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Abstract. Spherical parallel manipulators (SPMs) are used to orient a tool in the
space with three degrees of freedom exploiting the strengths of a multi-limb ar-
chitecture. On the other hand, the performance of parallel kinematics machines
(PKMs) is often affected by the occurrence of different kinds of singular con-
figurations. The paper aims at characterizing a class of SPMs for which all sin-
gularities come to coincide and a single expression is able to describe all the
singular configurations of the machines. The study is focused on a class of SPMs
with 3-RFR topology (Revolute-Planar-Revolute pairs for each of the three limbs)
addressing the mobility and singularity analysis by means of polynomial decom-
position and screw theory. The neatness of the equations that are worked out,
expressed in a robust formulation based on rotation invariants, allows a straight-
forward planning of singularity free tasks and simplifies the synthesis of dexter-
ous machines.

Keywords: Mobility Analysis; Polynomial Decomposition; Singularity; Spheri-
cal Parallel Machines.

1 Introduction

Spherical parallel manipulators (SPMs) are a specific class of parallel kinematics ma-
chines (PKMs) which are able to generate a three-dof spherical motion; they are some-
times also called three-dof orientational parallel manipulators or rotational parallel ma-
nipulators [1]. SPMs can be divided into two families: overconstrained or hyperstatic
SPMs and non-overconstrained or isostatic SPMs. The main advantage of isostatic ar-
chitectures is that they do not need the strict dimensional and geometric tolerances of
overconstrained machines during manufacturing and assembly; thus they can work even
when precise geometrical conditions are not accurately met, if at the expense of parasitic
motions. Moreover, modular solutions characterized by three identical legs (symmetri-
cal PKMs) are usually preferred for economic reasons. The present work is focused on
the 3-RFR class of tripod SPMs which have an isostatic and symmetrical architecture.
This class of machines has already been studied by many researchers, with notable con-
tributions by Karouia and Hervé [2] that first studied the mobility of this class of SPM
by means of Lie algebra, Kong and Gosselin [3] that used screw theory for the synthesis
of parallel wrists and Di Gregorio, who developed the kinematic relations of a number
of SPMs [4], [5], [6], [7].



2 David Corinaldi et al.

2nd leg1st leg 3rd leg

Base Platform

Mobile 
Platform (MP)

R
Z1

Y1

F1

Z0

F0

X0
X1

Y0

F

R eh
ev

Center of the 
spherical motion

MP

C

U
P

U

U

R
MP

C
R

MPC

U

U

P
MP

C

U

R
MP

(b)(a)

A1

B1

a1

d1

Fig. 1. The 3-RFR class of SPMs: (a) different leg topologies; (b) kinematic model.

After a first description of this class of manipulators, the paper is divided into two
sections: the analysis of mobility and a comprehensive study on singular configura-
tions, which are addressed by means of powerful geometrical tools such as polynomial
decomposition and screw theory. The latter has been used to analyze the instantaneous
mobility of the machines while the global mobility has been addressed by using alge-
braic geometry as done by Kong in [8]. In this work, the pose of the mobile platform
(MP) is described by means of the Study parameters, which allow a polynomial rep-
resentation of legs constraint equations. The subset of the Study parameters used to
represent rotations are the same Euler-Rodrigues Parameters (ERPs) which are related
to the invariants of the rotational matrix [9]. They allow a robust representation of the
problem and an effective manipulation of constraints equations, therefore they have
been used for pose and trajectory optimization by the same A.’s in [10,11].

The synthesis of PKMs is usually driven by the goal of maximizing stiffness and
accuracy: Section 4 shows how the actuated joints can be chosen so as to obtain the co-
incidence of the singularity loci, therefore simplifying the avoidance of singular poses.
Wrist configurations that cause singularities are identified and interpreted by means of
screw theory [12]. This theory is based on the concept of the instant screw axis, rep-
resented in Plücker coordinates by a six-dimensional array: it is composed by the unit
vector defining the direction of the axis and by its moment about the origin [13]. The
present study has been developed according to the approach of Conconi and Carricato
[14], by which the linear dependence of three screw moments is sufficient to identify
all singularities, i.e., unactuated and actuated kinematic chain singularities and passive
constraint singularities.

2 The 3-RFR Class of Spherical Parallel Manipulators

Three-legged isostatic SPMs include the relevant class of 3-RFR parallel mechanisms,
see Fig. 1(b): their limbs are attached to the fixed and mobile platforms by means of
two revolute (R) pairs, whose axes intersect at the center of the spherical motion; in
between three lower pairs are equivalent to a planar joint (F) whose plane contains the
axes of the revolute joints and the center of the motion. Corinaldi et al. [15] showed
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that this architecture can yield a large orientational workspace characterized by good
dexterity around the home configuration, i.e., when the reference frame F1 attached to
the MP has the same orientation as the reference frame F0 fixed to the ground. The
planar joint in the middle of each limb can be indifferently substituted by any of the
PRR, RPR, PPR, PRP and RRR topologies, provided that some rules are observed: the
directions of the prismatic joints must be parallel to the plane of motion, while the axes
of the revolute pairs must be perpendicular to such plane, as shown in Fig. 1(a). Finally,
such pairs may be merged in a cylindrical (C) joint when the axes of revolute and
prismatic pairs are coaxial; in the same way two orthogonal revolute pairs are equivalent
to a universal (U) joint. The following set of leg topologies arise: (RP)R(RR) = CRU,
(RR)P(RR) = UPU, (RP)P(RR) = CPU, (RP)R(PR) = CRC and (RR)R(RR) = URU.

3 Global Mobility Verification

The pose of the MP is expressed by means of the Study parameters [16]. This nota-
tion was introduced by Study who used a superabundant set of eight parameters in the
seven-dimensional projective space to map the Euclidean space through a one to one
representation x : T ∈ SE (3) 7→ z ∈ P7. The eight parameters yi and ri for i = 0,1,2,3
are related through a quadric polynomial equation, namely the Study’s quadric, and
through a metric equation which ensures that the transformations actually represent
rigid body motions:

σ1 : r0y0 + rT y, σ1 = 0
σ2 : r2

0 + rT r−1, σ2 = 0 (1)

having collected the parameters in the vectors r = [r1 r2 r3]
T and y = [y1 y2 y3]

T for
terseness. By using the homogeneous notation, the transformation T between the mobile
frame F1 and the fixed frame F0 of Fig. 2(a) can be written as usual in terms of the
rotation matrix Q, and the position vector p between their origins:

Q = (r2
0− rT r)1+2rrT +2r0R, R = CPM(r)

p =−2(r0y+ y0r+Yr), Y = CPM(y) (2)

where CPM(r) stands for the cross-product matrix operator on the vector r1. Besides
the Study’s quadric equations (1), additional algebraic relations are written to describe
the constraints imposed by joints’ arrangement on the MP; in this way the mobility of
the platform within its workspace is fully characterized, as done for the 3-URU PKM
by Carbonari et al. in [17]. These relations, which are specific of each legs’ architecture,
are introduced in the following lines by making reference to the sketch in Fig. 2(a). The
ith limb, for i = 1,2,3, is built so as to constrain the axes of the first and the last revolute
joint on the plane πi. Equivalently, the line li , identified by the axis of such joint, has an
intersection point with all the lines that lie on the plane πi, for example the axis of the
first revolute pair, here called mi. The two revolute joints are connected through a planar
joint that allows them a relative motion parallel to the plane πi. This joint constraints

1That is, CPM(r) = ∂ (r×v)/∂v, ∀v, r ∈ R3
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Fig. 2. (a) Kinematics of the ith leg for a generic assembly of the PKM class and (b) the building
architecture that grants the rotational behavior.

the two axes to lie on the same plane for all wrist configurations. The two lines can be
parametrized through their direction plus a passing point, as

li : αid̂i +p, mi : βiâi (3)

where αi,βi ∈R and the hat on the vectors indicates that they are unit vectors. The legs’
constraints can be expressed by

li = mi → αid̂i +p = βiâi ⇒
[
[Q]0[d̂i]1 −[âi]0 [p]0

][
αi βi 1

]T
= 0 (4)

where in the second part of Eq.4 the three column vectors composing the matrix are ex-
pressed in the ground frame F0. A non-trivial solution of this homogeneous equation
can be found by letting the determinant of the respective matrix vanish. Substituting Q
and p relationships Eq.(2) into Eq.4, three polynomials in the Study parameters are ob-
tained, one for each leg. After simplification [18], the three constraints can be expressed
by the varieties of the following polynomials

g1 : r0y2 + r1y3 + r2y0 + r3y1, g1 = 0
g2 : r0y3 + r1y2 + r2y1 + r3y0, g2 = 0
g3 : r0y1 + r1y0 + r2y3 + r3y2, g3 = 0

(5)

The vanishing set of polynomials g1, g2, and g3, together with Study quadric equations
(1) are not yet sufficient to fully describe the kinematics of the 3-RFR class of SPMs,
because a set of actuation dependent equations must still be written. Nevertheless, such
relations provide the searched information about the mobility of the MP [19]. In fact,
when the four Study parameters y0, y1, y2, and y3 are null, the general transformation
matrix T describes a pure rotation since the translation vector p vanishes. Under these
conditions, the Q matrix fully describes the motion of the MP by means of the four
scalar quantities in r0 and r, that correspond to the Euler-Rodrigues parametrization
of rotations [13]. It can be easily verified that such condition satisfies both constraints
equations (5) and the Study quadric relation σ1 = 0, thus demonstrating that a pure
rotational motion has been obtained by the 3-RFR SPM.
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Fig. 3. Singular robot postures when a leg singularity occurs on the first limb.

4 Singularity Analysis

Differently from serial robots, where all joints are actuated, parallel robots are com-
posed by many passive joints, which makes their analysis more complex and increases
the number of singular configurations. Therefore the identification of these configura-
tions and their parametric representation in terms of ERPs is useful for the singularity
avoidance during path-planning and for a possible maximization of their dexterity dur-
ing kinematic synthesis. The following section develops such kind of analysis through
geometrical inspection with the aim of selecting the most suitable joints to be actuated
in order to obtain a simple-to-use singularity relationship.

Unactuated Kinematic Chain Singularities Since the MP is subject to a pure rotation,
the point Bi of Fig. 2(b) moves on the surface of a sphere; moreover, legs topology con-
straints the points Ai and Bi to have a relative planar motion. Keeping in mind these two
facts, it is possible to identify the singular configurations of the legs with a geometric
inspection of the mechanism. At this point no joint is actuated, thus kineto-static prop-
erties only depend on the kind, number, and mutual disposition of the joints composing
the kinematic chain. When a subset of screws of a leg becomes linearly dependent a leg
singularity occurs. In particular, for the case under study, two singular postures for each
leg are identified that appear when the axes of two the revolute joints of the same leg
become coaxial: Fig. 3(a) shows the posture in which the revolute pairs are coincident
while in Fig. 3(b) they lie on the opposite sides of the sphere surface. Moreover, through
an appropriate arrangement of the R and P joints which compose the planar pair, such
singular configurations lead also to the linear dependence of the planar sub-chain pairs.
In these configurations, the leg generates a new mobility constraint, i.e., it is unable
to rotate around an axis perpendicular to the plane generated by the two revolute axes
and the rotation axis of the planar pair. The relationships in terms of the ERPs can be
obtained for i = 1,2,3 from

d̂T
i âi = 1 ⇒ ([Q]0 [di]1)

T [ai]0 = 1 (6)
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Passive-Constraint Singularities A passive-constraint singularity (PCS) occurs when
the dimension of the MP-motion space increases with respect to its global mobility
value. Each leg develops on the MP a constraining force orthogonal to the plane of the
leg and passing through the origin so that the MP motion is a three-dimensional rotation
around the origin. When these forces become linearly dependent, e.g. they are parallel
to the same plane, the dimension of the motion space increases from three to four and
the mechanism is at a PCS. Unlike the previous case, there is at least a PCS posture
for each pointing direction of MP, i.e. given a pointing vector, it is always possible to
find a singular posture by rotating the MP around this axis. Two examples are shown in
Fig. 4: case (a) shows a PCS posture for the vertical direction while case (b) sketches
a different pointing direction. In both cases, the constraints imposed by each leg on the
MP, i.e. the three forces perpendicular to the leg planes (shown in the figures as applied
vectors in the center of spherical motion), become linearly dependent: in fact, the three
vectors lie on the same plane and the twist system of MP gains a translational degree of
mobility perpendicular to the force plane.

Actuated Kinematic Chain Singularities The parallel kinematic chain turns into a
machine once the actuated joints are specified. The total number of actuators is ob-
viously equal to the dimension of the global mobility space, i.e. three; moreover the
motors should be placed at the base platform, i.e. the ground, for practical considera-
tions. A first layout of the motors is obtained through the actuation of the revolute joints
at the base so that their action on the MP consists of a force perpendicular to the leg
plane.

A better alternative solution is obtained by actuating the prismatic joints closest to
the ground that compose the planar joint of each leg, once they have been brought back
to the base platform. This choice brings many advantages; in fact, this time the wrench
acting on the platform is given by a force that lies in the leg plane, whose direction and
application point depend of the planar joint sub-chain. Anyhow, this force causes a mo-
ment on the MP that is perpendicular to the leg plane, i.e, it is in the same direction of
the constraint force imposed by each leg on the MP. In this way, the condition of linear
dependence of the wrench constraints becomes coincident with the linear dependence
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Fig. 5. Kinematic sketches of the (a) 3-CRU, (b) 3-CPU, (c) 3-CRC architectures.

of the actuation wrenches. Furthermore, it should be noted that, if these moment vectors
are computed as cross product between the axis of the revolute joint ai and the vector di,
then their magnitudes vanish when the two revolute joints into the leg become coaxial,
i.e. when a leg singularity occurs. Due to these reasons, the study of these three mo-
ments is sufficient to fully describe the singularities assumed by the SPMs with linear
actuation fixed to the base. Within the class of 3-RFR spherical manipulators of Fig. 1,
only three of them can have the prismatic joint fixed to the base, i.e., 3-CRU, 3-CPU
and 3-CRC, whose architecture is illustrated in Fig. 5. As a matter of fact, the R and
P joints of the first cylindrical joint can be switched without affecting the MP mobility
because of the coaxiality of the direction of the P joint with the axis of the R joint. If
the moments of the actuation forces are denoted by ni, for i = 1,2,3, then the singular
configurations of the 3-RFR wrists with prismatic actuated joints are given by:

n1×n2 ·n3 = 0, ni =−di× âi⇒ [n1]0 = d[ai]0× [Q]0[di]1 (7)

where d is the constant magnitude of the vector d. Writing the rotation matrix in terms
of the ERPs using Eq. 2, it is obtained

n1×n2 ·n3 = d3(r1 + r2 + r3− r0)(−r1− r2 + r3− r0)

·(r1− r2− r3− r0)(−r1 + r2− r3− r0)
(8)

that vanishes when one of its factors become zero, indicating the robot poses for which
a singular configuration is attained by the robot.

5 Conclusions

The paper has characterized the rotational mobility of the 3-RFR class of SPMs and has
shown that it is beneficial to actuate the prismatic joint of each leg, once it has been
brought back to the frame. In this way, wrench constraints become linearly dependent
only when the actuation wrenches do and thus the study of wrist singularities can be
performed by simply studying their moments. Furthermore, such moments represent
the row vectors of the direct Jacobian matrix of the 3-CPU that map the angular ve-
locity vector of the MP into the actuated joint rates. This means that for this particular
robot a single 3× 3 Jacobian matrix is able to describe all the possible singularities.
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This feature can be exploited for posture optimization, e.g. when the 3-CPU robot is
functionally redundant with respect to the task to be performed [15]. During path plan-
ning, when singularities must be avoided, the simple structure of Eq. (8) may represent
a beneficial aspect for the considered class of manipulators. The interested reader can
find a mapping of singularities in the Cartesian space of pointing directions in reference
[20].
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