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Highlights:  

 A Mo.Se. (Mosaic Segmentation) algorithm is described with the purpose to perform robust image segmentation to 

automatically detect tesserae in ancient mosaics.  

 This research aims to overcome manual and time-consuming procedure of tesserae segmentation by proposing an 

approach that uses deep learning and image processing techniques, obtaining a digital replica of a mosaic. 

 Extensive experiments show that the proposed framework outperforms state-of-the-art methods with higher accuracy, 

even compared with publicly available datasets. 

Abstract:  

Mosaic is an ancient type of art used to create decorative images or patterns of small components. A digital version of a 
mosaic can be useful for archaeologists, scholars and restorers who are interested in studying, comparing and 
preserving mosaics. Nowadays, archaeologists base their studies mainly on manual operation and visual observation 
that, although still fundamental, should be supported by the aid of automatized procedure of information extraction. In 
this context, this research intends to overcome manual and time-consuming procedure of mosaic tesserae drawing by 
proposing Mo.Se. (Mosaic Segmentation), an algorithm that exploits deep learning and image segmentation techniques; 
specifically, the methodology combines U-Net 3 Network with the Watershed algorithm. The final purpose is to define a 
workflow which establishes the steps to perform a robust segmentation and obtain a digital (vector) representation of a 
mosaic. The detailed approach is presented, and theoretical justifications are provided, building various connections with 
other models, making the workflow both theoretically valuable and practically scalable for medium or large datasets. The 
automatic segmentation process was tested with the high-resolution orthoimage of an ancient mosaic, realized following 
a close-range photogrammetry procedure. Our approach has been tested in the pavement of St. Stephen's Church in 
Umm ar-Rasas, a Jordan archaeological site, located 30 km southeast of the city of Madaba (Jordan). Experimental 
results show that this generalized framework yields good performances, obtaining higher accuracy compared with other 
state-of-the-art approaches. Mo.se. has been validated using publicly available datasets as a benchmark, demonstrating 
that the combination of learning-based methods with procedural ones enhances segmentation performance almost 10% 
in terms of overall accuracy. The ambition is to provide archaeologists with a tool for automatic extraction of geometric of 
ancient mosaics, which expedites their work.  

Keywords: cultural heritage; mosaic; deep learning; image segmentation; digitization 

Resumen:  

El mosaico es un tipo de arte antiguo utilizado para crear imágenes decorativas o patrones de pequeños componentes. 
Una versión digital de un mosaico puede ser útil a los arqueólogos, estudiosos y restauradores que están interesados en 
el estudio, la comparación y la preservación de los mosaicos. Hoy en día, los arqueólogos basan sus estudios 
principalmente en la operación manual y la observación visual que, aunque sigue siendo fundamental, debe ser 
apoyada con la ayuda de un procedimiento automatizado de extracción de la información. En este contexto, esta 
investigación tiene la intención de superar el procedimiento manual y lento del dibujo de teselas en mosaico 
proponiendo Mo.Se. (Mosaic Segmentation), un algoritmo que explota técnicas de aprendizaje profundo y segmentación 
de imagen; específicamente, la metodología combina la red U-Net 3 con el algoritmo Watershed. El propósito final es 
definir un flujo de trabajo que establezca los pasos para realizar una segmentación robusta y obtener una 
representación digital (vectorial) de un mosaico. Se presenta el procedimiento detallado y se proporcionan 
justificaciones teóricas, construyendo varias conexiones con otros modelos, haciendo que el flujo de trabajo sea 
teóricamente valioso y prácticamente escalable en conjuntos de datos medianos o grandes. El proceso de 
segmentación automática se probó con la ortoimagen de alta resolución de un mosaico antiguo, siguiendo un 
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procedimiento de fotogrametría de objeto cercano. Nuestro enfoque se ha probado en el pavimento de la Iglesia de San 
Esteban en Umm ar-Rasas, un sitio arqueológico de Jordania, ubicado a 30 km al sureste de la ciudad de Madaba 
(Jordania). Los resultados experimentales muestran que este marco generalizado produce buenos rendimientos, 
obteniendo una mayor precisión en comparación con otros enfoques de vanguardia. Mo.se. se ha validado utilizando 
conjuntos de datos disponibles públicamente como punto de referencia, lo que demuestra que la combinación de 
métodos basadosen el aprendizaje con métodos procedimentales mejora el rendimiento de la segmentación en casi un 
10% en términos de exactitud en general. La ambición es proporcionar a los arqueólogos una herramienta de extracción 
automática de mosaicos geométricos antiguos, que acelere su trabajo.  

Palabras clave: patrimonio cultural; mosaico; aprendizaje profundo; segmentación de imagen; digitalización 

 

1. Introduction  

In the current scenario of Cultural Heritage (CH), the 
digitization gained paramount importance for the 
documentation and interpretation of cultural artefacts 
(Piedicca et al., 2016; Pierdicca et al., 2015). This 
process is true even for mosaics. Mosaic is an ancient 
type of art used to create decorative images or patterns 
of small components (Battiato et al., 2007).  

Dealing with mosaics is challenging and fascinating, 
given their uniqueness with respect to other figurative 
arts. Their creation was laborious, expensive and very 
time consuming but, conversely, the result more 
persistent in time. For this reason, it can be found in 
areas where painting could not be feasible, such as 
floors. During the IV century BC, emerges what the 
mosaic technique par excellence: the opus tessellatum, 
the mosaic with tesserae. Afterwards, along with pebbles 
are commonly employed glass, ceramic and stone 
tesserae and modernly, any small component with 
traditional materials can be used: glass or ceramic cast 
or cut into tiles, also plastic, beads, buttons, bottle caps, 
pearls, and more (Benyoussef & Derrode, 2011). 

Given the above and due to the complexity of the 
subject, owning a “digital replica” of mosaics is 
mandatory, since it represents the starting point for the 
preservation and the valorization at a worldwide scale. 
Indeed, archaeologists, scholars and restorers can 
exploit digital technologies for studying, comparing and 
preserving the mosaics. Moreover, for restorers, a digital 
model of a mosaic could become an essential 
professional tool. Researchers are thus supplied with 
highly reliable models, so to have new reading keys to 
study monuments (Fontanella et al., 2019). Furthermore, 
it serves as a record of their state-of-conservation and, 
at the same time, as a method by which they can be 
preserved (Bourke, 2014). Different issues concerning 
their exploitation are still cause of discussion. The 
aspects under investigations involve data reliability and 
the needs of dissemination/interaction or the use of 
digital models as bases for traditional drawings (Cipriani 
& Fantini, 2017). 

Up to now, actions like segmentation, information 
extracting, and labelling tesserae are made manually. 
Indeed, this procedure is intensive labour for 
archaeologists, and it is performed manually by experts. 
To overcome the above limitations, this paper outlines a 
novel approach using deep learning and image 
processing methods for the automatic tesserae 
segmentation.  

Besides extending the approach and the analysis 
presented in (Felicetti et al. 2018), this work attempts to 
define Mo.Se. (Mosaic Segmentation) as an algorithm 
which set closely related steps for: i) performing a robust 

image segmentation to automatically detect tesserae in 
ancient mosaic, ii) managing dedicated information 
within a geodatabase for understanding the evolution of 
the iconographic repertoire, as described in (Malinverni 
et al., 2019), iii) applying the workflow on the pavement 
of St. Stephen's Church in Umm ar-Rasas, a Jordan 
archaeological site, located 30 km southeast of the city 
of Madaba, in the northern part of Wadi Mugi; iv) 
validating the experiments upon the state-of-the-art 
(SoA) benchmark dataset, proposed in (Fenu et al., 
2020); v) providing to the archaeologists a tool for 
automatic extraction of geometric of ancient mosaics, 
facilitating their daily work. 

The paper is organized as follows: Section 2 provides a 
description of the approaches that were adopted for the 
segmentation task. Section 3 gives details on the 
proposed workflow, which is the main core of our work. 
In Section 4, an extensive comparative evaluation of our 
approach with respect to the state-of-the-art is offered, 
as well as a detailed analysis of each component of our 
approach. Finally, in Section 5, conclusions and 
discussion about future directions for this field of 
research are drawn. 

2. Related works  

Despite computer science and image processing are 
largely used in the CH domain, few pieces of research 
involving such disciplines for mosaic conservation, 
restoration or cataloguing are reported in the literature 
(Fenu et al., 2015). As well, the contributions of artificial 
intelligence in this domain seems still neglected (Bordoni 
& Mele, 2016).  

To acquaint the reader about the latest research trends, 
some examples are reported, together with the baseline 
that we used for our study. 

The largest number of related works faces the issue of 
shapes interpretation and pattern recognition, mainly for 
cataloguing purposes, which are usually based on image 
processing techniques. 

In (Zitová et al., 2004), the authors present an 
application of digital image processing techniques in 
medieval mosaic conservation. Their case study was 
The Last Judgment mosaic, located on the wall of the St. 
Vitus Cathedral in Prague, in the Czech Republic. They 
have compared the historical photograph of the mosaic 
from the 19

th
 century, with the current photograph to 

detect mutual differences. At first, they have pre-
processed the images to increase their quality (noise 
reduction, deblurring). Then, they have removed the 
geometrical differences between images with image 
registration techniques, mutual information and feature 
point correspondence. Lastly, they have determined the 
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differences between the historical and the current 
photographs. 

In (Zarghili et al., 2001; Zarghili et al., 2008), the athours 
have paid attention to Islamic mosaics, which have 
particularities in the periodicity and symmetry of tessera 
patterns, by proposing a method to index an Arabo-
Moresque decor database which is not based on 
symmetry. In particular, they have used a supervised 
mosaicking technique to identify the main geometric 
information (connected set of polygonal shapes, namely 
“spine”) of a pattern. By adopting Fourier shape 
descriptors for allowing retrieving of images even under 
translation, rotation and scale they have described the 
spine. However, this method cannot be automatized and 
does not allow the pattern classification according to any 
criteria (Zarghili et al., 2001; Zarghili et al., 2008). 

In line with the above-mentioned studies over Islamic art, 
other works are noteworthy. Djibril et al. (2005) for 
instance, designed a system to index Arabo-Moresque 
mosaic images with symmetry and auto-similarity of 
motifs. It was based on the fractal dimension. The 
automatic segmentation was performed using colour 
information. The original motif was decomposed into a 
set of basic shape after the classification. The shapes 
contours are characterized by their fractal dimension 
which provides a significant measure of the geometric 
structure of the tessera pattern. 

The study of Islamic geometrical patterns, and all 
periodic patterns such as those encountered in textile 
patterns or wallpapers, was approached even by the 
symmetry group theory. In (Djibril & Thami, 2008), as 
first step authors have classified patterns in three 
classes: pattern created after translation along one 
dimension, patterns with translational symmetries in two 
independent directions, and “rosettes”, i.e. patterns that 
start at a central point and grow radially outward. For 
each pattern, the symmetry group and the primary 
region have been extracted. After that, they characterize 
the primary region by a colour histogram and build the 
feature vector.  

Lastly, in (Gil et al., 2009), the authors describe image 
processing techniques to restore mosaic patterns. They 
have developed an image analysis tool to obtain 
information about design patterns which are employed to 
recover tesserae or missing motifs. A great obstacle was 
in proposing a method that results robust to the 
discrepancies between equal object shapes. Once the 
symmetry has been recovered, it allows the virtual 
reconstruction by inpainting methods and physical 
restoration of damaged parts of mosaics. 

Being the creation of information systems essential for 
the management of information, in the literature, some 
works that face this matter. 

A Content-Based Image Retrieval (CBIR) system to 
index and catalogue Roman mosaic images have been 
proposed in (M'hedhbi et al., 2006; Maghrebi et al., 
2007a; Maghrebi et al., 2007b). This system includes an 
object extraction from a complex mosaic scene by using 
unsupervised statistical segmentation and an invariant 
description of semantic objects using the analytical 
Fourier-Mellin transform. An index created from the 
invariant descriptors and an appropriate metric 
(Hausdorff and Euclidean) gives the similarity between 
querying mosaic and the database. 

In (Maghrebi et al., 2007a; Maghrebi et al., 2013), the 
authors describe a CBIR which is a general system to 
index and retrieve by the content historic document 
images using a mouse or a pen, a user drawing query, 
so that a query of pertinent shapes from the database 
begins. A measure of Fuzzy similarity is used to 
compare entries in the database. An XML Database is 
integrated into the system, and experiments on huge 
databases of some Tunisian museums and the National 
Library of Tunisia are listed. 

Another important task is the automatic detection of 
tesserae. To the best of our knowledge, a single mosaic-
oriented segmentation algorithm has been proposed in 
the literature (Youssef & Derrode, 2008), that is based 
on the well-known watershed algorithm (Vincent & Soille, 
1991) and some mosaic-specific pre-processing steps. 

The solution adopted by the authors is based on grey-
level morphology which is suitable to the tiling 
organisation of mosaics. Furthermore, they have 
presented a Watershed Transformation (WT) approach. 
The quality of the extraction depends on the image 
acquisition mode. 

Taking into account the technique implemented to 
perform image mosaic segmentation, some recent 
studies use an approach based on deep learning. In the 
work of (Fenu et al., 2020) the authors exploit the U-Net 
network (Ronnenberg et al., 2015), a convolutional 
neural network, to perform the image mosaic 
segmentation so that each segmented region precisely 
corresponds to a tessera of the mosaic and processes 
the image at the pixel level. They use this approach 
since they retained that was most useful in different 
segmentation tasks (Cicek et al., 2016; Kohl et al., 2018; 
Falk et al., 2019). They compare the performances of 
the proposed method with other segmentation 
approaches dedicated to mosaic tesserae, that as stated 
by the authors themselves, are very scarce. 

The work presented in (Bartoli et al., 2016) has the same 
purpose where, however, deformable models are used 
to overlap the mosaic and adapt to the actual shape of 
the tesserae. To optimize the deformable forms, they 
use genetic algorithms. 

3. Materials and methods  

The experimental approach presented in (Felicetti et al., 
2018) has been improved by developing Mo.Se., an 
algorithm specifically conceived for the segmentation of 
ancient mosaics. In this section, the case study, the 
training dataset and the process are described, together 
with the benchmark datasets used for the evaluation.  

3.1. Case study: The Byzantine mosaics in the 
Church of St. Stephen (Jordan) 

The mosaic chosen for our study is located in the 
Church of St. Stephen, in Jordan. The pavement is 
decorated with an ancient Byzantine mosaic containing 
inscriptions, portraits of the donors, geometric and 
vegetal motifs, representation of cities and scenes from 
the world of pastoralism, agriculture, hunting, combined 
with marine motifs and Nilotic, arranged in a precise 
decorative structure. Its distribution is related to the 
internal organization of the building and linked to the 
liturgical destination of the areas. Through non-verbal 
language, the scenes of this mosaic had the task to 
transmit eschatological, economic, religious and even 
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historical teachings, like a sort of storytelling for the 
communities leaving these countries. 

Data were acquired through different surveying 
techniques, such as laser scanner and digital 
photogrammetry. For implementing the so-called “Multi-
View Stereo” method, a huge amount of shots (about 
4000 in total) was captured; as results, we obtained the 
best radiometric quality of the surfaces and geometrical 
detail of the floor. This acquisition was carried out with a 
reflex camera Canon EOS 5D Mark II with a full frame 
sensor (21.1 MP) and a 28 mm camera lens. The 
camera was arranged on the top of a pole and 
constantly held at the height of 170 cm. The scans were 
performed with a TLS instrument, the Faro Focus3D 
120. Combining with the point cloud model, made by the 
close-range photogrammetry, it was possible to obtain a 
3D metric model of the floor. The integration of the two 
survey techniques, georeferred in a local system, has 
generated an orthomosaic in 1:1 scale of the floor 
surface, characterized by the descriptive accuracy of 
colours, and details of the surveyed surfaces. The Digital 
Elevation Model (DEM) with an accurate representation 
of the geometric deformations and a corresponding 
draped orthoimage, is shown in Figure 1. The 
orthoimage has reached a Ground Sampling Distance 
(GSD) of 0.21 mm. 

3.2. Mosaic datasets  

In this Section, the datasets used to train and assess the 
experiments with Mo.Se. approach, are described. 
Following the work described in (Malinverni et al., 2019), 

the pavement of the Byzantine mosaics of the Church 
has been manually segmented to create a dataset, 
partially used as training data and partially as ground 
truth (gt); more in deep, for the training set 50 out of 100 
samples are selected, about 1.25 m

2
 of gt and the 

remaining 4.25 m
2
 for testing. Furthermore, in this paper 

to validate and generalise Mo.Se., open access mosaic 

datasets have been used. The data collection and 
annotation are presented in the following subsections, as 
well as the SoA datasets used for the testing. 

3.2.1. Training and ground-truth dataset 

Since our approach is learning-based, the first step was 
to label the training data, used as the ground truth of the 
model. This step was manually made by expert 
archaeologists. For the annotation phase, the QGIS 
software has been exploited. The orthoimage of the 
georeferenced mosaic has been loaded and vectorial 
layers manually performed on it. 

First of all, the whole image of mosaic has been 
subdivided into 18 panels. By panels is meant portions 
of mosaic that represent individual scenes, sometimes 
separated by frames or tesserae of the same colour set 
in periodic patterns that form straight lines, waves, etc. A 
shapefile “panel”, made of polygons (multipolygons), has 

been created to map the panels of the mosaic, taking 
into account their contents. Figure 1 shows the panels 
superimposed on the orthoimage of the mosaic. Each 
multipolygon has been univocally identified by a letter of 
the alphabet.  
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A second annotation procedure elaborates the single 
tesserae. For this purpose, a shapefile “tesserae” is 
made of polygons which approximately identify the 
contour of each tessera. Being a very expensive and 
time-consuming task, the single tesserae annotation has 
not been made on the whole mosaic. Only 100 squares 
of size 672x672 pixels scattered between the B, C, G, F, 
S panels of the mosaic have been selected. The squares 
are selected to contain an equal and representative part 
of the whole mosaic. The squares can be overlapped on 
each other by 224x224 pixels. The single tesserae 
annotation has been made inside these 100 squares. 
However, a tesserae annotation previously made in 
other areas of B, C, G, F, S panels has been added to 
the gt. This last annotation is only used in the testing 
phase. 

3.2.2. SoA mosaics dataset  

The dataset described in (Fenu et al., 2015; Fenu et al., 
2020; Bartoli et al., 2016) has been chosen for Mo.Se. 
evaluation and generalization. This dataset has been 
collected by considering 5 mosaic images, representing 
5 mosaics with a different style and age. In particular, 
the images depict the mosaic forming the floor of the 
Basilica di Santa Maria Assunta, in Aquileia (Udine, 
Italy); mosaic at the Early Christian Museum (Museo 
paleocristiano di Monastero) in Aquileia; flower a small 
contemporary mosaic, built by an Italian amateur as an 
essay for a course of ancient mosaic technique; 
University, a portion of a mosaic of the floor in the 
building of a campus, aged 1938. 

3.3. Mo.Se.: algorithm for automatic tesserae 
image segmentation  

Automatic tesserae image segmentation is performed by 
implementing Mo.Se., which performs the steps defined 
in the algorithm. In particular, it comprises the following 
phases, depicted in Figure 2:  

a) High Definition (HD) acquisition of Red-Green-Blue 
(RGB) orthoimage of the mosaic pavement of St. 
Stephen's Church (Malinverni et al., 2019); 

b) Tesserae image segmentation using U-Net 3 Deep 
Neural Network; 

c) Hierarchical Watershed Algorithm; 

d) Refining of segmentation; 

e) Raster to vector conversion of segmentation for 
approach performance comparison with SoA 
datasets (Fenu et al., 2020). 

Algorithm 1 (Tessera image segmentation) depicts the 
steps performed by Mo.Se. algorithm for the automatic 
image segmentation of mosaics.  

Firstly, U-Net3 network (Liciotti et al., 2018) has been 
chosen for this task. The model is trained from zero, 
starting from a random initialization of weights. During 
the training phase, the input RGB images have a 
dimension of 224x224 pixel. Three normalization 
strategies have been evaluated: 

 

1) normalization on the single input, 

2) normalization on the batch, 

3) normalization on the training set.  

 

 

Figure 1: Complete orthoimage created for the case study, inside the Byzantine Church of St. Stephen. The red rectangles highlight 
different panels identified by archaeologist, taking into account the historical subject. Total surface 225 m

2
, gt surface 5.5 m

2
 (54774 

tesserae). 



FELICETTI et al., 2021 

 
Virtual Archaeology Review, 12(24): In Press, 2021 6 

 

The normalization on the training set is useful for the 
recomposition, to avoid problems of discontinuity along 
the stitching edges. 

Algorithm 1. Tessera Segmentation. 

 

We have chosen to adopt a batch normalization 
approach during the training for achieving better results 
in the segmentation. The target (binary image) was 
mapped with 0 and 1 values, corresponding to black and 
white respectively. The model processes the input image 
generating in the output a prediction image compared 
with the target image. The error between prediction and 
target, evaluated according to the loss function in Eq. (1) 
is used to modify the model weights. The goal of training 
is to minimize the loss function, while Adam optimization 
algorithm (Kingma & Ba, 2014) is an extension to 
stochastic gradient descent that has recently seen 
broader adoption for deep learning applications in 
computer vision and natural language processing. 

 

 
𝐿𝑜𝑠𝑠 = 1 −

∑ 𝑝𝑟𝑒𝑑 ∗ 𝑔𝑡

∑ 𝑝𝑟𝑒𝑑2 + 𝑔𝑡2 (1) 

 

A mini-batch training strategy with a batch size of 16 has 
been adopted. This arises from the error evaluation and 
the consequent modification of the weights occurs on a 
batch of 16 training pairs. At the same time, the batch 
size set to 16 guarantees stability and rapidity of 
convergence. The training procedure has been 
performed in 3 periods each of 200 epochs. For each 

period a different learning rate has been set for the first 
0.01, for the second 0.001 and for the third 0.0001. After 
the training phase, the neural network can segment any 
RGB image of the mosaic. Furthermore, thanks to the 
spatial invariance of the convolutional neural networks 
(except for the edges of the window) it is possible to use 
sliding windows to process images larger than the input 
of the network (Bonfigli et al., 2018). Moreover, since the 
U-Net is fully convolutional, the dimension of the input 
can be changed without altering the internal parameters. 
During the cropping of the mosaic image, for each 
square, the coordinates are preserved in order to 
recompose the original image. For each input square, 
the segmentation procedure was executed. From the 
segmented squares, the image of the mosaic 
segmentation at the output of the neural network is 
recomposed. The squares recomposition creates some 
artefacts (discontinuities) along the stitching edges. This 
effect is due to the poor segmentation accuracy of the 
network at the edge of the image and to normalization 
with parameters (average value and standard deviation) 
that vary between one crop and another. To solve this 
problem during the crop of the RGB image, an overlap of 
the squares of 256 pixels per edge is guaranteed.  

During stitching, the segmented square is trimmed by 
128 pixels per edge (those with low accuracy) and joined 
to the adjacent square, which is also trimmed by 128 
pixels per edge. 

The trimming of 128 pixels per edge ensures the 
absence of discontinuity. A smaller value could maintain 
discontinuity while a larger value would weigh on the 
computational cost. Using the normalization strategy on 
the single input, the trimming of the segmented squares 
is not sufficient to eliminate the artefacts. To mitigate 
these discontinuities, an average value filtering is 
performed along the stitching edges.  

To separate the individual tesserae among them, the 
output image from the neural network is binarized using 
an improved version of the Watershed Algorithm 
(Vincent & Soille, 1991) which is named Hierarchical. 

The Watershed Algorithm is based on region growing 
method; the greyscale image in output from the neural 
network is reversed and mapped into a space of range 
values from 0 to 255. In this 3D representation (x, y, 
values), the predicted tesserae can be associated with 
valleys while the interspaces to ridges that separate the 
valleys. Below a predefined height (value) wells are dug 
and each well corresponds to a basin. The watershed 
consists of flooding the selected basins up to the ridges 
(Beucher, & Lantuéjou, 1979) where each basin contains 
the predicted tessera.  

Figure 2 Step by step representation of Mo.Se. algoritm for Image Segmentation. 
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The Hierarchical Watershed Algorithm is applied by 
defining a threshold with a “minimum area to be 
subdivided” only to regions with the higher area than this 
threshold. The Hierarchical Watershed Algorithm 
requires the setting of the threshold (suppressing 
shallow minimum) to extract the seeds of the predicted 
tesserae. The latter is increased to fill the basin delimited 
by the interspaces. Using a too high threshold, many of 
the individual tesserae remain aggregated in regions of 
large area (under-segmentation). Using a too low 
threshold, many of the individual tesserae are 
subdivided into small area regions (over-segmentation). 
The “shallow minima” thresholds used during the 
experimental phase are: 127, 63, 31, 15, 7, 3, 1, 0. The 
dependence of watershed from the threshold is studied 
during preliminary analysis. The choice of thresholds in 
the scaling of “powers of two minuses one” ensures a 
correct variation in the number of tesserae extracted 
between one level and another, able to perform the 
hierarchical watershed with good efficiency and 
accuracy. Optimization in the choice of thresholds and 
the number of levels are not executed.  

Starting from the higher “shallow minima” threshold, the 
area of the regions obtained is measured. At the next 
level, the watershed algorithm with a lower “shallow 
minimum” threshold is applied only to regions that have 
an area greater than the “minimum area to be 
subdivided” threshold. In the same way, the watershed 
algorithm is applied at all levels. Moreover, a rule-based 
on the eccentricity has been added to subdivide the 
region under the threshold. This is done because the 
tesserae are square-shaped with an eccentricity under 
the threshold. 

At each level, the regions of a small area that cannot be 
considered tesserae and are associated with interspace 
and filled with black. Many of these regions correspond 
to areas where the interspace between the tesserae is 
thicker than the average, recurrent in the intersections 
between interspaces, and where there are considerably 
damaged tesserae. 

Regions with an area above an established threshold, 
whose average value of the pixels in the segmentation 
image at the output of the neural network is less than 
0.05 are associated with interspace and filled with black. 
The same rule is not applied to small area regions 
because it is more likely that it is a small tessera 
(between large interspaces). The watershed algorithm to 
the next level is not applied to the regions associated 
with interspace. Regions that do not respect these rules 
are classified as non-mosaic. 

To evaluate the improvements obtained using the 
Hierarchical Watershed Algorithm, 3 classes are 

defined: "small", "medium" and "big". They identify 
predicted tesserae whose dimension presupposes that 
they are fragmented, corrected, and joined to others. 
From a statistical analysis of the area of the gt tesserae 
(Fig. 3) the average area is calculated, and the 
thresholds are defined to classify the predicted tesserae. 
The gt contains 54774 tesserae. The smaller area 
tessera measures 4.42 mm

2
 while the larger area 

tessera measures 341.15 mm
2
. The histogram was 

calculated in the range from 0 to 350 mm
2
 using 70 bin, 

every 5 mm
2
 in size. The average area of the tesserae is 

73.5mm
2
. The histogram is calculated in the range of 0 

to 1 using 50 bins. The average eccentricity of the 
tesserae is 0.66 and is approximately equal to the 

eccentricity of an ellipse with a larger and smaller 

diameter in a 4:3 ratio, so the eccentricity is √7 4⁄ .  

Three thresholds are defined in the areas (Table 1). The 
"minimum area", chosen equal to the area of the 
smallest gt tessera, is defined to exclude from the 
evaluation all the regions of smaller area (the region of 
smaller area than this threshold does not contain 
tesserae but is a prediction error). The "lower area", 
chosen equal to one half of the average area of the gt 
tesserae, is defined to separate the "small" and 
"medium" classes. The "upper area", chosen equal to 3 
times the average area of the gt tesserae, is defined to 
separate the "medium" and "big" classes. The "upper 
area" threshold is equivalent to the "minimum area” to be 
subdivided threshold used in the Hierarchical 
Watershed Algorithm. Considering these thresholds 
there are 1791 gt tesserae less than the "lower area" 
threshold and 157 gt tesserae greater than the "upper 
area" threshold. They are respectively equal to 3.2% and 
0.3% of the total gt tesserae. 

(a)                                                  (b) 

Figure 1 Results of statistics on the area and eccentricity of gt 
tesserae.  In x-coordinates the values of area (figure a) and 

eccentricity (figure b) of tesserae. In y-coordinates the number 
of tesserae belonging to a corresponding interval. 

Table 1 reports the thresholds set for the evaluation after 
the statistics on the tesserae.  

Table 1 Thresholds defined based on the tessera area values. 

Thresholds Values 

Minimum area 4.42 mm
2 

Lower area 36.75 mm
2 

Upper area 220.5 mm
2 

Eccentricity √7 4⁄  

 

The image processed by the Hierarchical Watershed 
Algorithm appears as a binary image in which the white 
regions associated with the predicted tesserae are 
separated by a 1-pixel thick black outline. This 
segmentation does not take into account the thickness of 
the interspace. For this, the image is taken at the output 
of the neural network and a Refining phase is applied to 
the image. Each region separated from the Hierarchical 
Watershed Algorithm (basin of the predicted tessera) is 
used to select the corresponding region on the output 
image of the neural network. 

The histogram of this region is evaluated, and the 
threshold calculated as the half between zero and the 
knee of the highest peak. The calculated threshold is 
used to binarize the respective region. After, an “and” is 
made between the resulting image and the image after 
the watershed to ensure the closure of the regions 
identified by the watershed. 
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3.4. Mo.Se. algorithm performance evaluation 
metrics  

The metrics used to evaluate the performance of the 
segmentation at the output of the neural network 
processing are Intersection over Union (IoU) (Eq. 2) or 
Jaccard Index and, Dice, corresponding to the F1-score 
(Eq. 5). Precision (Eq. 3) and Recall (Eq. 4) were also 

assessed. 

Accuracy has not been used, as it is only a global metric, 
not significant in case of very unbalanced classes. In 
fact, in our case, the area under the tesserae is greater 

than the area under the interspaces. 

 

 
𝐼𝑜𝑈 =

∑ 𝑝𝑟𝑒𝑑 ∩ 𝑔𝑡

∑ 𝑝𝑟𝑒𝑑 ∪ 𝑔𝑡
 (2) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑ 𝑝𝑟𝑒𝑑 ∩ 𝑔𝑡

∑ 𝑝𝑟𝑒𝑑
 (3) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

∑ 𝑝𝑟𝑒𝑑 ∩ 𝑔𝑡

∑ 𝑔𝑡
 (4) 

Figure 2 Hierarchical Watershed Algorithm with different eccentricity thresholds. The figures from a) to h) are the results of the 
algorithm without the eccentricity rule. These figures show the predicted tesserae "big", "medium", "small" coloured respectively in 

grey, green and red. The figures from i) to p) are the results of the algorithm with the eccentricity rule. These figures show the 
aforementioned tesserae "big + eccentric medium", "no eccentric medium", "small" coloured respectively in grey, green and red. 
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𝐷𝑖𝑐𝑒 = 𝐹1𝑠𝑐𝑜𝑟𝑒 = 2

∑ 𝑝𝑟𝑒𝑑 ∩ 𝑔𝑡

∑ 𝑝𝑟𝑒𝑑 + 𝑔𝑡
 (5) 

 

To evaluate the quality of the segmentation, the refined 
image is compared with the gt of the tesserae. Since gt 
is a vector, the refined image is converted to vector. 

To select the predicted tesserae in the area where gt is 
present, a spatial join is performed between the 
predicted vector and gt. Then the individual gt tesserae 
are considered and how many predicted tesserae are 
overlapped with the gt tessera. 

Since there is no unequivocal correspondence between 
the predicted tesserae and gt superimposed on each 
other, the “winner take all” (WTA) strategy is adopted to 
obtain unequivocal correspondence. 

For each tessera of gt the areas intersecting with the 
predicted tesserae are considered, and the predicted 
tessera with the greatest intersection area is associated 
with the tessera of gt. This correspondence is not bi-
unequivocal since a predicted tessera can be associated 
with more tesserae among those of gt. 

Then a percentage of overlap between the areas of a 
predicted tessera and the corresponding one of the gt is 
defined as a threshold “overlap constrain”.  

The number of matches between the predicted tesserae 
whose intersection area with the gt tesserae exceeds the 
threshold is counted. 

Accuracy is defined as the relationship between the 
number of matches and the number of gt tesserae. 

Mathematically the binary images of the segmentations 
are considered: ground truth (gt) and predicted (pred). 
Each is represented as the sum of as many instance 
images as there are instances (tesserae) (Eq. 6). 

 
𝑔𝑡 = ∑ 𝑔𝑡𝑖

𝑁

𝑖=1

 
 

 

(6)  
𝑝𝑟𝑒𝑑 = ∑ 𝑝𝑟𝑒𝑑𝑖

𝑀

𝑖=1

 

 

gti and predi are instance images. N and M indicate the 
number of instances of gt and predicted segmentations 
respectively. 

For both segmentations, it is assumed that several 
instance images have not overlapping tesserae. 

In other words: ∑ 𝑔𝑡𝑖 ∩ 𝑔𝑡𝑗 = 0 e ∑ 𝑝𝑟𝑒𝑑𝑖 ∩ 𝑝𝑟𝑒𝑑𝑗 = 0 ∀ 

i≠j. 

𝑀𝑎𝑡𝑐ℎ𝑖(𝑜𝑣𝐶) = {
1 𝑠𝑒 

𝑖𝑛𝑡𝑖𝑗

𝑔𝑡𝑖
≥ 𝑜𝑣𝐶 ∧

𝑖𝑛𝑡𝑖𝑗

𝑝𝑟𝑒𝑑𝑖
≥ 𝑜𝑣𝐶

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                     
(7) 

∀𝑖 ∈ [1, 𝑁] 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑜𝑣𝐶) =

1

𝑁
∑ 𝑀𝑎𝑡𝑐ℎ𝑖

𝑁

𝑖=1

(𝑜𝑣𝐶) (8) 

Abbreviation ovC means ovConstrain. 

The metrics used in the comparison with the SoA are the 
same as those used in (Fenu et al., 2015; Fenu et al., 

2020). Defined as: 

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

1

𝑁
∑ 𝑚𝑎𝑥𝑗=1

𝑀
∑ 𝑝𝑟𝑒𝑑𝑗 ∩ 𝑔𝑡𝑖

∑ 𝑝𝑟𝑒𝑑𝑗

𝑁

𝑖=1

 (9) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

1

𝑁
∑ 𝑚𝑎𝑥𝑗=1

𝑀
∑ 𝑝𝑟𝑒𝑑𝑗 ∩ 𝑔𝑡𝑖

∑ 𝑔𝑡𝑖

𝑁

𝑖=1

 (10) 

 
𝐹1𝑠𝑐𝑜𝑟𝑒 = 2

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (11) 

 
𝐶𝑛𝑡 =

|𝑁 − 𝑀|

𝑁
 (12) 

 

4. Results 

In this Section, the first part presents the results of each 
phase performed by Mo.Se. Algorithm. The second one 
includes the comparison among different SoA datasets.  

4.1. Mo.Se. validation by parametric indices 

Table 2 presents the results of the segmentation in the 
output of the neural network using the UNET-3. Metrics 
are determined after the binarization of the neural 
network output with a 0.5 threshold.  

Table 2 Results of segmentation at the output of the neural 
network. 

IoU Precision Recall Dice 

0.79 0.92 0.94 0.93
 

 

For the evaluation of the proposed Hierarchical 
Watershed Algorithm, we compare the results with the 
use of the eccentricity. Figure 4 depicts the results of this 
comparison with different eccentricity thresholds. 
Instead, Figure 5a and 5b graphically report this 
comparison.  

 

Figure 5 (a) Representation of Hierarchical Watershed 
Algorithm and (b) reports the results of Hierarchical Watershed 

Algorithm using eccentricity rule. 
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It can be observed that applying Hierarchical 
Watershed Algorithm, at low thresholds, the number of 
“small” regions due to over-segmentation is reduced.  

Consequently, many “medium” regions are recovered. 
However, an identical number of “big” regions remains. 

Figure 6 represents the results obtained after the 
Refining phase. From this Figure that represents a part 
of the results in Tables 3 and 4, it can be observed that 
the introduction of the eccentricity rule considerably 
reduces the “merged” tesserae. This ensures the 
recovery of the highest number of “over-threshold” 

tesserae and a moderate increase of “under-threshold” 
tesserae. The increase or decrease of the “overlap 
constrain” threshold spreads the quantity between “over-
threshold” and “under-threshold”. If the “overlap 
constrain” increases, the number of “under-threshold” 
tesserae increases and decreases the number of “over-
threshold” tesserae; on the contrary if the “overlap 
constrain” decreases. On the number of “merged” 
tesserae does not affect. 

It is possible to infer that Mo.Se. algorithm comprises 
three important phases (U-Net 3, Hierarchical 
Watershed and Refining) and reach high accuracy in 
tesserae segmentation. Tables 3, 4 and 5 show how 
increasing the required overlapping area, fewer tesserae 
satisfy this constraint. As a result, accuracy decreases. 
The same results are shown in Figure 7. 

Table 3 Results of tessera segmentation. 

% 
OvC 

Under-
threshold 

Over-
threshold 

merged No 
assigned 

Accuracy 

51 

65 

75 

80 

85 

523 

978 

1896 

3136 

5849 

15476 

15021 

14103 

12863 

10150 

798 

798 

798 

798 

798 

19 

19 

19 

19 

19 

0.92 

0.89 

0.84 

0.76 

0.60 

 

Table 4 Results of tessera segmentation without eccentricity 
rule. 

% 
OvC 

Under-
threshold 

Over-
threshold 

merged No 
assigned 

Accuracy 

51 

65 

75 

80 

85 

231 

530 

1259 

2336 

4757 

14100 

13801 

13072 

11995 

9574 

2466 

2466 

2466 

2466 

2466 

19 

19 

19 

19 

19 

0.84 

0.82 

0.78 

0.71 

0.57 

 

Table 5 Results of tessera segmentation. 

Eccentricity Precision Recall F1score 

Y 0.92 0.85 0.89
 

N 0.87 0.87 0.87 

 

Figure 6 Tessera segmentation results. The colours red, green, 
and orange are respectively the predicted tesserae “under-

threshold”, “over-threshold”, “merged”. Yellow tesserae have not 
the corresponding ground truth so are not evaluable.  
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Figure 7 Accuracy over overlap constrain with and without 
eccentricity. 

4.2. Mo.Se. validation by SoA dataset 

Our method has been compared to other SoA methods. 
Following the same test procedure and using the same 
dataset we compared the results obtained using the 
methodologies proposed in (Fenu et al., 2020) with the 
results obtained by implementing our method. Tests 
were carried out following a leave-one-out strategy. For 
each method compared, as many tests are performed as 
there are input-target pairs. For each test, only one pair 
is used. The remaining pairs are used for training the 
model. Finally, the results of the test are averaged to 
obtain the overall accuracy measurements of the 
method. 

Five tests were performed, one for each pair of images. 
The images have been scaled to the dimensions 
whereby the average area of the tesserae corresponds 
to around 2500 (±1500). 

In Table 6 are shown the scale factors used to scale the 
image size.  

Given the variety of colours between one image and the 
other, we have chosen to use our U-Net3 model with a 
single input channel to process the image of the 
greyscale mosaic. The training strategy and the set of 
hyperparameters are those described in Section 3.3. 

Table 6 Comparison of dataset image scaling. 

Image Scaling factor 

7 0.25 

8 

9 

10 

11 

1.5 

1.5 

0.8 

1.2 

 

To estimate the improvement introduced by the 
hierarchical watershed plus the refining, the metrics 

were evaluated at the output of the neural network and 
after refining. To evaluate the segmentation of the neural 
network, the output greyscale image was binarized with 
a threshold of 0.5. 

The comparison of the methods is shown in Table 7. Our 
segmentation method outperforms other methods in all 
the tests. 

Furthermore, it can be observed that the hierarchical 
watershed plus refining applied downstream of the 
neural network improves performance. The same results 
can be appreciated from the images of the segmentation 
in Figure 8. 

5. Discussion 

The results showed above deserve some 
considerations, in order to outline the pros and cons, 
besides highlighting limitations and future research 
directions of the proposed methodology.  

The first one concerns the evaluation metrics used to 
assess and validate Mo.Se.; our main purpose was to 
evaluate the accuracy of the segmentation phase. For 
this purpose, two different measures are considered: the 
capability of the algorithm to discriminate tesserae from 
one another, and the capability of identifying the correct 

Figure 8 Tessera segmentation results. 
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perimeter. Pixel-based metrics are more general, as they 
are able just to provide an overall picture of the 
segmentation (giving a qualitative ratio of the classes), 
without considering the number of objects. The metric 
we introduced, instead, is instance-based, hence it 
considers the numerosity of the objects (namely 
tesserae) and is computed as a ratio between the 
numerosity of the correctly predicted tesserae and the 
ground truth.  

The correctly predicted tesserae are evaluated 
considering the ratio between overlapping areas and the 
area of the real tesserae. If this ratio overcomes the 
described thresholds (the overlap constraints), the 
tesserae are correctly predicted, otherwise discarded. 
However, this metric needs further investigation when 
used to evaluate perimeters’ similarity. Given the above, 
it can be concluded that metrics proposed in (Fenu et al., 
2015; Fenu et al., 2020) are less robust than the ones 
here proposed, as they consider both measures without 
fixing a pre-defined threshold.  

Besides, readers could find useful a discussion about 
the execution time. Albeit the code has not been 
optimized for enhancing its computational performances, 
from our estimation it can be deduced that Mo.Se. 
overcomes humans’ limitations. Our algorithm, from 
neural network segmentation (model already trained) to 
refining takes about 15 minutes per square meter on a 
machine equipped with 2 Intel(R) Xeon(R) Silver 4214 
CPU @ 2.20GHz and 128GB RAM. The average time of 
annotation (perimeter drawing only) of a fast and expert 
human operator is about 10 seconds per tesserae. If 
square meter of mosaic uniformly covered with average 
area tesserae is considered, a human operator would 
take more than 30 hours per square meter. 

About its reliability, compared with a human operator, 
two different measures are considered: the capability to 
discriminate one tessera from another, the capability to 
detect the exact perimeter. In the first case, the accuracy 
of the human operator can be considered 100%. For this 
reason, the annotation of the human operator is 
considered ground truth. In the second case, the 
accuracy of the human operator depends on the time 
dedicated to the annotation, related to the number of 
points to approximate the polygon (vector), as well as 
the operator's perception due to the image definition. 
The algorithm has undoubtedly a lower accuracy than 
the human operator in discriminating one tessera from 
another and recognizing the perimeter of the tessera, but 
the annotation made by the human operator, for reasons 
of time that can be dedicated to the annotation, is 
approximate. For this reason, in many cases, the 
algorithm is more efficient.  

Finally, an interesting argument of discussion is the 
image quality together with the complexity of the mosaic. 
Preliminary experiments were performed to evaluate 
how much the method is dependent on image resolution. 
The best results occurred, as expected, with the most 
defined image. The higher the image definition, the more 
textures and contrast between the edges are visible. 
Conversely, a less defined image reduces these 
features, making the task difficult even for the human 
operator. Tesserae’s shape does not seem to affect 
results, whilst their size does. In fact, in most cases, 
when fragmented tesserae occur, individual fragments 

are classified as tesserae. In case tesserae are bigger 
instead, the algorithm can correctly classify tesserae. 
Colour greatly affects the accuracy of the method. This 
issue is not due to the colour itself, but rather to the 
shades that are emphasized with that colour. Shades 
are very visible in ruined tiles, and probably due to 
erosion or powder coating. For this reason, the algorithm 
can confuse them as a gap. Thus, this latter issue is 
strictly dependent on the orthoimage.  

6. Conclusion and future works 

Automatic segmentation of ancient mosaics can help 
archaeologists and CH experts to build digital collections 
and to automatically compare mosaics by database 
indexing and content-based retrieval tools. In this paper, 
Mo.Se. algorithm has been proposed, which comprises 
deep learning and image segmentation methods for the 
automatic segmentation of tesserae. The mosaic image 
segmentation pipeline gives segments corresponding to 
the single tessera. Experiments have been assessed on 
the pavement of the Byzantine mosaics of St. Stephen 
Church, in Jordan. Moreover, in order to validate and 
generalise Mo.Se., open access mosaic datasets have 
been used for the comparison. In particular, the following 
phases have been performed: HD acquisition of 
orthophoto RGB of mosaic pavement of St. Stephen's 
Church in Umm ar-Rasas in Jordan; Tesserae 
Segmentation using U-Net 3 Deep Neural Network; 
Tesserae Segmentation using U-Net 3 Deep Neural 
Network and Hierarchical Watershed Algorithm; 
Approach Performance comparison with SoA datasets. 
Our experimental analysis shows that Mo.Se. is tailored 
for the segmentation of ancient mosaics because 
outperforms SoA works for this task.  

Mo.Se can be the core for the development of tools that 
can be of interest for museums, to digitalise mosaics for 
an inventory of theirs. The purpose is to facilitate the 
very time-consuming task of drawing the tesserae in 
CAD/GIS environment that, nowadays, is manually 
performed. 

Future works will involve the definition of a procedure for 
the automatic recognition of background, figures and 
disfigurements (where occurs) in the scenes.  

Other investigations will be devoted to the achievement 
of semantically enriched information and the extraction 
of objects with semantic meaning in a complex mosaic 
scene, thus providing CH experts with a tool for the 
automatic extraction of geometric and semantic 
information of ancient mosaics. 
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b)    Our results 

ImageID Unet3 Unet3+Watershed+Refining 

 Cnt Prec Rec Fm Cnt Prec Rec Fm 

7 0.21 0.17 0.92 0.28  0.25  0.75 0.90 0.82 

8 0.29 0.06 0.89 0.11 0.19 0.70  0.64  0.68 

9 0.31 0.05 0.93 0.09 0.33 0.60  0.87  0.71 

10 0.03 0.20 0.78 0.32 0.03 0.80  0.74  0.77 

11 0.13 0.25 0.85 0.38 0.14 0.71  0.83  0.77 

Avg 0.19 0.15 0.87 0.24 0.19 0.71  0.80  0.75 

Table 7 Comparison results. 

a) Results of (Fenu et al.) 
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