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Abstract: Power spectra of spike trains reveal important properties of neuronal behavior. They exhibit
several peaks, whose shape and position depend on applied stimuli and intrinsic biophysical properties,
such as input current density and channel noise. The position of the spectral peaks in the frequency
domain is not straightforwardly predictable from statistical averages of the interspike intervals,
especially when stochastic behavior prevails. In this work, we provide a model for the neuronal
power spectrum, obtained from Discrete Fourier Transform and expressed as a series of expected
value of sinusoidal terms. The first term of the series allows us to estimate the frequencies of
the spectral peaks to a maximum error of a few Hz, and to interpret why they are not harmonics of
the first peak frequency. Thus, the simple expression of the proposed power spectral density (PSD)
model makes it a powerful interpretative tool of PSD shape, and also useful for neurophysiological
studies aimed at extracting information on neuronal behavior from spike train spectra.

Keywords: neuron models; spike trains; point processes; power spectra analysis; stochastic
neuron dynamics

1. Introduction

A sequence of action potentials is the main way neurons communicate each other. Neuroscientists agree
that information is conveyed by the positions in the time of the action potentials, rather than by their
waveform, so that often a sequence of unitary impulses located at the instant of the spikes onset, here
referred to as neuronal spike train, is used as idealized neuron output [1].

Oscillations in neuronal spike train firing rate reflect encoding properties of single neurons
and/or neuronal networks [2–9] and reveal different physiological and pathological conditions [10–12].
Indeed, this code reflects not only the neuron’s input stimuli, but also the neuron’s biophysical
properties [1], so that one of the open questions in neuroscience is the evaluation of the extent
to which a neuron’s spiking response is due to the applied stimulus and to its intrinsic biophysical
properties [13].

Estimation of the spike train power spectrum is a powerful method for analyzing neuronal
outputs, used on a variety of neurophysiological recordings, such as multiunit activity (MUA), single
unit spike trains and cellular membrane potentials [14–20], as well as on the output of different
neuronal models to characterize the response of the modeled neuron to input stimuli [5,21–25]
Recently, spectral analysis was applied also to experimental recordings from Globus pallidum neurons
of Parkinson’s patients [18] and the general form of the power spectrum shape was suggested as
a classification criterion of neural systems and their activity [18–20]. Power spectral analysis is also
at the basis of several techniques aimed at the understanding of neuronal encoding properties of
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weak input signals [4,5,23,26,27]. Among them we may mention the classical signal to noise ratio
(SNR), calculated as the ratio of the output power spectrum at the input frequency and the background
noise spectrum [4,21,28,29], the coherence function between the input signal s(t) and the output y(t),
calculated from second-order spectral measures of input and output [30], and advanced techniques
based on homomorphic deconvolution [23,31].

Spectral estimates based on the Discrete Time Fourier Transform (DFT) and its fast implementation,
the Fast Fourier Transform (FFT) are versatile and efficient techniques, largely used for evaluating
the power spectral density (PSD) of neuronal spike trains coming from model simulations or
experimental recordings. The typical shape of a neuronal spectrum presents a main peak which
was interpreted as the mode of firing rate and less well-defined peaks approximately centered around
the harmonics of the first one [32]. Our previous studies on spike trains coming from stochastic
Hodgkin and Huxley (HH) neuron models [22,23,31,32] have shown that positions of such peaks
depend, in a not trivial way, on the level of stimulation current and on the noise level, related
to the size of membrane patch. Moreover, neuronal spectral features cannot be directly obtainable
from statistical averages of the interspike interval (ISI).

To reveal such spectral features, we derive a model that expresses the PSD of a neuronal spike train
as a series of expected values of cosines, function of frequency and multiples of the ISI random variable.
The model, valid under the well-assessed assumptions that the ISI random variables are independent
and identically distributed (i.i.d.), allows us to obtain a PSD model, which perfectly matches the FFT
estimate obtained over one thousand neuronal traces. Moreover, the first term only of the series
allows an accurate and straightforward estimation of the spectral peaks positions, giving a useful
interpretation of the relationship between neuronal spectral components and ISI distribution.

In this paper, PSDs have been calculated and tested on the outputs of a stochastic HH model,
under several conditions of background stimulation (stimulation current density) and channel
noise (size of the membrane patch), but it is applicable to any kind of spike trains coming
from different neuronal models, such as integrate-and-fire [33,34], multi-compartment models [35],
or experimental recordings. The paper is organized as follows. In Section 2 the PSD model is derived.
Results are shown and commented in Section 3. In particular, in Section 3.1, neuronal spectral
features coming from the classical FFT based estimation of PSD are recalled and their dependence on
the HH model parameters is analyzed. Section 3.2 presents the PSD model estimation of neuronal
spectral features. Finally, in Section 4, conclusions are drawn.

2. Model and Methods

2.1. Spike Train PSD Model

Substituting each action potential instance with a unitary impulse, located at the instant of
the spikes onset, is a common practice to extract neuronal encoding from the neuron output.
These instants are not deterministic but they can be considered as random variable (r.v.), therefore
the spike train is a stochastic process, very often considered as a stochastic point process [1].
In particular, since data come from simulations or sampled neuronal recordings, we can consider
the point process as a discrete time process, provided that at most one event occurs in each sampling
period Ts; this condition is also called orderly. The point process represents the ordered times of
occurrence of spikes as integer multiple of the sampling interval [36]. We can define the difference
between two spike occurrences, called interspike interval (ISI), as

Θi = θi+1 − θi . (1)

where θi is the time of a spike occurrence. Let us assume the r.v. Θi as independent and identically
distributed (i.i.d.).

A point process (p.p.) may be defined formally as a random non-negative integer-valued
measure [37]. For a p.p., the counting variate, u(0, t] counts the number of events in the interval (0, t].
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An important elementary function of a p.p. is the differential increment. The differential increment,
denoted by du(t), is defined as du(t) = u(t, t + dt], where in discrete time processing dt can
be assumed equal to the sampling period, Ts [36]. In the following we will use the current notation
for discrete time signals, i.e., the normalised time, n = b(t/Ts) and frequency, ωk = 2π k

N , where N
is the observation interval and b is the floor operator that implements the integer division between t
and Ts.

For an orderly p.p., du[n] will take the value 0 or 1 depending on the occurrence of a spike
in the sampling interval [36]; thus, for a given observation interval, the differential increment of the p.p.
can be also written as

du[n] =
M

∑
i=1

δ[n− θi] (2)

where the r.v. θi represents the normalized time occurrence of i-th spike, M is the number of spikes
occurring in N, and δ is the discrete time unitary impulse.

The DFT is an important means for the study of point processes. The DFT of a weakly stationary
p.p. can be defined as [37]

U[k] =
N−1

∑
n=0

e−ωkndu[n] (3)

where ωk =
2π
N k with k = 0 . . . N/2 are the discrete frequencies. The normalized discrete frequencies

ωk can be expressed in hertz by doing fk =
ωk

2πTs
, like the normalized spike occurrence or ISI in second

by multiplying them by Ts. By substituting (2) in (3), we obtain (see also (25) in [36])

U[k] =
M

∑
i=1

e−ωkθi . (4)

Finally, the power spectrum of the p.p. can be defined as

Su[k] = E{|U[k]|2} (5)

This spectrum has a characteristic shape with one dominant peak around the mode of rate of firing
and other less well-defined peaks centered around the harmonics of the first one [22,23,31,32,36].

If one wants to describe |U[k]|2 as a function of ISI, the (4) can be further developed:

|U[k]|2 =
(

∑M
i=1 e−ωkθi

) (
∑M

i=1 eωkθi
)
= M + 2 ∑M−1

i=1 ∑M
j=i+1 cos ωk(θi − θj)

= M + 2 ∑M−1
i=1 ∑M

j=i+1 cos ωk

(
∑

j−1
q=i Θq

) (6)

From this formula one can notice that the final spectrum is the combination of cosine functions,
dependent on the ISI distribution and the number of spikes of the realizations.

To clarify which terms make it up, the (6) can be written as

|U[k]|2 = M + 2
(

∑M−1
i=1 cos ωkΘi + ∑M−2

i=1 cos ωk (Θi + Θi+1) + ∑M−3
i=1 cos ωk (Θi + Θi+1 + Θi+2) + . . .

)
(7)

The spectral representation in (7) is a stochastic process consisting of the sum of many components.
Let us consider a generic term of (7).

Υp(ωk) =
M−p

∑
i=1

cos pωkΘi . (8)
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Given a finite and different from zero value of ωk, the terms of the series are i.i.d. r.v., being
a deterministic function of the i.i.d. random variables Θi. In addition, the integer M is a r.v., but not
independent from Θi. Therefore M can also be written as a stopping time for the sum of Θi:

M = min

{
n :

n

∑
i=1

Θi > N

}
− 1. (9)

Under this assumption the validity of Wald’s equation [38] holds, and we can write the expected
value of Υp(ωk) as

E
{

Υp(ωk)
}
= (E {M} − p) E {cos pωkΘ} =

(
M− p

)
E
{

χp(ωk)
}

(10)

where χp(ωk) = cos pωkΘ and M is the expected value of M. Calling µp(ωk) = E[χp(ωk)]

and σ2
p(ωk) = var[χp(ωk)], respectively the expected value and the variance of χp(ωk), Υp(ωk)

properly shifted and normalized is

υp(ωk) =
Υp(ωk)− (M− p)µp(ωk)

σp(ωk)
√

M− p
(11)

which, considering a sequence with an infinite number of spikes, M, for the central limit theorem,
tends toward a standard normal distribution N (0, 1).

Eventually, since the sum of normal r.v. is a normal r.v. with expected value equal to the sum of
the expected values, we can approximate the PSD of the spike train, taking only the first P terms of (7),

SP
u [k] = E{|U[k]|2} = E{M + 2

M−1

∑
p=1

Υp(ωk)} ' M +
P

∑
p=1

2(M− p)µp(ωk) . (12)

obtaining the desired PSD model.

2.2. Test Data

The spike trains (du[t]) used as test were obtained from the complete stochastic HH model
described in detail in [23,31]. Stochasticity of sodium and potassium currents was accounted
for by solving a channel-state-tracking algorithm [39,40] with the Monte Carlo approach [41].
The bias current density I0, describing the excitability level of the neuron, was set to constant values
(7, 10, 20) µA/cm2. All these values are considered supra-threshold, i.e., they induce a sustained firing
mode even in the absence of internal noise [42]. The higher I0 the more frequent the induced firing
activity will be. Three values for the membrane patch size were considered: (11, 100, 300) µm2.
Assuming constant spatial densities for the sodium (60 NNa /µm2) and potassium (18 NK /µm2)
channels, patch area determines the channel noise level, which is inversely proportional to its square
root [43,44]. The model was run in the C ++ environment using the explicit Euler integration method
with time step Ts equal to 10 µs. In our simulation conditions this numerical method is sufficiently
accurate, although higher order methods may be necessary when considering time dependent I0 [45].
The observation interval NTs is equal to 2 s, resulting in a spectrum frequency resolution of 0.5 Hz.

3. Results

3.1. Spectral Features of Stochastic Neuron Spike Trains

The power spectra, obtained from the simulated spike trains by using the FFT, are shown
in Figure 1 for the three current densities: I0 = 20 µA/cm2(panel a), I0 = 10 µA/cm2 (panel b),
I0 = 7 µA/cm2 (panel c). In each panel, spectra obtained for the three patch areas are compared with
the deterministic behavior (purple line).
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(a) (b) (c)

Figure 1. Power spectra for I0 = (20, 10, 7) µA/cm2, and patch = (11, 100, 300) µm2.

As expected, except for the artifact induced by the spectral leakage, deterministic spectra
were a train of pulses centered at the firing frequency and its higher order harmonics. The firing
frequency increased with the input current density as reported in literature for an HH neuron
model [34]. In the stochastic case, the main peak was not exactly centered at the deterministic firing
rate and the other peaks did not correspond to the higher order harmonics of the first one. Moreover,
as the frequency increased, they got wider and smaller and shortly disappeared for a high channel
noise level, e.g., for the smallest patch area of 11 µm2.

Figure 2 shows the differences of peak positions between stochastic and deterministic
spectra, for all considered simulation conditions. For patches of 100 µm2 and 300 µm2 results
for the first five peaks are reported in Figure 2, whereas, in the case of 11 µm2, only three peaks
were faithfully detectable.

Figure 2. Difference between spectrum peaks of deterministic and stochastic neuron for all currents
and patches.

Deviation of the main spectral peak from the deterministic firing rate increased with the channel
noise and decreased with the input current density, i.e., the more the stochastic behavior prevailed
on the deterministic input. It is worth noting that this deviation increased for the higher order peaks,
faster and faster as the current density and the patch area decreased.

3.2. Estimation of Neuronal Spectral Features

The main results of Section 2.1 (Equation (12)) asserts that the frequency positions of spectral
peaks depend on a linear combination of µp(ωk), the mean values of the function χp(ωk) = cos pωkΘ.
By using the well known formula of the probability density of a non invertible function of random
variable, the density of χp(ωk) can be written as

fχp(x) =
Qk

∑
q=1

fΘ(THq)

pωk
√

1− x2
(13)

where the THq are the inverse images of x, and the summation is carried out over the Qk intervals
in which the function χp is monotone. The expression of fχp(x) in (13) shows that it is very difficult
to get analytically the trend of µp(w), as well as to connect fΘ with the frequencies of spectral peaks.
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So, in the following, we will investigate this connection starting from the analysis of fΘ(TH) and ending
to deepen the PSD model (12).

Figure 3 shows the densities fΘ per different values of I0: 20 µA/cm2 (panel a), 10 µA/cm2

(panel b), and 7 µA/cm2 (panel c), and three patch areas: 11 µm2 (blue lines), 100 µm2 (red lines),
and 300 µm2 (yellow lines). We can notice that for higher I0 values the main peaks were narrower
and taller and centered at lower ISI values. Even the patch area affected the ISI distribution:
the smaller the area the wider and smaller the main peak, centered at lower ISIs. For I0 = 7 µA/cm2

and patch area 300 µm2 (yellow line in Figure 3c), the current density was inside the bifurcation range,
(6.3–9.8) µA/cm2, and a reduced noise level determined the typical multimodal distribution, in line
with results presented in [46].

(a) (b) (c)

Figure 3. Probability densities fΘ(TH) for I0 = (20, 10, 7) µA/cm2; and patch = (11, 100, 300) µm2.

To investigate the relationship between spectral features and the ISI distribution fΘ, in Table 1
we compared the first peak position in the PSD, f1 PSD, with the mean firing rate λ = 1/E{Θ} [47]
and with the inverse of the mode of Θ.

Table 1. Frequency of the first peak of Fast Fourier Transform (FFT) ( f1 PSD), frequency of the first peak
of µ1, mean firing rate, and inverse of interspike interval (ISI) mode.

Current Density Patch f1 PSD f1µ1 λ 1/mode{Θ}
[µA/cm2] [µm2] [Hz] [Hz] [Hz] [Hz]

20
11 92.5 90.5 87.9 96.2

100 89.5 88.5 88.6 91.0
300 89.5 89 89.3 91.0

10
11 78 76.5 72.1 82.5

100 73 72 69.6 76.9
300 72.5 72 70.7 75.2

7
11 73 71 65.4 75.4

100 66.5 65.5 59.8 69.2
300 65 64.5 57.9 66.4

Looking at Table 1, we can observe that they were almost coincident for the highest current
density value (I0 = 20 µA/cm2) and the highest patch area (300) µm2, i.e., when the deterministic
behavior dominated. In this case, the frequency of the first peak of µ1 f1µ1 , the mean firing rate λ,
and 1/mode{Θ} could all be used as good estimates of the position of the main peak in the spike train
spectrum. In the other cases, when the stochastic behavior became more relevant, λ underestimated
the frequency of the main peak and 1/mode{Θ} overestimated it.

Except for the simplest case of deterministic models, the frequency of the main peak of
the spectrum did not exactly correspond either to the inverse of the mean or the mode of the ISI
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distribution and the secondary peaks were not centered at multiple frequencies of the main one.
Therefore, neuronal spectral features were hardly predictable and interpretable and could not
be directly obtained from statistical averages of the ISI distributions.

The PSD model derived in Section 2 allowed us to interpret and evaluate in a very simple
and direct way the position of the spectrum peaks.

Equation (12), derived in Section 2, furnishes an approximate model of the PSD of a spike train
(SP

u [k]), based on DFT and obtained as a linear combination of µp(ωk), expected value of χp(ωk),
for p = 1, . . . , P.

Figure 4, left column, shows probability density functions of χp(ωk), as a function of frequency,
for p = 1 (panel a), p = 2 (panel c), p = 3 (panel e), in the case I0 = 20 µA/cm2 and patch
area = 100 µm2. Panels on the right side of Figure 4 show the expected values of such random
variables versus frequency, for the same values of p. As evidenced by looking at panels b, d, and f,
µp(ωk) presents cosinusoidal terms which oscillated and decreased faster and faster with frequency
as p index increased. As an example, for p = 3, µ5 was almost completely damped for f > 300 Hz.
Therefore, for high p values, the contribution to the summation of (12) was significant only in the low
frequency range. Furthermore the sum of these µp, which oscillated faster at low frequencies for high
p values, contributed mainly to the almost constant plateau typical of the spike train spectra at lower
frequencies than the main peak, whereas at highest frequency tended to zero.

If one considers only the first term (P = 1) and compares the PSD model S1
u[k] = M + 2(M− 1)µ1

in (12) with the PSD calculated by FFT, as shown in Figure 5 for patch area = 100 µm2

and I0 = 20 µA/cm2, 10 µA/cm2, and 7 µA/cm2, significant differences were evident only in the low
frequency range. Indeed, as shown in the Figure 4, in the low frequency range the µp(ωk) with high p
were dominant. However, the peak positions almost coincided, as quantitatively shown in Table 2
for all simulated conditions and the first 5 peaks. For the smallest patch area (11 µm2), only the first
three peaks were reported as already mentioned in the comment to Figure 2.

Table 2 reports the errors, in terms of difference between peak frequencies of FFT based PSD
and µ1, as well as an average value calculated over all the peaks. It is worth noting that the difference
was always below 2 Hz, except for the third peak in the case of the smallest area, i.e., when random
fluctuations in the PSD may affect the automatic peak identification. (Looking only at the first peak,
which was the most significant from a physiological point of view, the error was equal or lower than
2 Hz, also for the smallest patch).

Therefore, the expected value µ1 was shown to accurately capture the main frequency components
of spike train spectra.

Table 2. Error and mean absolute error between peak frequencies of FFT based PSD and µ1.

Peaks 1 2 3 4 5

Current Density Patch Error Mean Abs
[µA/cm2] [µm2] [Hz] Error [Hz]

20
11 2 0 2.5 1.5

100 1 1 0.5 1 1 0.9
300 0.5 0.5 0.5 1 0.5 0.6

10
11 1.5 0.5 −1.5 1.17

100 1 1.5 1 0 1.5 1.0
300 0.5 1.5 1.0 0.5 0.5 0.8

7
11 2 1.0 1.5 1.5

100 1.0 1.0 0.5 0 1.5 0.8
300 0.5 1.0 1.0 0.5 0.5 0.7
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Probability density of χp(ωk) are shown in panels (a,c,e) for p = 1, 2, and 3, respectively. µp,
expected value of χp(ωk), are shown in panels (b,d,f) for p = 1, 2, and 3, respectively. In all panels
I0 = 20 µAcm2, and patch = 100 µm2.
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(a) (b) (c)

Figure 5. Prediction of frequencies of power spectra peaks with µ1 (red solid line). Panels (a–c) report,
respectively, power spectra for I0 = (20, 10, 7) µA/cm2, patch = 100 µm2.

If P increased, SP
u [k] progressively captured all the shape of the PSD. Figure 6 shows comparison

between the FFT based PSD and SP
u [k] for P = 5 (panel a) and P = [M]− 1 (panel b), in the case of

I0 = 10 µA/cm2 and patch = 100 µm2. When summation was limited to the first 5 terms (P = 5),
except for fast oscillations below 60 Hz, the PSD model SP

u [k] was a good approximation of the FFT
spectrum; when all terms of summation were considered (P = [M]− 1), the FFT spectrum was very
accurately captured in the whole frequency range.

(a) (b)

Figure 6. Comparison of power spectra, for I0 = 10 µA/cm2, patch = 100 µm2, obtained by means
of FFT (blue solid line) and (12) with (a) P = 5 (green dashed line) and (b) P = [M]− 1 = 138 (cyan
dashed line).

Furthermore, recalling, with the help of the graphics of µp(ωk) reported in Figure 4, that µp(ωk)

tended to zero as frequency increased, the PSD model SP
u [k] showed that the value of PSD at high

frequencies was equal to M, the square root of the PSD DC value M2.

4. Conclusions

The PSD of a neuronal spike train has a characteristic shape consisting of peaks and valleys,
whose shape and position depend on neuron features and input stimuli. This behavior can be observed
in Figure 1, showing the spectra calculated on the outputs of a stochastic HH model where the current
density takes into account a deterministic input, whereas the patch area determines the channel noise
level. Similar PSD trends were obtained in [24,25] for simple leaky integrate-and-fire (LIF) neurons
and in [48] for a sparse recurrent network of LIF neurons driven by stochastic inputs.

When the neuron exhibits a quasi deterministic behaviour, we may consider that the main peak
is centered at a frequency equal to the mean firing rate (Figure 3). However, when the stochastic
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behavior of the neuron becomes significant with respect to the deterministic one, this is no longer true
and the characteristic frequencies are difficult to be estimated and interpreted.

Moreover, as evidenced in [49], the detection of spectral peaks in spike trains could be impeded
by several biological and experimental factors, so that analytical or semi-analytical approaches
are advisable [48,49].

In this work, under the general and well assessed hypothesis that the ISI random variables Θi,
are i.i.d., we demonstrated that the SP

u [k], given by (12) can successfully approximate the PSD of
neuronal spike trains as shown in Figure 6b, which compares the SP

u [k] with the PSD numerically
calculated using FFT. SP

u [k] consists of the linear combination of µp(ωk), the expected values of
the random variables χp, p = 1, . . . , P. These terms have a damped cosinusoidal trend versus ω that
decays more and more rapidly as p increases. This means that terms corresponding to high p values
can be neglected if the exact PSD shape is not needed and that the value of PSD at high frequency is
equal to M, the number of spikes in the observation period.

Indeed, the maxima of the first term alone, µ1(ωk), are able to estimate the positions of
the spectrum peaks with an average error from 0.6 Hz to 1.5 Hz, depending on the model parameters,
i.e., the input current density and the membrane patch area and with an absolute error averaged over all
simulation conditions equal to 0.94 Hz. This allows us, not only to accurately calculate the frequencies
at which the spectral peaks of a spike train are centered, but also to provide a theoretical interpretation
of them.

Compared to literature results obtained using PSD analytic formulations on LIF neurons
and networks driven by stochastic inputs [24,25,48], our PSDs of the neuronal spontaneous activity
exhibit a damped quasi-periodic structure as in [24,48]. Recently, Droste and colleagues [25] showed
that the damped PSD structure was strongly related to the features of the considered noise that, in our
work, was realistically modeled as the endogenous channel noise. Similarly to the other analytic models
present in the literature [24,25,48], even our PSD model gives an exact formulation of the spike-train
power spectrum. In addition, it allows us to estimate the PSD features from the ISI statistics, up to
the second order, and to give an interpretation of the typical PSD quasi-periodic structure. Indeed,
by truncating the expansion of (12) to p = 1, it is possible an accurate, fast and straightforward
calculation of the frequencies corresponding to the main and the higher order spectral peaks. Our PSD
model demonstrates that such frequencies do not coincide with the mean firing rate and its multiples,
as usually reported in the literature [48].

Although SP
u [k] has been validated on the ISIs obtained from a stochastic HH neuron model,

yet it is applicable to any measured or simulated trace as a quick and accurate estimate of the peak
positions. Thus, the simple analytical expression of the proposed PSD model, with respect those
available in literature [24,25,48,49], makes it a powerful interpretative tool of PSD shape, also useful
for neurophysiological studies aimed at extracting information on neuronal behavior from spike
train spectra. Moreover, given the general hypotheses underlying our PSD model, the proposed
analysis may be expanded to the outputs of higher levels of biological complexity, such as neuronal
networks, and may be applied even to experimental traces recorded through the patch clamp technique
or multielectrode array (MEA).
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