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Abstract Taqqu’s Theorem plays a fundamental role in Internet traffic modeling, for two

reasons: First, its theoretical formulation matches closely and in a meaningful manner some

of the key network mechanisms controlling traffic characteristics; Second, it offers a plau-

sible explanation for the origin of the long range dependence property in relation with the

heavy tail nature of the traffic components. Numerous attempts have since been made to

observe its predictions empirically, either from real Internet traffic data or from numerical

simulations based on popular traffic models, yet rarely has this resulted in a satisfactory

quantitative agreement. This raised in the literature a number of comments and questions,

ranging from the adequacy of the theorem to real world data to the relevance of the statistical

tools involved in practical analyses. The present contribution aims at studying under which

conditions this fundamental theorem can be actually seen at work on real or simulated data.

To do so, numerical simulations based on standard traffic models are analyzed in a wavelet

framework. The key time scales involved are derived, enabling a discussion of the origin and

nature of the difficulties encountered in attempts to empirically observe Taqqu’s Theorem.

Keywords Heavy tail · Long range dependence · Taqqu’s Theorem · Wavelet analysis ·
Scales of time · Internet Traffic Models

1 Motivation

More than a decade of research works have shown that modeling the statistical properties of

Internet traffic is challenging. Indeed, traffic traces are characterized by non trivial statistical
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properties, the two most prominent being: Long Range Dependence (LRD), or asymptotic

self-similarity, of the time-series counting the ‘volume’ of communication over time (ag-

gregated traffic counts) [1–4]; Heavy-tailness (HT) of important traffic statistics such as the

size of the objects sent through the Internet (be they images, movies, WWW files or emails)

[5,6], or the size of computer activity sessions, measured either by duration or in packet or

byte count, or flow lengths [7–9]. From the first disclosures of LRD in Internet traffic [1],

mechanisms explaining its origin have been sought.

A theorem due to Taqqu and collaborators related LRD and HT via an infinite super-

imposition of On/Off processes [1,2,10]. It was immediately to play a fundamental role

for Internet traffic modeling as its theoretical formulation closely matched quantities which

are meaningful in networking terms, such as flow sizes. Furthermore using objects with HT

size distributions as the input of some queueing system yields output traffic times series

with LRD. Moreover, the theorem is appealing as it provides a simple closed form relation

H(α) = (3−α)/2 between the LRD and HT parameters, respectively H and α . A precise

and detailed formulation is postponed to Sec. 2.

The theoretical relation above opened the door to a large number of works whose goal

was its empirical validation. Prominently, seminal works on this question [5,6] obtained

results in partial and qualitative agreement with the theoretical prediction, first for WWW

traffic, and later for more general types of traffic. However, numerous difficulties arose:

obtaining and storing sufficiently long traffic traces was non-trivial, and the values of pa-

rameters found in real traffic, being fixed by the data, do not cover the full range allowed

for by theory. Practitioners then resorted to numerical simulations to generate synthetic traf-

fic based either on popular time series models or on traffic simulators such as NS-2. This

offered the possibility of controlling and tuning the traffic parameters, while preserving a

number of realistic features of actual traffic. An orthogonal issue was the fact that statisti-

cal tools for HT and LRD measurement and analysis had their own problems. For instance,

LRD measured via R/S or variogram procedures have been shown since to suffer from many

drawbacks and to have poor performance (responsible, for instance, of the bias of Fig. 3 in

[5]). Currently, the use of the wavelet methodology, proposed in [3], for the analysis of LRD

is well-assessed and documented, and intensively used. Yet, again, validation has turned out

to be far from straightforward and quantitative satisfactory agreements have rarely been re-

ported. Often, a significant mismatch between the wavelet based estimated LRD exponent

and the HT index are observed (for example see the detailed and motivating contributions in

[11,12], and the analysis of [13]). This lead practitioners to raise a number of questions: Is

the Theorem misunderstood? misinterpreted? misused? Is the wavelet based LRD analysis

procedure incorrect? or not operating in this framework? Is the simulation set-up at fault?

The goal of the present contribution is obviously not to call Taqqu’s Theorem into ques-

tion. Instead, it consists in analyzing the conditions under which it can actually and practi-

cally be involved in explaining the extent to which long range dependence (or self-similarity)

in real Internet traffic time series can be related to heavy-tailness. The present contribution

aims at clarifying the issues which have been raised over time. It focuses on a careful anal-

ysis and precise quantification of the time scales involved in practical in relation to the

Theorem, as well as on a correct use and interpretation of the wavelet based LRD analysis.

Hence, the objective is twofold: First, to provide practitioners with a better understanding of

the conclusions that can be drawn (or not) from the wavelet methodology applied to traffic

traces; Second, to clarify under which practical conditions the relation between LRD and

HT can actually be seen.

The theoretical background needed for the statement of Taqqu’s Theorem is recalled

in Section 2, while the wavelet based LRD analysis procedure is surveyed in Section 3.1.
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Taqqu’s Theorem is then rephrased and reread in this wavelet framework in Section 3.2. To

understand the issue in the empirical validation of the H(α) relation, we make use of syn-

thetic traffic traces simulated from standard traffic models (M/G/N and M/G/∞ models); the

simulation set-ups are described in 4. The careful analysis of the ranges of scales, formu-

lated in the wavelet framework for M/G/∞ models, is detailed in Sec. 5; this enables us to

precisely state the actual conditions under which the H(α) can be practically (and satisfac-

torily) observed. Section 6 discusses what these results imply for other traffic models and

network simulations. Finally, discussions and comments on the use and applicability to real

Internet data is given in Section 7.

2 Theoretical Background

2.1 Heavy tail

A random variable (RV) W is said to possess a heavy tail distribution with tail exponent

α > 0 (and will be denoted α-HT), if [14,15]:

P(W > w) = 1−FW (w) ∼ cw−α for w → ∞, (1)

where FW denotes its cumulative distribution. The key feature of a α-HT distribution is that

its moments are infinite for orders larger or equal to α . The range 1 < α < 2 corresponds to

RV with finite mean but infinite variance, while the range 0 < α ≤ 1 implies infinite mean.

This latter range will not be addressed here, as considered not relevant for Internet traffic

modeling (see, a contrario, [11,16] for wireless traffic). The former range is the focus of this

contribution as it both matches experimental observation of real Internet data [5,6] and is at

the core of Taqqu’s Theorem formulation.

A canonical example of α-HT distribution is that of Pareto:

FW (w) = 1−
(

k

w+ k

)α

, (2)

with k > 0. Its mean reads: EW = k/(α − 1), when α > 1 and its variance is: Var W =
k2 α

(α−1)2(α−2)
, when α > 2. In the following, we use use Pareto random variables in simu-

lations, but results are valid for other heavy tail random variables.

2.2 Long range dependence

Long range dependence is classically modeled via the power law divergence of the spectral

density at origin (cf. e.g., [4,17,18]): The second order stationary process Y , with covariance

CY (τ) and spectrum ΓY (ν), is said to be LRD if and only if there is a constant γ ∈]0,1[ and:

ΓY (ν) ∼ D|ν |−γ , for |ν | → 0. (3)

Equivalently, this can be rewritten as CY (τ)∼ D′|τ|−(1−γ), when τ →+∞. Essentially, LRD

implies that no characteristic correlation time (or no characteristic frequency) can be singled

out in the data and that the sum of the covariance function diverges. The major practical

consequence of LRD is to significantly degrade estimation procedure performance.
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Well known examples of LRD processes are the increment processes of finite vari-

ance self-similar process with stationary increments. Self-similar processes are character-

ized by finite dimensional distributions that are covariant under dilations (cf. e.g. [15,19])

and their properties are controlled by a sole exponent H ∈]0,1[, referred to as the Hurst

parameter. Fractional Brownian motion (FBM), BH is the most prominent only Gaussian

member of that class, and actually appears in Taqqu’s Theorem. The increment process

Y (t) = X(t + 1)−X(t) of any finite variance self similar processes with stationary incre-

ments is characterized by a covariance of the form [19],

E{Y (t + τ)Y (t)} ∼ σ2H(2H −1)|τ|−(2−2H), for τ → +∞ (4)

and is hence LRD whenever 1/2 < H < 1, with the correspondence γ = 2H−1. Parameter H

is hence classically used as the common scaling exponent for both LRD and self-similarity.

By abuse of notations, it is also often used in the literature to refer to as a scaling exponent

be it related to LRD or self-similarity only.

2.3 A fundamental result in Self-Similar traffic modeling

2.3.1 Stating the Theorem

Let us now formulate Taqqu’s Theorem dealing with limits of the process known as the

On/Off model [4]. Let N denote a strictly positive integer. Let {Zi(t), t ∈ R}i=1,...,N be a

collection of independent binary i.e., taking values 0 or 1, reward-renewal processes with

independent activation periods. Let us assume that the On periods, τon, consist of i.i.d. ran-

dom variables drawn from a α-HT distribution. The i.i.d. Off periods are characterized either

by β -HT distribution or by some light tailed distribution. Let us consider the superposition

YN(t) = ∑
N
i=1 Zi(t) and its cumulated sum,

XN(tT ) =
∫ Tt

0
YN(u)du =

∫ Tt

0

(

N

∑
i=1

Zi(u)

)

du. (5)

The theorem states that there exists a positive constant C such that

lim
T→+∞

lim
N→+∞

XN(tT )− Eτon
Eτon+Eτoff

NTt

C
√

NT H
= BH(t), (6)

where BH is the fractional Brownian motion with parameter H satisfying:

H =
3−α∗

2
, with α∗ = min(α,β ,2). (7)

Essentially, this theorem states that, in addition to a linear trend, fractional Brownian motion

models the fluctuations of the (cumulated sums of) aggregated traffic time series, at least in

the asympotic limits of infinitely many users and of infinitely long observation duration.

The popularity of the Theorem stems from its mimicking the nature of real traffic, con-

sisting of the superimposition of a large number of flows within which IP packets are emit-

ted. Indeed, its construction in essence amounts to a definition of a fluid traffic model, with

constant ‘On’ activities Zi standing for independent traffics, such as flows, with random du-

rations τon. The aggregated traffic YN(t) results from their additive superimposition, valid

for links without congestion. A schematic realization of the model in terms of network is

sketched in Fig. 1.
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Fig. 1 On/Off model: Network equivalence of the M/G/N reward renewal On/Off model. This model network

is used in the NS-2 simulations of Section 6.2.

2.3.2 Reading the Theorem

The correct understanding of the theorem calls for a number of comments. First, Eq. (7)

reveals that LRD emerges from the infinite variance nature of the flow size distribution,

rather than the power-law behavior of its tail as such. Indeed, should the On/Off duration

sizes be heavy tailed with finite variance (α > 2 and β > 2), then α∗ = 2 and hence H = 1/2.

Heavy tails with finite variance hence leads asymptotically to ordinary Brownian motion,

and consequently to the absence of LRD.

Second, the order of the limits (first infinitely many users, second infinitely long obser-

vation duration) plays a crucial role. Very different limit processes are obtained if these are

reversed (as detailed for example in [4] and references therein).

Third, Taqqu’s Theorem is an asymptotic one, formulated as a limit T → +∞. Often,

this is misleadingly read as follows: that the self-similar nature of X would be observed

when the observation is long enough, after some transient has been discarded. The removal

of transients is particularly important in numerical simulation details but is another issue

entirely. Instead, a proper reading of the asymptotic limit is that that XN(tT ) actually cor-

responds to FBM BH(t) only when analyzed XN(tT ) from far, at coarse scales, globally,

or when zooming out, without paying attention to the details at small scales. Referring to

XN(tT ) as a self-similar process is hence confusing, as its distributions are not covariant un-

der dilation of any fine dilation factors, but only for coarse ones. Consequently, traffic times

series correspond much more to LRD than to self-similar processes. This issue is revisited

in Section 3.2 in relation to wavelet analysis.

3 Wavelet analysis of LRD

3.1 Wavelet transform

Wavelet transforms [20] have been shown to be effective for the analysis of LRD and hence

for the estimation of the Hurst parameter in [21]. In the context of Internet time series anal-

ysis, this procedure has been studied and proved efficient in [3,22–24].

Let ψ0 denote a reference pattern, called the mother-wavelet. It is an oscillating func-

tion whose energy is concentrated on a small support both in the time and frequency do-

mains. It is characterized by an integer Nψ ≥ 1, referred to as the number of vanishing

moments and defined as: ∀k = 0, ...,Nψ −1,
∫

R
tkψ0(t)dt ≡ 0 and

∫

R
tN
ψ ψ0(t)dt 6= 0. More-

over, ψ0 is chosen such that the {ψ j,k(t) = 2− j/2ψ0(2
− jt −k),k ∈ Z, j ∈ Z

∗,+} form a basis
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of L2(R). The (Discrete) Wavelet Transform (DWT) coefficients of a process X are defined

as: dX ( j,k) = 〈ψ j,k,X〉.
Let Y denote a second order stationary stochastic process. It has been shown (cf. [3,21])

that the variance of the dX ( j,k) mimics the spectral behavior of Y :

E|dY ( j,k)|2 =
∫

R

ΓY (ν)2 j|Ψ̃0|2dν , (8)

with Ψ̃0 the Fourier transform of ψ0. When Y is a LRD process, this yields an asymptotic

power law behavior for E|dY ( j,k)|2 in the limit of coarse scales:

E|dY ( j,k)|2 ∼C2 j(2H−1) for 2 j → +∞. (9)

Eq. (9) suggests that the analysis of LRD should be conducted in log2 S( j) vs. log2 2 j = j

plots, where the time average reads

S( j) =
1

n j
∑
k

|dY ( j,k)|2, (10)

n j being the number of dY ( j,k) available at scale 2 j. It can be understood as an estimator

for the ensemble average E|dX ( j,k)|2 [3,21]. Such plots are often referred to as Logscale

Diagram (LD) plots, and a weighted linear regression provides an estimation of the Hurst

parameter [22,23]:

Ĥ =
1

2

(

1+
j2

∑
j= j1

w j log2 S( j)

)

, (11)

where the weights w j satisfy the constraints of linear regression: ∑
j2
j= j1

jw j ≡ 1 and ∑
j2
j= j1

w j ≡
0. The weights can be written as w j = b j

V0 j−V1

V0V2−V 2
1

with Vi = ∑
j2
j1

jib j, i = 0,1,2. The positive

numbers b j can be chosen as the confidence granted to log2 S( j). Following [3,21], we use

b j = 1/n j.

In applications involving LRD in real data, it is crucial for practically meaningful analy-

sis to be equipped with confidence intervals. Confidence intervals for log2 S( j) (derivations

can be found in [22] are used in the LDs, for example Figs 2 and 3), throughout this paper.

More generally, the performance of this estimation procedure have been both theoretically

and practically quantified in depth and shown to be satisfactory if compared to the best para-

metric maximum likelihood techniques available (that come with a heavy computational

cost), and it also provides extra robustness thanks to the possibility of varying Nψ [3,22].

In the present context, confidence intervals will be of importance to determine whether the

relation predicted by Taqqu’s Theorem is observed in practice.

3.2 Taqqu’s Theorem in the wavelet world

Let us now use wavelet decomposition to illustrate how the asymptotic limit T → +∞ of

Taqqu’s theorem translates in practice. Let dXT
N
( j,k) denote the DWT coefficients of the

cumulative process XN(tT ). Stating that XN(tT ) is essentially BH(t) would imply that the

power law behavior of its wavelet coefficients is valid for all scales 2 j: E|dXT
N
( j,k)|2 =
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σ22 j(2H+1) (cf. [21,23,25]). However let us examine the following calculation (where we

set T = 2 j0 for simplicity):

dXT
N
( j,k) =

∫

2− j/2ψ0(2
− jt − k)XN(tT )dt,

=
∫

2− j/2ψ0(2
− jt − k)XN(t2 j

0)dt,

= 2− j0/2
∫

ψ0(2
− j− j0t − k)XN(t)dt,

= 2− j0/2dX1
N
( j + j0,k),

yielding

lim
T→+∞

lim
N→+∞

dXT
N
( j,k) = lim

j0→+∞
lim

N→+∞
dX1

N
( j + j0,k). (12)

This amounts to saying that analyzing XN(tT ), for a given time position t and letting T →
+∞ is equivalent to analyzing the behavior of the wavelet coefficients dX1

N
( j + j0,k), with

t = 2− j− j0 k, in the limit of coarser and coarser scales, i.e., j0 → +∞. Therefore, because

XN(tT ) is essentially BH(t) only in the limit of large T , the power law behavior of its wavelet

coefficients is valid only in the limit of coarse scales: E{dXT
N
( j,k)2} ∼ σ22 j(2H+1) for j →

+∞. The limit T → +∞ is a central fact that implies that the equivalence between XN(tT )
and FBM will be observed only in the limit of the largest scales.

From a practical perspective, it is more intuitive to perform the wavelet analysis over the

aggregated count time series YN(t), rather than on the cumulative series XN(T ). The analysis

above holds equivalently for YN(t) and the practical relation in the wavelet analysis reads:

S( j) =
1

n j
∑
k

|dY ( j,k)|2 ∼ σ22 j(2H−1) for j → +∞. (13)

4 Models, numerical simulations and parameter setting

To investigate observability in practice of the H(α) relation, numerical experiments are

conducted. Synthetic traffic are generated (in Matlab) consisting of time series of counts

based on two models. The first is the superposition of N On/Off sources described in the

formulation of Taqqu’s Theorem, before any limits are taken. The second is a particular well

known limiting form of this superposition (not the fBM limit of the theorem but another),

known as the M/G/∞ model. The name derives from the fact that this discrete state space

continuous time model is equivalent to that given by the number of active sources in an

M/G/∞ queueuing system where each arrival has a dedicated server. For consistency with

this notation (but a small abuse of Kendall notation), we will denote the first model by

M/G/N. For each of these two models the relation H = (3−α)/2 holds.

4.1 M/G/N On/Off model.

The M/G/N On/Off superposition model is in direct correspondence with the renewal-reward

stochastic process from the statement of Taqqu’s Theorem. Synthesizing it amounts to gen-

erating N > 0 traffic sources, with On activity periods of value 1, and Off inactivity periods

taking the value 0, whose durations are drawn at random, and independently, from a HT dis-

tribution. Pareto distributions, with parameters (α,µon) and (β ,µoff) respectively, are used.
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The count times series YN(t) results from the superposition of the traffic generated from

these N sources.

The parameters (N,(α,µon),(β ,µoff)) are called intrinsic as they depend only on the

modeled traffic. The objective is to probe for this simulated reward-renewal process statisti-

cal properties predicted by Taqqu’s Theorem. Notably, we will study the impacts of varying

α in the range 1.1 to 4, and of increasing N.

4.2 M/G/∞ model.

The M/G/∞ model is a queuing system that models arrivals of fluid flows on a server [4,

26]. It differs from the M/G/N model insofar as it assumes a priori an infinite number of

independent sources, with flow arrival times {ti, i ∈ N} distributed according to a Poisson

renewal process with intensity λ . The model assumes a single On period for every Poisson

source. The On durations {τi, i ∈ N} are i.i.d. positive RVs. The count traffic time series

results from the superimposition of the activities of all flows: Y∞(t) = ∑i∈N Z0 ((t − ti)/τi) ,
where Z0 denotes the indicator function of the interval [0,1].

When the flow durations {τi, i ∈ N} are drawn from a α-HT distribution (with mean

µon), a result recalled in [4] and analogous to Eqs. (6) and (7), holds for the cumulated sum

X∞(tT ) =
∫ Tt

0 Y∞(u)du. The λ → ∞ asymptotic for the M/G/∞ model plays the role of the

N → ∞ limit for the M/G/N model. This is further discussed in Sec. 6.1.

For the M/G/∞ models, λ and (µon,α) are the intrinsic parameters that specifiy the

exact traffic conditions that are to be simulated. Both because the shape of its LD is easier to

interpret and its numerical simulation is easier and faster, the M/G/∞ model is first analyzed

in Sec. 5, while the M/G/N On/Off model is later investigated in Sec. 6.1.

4.3 Numerical simulations and parameter setting

For numerical simulation, the required number of random variables are drawn independently

according to the laws mentioned above, using the respective intrinsic parameters of the mod-

els. A realization of the process Y∞(t) or YN(t) is calculated with an aggregation period ∆

(defining also the actual sampling time). A long transient D0 is a posteriori discarded, to

ensure the stationarity of the resulting process.

To take into account the asymptotic nature of the theorem, the observation duration D

and the aggregation level ∆ are introduced as extrinsic parameters that can be controlled.

This observation duration D is the parameter that allows an increase of the coarsest scale

available for the analysis, hence making it possible to probe for the conditions of observ-

ability of the LRD predicted by the Theorem. In numerical simulations, both intrinsic and

extrinsic parameters will be tuned so as to understand under which conditions the theoretical

H(α) relation can be observed.

In Sec. 5, a complete study of the M/G/∞ process is conducted. Simulations of nbreal =
400 independent realizations are made, with model (or intrinsic) parameters: µ = 3.2s, λ =
5. Parameter α is varied from 1.1 to 4, with 16 different values (the range α ∈ (1,2.2] being

densely scanned, so as to probe the transition from processes with to without LRD). The

observation (or extrinsic) parameters are set to D = 8 ·105s and ∆ = 0.1s. Burn out time is

set to D0 = 2 · 104s. Such parameters are chosen so as to match as much as feasible those

observed in modern network traffic. Scaling and LRD analyses are conducted as detailed in

Sec. 3.1, using a standard Daubechies Nψ = 3 mother-wavelet (cf. e.g., [20]).
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Fig. 2 Empirical Logscale Diagrams. LDs for data simulated from the M/G/∞ model (identical parameters,

α = 1.5), with 4 different durations (short to long, from top left to bottom right). For all 4 times series, the

aggregation level is identical: ∆ = 0.1s. For each LD, scaling behaviors are observed, over different ranges of

scales and with different scaling exponents. The question is: What are the relations of these different scaling

with respect to the heavy tail parameter α ?

In Sec. 6.1, the M/G/N model is explored in a comparable manner. Again, α is changed

from 1.1 to 4. The Pareto distributions have parameters α = β and µon = µoff = 2s. Extrinsic

parameters are set to: D = 10 ·106s and ∆ = 0.1s (to observe specifically the coarse scales)

with a burn out time of D0 = 2 ·103s. The number of sources N is 50, 100 or 200. Especially,

the study will show how varying the parameter N permits to explore the practical asymptotic

nature of the infinite number of sources, involved in Taqqu’s Theorem.

5 Taqqu’s theorem at work on the M/G/∞ model

5.1 Choice of scaling range

To understand the key issues controlling the observation of the connection between heavy

tail and long range dependence, we begin with the analysis of a specific toy example.

5.1.1 Toy example

Time series of aggregated traffic are simulated according to the M/G/∞ model, with intrinsic

parameters (λ ,µ,α) = (5,3.2s,1.5) (the true H is H = 0.75), and for 4 different durations

chosen in geometric progression, with factor 20 : D = 102,2 ·103,4 ·104,8 ·105s. The aggre-

gation level ∆ is identically set to 0.1s. Fig. 2 shows the LDs calculated from each of these

4 time series.

Examining the top left plot, calculated from the time series with the shortest duration,

one observes a satisfactory scaling behavior over the range of available scales ( j1, j2) =
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Fig. 3 Empirical Logscale Diagrams. Same LDs as in Fig. 2 superimposed one onto the other. A clear

scaling at fine scales ( j1, j2) = (1,6) can be observed, together with an asymptotic coarse scales scaling

starting above j = 9. This latter scaling is related to the LRD phenomenon, while the former is not.

D log2 D/∆ Ĥ ±∆H j1, j2

1 ·102 10 1.50 ±0.17 (1,6)

2 ·103 14 0.93 ±0.09 (6,12)

4 ·104 18 0.82 ±0.04 (7,15)

8 ·105 22 0.77 ±0.05 (12,19)

Table 1 Estimated scaling parameter. Estimated H with their 95% confidence intervals for M/G/∞ data,

with 4 different durations. The theoretical scaling exponent predicted from Taqqu’s Theorem is H = 0.75.

(1,6). Here, satisfactory means that a statistical test would not reject the validity of the

linear fit and would hence validate the power law behavior of S( j). Such a test has been de-

scribed in [27] and strongly relies on the fact that confidence intervals, for the log2 S( j), are

computed along with LDs (Sec. 3). However, the estimate of the scaling parameter, namely

the slope of the straight line, yields: Ĥ1 = 1.50±0.17 (95% confidence interval, cf. Table 1)

in clear disagreement with the theoretical LRD parameter H = 0.75. To understand such a

severe discrepancy, let us analyze the 3 other LDs, obtained from longer time series. The

scaling behavior over the ( j1, j2) = (1,5) range remains valid, yet another valid scaling be-

haviors appear over coarser ranges of scales. Fig. 3 reveals that these scaling superimpose

well over each other at large scale and that they reach coarser and coarser scales as dura-

tion increases. This validates the asymptotic coarse scale nature of this scaling and hence

its correspondence to the LRD phenomenon and hence to the heavy tail. Estimated scaling

exponents and scaling ranges are reported in Table 1. It shows that, despite scaling behaviors

that any practitioners would accept and that pass goodness-of-fit tests, the estimated H val-

ues for the second and third largest duration time series are statistically inconsistent with the

value predicted by Taqqu’s Theorem. Only the measure obtained from the longest duration

time series matches the prediction of Eq. (7).

5.1.2 Theoretical Logscale Diagrams

To further illustrate the difficulties related to the use of LDs to observe practically the re-

lation H(α) (Eq. (7)), LDs are calculated from the nbreal M/G/∞ time series, simulated as

described in Sec. 4. For each value of α , the theoretical LD, log2 E{S( j)}, is estimated by

a Monte-Carlo simulation as log2 ÊMCS( j), where ÊMC denote Monte Carlo averages, i.e.,
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Fig. 4 Theoretical Logscale Diagrams. Left, superimposed Theoretical LDs for 16 different values of α ∈
(1,4], obtained from Monte Carlo average over nbreal copies of the same M/G/∞process. Right, Theoretical

LDs for α = 1.1 (⋄), α = 1.5 (∗), α = 1.9 (o). The LRD scaling behavior takes on at higher j1 when α
increases within the range α ∈ (1,2).

means over the nbreal independent realizations. These theoretical LDs (superimposed in

Fig. 4) clearly show that:

i) two valid scaling exist over two different ranges of scales,

ii) the slopes of the fine scales scaling do not depend on α ,

iii) the slopes of the coarse scale scaling do vary with α ,

iv) the location of the cross-over between these two scaling ranges increases when α is

increased within the range α ∈ (1,2).

5.1.3 Interpretations

The analyses of both the toy set of time series and the theoretical Logscale Diagrams yield

a clear conclusion: the crucial issue for practically verifying Taqqu’s relation between LRD

and HT relies on correctly selecting the range of scale devoted to the estimation of H. This

issue hides two different pitfalls. When data are too short (only a range of fine scales are

given), a statistically perfectly valid scaling behavior may be observed, yet turns out to be

related neither to LRD nor to heavy tail. In that case, there is no way in which the relations

between H and α can be investigated. The nature of the apparent scaling will be discussed

in Sec. 7.3. More intricate is the analysis of data with longer observation durations. For such

cases, a clear scaling range appears in the limit of the coarsest (available) scales in con-

sistence with the asymptotic LRD. However, quantitative assessments are needed to check

that the data observation duration is large enough for the asymptotic implied in the Taqqu’s

Theorem be actually reached. In particular, it could prohibit an accurate validation of the

theoretical H(α) relation.

The remainder of this section aims at quantifying such comments and concentrates on

the quantitative determination of the coarse scale range [ j1, j2] where the expected relation-

ship between H and α can be found.

5.2 Selecting the coarse scale j2

The choice of the coarse scale j2 appears simple at first: the asymptotic formulation of the

Theorem seems to indicate that it should be chosen as large as observation duration permits,
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i.e., j2 = jD, with:

2 jD ∆ = D. (14)

5.2.1 The mystery of missing scales

There exists, however, an extra difficulty, already pointed out in [13,28] from the specific

example of LRD induced by a Fractal point process [29] and referred to as the mystery of

missing scales. Essentially, it consists of a classical difficulty associated to the manipulation

of heavy tail random variables (RV): A correct exploration, by means of a draw at ran-

dom procedure, of the farthest part of the tail of the distribution, is made very difficult and

unprecise, because of the intrinsic slow hyperbolic decrease of this distribution.

One can quantify this statement, using a classical argument from statistical physics lit-

erature [30]: Let M denote the number of random samples drawn independently from a

given heavy tail distribution with heavy tail parameter α , then the order of magnitude of

the largest observed sample wM reads: 1−FW (wM) ≃ 1/M. For a Pareto distribution, this

becomes wM ≃ µ(α − 1)(M1/α − 1). In the context of the M/G/∞ model, this shows that

the largest flow duration that can be (on average) observed actually depends both on intrisic

parameters α,µ,λ and on the (average) number of flows M = λD, related to the extrinsic

parameter D. An intuitive way to understand Taqqu’s Theorem consists of the idea that LRD

is created over scales 2 j∆ by the occurrence of flows with typical size τ ≃ 2 j∆ . This leads

to conclude that if no flow with duration larger than wM occurs, LRD cannot be observed

for scales larger than

2 jM ∆ = µ(α −1)((λD)1/α −1), (15)

and that, the time series will appear as quasi uncorrelated over larger time scales.

5.2.2 Quantitative study

To quantify the validity of the theoretical prediction in Eq. (15), the set of numerical sim-

ulations described above is used. Fig. 5 shows theoretical LDs (those shown in Fig. 4, left

plot), for α = 1.1,1.5,1.9, to which the theoretical power law behavior (2H −1) j has been

subtracted. This clearly shows that, at coarse scales, plots departs from the desired flat be-

haviour: For α = 1.9, it is clearly visible for j ≥ 17 ≃ jM = 16.5, for α = 1.5, it occurs

for j ≥ 19 ≃ jM = 19 while it can not be seen for α = 1.1 because of the small observation

duration D (hence, jD = 20 ≤ jM = 21.5).

For the range α ∈ (1,2), careful measurements of the octaves j for which departures

from scaling are observed show a striking agreement with the prediction of Eq. (15), and

hence corroborate a crucial information: jM ∼ (1/α) log2 λD is a (drastically) decreasing

function of α (this is illustrated in Fig. 8, dashed black line).

For α ≥ 2 the analysis, that one might intuitively have expected to be easier as variances

are now finite, actually turns out to be more involved. First, the arguments leading to Eq. (15)

remain valid. Therefore, at scales j ≥ jM , data should appear as quasi-uncorrelated, hence

leading to an estimate of H close to 1/2. Second, finite variance predicts a scaling behavior

in the range j∗ ≪ j ≤ jM , with exponent H = 1/2. However, there is no reason a priori why

those two scaling ranges, j ≥ jM and j∗ ≪ j ≤ jM should have the same energy level, and

transition between two such energy levels would manifest as a range of scales around jM

where the wavelet spectrum is neither flat, nor the signature of any kind of scaling behaviour.

Moreover, jM diminishes when α increases so that the range [ j∗, jM] may become very

narrow and even quasi-inexistent, therefore eliminating the possibility that the H = 1/2
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Fig. 5 Theoretical Logscale Diagrams. For α = 1.1 (⋄), α = 1.5 (∗), α = 1.9 (o): Theoretical LDs to which

the estimated linear behavior (2Ĥ − 1) · j + Ĉ has been substracted. These plots show clear departure from

the LRD scaling behavior for j ≥ j∗(α), for α = 1.9, (o) with jM = 16.5 and α = 1.5, (∗), with jM = 18.5.

For α = 1.1, (⋄), jM = 21.5 and hence cannot be observed as jD = 20.

induced by the heavy tail with α ≥ 2 can actually be observed. In a practical sense therefore,

and counter-intuitively, the role of jM is now reversed: It acts as lower limit for the actual

range jM ≤ j ≤ jD, where H = 1/2 can be measured, though actually corresponding to the

missing scale effect, rather than to the manifestation of the HT vs. LRD relation !

Therefore, the mystery of the missing scales is an intricate issue: theoretically, it acts as

upper limit for the range of scales where HT actually induces LRD scaling. Practically, for

infinite variance, 1 < α < 2, it plays the role of a upper limit, yet, for finite variance, 2 ≤ α ,

it turns out to play the role of a lower limit when trying to recover the predicted H = 1/2.

Our analysis here of the mystery of missing scales effect is in the same spirit as that of

[13,28]. The observations regarding the α > 2 regime are new.

5.2.3 Conclusion on selecting j2

The analyses reported in this section indicate that the upper limit j2 of the scaling range

where estimation of the LRD parameter H is to be performed needs to be chosen as the

minimum j∗ between:

j2 ≤ j∗ = min( jD, jM), when α ∈ (1,2],

j2 ≤ j∗ = jD, when α > 2. (16)

This shows that j2 does not only depend on the observation duration D (as intuitively ex-

pected) but also on α . Fig. 8 indicates that, for a given D, the decrease of j2 may be drastic

when α increases from 1 to 2. Moreover, the coarsest available scale for LRD analysis, jM ,

grows asymptotically as 1/α log2 D/∆ , hence slower than the duration jD = log2 D/∆ . The

benefits of increasing D in terms of estimation range extension depend on α .

5.3 Selecting the fine scale j1

5.3.1 Theoretical analysis

Let us now analyze the arguments entering the choice of j1, assuming that a large j2 is

set a priori and not changed. Choosing a large j1 (yet smaller than j2) enables to better
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satisfy the asymptotic requirement and hence to produce less biased estimations of H. How-

ever, increasing j1 also diminishes the number, j2 − j1 +1, of octaves involved in the linear

regression. Also, confidence intervals of the quantity log2 S( j) (over which the linear regres-

sion is performed) at coarse scales are larger (than those at finer scales), cf. [22]. These two

facts together obviously produce an increase of the size of the corresponding confidence in-

tervals for the estimate of H. Conversely, diminishing j1 decreases the variance of Ĥ at the

price though of an increased bias given that regression is performed over scales where the

departure from the asymptotic scaling behavior becomes significant. Therefore, the choice

of j1 results from a bias-variance trade-off. This has been extensively discussed in a more

general context in [3,22,24].

Stating that j1 should be large amounts to choosing it larger than any characteristic scale

of time intrinsic to the data or to the model producing them. In the framework of a M/G/∞

model, there exists obviously only two such scales, µ and 1/λ , yielding:

2 j∗∆ = max(µ,1/λ ) ≪ 2 j1 ∆ . (17)

It is important to note that the inequalities defining j1 (cf. Eq. 17) and j2 (cf. Eq. 16) are of

different natures. For the latter, the scaling hold exactly for all j ≤ j∗, hence the use of the

≤ symbol ; while the former corresponds to an asymptotic behavior, scaling holds when j1
is much (yet unprecisely) larger than j∗, hence the use of the ≪ symbol.

From the discussion above, when α ≥ 2, the missing scale effect acts a lower limit and

hence also needs to be accounted for:

j∗ ≪ j1, and jM . j1, if α ≥ 2. (18)

5.3.2 Statistical analysis

We use the set of numerical simulations described in Sec. 4.3 to quantify the bias-variance

trade-off that leads to the choice of the optimal j1. The simulation parameters yield j∗ = 5

and jD = 20.5 . Also, jM is calculated from Eq. (15) above, where M consists of the actual

number of flow duration drawn at random for each realization. For the linear regression

range, we set j2 = j∗(α) (with j∗ calculated according to Eq. (16)) while j1 is varied:

j1 = 5,6, ...,13. Therefore for each realization k = 1, ...,nbreal and each α , we calculate

the estimates Ĥ(α,k; j1, j2) (using Eq. 8). From this set of estimates, biases, variances and

mean-square errors (MSE) are measured as:

B(α; j1, j2) = ÊMC

{

Ĥ(α,k; j1, j2)−H(α)
}

, (19)

Var Ĥ(α; j1, j2) = ÊMC

{

(Ĥ(α,k; j1, j2)
2
}

− (ÊMC{Ĥ(α,k; j1, j2)})2, (20)

MSE(α; j1, j2) = (B2(α; j1, j2)+ Var Ĥ(α; j1, j2))
1/2 (21)

where ÊMC stands for the Monte Carlo average (average over realizations).

Obviously the bias B(α; j1, j2) should decrease when j1 increases (as can be seen in

Fig. 6) while variances increase. Therefore, the MSE necessarily possesses a minimum (as

shown in Fig. 7, for various αs), at an optimal choice jo
1 of j1. The function jo

1(α) estimated

from this procedure is represented in Fig. 8.

For α in the range 1 < α < 2, examination of the curve jo
1(α) reveals that the inequality

j1 ≫ j∗ is much more difficult to satisfy when α is close to 2 than for α ≃ 1. For example, in

our simulation set up, we observe jo
1(1.1) = 6 and jo

1(1.9) = 13, and hence 2 jo1 ∆ ≃ 2 ·2 j⋆∆

for α = 1.1 while 2 jo1 ∆ ≃ 250 ·2 j⋆∆ for α = 1.9. This is consistent with the LDs shown in
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Fig. 6 Bias. Bias of Ĥ(α,k; j1, j2) for fixed j2 as a function j1, for different αs, and the Monte-Carlo confi-

dence interval of the bias (small bars inside the circles)

5 10 15
0

0.02

0.04

α 
=

 1
.1

5 10 15
0

0.1

0.2

α 
=

 1
.5

5 10 15
0

0.2

0.4

α 
=

 1
.9

5 10 15
0

0.2

0.4

α 
=

 2

5 10 15
0

0.2

0.4

α 
=

 2
.1

j
1

5 10 15
0

0.2

0.4

α 
=

 3

j
1

Fig. 7 Mean Square Error. MSE of Ĥ(α,k; j1, j2) for fixed j2 as a function j1, for different αs. The mini-

mum of the MSE( j1) curves yields jo
1 minimizing the bias-variance trade-off.

Fig. 4 where it can obviously be seen that the closer α is to 1, the smaller the j1 at which

the LRD scaling range starts. This is also consistent with our interpretation of the missing

scale effect. In other words, as α approaches 2, jo
1 − j∗ increases notably, a fact of crucial

importance for the observability of the H(α) relation.

For finite variance α > 2, Fig. 8 shows that the shape of jo
1(α) matches that of jM(α).

This illustrates that the missing scale effect jM(α) drives the lower limit of the estimation

scale range and hence unambiguously validates the analysis of the complex and various roles

of jM(α), reported in Sec. 5.2.2.
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Fig. 8 Scaling range versus α . Functions jo
1 (black solid line with ∗), jM (dashed black line) and j∗ (red

solid line with ’o’), with respect to α . The scaling range [ j1, j2] = [ jo
1 , j∗] is narrowing when α increases

within α ∈ (1,2) as both jo
1 increases and j∗ decreases. This explains why the estimation of H turns out to be

so difficult for α reaches 2 from below. For α > 2, both jo
1 and j∗ only weakly depend on α .

Moreover, it is important to note that the bias B(α; j1, j2) is a function of the theoret-

ical LD and hence depends on the intrinsic parameters µ,λ ,α (any residual dependence

observable in our estimated theoretical LD should vanish in the limits nbreal → +∞ and

D → +∞). Conversely, Var Ĥ(α; j1, j2) can be shown to be quasi independent of H (hence

of α) and to mostly behave as 2 j1 ∆/D (cf. [22,24]). It is therefore quasi independent of the

intrinsic parameters of the model, and mostly varies with the observation duration D. As a

result of the bias-variance trade-off, jo
1 depends both on the intrinsic (µ,λ ,α) and extrinsic

(D,∆ ) parameters and cannot hence be determined analytically unless the model underlying

the data is precisely known. This is further discussed in Sec. 7.

5.4 Validation of the H(α) relation

Using the same set of numerical simulation as above, H is estimated using a weighted linear

regression [3,22] over the ranges of scales [ j1 = jo
1, j2 = j∗], that depend on α , as shown in

Fig. 8. The average estimates for H,

ÊMC

{

Ĥ(α; jo
1, j∗)

}

±1.96

√

Var Ĥ(α; jo
1, j∗)/nbreal, (22)

together with their Monte Carlo 95% confidence intervals, are plotted in Fig. 9 as a function

of α . The H(α) curve predicted from Taqqu’s Theorem is superimposed for comparison,

showing a very satisfactory agreement: the theoretical H(α) curve is within confidence in-

tervals for all α (but those close to 2). Clearly, for α close to 2, estimation of H is severely

impaired by the very narrow scaling range described above. Despite our comfortable pa-

rameter settings, for α = 1.9, the regression range is as narrow as: [ j1, j2] = [13,16], hence

yielding large variance and biased estimates for H. For α ≥ 2, the estimated jo
1 turns out

to be smaller than the calculated jD, yielding a visible bias. Increasing j1 to jD reduces the

bias (and hence improve agreement between the theoretical H(α) and the average estimated

H) at the price though of a substantial increase in the variance of the estimation (not shown).

A careful examination of the literature shows that the estimated curves Ĥ(α) never

satisfactorily match the theoretical form for α around 2. This is largely explained by the

aforementioned difficulties in correctly selecting the scaling range, which have often been
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Fig. 9 Relation H(α). Estimates, and their 95% confidence intervals ÊMCĤ(α; jo
1 , j2)±∆H as a function

of α (dashed red line with ’o’) compared to the theoretical H(α) curve predicted by Taqqu’s Theorem (solid

black line). Agreement is satisfactory for most values of α (but those close to 2).

very poorly handled. To the best of our knowledge (see however [28]) such an agreement

between experimental and theoretical H(α) curves had barely been obtained, neither from

real traces nor even from numerical simulations involving Internet time series modeling or

network simulations. Here agreement has only been achieved thanks to a careful analysis of

the various arguments governing the choice of the range of scales over which estimation is

to be performed: the choices of both j1 and j2 result from an interplay between intrinsic (or

model) and extrinsic (or observation) parameters.

6 Taqqu’s Theorem at work: M/G/N model and NS-2 simulations

6.1 Analyses on the M/G/N On/Off model

Let us now return to the original formulation of the Theorem: the M/G/N source described

in 2.3. Discussions related to the M/G/∞ model shed light on the asymptotic nature of the

Theorem, and have implications on the choice of the scales j1 and j2 yielding the correct

LRD parameter H(α). The purpose of the current section is to show that, once the meaning

of infinite number of sources is understood in practice, identical conclusions are drawn both

from the M/G/N and M/G/∞ models.

Theoretically, the argument of Sec. 5.2 on the choice of the upper limit j2 applies: j2
should be lower than jM . For a M/G/N process, the average number of samples drawn reads

M = N/(µon + µoff), and can, hence, be used in Eq. (15) to calculate jM: 2 jM ∆ = µ(α −
1)((N/(µon + µoff))

1/α − 1). The correspondence between the M/G/N and M/G/∞ models

stems from the equivalence λ = N/(µon + µoff).
Let us now turn to the lower limit j1, resulting from the bias-variance trade-off discussed

in Sec. 5.3. In the framework of the M/G/N process, the characteristic scales of time are con-

trolled by µon and µoff only for the activity of a single source, and by (µon + µoff)/N for the

source renewal process. The number N of sources being at least 1, the largest characteristic

time scale then clearly depends on (µon + µoff) alone:

2 j∗∆ = (µon + µoff) ≪ 2 j1 ∆ . (23)

Simulations are conducted (in Matlab) in the same manner as for the M/G/∞ process,

(cf. Sec. 4.2). Fig. 10 displays the experimental LDs obtained from different α , with the
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Fig. 10 LDs and H(α) relation for M/G/N. From left to right, top to bottom: α = 1.2,1.5,1.8,2.5,3.

D = 10 · 106s, ∆ = 0.1s and µon = µoff = 2s. LDs are obtained from different number of sources: N = 50

(star, red), N = 100 (square, blue) or N = 200 (diamond, black). The vertical dashed (red) line indicates the

position of the characteristic scale j∗ = log2((µon + µoff)/∆). The Magenta curve (circles) corresponds to

the LD obtained from a M/G/∞ process with same parameters. The solid ’+’ straight lines correspond to the

scaling estimated in the appropriate range of range [ j1, j2] for N = 200. Bottom right plot is the empirical

H(α) relation obtained in that case, compared to the relation (solid black line) predicted by Taqqu’s Theorem.

corresponding j∗. Note that the shift in level is directly attributable to the change of energy,

and this is proportional to N: when N is doubled, S( j) is shifted up by 1. The LD of a M/G/∞

process with the same parameters is superimposed for comparison. Notably, λ is chosen to

ensure a comparable average number of active flows M, as that for M/G/N with N = 200.

When N increases (here from 50 to 200), the LD converges (albeit slowly) to an asymp-

totic shape. The fine scale range does not evolve much when N increases and remains differ-

ent from the fine scale range shape of the LD for M/G/∞, where an energy peak associated to

the mean periodicity of activity of each source at j∗ = log2((µon +µoff)/∆), is clearly appar-

ent for the M/G/N process. This emphasizes the necessity to seek LRD at scales much larger

than this j∗. For coarser scales j ≥ j1 (as given by (Eq. 23), the shape exactly matches that

of the M/G/∞ model, up to the large cut-off scale jM . One observes a perfect superposition

of the LD of M/G/N with N = 200 and of M/G/∞ in the LRD range of scales.
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Fig. 11 LDs and H(α) relation for NS-2 simulation. From left to right, top to bottom: α = 1.2,1.6,2,2.5,3.

D = 7200s, ∆ = 0.1s, N = 50. Mean flow duration times are µon = µoff = {5,100,1000}ms for (respectively)

curves in black (diamond), blue (squares) and red (stars). The vertical dashed line (with corresponding color

and symbol) indicates the position of the characteristic scale j∗ = log2(2µon/∆). The Magenta curve (circles)

corresponds to the LD for a M/G/∞ process with parameters corresponding to the µon = 5ms NS-2 simula-

tion. Bottom right plot corresponds to the empiral H(α) relation obtained from the NS-2 simulations, when

selecting the appropriate range of scales. One sees that only when µon ≪ D is obtained a large enough range

of scales to find an empirical H(α) relation that compares well to the theoretical relation (solid black line).

In conclusion, up to the effect of fine scale model differences (such as the signature

of some average periodicity), the observability of Taqqu’s Theorem on the M/G/N process

follows exactly the same rules as the M/G/∞ process, in terms of the range of scales to be

selected and with an equivalence of the respective asymptotic limits N → ∞ and λ → ∞.

In those conditions, an empirical relation H(α) is obtained (see Fig. 10, bottom right) that

compares well to the relation predicted by Taqqu’s Theorem.

6.2 NS-2 simulation of On/Off model

Data simulated from traffic time series models do not enable practitioners to explore the

potential impacts of actual network mechanisms. To address this issue, in this section we
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generate traffic traces using NS-2, a standard event-based network simulator, commonly

used to test communication behaviors over networks [31].

We use a configuration inspired from the M/G/N model, with the simple topology de-

picted in Fig. 1: N computers emit TCP (or UDP) traffic towards a router that transmits

them to a bottleneck link, terminated by a sink node. Traffic is collected on this link, is

aggregated and analyzed. This network situation closely resembles that considered in [5].

The distributions of activity and inactivity period durations of the sources consist of Pareto

laws with parameters α and µon for active periods, and β and µoff for inactive periods.

Alternatively, for inactive periods, exponential distributions (with mean µoff) can be used.

Additional parameters are needed to put up a complete network framework. The throughput

of each transmitter is set to a constant, and packet sizes are either constant, or uniformly

distributed between two limiting sizes. The mean RTT (around 10 ms) is unchanged from

one simulation to another. Such hypotheses are quite crude approximations of real traffic

distributions. However, they offer sufficient versatility to investigate the impacts of in-flow

packet structures driven by actual protocols (TCP, UDP) on the measured LRD.

The simulations replicate the experiments on M/G/N processes. The theoretical discus-

sion at the coarse scale end remains valid. For smaller time scales corresponding to those

characteristics of the flow or packet arrivals however, the LD changed. Relevant characteris-

tic scales are µon (mean flow duration) and the mean interarrival time between packets (for

the in-flow structure). With UDP, those are the only relevant time-scales. For TCP flows,

the congestion control mechanism adds the RTT and the length of the congestion control

window as possible time-scales that intervene in the choice of the optimal j1.

Fig. 11 displays LDs obtained from different µon, using TCP flows. It shows how the

LD fine scale range is changing when the mean length of the flows is varied, impacting both

the coarse scale cut-off, through the missing scale effect, and the fine scale cut-off. However,

a satisfactory overlap is observed over the coarse scale range (up to the missing scale scale)

with a M/G/∞ process having same simulation parameters as the NS-2 experiment used here.

Simulations (not shown here) show that UDP behaves in the same manner at coarse scales

but with a less strigent requirement for the choice of the fine scale limit, due to the absence

of a congestion avoidance mechanism. Note that the specific shape at fine scales is driven

by a complex interplay between the RTT, the size of the congestion window in TCP, the

average duration of the flows; this is not detailed here (see, e.g. [4,8,32]).

In conclusion, specific network mechanisms do not change the relevance of the discus-

sion of Sec. 5. What changes is that in-flow network dynamics add additional characteristic

time scales that influence j∗ and hence lower end of the scale range used in H estimation.

Fig. 11 (bottom right) shows that, provided D ≫ µon, it is possible to obtain an empirical

relation H(α) (measured in the appropriate range) that follow closely Taqqu’s Theorem.

7 Discussion and comments

7.1 Reading LDs: 3 scale ranges

Here we provide a guide to the reading of LD’s arising from traffic time series, be they

real or synthetic. The goal here is not to attempt a comprehensive discussion of detailed,

modelling issues such as the impact of in-flow packet structure and protocol mechanisms,

but rather to describe generic features with a focus on the issue of scale ranges.

Most Internet traffic is subject to two (major) characteristic time scales: a small scale

µP, corresponding to the interarrival time distribution of IP packets; and a coarse scale µF ,
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related to flow characteristics (e.g., duration). Each are influenced, at least partially, by pro-

tocol mechanisms. In the fluid models studied thus far, the parameter µF is the only one

which relates to flows (for instance, µF = µ in the case of M/G/∞). These two scales natu-

rally define three scale ranges delineated by octaves jP = log2 µP/∆ and jF = log2 µF/∆ .

In the limit of coarse scales, j → ∞ (in practice j ≫ jF ), the LD is characterized by a

power law scaling behavior corresponding potentially to LRD, with some H in the range

1/2 ≤ H < 1. In the limit of fine scales, j → 0, in practice, j ≪ jP, the analysis almost

resolves individual packets, and at such scales the arrival process cannot be distinguished

from a simple Poisson process. The LD betrays this fact with a power law scaling behavior,

characterized by the trivial and non tunable scaling parameter H = 1/2. The third range

of scales, in practice jP ≤ j ≤ jF , often referred to as the intermediate range of scales,

essentially connects these two asymptotic scaling behaviors. There is often no true scaling

behaviour existing over this intermediate range. However, as described in [13], there may be

a true scaling arising as the signature of sharp discontinuities, which yields H = 1.5 (recall

Fig. 2 and see also [28]). This is discussed further in Sec. 7.3.

7.2 What can actually be seen on real data ?

Whether the three scale ranges described above can be clearly identified and separated on

LDs calculated from empirical data depends on the orders of magnitude of the intrinsic at-

tributes (µP,µF ) in relation to the extrinsic parameters (observed duration D and aggregation

level ∆ ). In the numerical simulations that enable us obtain the empirical Ĥ(α) curves the

duration was set to D = 8 · 105s, that is 222 hours or roughly 9 days! This is not typically

realistic with respect to actual network data. Let us quantify these issues.

Clearly, LRD scaling at coarse scales is visible if and only if D ≫ µF . According to

the literature on Internet traffic metrology, the average estimated mean flow sizes typically

range from 100s to 101s — assuming “flows” are defined based on the canonical IP 5-tupla,

i.e. as sequences of packets with the same protocol identifier and address/port end-points.

Also, it is common to consider that Internet traffic can be regarded as stationary over time

windows of width around 1 to 3 hours, or 103 to 104s. To examine the implications of this,

let us fix D = 103s, ∆ = 100ms, µF = 3s, and µP = 0.1s. This yields, j∗ ≃ 5 and j∗ ≃ 13,

implying that for α = 1.1 the regression can be performed over the range [ j1, j2] = [7,12],
while for α = 1.9 it narrows to [11,12], resulting in poor estimate.

The LRD parameter for Internet time series is often measured at around H = 0.8, cor-

responding to α = 1.4, and is typically measured over a range [9,12]. This is a rough indi-

cation that data (if stationary) collected over 103s is sufficient to observe the LRD asymp-

totic regime. Yet, the quantitative analyses reported in Sec. 5 also clearly indicate that, for

D ≃ 103s, H is overestimated as the asymptotic LRD regime has not yet been reached. They

also suggest that, as a rule of thumb, the LRD exponent H is correctly estimated on condi-

tion that, whatever the aggregation level, the scales 2 j∗∆ and 2 j∗∆ differ by at least 4 orders

of magnitude,

2 j∗∆

2 j∗∆
& 104, (24)

i.e., j∗ and j∗ are separated by at least 13 to 14 octaves. With typical parameters this implies

at least from 3 to 5 hour long traces collected under stationary conditions, a challenge for

actual operating networks (cf. the experiments conducted on a real Grid platform to validate

the LRD/HT relation [33]).
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The range associated to the fine scale range appears if and only if µP ≫∆ . In the Internet

traffic metrology literature, commonly reported values range from 2−10s to 2−3s, which is

often not seen in LD plots as practitioners rarely choose small enough aggregation levels

∆ . In M/G/∞ simulations, the setting chosen is one of a fluid model (without packets) with

∆ ∼ µon. This explains why the fine scale ranges does not appear on the LDs shown in

Fig. 4, 10. It barely appears on Fig. 11 because ∆ = 100ms is larger than µP ≃ 5ms, the

mean packet interarrival times of our NS-2 simulations.

The intermediate scale range can be seen on the LD for scales j ∼ jF ≫ jP, that is

when both intrinsic scales are well separated. In such cases, if there is a separation of more

than 3 octaves, the intermediate scale range are sometimes considered as a scaling range by

practitioners, whose exponent is quoted as potentially related to flow shape [8,32]. However,

there is no generic expectation that such a scaling should be obtained.

It is rare to observe all three ranges in a single LD from real data: Indeed, this would

require long traces (to see the coarse asymptotic LRD) aggregated at a low level (to see

in-flow packet structure), hence resulting in large sample size time series that are difficult to

process. For instance, D = 104s and ∆ = 10−3s produces a series with 107 points.

7.3 Example LDs from several traffic models

Beyond the simplified yet broadly applicable schematic of 3 scale ranges of Internet traffic,

a more precise description of LD shape depends on factors such as the precise in-flow packet

process. To explore this, we discuss some examples commonly used in Internet modelling.

The simplest packet-level model is to assume a pure Poisson process for the packet

arrivals, without any flow structure. This yields aggregated time series with no correlation

structure (or white spectra) and hence no characteristic scale of time. For that case, the LD

has a trivial power-law behavior, valid at all scales, from fine to coarse, characterized by the

non tunable scaling parameter H = 1/2.

Let us now turn to models introducing hierarchical flow and packet levels. The M/G/∞

or M/G/N models are commonly used for the flow level, and are typically combined with a

fluid model for the in-flow packet level (such as the On/Off activities studied here, though

more elaborate models have also been proposed). The packet model will dominate structure

in the fine scale range, e.g., no correlation at fine scales for Poisson packets. The intermedi-

ate scale range is driven by the flow model. For instance, the M/G/∞ process has an intrinsic

flow scale, for example µF = µon. In the intermediate range of scales, its LD consistently ex-

hibits a satisfactory scaling behavior (see Fig. 3), with a scaling parameter estimated around

Ĥ ≃ 1.5, whatever the value of α . This results from a specific feature of the M/G/∞ construc-

tion, namely a superimposition of step functions, whose Fourier transform mostly consists

of a power law decrease with respect to the frequency, 1/|ν |2, hence yielding H = 1.5 (note

that using H is an abuse of notation here, given that we have a priori reserved it for LRD

which appears at large scales). This feature is not realistic, as it is not found in actual data

([3,7,22,24]). More elaborate in-flow or flow shape models (not using step functions) would

result in tunable LD shapes in this intermediate scale range, as studied in [8].

Another approach is to consider the cluster point process (CPP) to model directly the

packet/flow hierarchy (see [7] and references therein). It consists first of a renewal process

for flow arrivals, with characteristic time scale µF . To each flow is associated a cluster,

corresponding to the packets in each flow, defined via a second renewal process with mean

inter-arrival time µP and a given flow size distribution. When this distribution is not heavy

tailed, the corresponding process is not LRD and the LD is flat (trivial scaling with H = 1/2)
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in both coarse and fine limits. The levels of the LD (powers of the process) in general differ,

giving rise to an intermediate scale range which essentially consists of a smooth transition

between them. To introduce LRD, following the spirit of the Taqqu’s theorem, the number of

packets per flow is modeled as a random variable with a heavy tail distribution (of parameter

α ∈ (1,2)). For that case, LRD, with parameter H = (3−α)/2 takes on shortly after jF and

the intermediate scaling range smoothly connects the Poisson behavior at small scales to

LRD at coarse ones. This has been thorougly described in [7] and shown to be a physically

meaningful as well as accurate model capable of reproducing Internet time series statistics.

7.4 Estimation of the heavy tail parameter

When trying to validate Taqqu’s Theorem H(α) relation from real Internet traffic data, there

is an additional difficulty that has not yet been addressed: α is unknown and also needs to

be estimated from the data. This task is beyond the scope of this present contribution, but

we make the following comments.

Estimating the tail index is often based, in the statistical literature, on Hill or Pickand

procedures (e.g. [18]) and is non-trivial. It is well known that, counter-intuitively, their per-

formance degrades when α increases from 1 to 2. This is likely to further complicate the

validation of the theoretical H(α) for values close to 2 as both H and α are poorly estimated

in that zone.

Whatever its value, meaningful estimates require large data sets. Preliminary attempts

to estimate α from real data were performed on the publicly available trans-Pacific Internet

traffic repository (mawi.wide.ad.jp, see [34]). These indicate that traces at least few hours

long are required. Finally, we mention that recently a procedure based on the behavior at

the origin of the characteristic function of the wavelet coefficients has been proposed which

outperforms previous tools [35], and was used in the context of Grid traffic in [33].

8 Conclusion

Taqqu’s Theorem is often regarded as a founding result for the modeling of Internet traffic.

It relates mathematically the LRD and heavy tails parameters H and α via a stochastic

process related to On/Off models. Its popularity stems from the fact that it explains the

origin of the (now universally accepted) LRD observed in traffic traces via heavy tails of

traffic statistics in a manner that is consistent with network ‘physics’. The prominence of the

result motivated many researchers to experimentally validate the H(α) relation, both in real

traffic, and (more often) in simulations based on popular models. Yet, the literature contains

very few successful quantitative validations. The goal of this paper was to investigate why

this is so.

Our main conclusion is that the crucial issue lies in the need to correctly select the scale

range where the asymptotic behavior (implied in Taqqu’s Theorem) is actually reached. To

quantify this we have proposed a ‘reading guide’ for wavelet Logscale Diagrams (LDs)

centered about 3 scale ranges: fine, intermediate and coarse. We explain that the coarsest

scale available for the analysis, 2 j∗∆ , needs to be at least four orders of magnitude larger

than the largest intrinsic scale of time 2 j∗∆ , characteristic of the data. While j∗ is a function

on the intrinsic parameters of the data only (especially the in-flow properties), j∗ is also a

function of the observation duration. The upper limit j2 of the estimation range of scales can
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be set to j∗, but the lower limit j1 needs to be chosen larger than j∗ by some factor, which

varies from 2 for α close to 1 to 1000 for α close to 2.

Using M/G/∞ based numerical simulations, extremely long (tens of hours !) synthetic

aggregated time series were used which enabled us to observe empirically the H(α) relation

in a satisfactory manner. Difficulties for α close (both smaller and larger) to 2 however are

stubborn, and we relate these to subtle heavy tail effects. Improving estimation in these cases

requires increasing the j∗ − j∗ gap, which can be achievable either by further increasing

the observation duration and/or decreasing µP. Furthermore, we point out that improving

the agreement between prediction and estimation (bias reduction) for α close to 2 cannot

be obtained without paying a price of a huge variance increase, that cannot be accepted

practically.

Whatever the chosen model, conclusions would be essentially the same: the details of

the in-flow processes, flow arrivals, network and protocol mechanisms impact only the fine

and intermediate scale ranges of the LD and hence only control the lower limit of the range

of scales where LRD scaling in relation to heavy tail exists. They do not affect the coarse

scale range and hence LRD, which, by nature, appears beyond any such characteristic scales.

Given the orders of magnitude taken by traffic parameters and time-scales currently

representative of the Internet, the empirical observation of the H(α) relation would require

significant effort, notably: i) collecting several hour long traces that are under stable and

stationary conditions with (almost) no anomalies, ii) accurately estimating the relevant time

scales, iii) making use of the most accurate and recent estimation procedure of α such as that

in [35]. Two hour long traces are often the longest observations deemed stationary and used

for LRD estimation. Another difficulty is that α cannot be freely varied, so that in practice

only few (typically those with H close to 0.8) samples of the H(α) relation can be observed.

To overcome this difficulty, real yet controlled traffic, generated on a Grid platform, has

been recently used (see [33]).

To summarise, currently the theoretical relation H(α) is mostly beyond practical quan-

titative observability, and hence cannot be used to predict traffic statistics, in particular the

LRD parameter, quantitatively. This however in no ways calls into question the validity of

the Theorem itself nor its founding and guiding role in the modern statistical modeling and

analysis of Internet traffic.
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