C-peptide concentration measured during the test, CPplasma

(t) (nmol·L-1), with Cpb being its basal value; KDCPREM (min-1) is the
C-peptide elimination rate from the remote compartment. The
parameters to be estimated in the model in the single individual are:
KGLUCA, SGLUCA(t), KDCPREM.

Structural Identifiability Analysis
Structural (a priori) identifiability of the model was tested by
using DAISY (Differential Algebra for Identifiability of SYstems),
a software tool that performs structural identifiability analysis for
linear and nonlinear dynamic models described by polynomial
or rational ordinary differential equations with either known or
unknown initial conditions (34).

Model Implementation
All the steps for model implementation are outlined in
Supplementary Figure 1. Model has been implemented in
MATLAB® R2017b as a discrete-time system (considering n
time points, equally spaced) and its response in terms of
glucagon and remote C-peptide concentrations has been
obtained using the ltitr built-in function. Model parameter
vector p = [KGLUCA, SGLUCA(t), KDCPREM] has been estimated
by solving, through the lsqnonlin function, the following
nonlinear least-squares curve fitting problem:
Frontiers in Endocrinology | www.frontiersin.org 3
m in
p

f (p)k k ‖22 = m in
p

½RSS + KGLUCA + w1 · SGLUCA “ð t) + w2 · (SGLUCA(t)

< 0)� (3)

where the first term represents the residual sum of squares (being
the residuals the differences between model glucagon response
and glucagon curve measured during the OGTT), whereas all the
others are regularization terms added as constraints to provide
more information to the problem and facilitate practical
(a posteriori) identifiability. In particular, the second term has
been added on the consideration that, during the OGTT, the
main contribution to glucagon suppression is given by C-peptide
action and not by glucagon clearance, thus KGLUCA has to be
small; the third and the last term, weighted through w1 and w2,
have been added to limit SGLUCA(t) rapid changes during the test
and the number of samples where SGLUCA(t) becomes
negative, respectively.

The optimal values of w1 and w2 were selected by an iterative
procedure in which 100 possible combinations of values -
considering 10 different values for w1 and 10 different values
for w2, randomly generated - were tested. A combination of
values for w1 and w2 was considered acceptable if it provided
mean residual values lower that 10%, otherwise was discarded.
Such threshold was chosen on the consideration of the
uncertainty on the glucagon measurements [10% in fact is a
suitable value for the inter- and intra-assay coefficient of
variation for glucagon (35)]. The optimal combination, among
all the combinations tested, was the one that provided the lowest
mean residual.

To find the global minimum among several possible local
minima, a total of 10 runs of the lsqnonlin local solver from
different starting point (randomly generated, between 0 and 1)
have been performed using theMultiStart algorithm (36), which
repeatedly runs the solver of the model starting from different
initial values of the parameters, to improve the possibility of
reaching the optimal solution.

The trust-region-reflective algorithm has been used by
lsqnonlin to solve the problem and the following lower and
upper bounds have been applied to the parameters: (0;1) for
KGLUCA and KDCPREM; (-∞; +∞) for SGLUCA(t). Function and
step-size tolerances have been set to 10-6.

KGLUCA and KDCPREM estimates have been obtained
considering the two parameters as constant for the whole test
duration, whereas estimates have been obtained for SGLUCA(t)
corresponding to the time samples where plasma glucagon and
C-peptide concentrations have been measured. For all model
parameters, the 95% CIs for the parameter estimates have been
computed by using the nlparci function.

Model Validation
Reported Mean Experimental Data
Mean experimental data reported by Pepino et al. (31) have been
used to initially validate the model. The original study by Pepino
et al. (31), from which the mean data have been drawn, included a
total of seventeen non-diabetic subjects undergoing a 5-h 75-g
OGTT. Plasma C-peptide and glucagon concentrations at 2 min
before (considered as 0 min) and at 10, 20, 30, 60, 90, 120, 150, 180,
FIGURE 1 | Compartmental representation of the model. The model is
composed by two compartments, namely plasma glucagon compartment
and remote (from plasma) C-peptide compartment. Suprabasal C-peptide
concentration in the remote compartment [DCPremote(t)], used to model insulin
secretion, exerts a control action on the concentration of glucagon in the
plasma compartment [Gluca(t)] through the time-varying parameter SGLUCA(t).
KGLUCA represents the glucagon elimination rate from plasma whereas
KDCPREM is the C-peptide elimination rate from the remote compartment.
DCPremote(t) represents a delayed version of suprabasal plasma C-peptide
concentration measured during the test (CPplasma(t) - Cpb).
March 2021 | Volume 12 | Article 611147
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240, and 300 min after glucose ingestion have been considered. As
indicated by Pepino et al. (31), plasma glucagon was measured by a
direct, double-antibody radioimmunoassay (Millipore).

Virtual Population Generation
Starting from mean and standard deviation (SD) values reported
by Pepino et al. (31), a total of 100 virtual subjects have been
generated using sort of Monte Carlo approach (37). Each virtual
subject is characterized by glucagon and C-peptide curves in
response to an OGTT, in which glucagon and C-peptide
concentrations at each time sample were randomly generated,
based on normal distributions with mean and SD values derived
by the study of Pepino et al. (31) (considering all samples within
the 95% confidence interval, CI). Furthermore, in order to obtain
curves that are physiologically plausible, some additional
constraints have been added [e.g., sign of the derivative
between two time samples equal to that of the reference
curves (31)].

Ability of the Model to Capture Different Patterns in
Glucagon Kinetics
The ability of the model to capture different patterns in glucagon
kinetics was tested on four characteristics mean glucagon curves
in response to a five-point 75g - OGTT reported by Gar et al.
(38), as representative of the four clusters identified in glucagon
curve shapes of individuals with different metabolic phenotypes
(i.e., normal glucose tolerance, prediabetes, type 2 diabetes). The
four clusters are characterized as follow: 1) Cluster 1 had high
mean fasting glucagon and delayed suppression; 2) Cluster 2 had
high mean fasting glucagon and rapid suppression; 3) Cluster 3
had low mean fasting glucagon and rapid suppression; 4) Cluster
4 had low mean fasting glucagon and a rising curve after glucose
ingestion. For each cluster, mean glucagon and C-peptide
concentrations measured at 0 min and at 30, 60, 90, 120 after
glucose ingestion have been considered. As indicated by Gar et al.
(38), plasma glucagon was measured with an ELISA (Glucagon
ELISA; Mercodia, Uppsala, Sweden; catalog no: 10-1271-01).

Sensitivity to OGTT Duration
In order to test sensitivity of the SGLUCA(t) estimation to test duration,
in the 100 virtual subjects, the SGLUCA(t) mediated on the full 5-h
OGTThas been compared to SGLUCA(t)mediated considering shorter
OGTTs (limiting the 5-h OGTT to 2-h and 3-h).

Calculations and Statistical Analysis
The Kolmogorov‐Smirnov test was used to evaluate the hypothesis
that each variable had a normal distribution with unspecified
mean and variance. Values were reported as mean ± SD.

Over the 100 virtual subjects, linear regression analysis has
been performed between mean SGLUCA(t) during the OGTT and
the ratio between the suprabasal area under the curve of remote
C-peptide (AUCDCPremote) to the area of glucagon below the
basal condition (AUCGluca); also, Pearson correlation coefficient
(r) has been reported. In the case of skewed distributions tests
were applied to the log-transformed values.

As regards the estimation of SGLUCA(t) according to the
different OGTT durations, comparisons have been performed
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by means of a paired Student t-test in case of normally
distributed variables or Wilcoxon signed-rank test in case of
skewed distributed variables. The two-sided significance level
was set at 5% (p < 0.05).
RESULTS

Analysis of structural (a priori) identifiability provided that the
model was a priori identifiable (locally). Model validation on
mean experimental data reported by Pepino et al. (31) provided
the best fit shown in Figure 2 and the parameter estimates (with
related CIs) reported in Table 1. Trend of SGLUCA(t) during the
whole OGTT is reported in Figure 3.

Glucagon and C-peptide curves in the 100 virtual subjects are
shown in Figure 4. Model validation on the virtual subjects
provided the mean best fit and the related residuals shown in
Figure 5. Distribution of values for KGLUCA and KDCPREM over
the virtual subjects is shown in Figure 6, whereas the SGLUCA(t)
patterns are reported in Figure 7. A negative significant linear
correlation (r = -0.74, p < 0.0001, 95% CI: -0.82 – -0.64) has been
found between the log-transformed values of SGLUCA(t) and
AUCDCPremote to AUCGluca ratio over the 100 virtual subjects.
Regression plot is reported in Figure 8. Regression line slope and
intercept was -0.6215 (95% CI: -0.7346 – -0.5084) and 0.2987
(95% CI: 0.2017–0.3956), respectively.

No significant difference has been found between average
SGLUCA(t) over the full 5-h OGTT and the 3-h OGTT (p = 0.08);
in contrast, average SGLUCA(t) over the 2-h OGTT has been
found significantly different compared to that over the full 5-h
OGTT (p < 0.0001).
FIGURE 2 | Best-fit results for model validation on reference mean
experimental data by Pepino et al. (31). Grey squares are the reference
experimental values (mean ± SD); red line is the model prediction.
March 2021 | Volume 12 | Article 611147
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Mean glucagon and C-peptide concentrations for the four
clusters, used to assess the ability of the model to capture
different patterns in glucagon kinetics, are shown in Figure 9.
Best-fit results and SGLUCA(t) patterns for the four clusters are
reported in Figure 10.
DISCUSSION

In this study, we developed a mathematical model of glucagon
kinetics during an OGTT, which is a test widely used in the
clinical practice for its simplicity, compared to other metabolic
tests. The specific characteristics of the model were including
parameters with clear physiological meaning and that can be
estimated in a single individual, the latter being a crucial feature
for potential applications in the clinical context.

Our mathematical model is based on the hypothesis that
inhibition of glucagon secretion during an OGTT is mainly
determined by glucose-induced insulin secretion due to an
intra-islet interaction (5, 6). This led to a simplified description
of glucagon regulation, thus disregarding other important
Frontiers in Endocrinology | www.frontiersin.org 5
regulation mechanisms, one of which is a possible direct effect
of glucose (i.e., not only mediated by insulin) (39). Moreover,
recent evidence supports the concept of the liver–alpha-cell axis,
in which hepatic amino acid metabolism and glucagon secretion
are linked in a feedback cycle (40, 41). There is also evidence for
insulin secretion being regulated by glucagon action via
glucagon-like peptide 1 (GLP-1) and glucagon receptors on
beta cells (42, 43). Possible regulators of insulin secretion, such
as GLP-1, have been considered in other models [also proposed
by us (44, 45)] but in the present model we considered insulin
TABLE 1 | Values and 95% CIs for the estimates of KGLUCA (min-1), KDCPREM

(min-1), SGLUCA(t) (ng of glucagon·nmol of C-peptide-1) on reference mean
experimental data by Pepino et al. (31).

Estimated parameter Value 95% CI

KGLUCA 0.005 -0.002–0.013
KDCPREM 0.155 0.119–0.191
SGLUCA1 -15.03 -18.25 – -11.80
SGLUCA2 -0.11 -0.78–0.66
SGLUCA3 -0.73 -1.23 – -0.22
SGLUCA4 2.34 2.17–2.60
SGLUCA5 1.53 1.30–1.75
SGLUCA6 -0.58 -1.24–0.07
SGLUCA7 1.62 0.42–2.81
SGLUCA8 2.75 2.13–3.37
SGLUCA9 2.51 1.88–3.14
SGLUCA10 1.07 0.22–1.93
FIGURE 3 | SGLUCA(t) temporal estimates on reference mean experimental
data by Pepino et al. (31) (closed squares) and related CIs (dashed lines).
A

B

FIGURE 4 | Glucagon (A) and C-peptide (B) curves in the 100 virtual
subjects (spaghetti plot). In the related inset plots, green continuous lines
represent the mean (± SD) over the 100 curves; black dashed lines represent
mean (± SD) taken from Pepino et al. (31), from which the virtual subjects
were derived.
March 2021 | Volume 12 | Article 611147



Morettini et al. Glucagon Kinetics Model during OGTT
secretion as an input signal, regardless of how it has been
generated. This simplification, both in the input and in the
description of feedback mechanisms, was necessary to achieve
our aim to propose a “minimal model”, allowing estimation of
glucagon-related parameters in single individuals.

In the study of glucose metabolism, established methodologies
exist for the assessment of metabolic aspects of major relevance,
such as insulin sensitivity, insulin secretion and possible incretin-
based enhancement, and insulin clearance, as assessed for instance
in some of our previous OGTT-based studies (45–47). The model
of glucagon kinetics presented in this study will have the potential
to complement the information derived from an OGTT, provided
from the indicated established methodologies. Such new model
will add information related to the role of glucagon inmaintaining
the glucose homeostasis, thus yielding to a more complete picture
of the glucometabolic condition of the subjects under study. To
our knowledge, this is the first study describing a mathematical
model of glucagon kinetics during an OGTT.

Our model of glucagon kinetics simply requires the measure
of plasma glucagon and C-peptide. It is based on two ordinary
differential equations, and it includes two parameters with
specific physiological meaning: the glucagon clearance from
plasma, KGLUCA, mainly due to liver and kidneys (32, 33), and
the sensitivity of the glucagon secretion from the pancreatic
alpha cells to the inhibitory effect of insulin, SGLUCA(t). In short,
this can be named as sensitivity to glucose-induced insulin
secretion of the glucagon inhibition and can be denoted as
alpha-cell insulin sensitivity. This may parallel the concepts of
Frontiers in Endocrinology | www.frontiersin.org 6
sensitivities of the beta cells, such as the established concept of
beta-cell glucose sensitivity (48), and the more recently proposed
beta-cell incretin sensitivity (49).

In addition to SGLUCA(t), the model also includes one further
parameter, i.e., the clearance of C-peptide from a compartment
remote with respect to plasma. It should be acknowledged that
the physiological interpretation of this parameter may not be
possible, since such remote compartment cannot be defined
precisely. In fact, the concept of a compartment remote from
plasma is not new in mathematical models of glucose
metabolism, being used as an example in the well-known
original Minimal Model (for the assessment of insulin
sensitivity and glucose effectiveness from an IVGTT) (50), and
more recently in other models, such as our model for the
assessment of non-esterified fatty acids kinetics (51). However,
though it is sometimes believed that the compartment remote
from plasma may be identified in the interstitial fluid, this may
not be totally correct. Indeed, the remote compartment should be
seen as a mathematical trick, without strict physiological
meaning, which is useful to introduce a time delay between the
FIGURE 5 | Best-fit results for model validation on the 100 virtual subjects.
Green continuous line represents the mean (± SD) over the 100 generated
curves; black continuous line represents the mean predicted glucagon curve.
Mean residuals over the 100 curves are displayed in the inset plot.
A

B

FIGURE 6 | Distribution of KGLUCA (A) and KDCPREM (B) over the 100 virtual subjects.
March 2021 | Volume 12 | Article 611147
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action of the input/forcing variable and the effect on the output
variable (i.e., C-peptide and glucagon, respectively, in the
presented model), for a better description of the system under
analysis. Therefore, KDCPREM has precise physiological meaning
(clearance), but it is applied to a variable (remote C-peptide) that
is not clearly physiologically defined.
Frontiers in Endocrinology | www.frontiersin.org 7
In our approach, we hypothesized that the glucagon
inhibition during the OGTT is due to the action of the secreted
insulin, as suggested in several studies and summarized in some
reviews, such as (4). However, in the model we exploited plasma
C-peptide, rather than insulin. This is due to the reason that C-
peptide may be more accurate than insulin for the assessment of
insulin secretion, since they are secreted equimolarly, but the
former does not significantly undergo partial degradation from
the liver. Thus, we hypothesized that plasma C-peptide may be
more adequate than insulin as marker of insulin secretion, i.e., to
assess its inhibitory effect on glucagon. This appeared confirmed
by the data of the study (31). Indeed, in linear regression analysis
over the average data of the analyzed population in study (31), we
verified that C-peptide time samples were significantly inversely
related to those of glucagon, whereas those of insulin (as well as
those of glucose) were not. In addition, surprisingly, insulin
secretion values, as assessed in study (31) were similarly not
related to glucagon. This may be due to limitations in the method
used for insulin secretion assessment, and/or to the fact that we
FIGURE 8 | Linear regression analysis between SGLUCA(t) and the ratio
between the areas under the curve of the remote C-peptide and glucagon
(AUCDCPremote/AUCGluca) over the 100 virtual subjects. Analysis has been
performed on the log-transformed values. Regression line equation is: y=
-0.6215·x+0.2987. This means that a change of 1 unit in log transformed
AUCDCPremote/AUCGluca causes a change of log transformed SGLUCA(t) by
0.6215.
FIGURE 7 | SGLUCA(t) estimates over the 100 virtual subjects (spaghetti plot).
Black continuous line represents the mean ( ± SD) SGLUCA(t).
A

B

FIGURE 9 | Glucagon (A) and C-peptide (B) curves in the four clusters of
patterns in glucagon kinetics, modified from Gar et al. (38).
March 2021 | Volume 12 | Article 611147
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analyzed average curves, rather than individual curves that were
not available. Moreover, it should be acknowledged that insulin
may inhibit glucagon secretion by stimulation of somatostatin
secretion rather than through a direct effect on the alpha cells
(52). Nonetheless, above all, the reported findings suggest that
the choice of plasma C-peptide as marker of the insulin effect on
glucagon may be the most reasonable option: on one hand, not
requiring further mathematical modeling for the calculation (as it
is for insulin secretion assessment), and on the other hand
showing more strict relationship with glucagon compared to
both plasma insulin and insulin secretion.

In our model, sensitivity to insulin of glucagon inhibition was
defined as a time-variant parameter, SGLUCA(t), differently to
glucagon and remote C-peptide clearance, KGLUCA and
KDCPREM, respectively, which were assumed constant during the
OGTT. This choice was based on the consideration that
estimating an average clearance of glucagon (and of remote C-
peptide) during the OGTT is sufficient for our purposes, whereas
at contrast the sensitivity to insulin of glucagon inhibition has to
Frontiers in Endocrinology | www.frontiersin.org 8
be assessed with higher accuracy, being the parameter of major
interest in our approach. Thus, SGLUCA was defined as varying at
each time sample of the OGTT reported in the study (31). This
choice may arise questions about the identifiability of our model
parameters, which is a crucial issue for the possibility to estimate
the parameters in single individuals and hence for the potential
clinical applicability of the model. To this purpose, we first
performed a priori identifiability analysis. We found that, if the
model assumes constant SGLUCA, absolute a priori identifiability is
obtained. If the model assumes the time variant SGLUCA, absolute
identifiability is lost, but still local identifiability is reached,
meaning that there is a finite number of solutions of the
minimization problem for the estimation of the parameters.
Moreover, to further reducing the uncertainty in parameters
estimation, we exploited the concept of regularization, that is,
the process of adding information for the solution of a possibly ill-
posed problem thus preventing overfitting (53), similarly to what
was done in previous studies (45, 48). Indeed, in the cost function
minimized by the nonlinear least-squares solver we included
further factors, in addition to the traditional sum of squares of
the difference between data and model prediction (fit). First, we
assumed that SGLUCA(t) cannot undergo excessively rapid
variations, as this would be unphysiological: thus, in the cost
function we added a term to penalize the entity of SGLUCA(t)
second-order derivatives. In addition, we assumed that SGLUCA(t)
should typically show positive values, though some negative values
are sometimes possible: thus, we included a term penalizing the
number of SGLUCA(t) negative values. Furthermore, among the
regularization factors we included KGLUCA. This means having
assumed that during the OGTT the clearance of glucagon is small,
based on the reasonable hypothesis that, during the test, the
sensitivity to insulin of glucagon inhibition has more influence
than glucagon clearance for glucagon disappearance. Of note, such
constraint explains the small values observed for KGLUCA. The
described regularization strategy allowed us to overcome the
problem of incomplete a priori identifiability, and to include
physiologically-based constraints for greater reliability and
improved meaning of the estimated model parameters
[especially with regard to SGLUCA(t)].

Despite negative values of SGLUCA(t) are penalized, they are
allowed in our model approach, this meaning that glucagon
inhibition by insulin may not be effective in some time periods.
This appears in fact clearly indicated by the inspection of average
curves of study (31). Indeed, such curves suggest that during an
OGTT glucagon may increase in some time periods, though
slightly, whereas C-peptide (as well as insulin) is not decreasing
as one would expect, thus indicating that in those periods the
relationship between insulin action and glucagon variations is
lost. A clear explanation for this phenomenon is still elusive, but
non-suppressed (increasing glucagon) during OGTT may
surprisingly be associated to even healthier metabolic
phenotype (less hepatic fat, higher insulin sensitivity)
according to some studies, such as (54).This may be also due
to reason that, despite insulin is often reported as the major
determinant of glucagon inhibition (4), other studies suggest a
possible direct effect of glucose (i.e., not only mediated by
insulin) (39), as well as several other factors (4, 39). It should
A

B

FIGURE 10 | Best-fit results (A) and SGLUCA(t) estimates (B) on the four
clusters of patterns in glucagon kinetics. Squares in panel (A) are the
reference experimental values; lines are the model predictions.
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also be observed that in different glucose tolerance tests, such as a
mixed meal test, the effect of such factors other than insulin may
be even more relevant. From this point of view our model,
accounting for possibly negative values of the sensitivity to
insulin of glucagon inhibition, appears adequate for future
model developments, also including other factors that may
influence glucagon inhibition (though adding further variables
may affect the clinical applicability, and hence should be
considered with caution).

Another aspect that we addressed in the model development is
the choice of the initial condition of the parameters to be estimated.
To this purpose, we exploited theMultiStart algorithm (36).We are
aware that other approaches may be possible such as genetic
algorithm strategy, as done in some of our previous studies (55–
57). In this study, we opted for the indicated approach, as it
appeared somehow simpler to implement. Similar problem was
the choice of the optimal weights of the regularization factors.
However, since for some technical difficulties it appeared hard to
exploit the MultiStart algorithm for such aspect as well, in this case
we simply randomly generated different values for the weights.

In our study, we also computed the 95% CI of the estimated
parameters [though for brevity we presented results only for the
case of the data derived from the study (31)]. We found that CI of
KDCPREM did not include the zero value, probably due to its small
estimated values, whereas KGLUCA did. As regards SGLUCA(t),
during the OGTT the algorithm estimated six positive values and
four negative values. For the positive values, the CI did not
include zero, thus indicating the robustness of the positive value
estimations. For the negative values, two did not include zero as
well, whereas the other two included, this indicating that for
those two values the estimation was somehow uncertain. On the
other hand, it should be acknowledged that these findings are
related to average data, rather than actual individual human data,
and this may have an effect on CI calculation. In addition, as the
used method for CI calculation required the exploitation of the
Jacobian matrix provided by the solver, it cannot be excluded
that the tolerance in the matrix accuracy numeric (rather than
analytic) calculation may have an effect as well.

Our model proved to perform properly, as indicated by the
good fit for each virtual subject (considering the tolerance that
we assumed in relation to the accuracy and precision of plasma
glucagon measurement), and by the physiologically plausible
values of the estimated parameters, varying within a range
appearing reasonable, especially with reference to SGLUCA(t). In
addition, it should be noted that, as expected, we found
significant relationship between mean SGLUCA(t) and mean C-
peptide to glucagon ratio, this further indicating reliability and
robustness of our model approach. Our model approach can also
be easily extended to the study of subjects characterized by
different metabolic phenotypes. In fact, the model was
successfully tested on characteristic OGTT curves as
representative of different clusters of glucagon kinetics (low or
high fasting glucagon; rapid or delayed suppression).

We also found interesting results regarding the model
performances in relation to different OGTT durations. Indeed,
data used in our study are related to a 5h-OGTT (31), which is
not usually performed in clinical settings. However, when testing
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sensitivity of the SGLUCA(t) estimation to OGTT duration, in the
population of virtual subjects our approach provided comparable
results with data limited to 3h-OGTT; in contrast, it appears that
the present approach cannot be extended to shorter OGTT (2h).
Analysis over 2 h limits glucagon kinetics only to the suppression
phase, thus neglecting the phase in which glucagon restores to
the basal conditions, thus it is not surprising that 2h-OGTT did
not provide results comparable to those of the 5-h OGTT.
Nonetheless, since our model is not constrained to work with a
specific OGTT duration, we tested it on five time-point 2h OGTT
curves, which have been identified by Gar et al. as representative
of different clusters of glucagon kinetics (38). As shown, our
model was able to reproduce all characteristic patterns observed
during the five time-point OGTT. Thus, if we aim to consider the
complete glucagon kinetics we have to resort to 3h-OGTT, but if
we are interested only to the suppression phase we can limit
analysis to 2h-OGTT, and to five time-point only (i.e., the typical
2h-OGTT time samples: 0, 30, 60, 90, 120 min).

Comparison of our findings to those of previous studies is
difficult. As previously outlined, some mathematical models were
developed with the aim to investigate glucagon secretion at cellular
level (12–21), whereas other models, more similarly to ours, were
developed for whole-body analyses, but mainly for simulation
purposes rather than for clinical applications (22–25). Other
studies presented models of glucagon kinetics for possible
clinical applications, but they were focused on the analysis of
glucagon administered exogenously, or for the analysis of the not
common glucagon challenge test (26–29). The study having more
aspects in common with ours is that of Kelly et al. (30). In that
study, a comprehensive model of glucagon kinetics and dynamics
was developed for possible clinical applications, i.e., for possible
assessment of model parameters in individuals. That model has
merits in the details of the physiological phenomena analyzed. For
instance, the model allows to address aspects not analyzed in our
study, such as the ability of glucagon to promote hepatic glucose
production, sometimes denoted in study (30) as glucagon
sensitivity. However, that model, which is to some extent an
extension of the traditional Minimal Model (50), applies to
glucose tolerance tests other than the OGTT, such as the IVGTT
(consistently with the field of application of the Minimal Model).
In addition, both the model versions (based on nonlinear or linear
relationships between glucose, glucagon and insulin) are relatively
complex and including several parameters (five equations with 11
unknown parameters, and four equations with 10 unknown
parameters, for nonlinear and linear model versions,
respectively). Thus, doubts may arise whether all these
parameters are identifiable in a single individual. Of note,
analyses of model identifiability were not presented. As regards
the concept of sensitivity to insulin of glucagon inhibition, which is
the focus of our study, it has to be acknowledged that the study
(30) addresses the issue as well, though it does not appear the
aspect of major interest in the presented analyses. In fact, one
parameter similar our SGLUCA(t) is presented, defined as the
maximum rate at which insulin suppresses glucagon secretion.
However, in study (30) the parameter is assumed constant, thus
not considering its possible variations during a test. In addition,
and most importantly, study (30) presents simulations where such
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parameter was varied in a given interval, whereas the estimation of
the parameter based on glucagon and insulin data is not reported,
and hence it was not proved that the model may allow estimation
of such parameter. Thus, to our knowledge our study is the first
showing the possibility to assess the sensitivity to insulin of
glucagon inhibition in single individuals, having proved the
feasibility of SGLUCA(t) estimation with individual data curves.

In conclusion, we developed a model of glucagon kinetics
during the OGTT, with special interest for the sensitivity to
insulin of glucagon inhibition, denoted as alpha-cell insulin
sensitivity. Strength of our model is simplicity and the possibility
to estimate parameters with clear physiological meaning (i.e., the
parameters of glucagon kinetics) in a single individual, thus being
potentially adequate for use in clinical settings. Future
investigations may consider the option to introduce some model
improvements, including description of further factors possibly
affecting glucagon suppression during the OGTT, but paying
attention to avoid model approaches not adequate for possible
clinical applications. Another aspect for future studies will be the
assessment of the actual clinical relevance of our model approach,
by studying populations including subjects with different degree of
glucometabolic impairment.
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