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A B S T R A C T

Background and Objectives Over the last decade, Deep Learning (DL) has revolu-
tionized data analysis in many areas, including medical imaging. However, there is a
bottleneck in the advancement of DL in the surgery field, which can be seen in a short-
age of large-scale data, which in turn may be attributed to the lack of a structured and
standardized methodology for storing and analyzing surgical images in clinical centres.
Furthermore, accurate annotations manually added are expensive and time consuming.
A great help can come from the synthesis of artificial images; in this context, in the lat-
est years, the use of Generative Adversarial Neural Networks (GANs) achieved promis-
ing results in obtaining photo-realistic images. Methods In this study, a method for
Minimally Invasive Surgery (MIS) image synthesis is proposed. To this aim, the gen-
erative adversarial network pix2pix is trained to generate paired annotated MIS images
by transforming rough segmentation of surgical instruments and tissues into realistic
images. An additional regularization term was added to the original optimization prob-
lem, in order to enhance realism of surgical tools with respect to the background. Re-
sults Quantitative and qualitative (i.e., human-based) evaluations of generated images
have been carried out in order to assess the effectiveness of the method. Conclusions
Experimental results show that the proposed method is actually able to translate MIS
segmentations to realistic MIS images, which can in turn be used to augment existing
data sets and help at overcoming the lack of useful images; this allows physicians and
algorithms to take advantage from new annotated instances for their training.

c© 2020 Elsevier B. V. All rights reserved.

1. Introduction

Minimally invasive surgery (MIS) is currently the elec-
tive treatment for many procedures, such as nephrectomy and
prostatectomy. By relying on small incisions on patient ab-
domen, through which surgical tools and endoscope are in-
serted, MIS attenuates some of the drawbacks of open surgery,
such as prolonged patient hospitalization and recovery time [1].

e-mail: marzullo@mat.unical.it (Aldo Marzullo)

Nevertheless, MIS suffers from some drawbacks in terms of re-
duced field of view on the surgical site, which may hamper sur-
geon context awareness, and restricted freedom of movement
for surgical action [2]. The surgical data science (SDS) commu-
nity has been more and more focusing on developing solutions
for Computer Assisted Interventions (CAI), with the final goal
of increasing context awareness and providing decision support
to surgeons [3]. Surgical phase recognition [4], 3-D recon-
struction of soft tissues [5], tissue classification [6] and surgical
tool segmentation and pose estimation [7] are among the main
challenges of SDS. To address these challenges, while tackling
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the high variability encoded in the laparoscopic images, CAI
methods commonly rely on deep learning (DL) [8]. The de-
velopment of effective DL algorithms requires large annotated
datasets, which are currently not available in this field, despite
laudable initiatives promoted by some scientific communities
(e.g., MICCAI1 and ISBI2). Manual annotation has to be per-
formed, which consists of time-consuming and tedious proce-
dures; indeed, even though it has been shown that untrained
anonymous individuals from online communities can generate
training data of expert quality, obtaining manual annotation still
remains a challenging task [9].

Data augmentation using affine transformations (e.g., rota-
tion and scaling) is often used to try to tackle the small size
of annotated datasets in several scenarios. Nonetheless, this
approach presents known drawbacks, such as very limited di-
versities in existing data, especially when a small dataset is
processed for augmentation [10]. Researchers in other fields
proposed to artificially generate unseen images, while automat-
ically providing semantic label-map annotation, using gener-
ative adversarial networks (GANs). GANs have been proven
to be able to estimate the underlined distribution of data when
dealing with very complicated data structures, and learn to
replicate meaningful samples [11, 12, 13].

In this work, we specifically address the problem of gener-
ating realistic MIS images with surgical tools in the field of
view, using the surgical-tool semantic label maps as constraint
for the GAN generation process. This concept, in the literature
referred to as image-to-image translation problem, is widely ex-
plored for synthesizing photos from label maps, reconstructing
objects from edge maps, and colorizing images. A way to ad-
dress image-to-image translation problems is to use conditional
GANs (cGANs), which leverage standard GANs in a condi-
tional setting [14]. In the herein addressed scenario, cGANs al-
low one to generate realistic MIS images, while having the cor-
responding surgical-tool label masks available. This has great
potential, as the number of currently available datasets of sur-
gical instruments in MIS is limited (such as ENDOVIS Grand
Challenge3), despite a growing number of research works have
been published on the topic of instrument-tool analysis during
MIS in the last few years [15, 7, 16].

1.1. Contribution

In order to tackle the issues described above, we propose to
train a pix2pix cGAN [14] to translate semantic segmentation
label maps of surgical tools to realistic MIS images with sur-
gical tools in the field of view. To the best of our knowledge,
although cGANs have been used for tasks in the MIS field, pre-
vious approaches only marginally involved surgical tools in the
field of view, being more focused on colonoscopy data (see
Sec. 2). As previously reported in the literature [17], cGANs
allow to optimize image-translation and RGB-image prediction

1http://www.miccai.org/
2http://2020.biomedicalimaging.org/
3https://endovis.grand-challenge.org/

(a)

(b)

Fig. 1. Samples from the (a) generated and (b) real MIS images.

simultaneously, while remaining independent of camera, light-
ing and patient characteristics. In order to further condition
the image-to-image translation problem, in this work we add
a rough tissue-label map to the surgical-tool label map. This is
done to tackle the high variability encoded in MIS images, in
terms of noise, blur, illumination levels, tissues in the field of
view (with different shape and texture), presence of occlusions
and surgical tool pose, size and shape (as shown in Fig. 1). It
is worth noting that obtaining such rough label map for abdom-
inal tissues is a trivial task, and state- of-the-art algorithms can
be used for the purpose (e.g., [6]).

The original pix2pix loss function was here modified to im-
prove the realism of surgical tools by adding an additional reg-
ularization parameter, which leverages the pix2pix generator to
preserve the high-level features of surgical tools (e.g., sharp
borders). The generated images were evaluated both analyti-
cally and by means of a custom web platform, where surgeons
and SDS experts were asked to examine images and try to cor-
rectly identify if they were real or “fake”.

The remainder of the paper is structured as follows. In Sec-
tion 2 we survey relevant work in the literature, focusing on
cGAN applications for endoscopic images. Section 3 provides
a detailed description of the proposed approach; results are pre-
sented in Section 4 and discussed in Section 5. Eventually, Sec-
tion 6 draws our conclusions and summarizes the main contri-
bution of the present work.

2. Related work on cGANs in endoscopy

The GAN framework has gained growing interest in com-
puter vision and medical imaging as a more reliable approach to
generate realistic training images rather than using synthetically
augmented datasets. Applications include magnetic-resonance
images generation [18, 11], liver-lesion classification [19], and
pathology-progress simulation [20].

Recently, research in the field of GANs is focusing more and
more on image-to-image translation problem, with the goal to
generate new, unseen images as a combination of the content
of an image and the style of another. Among those methods,
the pix2pix network [14] received particular attention and has
been used a wide range of sectors, including the biomedical do-
main [17]. The pix2pix is a deep learning model that solves the
image-translation problem using a cGAN to learn a function to
map the input image to the output one. The framework is com-
posed by two main components, the generator and the discrim-
inator. The generator is trained to transform the input image to
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the target one, while the discriminator measures the output and
target similarity to encourage the generator to create a plausible
translation. Another approach proposed for image-translation
problems is CycleGAN [21], where two generator and two dis-
criminator models are introduced for modeling both the direct
and inverse translation mapping. In the specific context of la-
paroscopic images, both models have achieved remarkable re-
sults.

Focusing on the endoscopy domain, Rau et al. [17] used
the pix2pix method to transform endoscopic images into depth
maps, to compensate for the lack of labelled training data for
deep-learning algorithms for depth estimation. Mathew et al.
[22] presented a deep-learning framework, called Extended
and Directional CycleGAN, for image-to-image translation be-
tween optical and virtual colonoscopy, with the final foal of in-
creasing the size of optical colonoscopy data. Similarly, Oda
et al. [23] used CycleGAN for generating optical colonoscopy
data from virtual ones obtained from computerized tomography
scans. CycleGAN has also being used by Esteban et al. [24], to
translate bronchoscopic intra-operative videos to virtual bron-
choscopies.

The majority of the approaches in the literature are focused
on generating images with only one structure in the field of view
(e.g., bronchi or colon). With respect to those endoscopic im-
ages, MIS images present higher variability in terms of tissues
in the field of view, surgical tools shape, size and pose, and illu-
mination level. Images acquired during MIS often present high
noise level, blur, specularities, as well as presence of smoke
and blur in the field of view. All this aspects pose challenges
to the generation of realistic images. Hence, as the best of our
knowledge, this work is the first attempt which investigates the
problem of translating semantic label maps into realistic MIS
images.

CycleGAN has been observed to work well on tasks
that involve color or texture changes, like virtual to optical
colonoscopy. However, for tasks that require substantial geo-
metric changes to the image, such as cat-to-dog translations,
CycleGAN usually fails [21]. Hence, in this work, the pix2pix
method is used to produce a mapping between semantic label
maps and new, unseen, RGB MIS images.

3. Materials and Methods

In the following, we report a detailed description of back-
ground techniques and methods, along with details on the
herein proposed approach.

3.1. Dataset Description and Semantic Label Map Preparation

The EndoVis Dataset from the EndoVis Intrument Segmen-
tation and Tracking Challenge 20174 was used for this study.
Sample images from the dataset are shown in Fig. 1 (b). The
dataset is made of 40 2D in-vivo images (image size = 720×576
pixels) from 4 laparoscopic colorectal surgeries, for a total of
160 images with the corresponding surgical-tool label map.

4https://endovissub-instrument.grand-challenge.org/Data/

Fig. 2. Schematic representation of the semantic label map used to generate
realistic MIS images. The label map includes accurate surgical tool anno-
tation and rough annotation of anatomic structures (i.e., fat and abdominal
organs).

Each pixel is labelled as either background, shaft and manip-
ulator.

Rough manual annotation of tissues was added to the origi-
nal EndoVis label maps in order to explicitly leverage pix2pix
learning the variability encoded in abdominal tissues. We em-
pirically observed that having such a rough annotation allowed
to increase the realism of generated images. Tissues were
roughly annotated considering two classes, namely abdominal
organs and fat. A sample of the resulting semantic label map,
with both surgical tools and abdominal tissues, is shown in Fig.
2.

We also applied geometrical and morphological data aug-
mentation (i.e., rotation, scaling, and shifting) to increase the
number of training instances by a factor of 10.

3.2. Conditional Generative Adversarial Networks

As introduced in Sec. 1, GANs are a class of generative mod-
els that learn the probability distribution over a dataset [25].
The standard GAN implementation can be described as a zero-
sum game, in which two networks, the Generator (G) and Dis-
criminator (D), compete to one another to maximize its own
payoff.

In this adversarial process, the two networks are trained
simultaneously: the Generator network produces samples
x = G(z|θ(g)), where θ(g) refers to the parameters of G, and z
is a random input noise (samples from a uniform distribution).
The Discriminator network estimates D(x|θ(d)), which refers to
the probability that x is a real training example, rather than an
artificial sample drawn from the model.

Formally, the training objective for a GAN can be described
as:

G? = arg min
G

max
D
LGAN(G,D) (1)

where:

LGAN(G,D) = Ex[logD(x)] + Ex,z[log(1 − D(x,G(x, z))] (2)

The cGANs [21, 26, 14] extend the GANs by conditioning
the generator and critic on prior information (c). The training
objective for a Conditional GAN then becomes:

LcGAN(G,D) := Ex,c[logD(x, c)]+
Ex,z[log(1 − D(x,G(x, z))]

(3)
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Several researchers have pointed out the benefits of combin-
ing the cGAN objective with a more traditional loss, such as the
L1 distance [26, 14]. This is formally expressed by:

L1(G) = Ex,c,z[||c −G(x, z)||1] (4)

This objective can be used to train to produce outputs that look
realistic and as close as possible to the real label, that is, it regu-
larizes the generator model to output images that are a plausible
translation of the source image. The final objective is then:

G? = arg min
G

max
D

LcGAN(G,D) + λL1(G) (5)

where λ is a regularization parameter.

3.3. cGAN for laparoscopic image generation
In this work, we take advantage of a pix2pix cGAN [14] to

translate a semantic label map relevant to tissue and instruments
in realistic, synthetic, laparoscopic images. The pix2pix archi-
tecture is illustrated in Fig. 3, and described in Table 1 (gener-
ator) and Table 2 (discriminator).

In pix2pix, the discriminator is a deep CNN that performs
conditional-image classification. The discriminator is a CNN
that is run at patch level. The difference between the pix2pix
discriminator and standard discriminators is that, instead of pro-
ducing output as single scalar vector, the pix2pix discriminator
generates an N × N array, when N × N is the patch size. The
average prediction of all patches is used to classify the whole
image as real or fake.

The generator follows the U-Net encoder-decoder network
architecture, with long skip connections between mirrored lay-
ers in the encoder and decoder stacks for recovering the reso-
lution lost in the encoder path [27]. The network incorporates
down-scaling on multiple levels to learn different degree of de-
tails, from a general representation to more local feature repre-
sentations. Such architecture has been shown produce excellent
results in several relevant scenarios, including medical image
segmentation and translation [17, 14, 27]

The generator is trained on pairs (x, c), where x is the seman-
tic label map with tissues and surgical tools and c is the corre-
sponding RGB endoscopic image. The random noise vector z
of Eq. 5 is not provided as input, instead, it is simulated through
dropout layers with probability 0.5 during both training and in-
ference. Such an approach has been proven to give comparable
results, while simplifying the overall implementation [14].

The endoscopic images we aim to simulate in this study can
be schematically decomposed in two semantic sets: surgical
tools and abdominal tissues. However, because of several dif-
ferences in light and shapes, learning to simulate such hierarchy
could not be a trivial task, resulting in blurred and non-realistic
surgical-tool boundaries. In this work, to leverage a more ef-
fective image-to-image translation, we explicitly penalise dif-
ferences between the true and generated surgical tools. Let t
be the semantic label map of the surgical tools in an image, the
loss function of the cGAN (Eq. 5) was modified by adding a
further regularization term:

Lt(G) = Ex,c,t,z[||ct −G(x, z)t||1] (6)

Table 1. Architecture of the generator network

Id Layer (type) Output Shape Connected to

1 Input 256 × 256 × 3
2 2DConv 128 × 128 × 64 1
2a Leaky ReLU 128 × 128 × 64 2
3 2DConv 64 × 64 × 128 2a
3a Batch Norm 64 × 64 × 128 3
3b Leaky ReLU 64 × 64 × 128 3a
4 2DConv 32 × 32 × 256 3b
4a Batch Norm 32 × 32 × 256 4
4b Leaky ReLU 32 × 32 × 256 4a
5 2DConv 16 × 16 × 512 4b
5a Batch Norm 16 × 16 × 512 5
5b Leaky ReLU 16 × 16 × 512 5a
6 2DConv 8 × 8 × 512 5b
6a Batch Norm 8 × 8 × 512 6
6b Leaky ReLU 8 × 8 × 512 6a
7 2DConv 4 × 4 × 512 6b
7a Batch Norm 4 × 4 × 512 7
7b Leaky ReLU 4 × 4 × 512 7a
7 2DConv 2 × 2 × 512 6b
7a Batch Norm 2 × 2 × 512 7
7b Leaky ReLU 2 × 2 × 512 7a
8 2DConv 1 × 1 × 512 7b
8b Leaky ReLU 1 × 1 × 512 8
9 2DConvT 2 × 2 × 512 8b
9a Batch Norm 2 × 2 × 512 9
9b Dropout 2 × 2 × 512 9a
9c Concatenate 2 × 2 × 1024 9b,7b
9d Leaky ReLU 2 × 2 × 1024 9c
10 2DConvT 4 × 4 × 512 9b
10a Batch Norm 4 × 4 × 512 10
10b Dropout 4 × 4 × 512 10a
10c Concatenate 4 × 4 × 1024 10b,6b
10d Leaky ReLU 4 × 4 × 1024 10c
11 2DConvT 8 × 8 × 512 10b
11a Batch Norm 8 × 8 × 512 11
11b Dropout 8 × 8 × 512 11a
11c Concatenate 8 × 8 × 1024 11b,5b
11d Leaky ReLU 8 × 8 × 1024 11c
12 2DConvT 16 × 16 × 512 11b
12a Batch Norm 16 × 16 × 512 12
12b Concatenate 16 × 16 × 1024 12a,4b
12c Leaky ReLU 16 × 16 × 1024 12b
13 2DConvT 32 × 32 × 256 12b
13a Batch Norm 32 × 32 × 256 13
13b Concatenate 32 × 32 × 256 13a,3b
13c Leaky ReLU 32 × 32 × 512 13b
14 2DConvT 64 × 64 × 128 13b
14a Batch Norm 64 × 64 × 128 14
14b Concatenate 64 × 64 × 128 14a,2b
14c Leaky ReLU 64 × 64 × 256 14b
15 2DConvT 128 × 128 × 64 14b
15a Batch Norm 128 × 128 × 64 15
15b Concatenate 128 × 128 × 64 15a,1b
15c Leaky ReLU 128 × 128 × 128 15b
16 2DConvT 256 × 256 × 3 15c
16 Tanh 256 × 256 × 3 16
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Fig. 3. Proposed pix2pix framework for laparoscopic-image generation. The (top) generator and (bottom) discriminator networks are shown. The feature-
map size and the number of channels is reported, too.

Table 2. Architecture of the discriminator network

Id Layer (type) Output Shape Connected to

1a Input 256 × 256 × 3
1b Input 256 × 256 × 3
1c Concatenate 256 × 256 × 6 1a,1b
2 2DConv 128 × 128 × 64 1c
2a Leaky ReLU 128 × 128 × 64 2
3 2DConv 64 × 64 × 128 2a
3a Batch Norm 64 × 64 × 128 3
3b Leaky ReLU 64 × 64 × 128 3a
4 2DConv 32 × 32 × 256 3b
4a Batch Norm 32 × 32 × 256 4
4b Leaky ReLU 32 × 32 × 256 4a
5 2DConv 16 × 16 × 512 4b
5a Batch Norm 16 × 16 × 512 5
5b Leaky ReLU 16 × 16 × 512 5a
6 2DConv 16 × 16 × 512 5b
6a Batch Norm 16 × 16 × 512 6
6b Leaky ReLU 16 × 16 × 512 6a
7 2DConv 16 × 16 × 1 6b
7b Leaky ReLU 16 × 16 × 1 7

Our objective loss was then defined as:

Gt = arg min
G

max
D

LcGAN(G,D) + λ1L1(G) + λ2Lt(G) (7)

where λ1 is the overall regularizing weight, while λ2 is the reg-
ularizing weight specific to the surgical tools.

3.4. Experimental settings

The pix2pix architecture was implemented and trained using
Keras. The Adam optimizer was chosen with a learning rate
of 2 × 10−3 for both the generator and discriminator. We em-
pirically set the L1 (λ1 = 50) and Lt (λ2 = 100) regulariza-
tion parameters to reflect the fact that the semantic label map
was accurate for the surgical tools, while it was rough for the
abdominal tissues. Patch size in the discriminator was set to
70 × 70 pixels. Images were scaled to 256 × 256 pixels for
memory constraints. The images were normalized in the range
[-1,1]. We trained the pix2pix for 300 epochs using a batch size
of 1. We stopped the training when satisfying visual results
were achieved on a small test set of 10, unseen, images (this
happened after ∼100 epochs). Training took about 6 hours on a
NVIDIA Quadro P6000 GPU.

3.5. Experimental Protocol

Currently, there is no established consensus, in the research
community, on the best way to evaluate GANs [25, 11]. Indeed,
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it is not trivial to obtain the definition of precise mathematical
rules allowing one to tell whether an image is eligible for be-
longing to a given group or not. For instance, considering prob-
ability distributions between pixels or regions of the image by
using statistical approaches might not be enough, as geometri-
cal relationships between objects in the image should be taken
into account. For these reasons, in this study we tested our ap-
proach by means of both quantitative measurements and quali-
tative visual assessments by surgeons and SDS experts over the
generated laparoscopic images.

3.5.1. Human evaluation of generated images
A web platform was build, where physicians and experts

were called to distinguish between real and synthetic endo-
scopic images. In order to generate completely unseen syn-
thetic MIS images, a proper Python script was defined to gen-
erate semantic-label maps with tissues and surgical tools. The
idea was to randomly generate polygons (representing the tis-
sues and tools) over a black background. The trained pix2pix
was used to translate these semantic-label maps into synthetic
MIS images.

Two sets of 160 images (160 synthetic and 160 real) were
considered. More precisely, we iteratively showed to each judge
20 pairs consisting of a real image and a generated one, ex-
tracted from the two sets with equal probability. The judge
has to tell which one was the fake and which one was the real
image. During each of the 20 trials, true positive (T P), true
negative (T N), false positive (FP) and false negative (FN) and
the number of correct response were collected, where positive
and negative refer to the generated and original images, respec-
tively.

A total of 54 tests were collected by different users, divided
in four categories (17 naive users, 19 non-expert surgeons, 13
expert surgeons, 5 technical developers). In order to guarantee
a fair comparison, a postprocessing step (Gaussian blur) was
added to the real images, in order to make their visual quality
comparable to that of synthetic images. This was done to avoid
the evaluators focusing on high-level details (e.g. instrument
brand) to spot real images.

The one-way ANOVA test was performed to assess if any
statistical difference between the groups of evaluators existed.
Group normality and homoscedasticity assumptions were eval-
uated by means of the Shapiro-Wilk and Bartlett’s test, respec-
tively (significance level = 5%).

3.5.2. Quantitative image-quality assessment
In order to evaluate the similarity between the two groups

(i.e., the real and generated images), the distributions of real
and synthetic datasets were estimated by means of the Kernel
Density Estimation (KDE) function, and their likelihoods were
compared. Similar approaches were already applied in the con-
text of GANs in [11] and [25]. In our approach, we computed
the similarity between the two datasets estimating their distri-
bution by means of the Kernel Density function, so that similar
datasets should be represented by similar distributions. More
in detail, the probability of the synthetic data is estimated by
fitting a Gaussian Parzen window to the generated samples and

Fig. 4. Sample from the image translation results. Starting from the top
row, the input semantic label map, the corresponding translation and the
ground truth are shown.

reports the likelihood under this distribution. The bandwidth
of the Gaussians is obtained by cross-validating the training
data. In addition, for a visual comparison of the two groups,
Principal Component Analysis (PCA) embedding representa-
tion of real and synthetic images was computed [28]. Several
embedding dimension (d, from 10 to 100 with a 10-unit incre-
ments) were analysed without noticing any significant visual
difference. Thus, d = 100 was used for the experiments.

3.5.3. Surgical tool segmentation
In order to quantitatively assess the informative content of the

generated images, we evaluated whether the proposed method
can serve as a data augmentation method for surgical-tool seg-
mentation tasks. A total of 1600 images were generated by
means of the proposed approach and used to train a standard U-
Net architecture [27]. The network was trained for 50 epochs
using binary cross-entropy as loss function and Adam optimizer
(learning rate = 0.0001, batch size = 16). The model was im-
plemented in Keras and trained using a NVIDIA Quadro P6000
GPU. After training, the best model was chosen as the one that
minimized the loss on the validation set (30% of the whole
dataset).

The model was finally tested on 40 images from the original
MIS dataset. We calculate five evaluation indexes respectively:
Søresen Dice Coefficient (Dice), Jaccard Similarity (Jaccard),
Precision (Precision), Recall (Recall) and F1-score (F1):

Dice =
2T P

2T P + FN + FP
(8)

Jaccard =
T P

T P + FN + FP
(9)
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Fig. 5. Bi-dimensional Principal Component Analysis (PCA) embedding
representation of real and synthetic images.

Precision =
T P

T P + FP
(10)

Recall =
T P

T P + FN
(11)

F1 =
2 · Precision · Recall
Precision + Recall

(12)

It is important to point out that the main goal of the study
was not to achieve high segmentation performance; rather, we
wanted to evaluate the informative content of the artificially
generated images. For this reason, no further parameter tuning
was performed to improve segmentation results.

4. Results

Samples from the generated images starting from the se-
mantic label map with accurate surgical-tool segmentation and
rough tissue segmentation can be seen in Figure 4. The aver-
age results from human evaluation are reported in Table 3. No
differences were found between the assessor groups, except for
the technical developers. The difficulty to differentiate between
the real and generated images is well underlined by the low
values of correct instances guessed by humans in the tests. Ex-
pert surgeons achieved the highest results. However, a similar
performance was achieved by both naive users and non-expert
surgeons. It is interesting to observe the high score achieved
by the technical developer, which were able to spot the typical
artefacts of synthetic images produced by GANs.

Values of 33.5765 and 33.5791 were obtained respectively
by comparing the log-likelihoods for the 160 true and 160 syn-
thetic data. This result suggests that the two groups are similar
but not identical. Such similarity can be observed by the visual
representation of the first two dimensions of the embedding (d
= 100) illustrated in Figure 5. The two distributions do not over-
lap, suggesting that the pix-to-pix did not replicate images from
the original set.

Average U-Net segmentation results are reported in Table 4:
the synthetic images provided high enough informative content

to let the model generalize on real instances, achieving encour-
aging results.

5. Discussion

In this work, we presented a deep-learning approach based on
cGANs for generating realistic laparoscopic images with surgi-
cal instruments. Because annotated MIS datasets are difficult
to obtain, due to high costs in terms of money and time re-
quired to perform the annotation, the proposed approach pro-
vides an effective method to augment MIS endoscopic datasets,
with a view to generate SDS methods that rely on instrument-
tool analysis. We took advantage of the pix2pix architecture
for image-domain translation, incorporating instrument and
(rough) tissue segmentation as priors. For pix2pix training, we
exploited the publicly-available images of the EndoVis Intru-
ment Segmentation and Tracking Challenge 2017.

Results were evaluated by means of quantitative and qual-
itative approaches. Fake images distribution was observed to
be close to the real dataset, suggesting that our method was
able to generate realistic contents without replicating the orig-
inal images. In addition, we addressed the problem of image
segmentation by training a well-known architecture used in the
medical field, i.e. U-Net, using only synthetic images. Such
simple training allowed to achieve promising segmentation re-
sults on real images, showing that the proposed method can be
effectively applied for augmenting surgical datasets for segmen-
tation tasks.

Naive users, surgeons and experts in GAN development were
called to discriminate between real and newly generated im-
ages. In order to have a more detailed feedback, we also asked
them to write down comments describing how did they tell the
difference between real and synthetic images. Both naive users
and surgeons were mostly unable to discriminate the images. It
is worth to note that some of them raised concerns about the
lower image quality with respect to that commonly available
during their actual surgical practice, which, in fact, constitutes a
limitation of our work. For a more fair comparison, indeed, we
slightly modified real-images to avoid the evaluators focusing
on high-frequency details (e.g. instrument brand) to discrimi-
nate between fake and real images. However, we found such
processing not representing a limitation for the test, according
to the high results and comments collected by technical devel-
opers and some of the surgeons. Technical developers (non-
clinical), indeed, were significantly better at discriminating real
and generated images. This may be probably attributed to their
background, which made them able to to spot features relevant
to GAN generation.

A second limitation of this study may be seen in the relatively
small size of the training dataset. However, the lack of large and
annotated publicly available datasets is a well known-problem
in the SDS community [3]. This problem was addressed by
performing linear transformations to the original available im-
ages. It is worth to note that methods for training image-to-
image translation system that do not require paired examples
exist. In this context, several experiments using CycleGAN [21]
were performed but not reported in this paper. In particular, im-
ages generated by CycleGAN were observed to be only small
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Table 3. Results of the human evaluation in terms of True Positive (T P), True Negative (T N), False Positive (FP), False Negative (FN), number of correct
response (Correct). Results are averaged across all users (all) and for each level of expertise (± standard deviation).

count No. Fake No. Real Correct T N T P FN FP

overall 54 10.19 ± 2.47 9.81 ± 2.47 7.94 ± 5.37 4.74 ± 3.8 3.2 ± 3.1 6.61 ± 3.21 5.44 ± 3.14
naive users 17 10.12 ± 2.6 9.88 ± 2.6 7.29 ± 5.51 3.94 ± 3.36 3.35 ± 3.18 6.53 ± 3.06 6.18 ± 3.21

non-expert surgeon 19 9.68 ± 1.6 10.32 ± 1.6 6.63± 4.42 3.63 ± 2.5 3.0 ± 2.96 7.32 ± 3.0 6.05 ± 2.68
expert surgeon 13 10.0 ± 2.55 10.0 ± 2.55 7.85 ± 5.49 5.15 ± 4.18 2.69 ± 3.45 7.31 ± 2.9 4.85 ± 3.51

technical developer* 5 12.8 ± 3.63 7.2 ± 3.63 15.4 ± 1.67 10.6 ± 3.71 4.8 ± 2.68 2.4 ± 2.61 2.2 ± 1.48
*number of correct responses significantly different from other groups

Table 4. Segmentation results in terms of Dice Coefficient (Dice), F1-
score (F1), Jaccard Similarity (Jaccard), Precision (Precision) and Recall
(Recall).

Dice F1 Jaccard Precision Recall

mean 0.71 0.97 0.59 0.81 0.68
std 0.22 0.02 0.22 0.18 0.26

variations of the same image (mode collapse problem) and we
were not able to overcome it with the current implementation.
Such results were probably related to a common issue of Cy-
cleGAN, which usually fails with tasks that require substantial
geometric changes [21]. CycleGAN was successfully exploited
in the majority of the approaches in the literature [22, 23, 24],
which, however, focused on generating images with only one
structure in the field of view (e.g., bronchi or colon). In this
study, instead, we focused on images presenting higher variabil-
ity, in terms of tissues in the field of view, surgical tools shape,
size and pose, and illumination level, for which CycleGAN was
challenging to train.

6. Conclusions

A laparoscopic image generation method was proposed in
this study. The conditional generative adversarial network sys-
tem pix2pix was exploited for generating synthetic images start-
ing from an (accurate) surgical-tool and a (rough) abodminal-
tissue label map. Achieved results suggest that the method can
be effectively used for augmenting surgical datasets for seg-
mentation tasks. As future work is concerned, we aim at im-
proving the quality of our results by exploiting advanced gen-
erative models such as pix2pixHD [29], also dealing with un-
paired datasets. In addition, despite our analysis being focused
on images with surgical tools, the proposed framework could
be easily extended to other object classes. Hence, we plan to
investigate the performance of the proposed approach also in
other anatomical fields, e.g., for generating images with pla-
centa membrane in fetoscopic images to support surgeons with
context awareness [30].
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