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Abstract: Parallel kinematic machines (PKMs) have demonstrated their potential in many applications
when high stiffness and accuracy are needed, even at micro- and nanoscales. The present paper is
focused on the functional design of a parallel platform providing high accuracy and repeatability in
full spatial motion. The hexaglide architecture with 6-PSS kinematics was demonstrated as the best
solution according to the specifications provided by an important Italian company active in the field of
micro-positioning, particularly in vacuum applications. All the steps needed to prove the applicability of
such kinematics at the microscale and their inherent advantages are presented. First, the kinematic model
of the manipulator based on the study’s parametrization is provided. A global conditioning index (GCI)
is proposed in order to optimize the kinetostatic performance of the robot, so that precise positioning
in the required platform workspace is guaranteed avoiding singular configurations. Some numerical
simulations demonstrate the effectiveness of the study. Finally, some details about the realization of a
physical prototype are given.

Keywords: kinematic optimization; vacuum applications; micro-positioning; parallel kinematics machines

1. Introduction

The ability to change the orientation and position of a sample with high precision has become an
indispensable requisite in many applications, ranging from testing of microelectronic components, to
assembly of optoelectronic components, to measurements in extreme environments such as ultra-high
vacuums, to exposure to cryogenic radiation and temperature typical of synchrotrons, and more.
These functions are normally performed by robotic platforms with limited workspace and a small
range of rotation. Compliant devices often fulfill such requirements allowing precise movements
only in a subdomain of the typically required six degrees of freedom, as is well documented in [1–7].
Parallel kinematic machines (PKMs) are usually preferred to serial devices because of their intrinsic
features, such as stiffness, positioning accuracy, and repeatability. Many examples of commercial devices
based on parallel kinematics architectures can be found in industry, especially in the measurement sector.
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The most widely used PKM in such fields is the Gough–Stewart platform [8], which has been
commercially proposed in many sizes in order to respond to different application domains. Many examples
of hexapods, whose operating principle is used to orient and manipulate microelectronic components, can
be found in the scientific literature [9–11]. The main drawback of these manipulators, shared by most of
the PKMs, is the limited workspace caused by the fixed location of both active and passive joints at the
base frame, with which the legs of the manipulator are connected.

This limit can be overcome by a well-known mechanism from École Polytechnique Fédérale of Zürich,
which takes the name of Hexaglide for its particular architecture. It belongs to the family of Hexapods,
with six legs and six actuated rails at the fixed base [12]. In fact, the mechanical solution of having six
parallel rails at the base can significantly extend the manipulator workspace, at least in one direction,
providing a sort of extruded volume. One of the benefits could be the possibility of combining classic
operations of pick and place, exploiting the whole length of the rails and covering a large workspace,
to specific alignment and assembly tasks, for instance those typical of the microelectronics industry, in
reduced sections of the rails by repeating them in several parallel workstations.

There are many examples in the literature of Hexaglide PKMs, but some of them are conceived with a
different arrangement of the actuated rails at the base frame, for instance along the edges of an equilateral
triangle [13] or in a star configuration [14], or even in more complex configurations [15,16], losing the
ability to translate the entire mechanics in a prevalent direction. On the contrary, other studies are focused
on their parallelism [17,18], but the proposed mechanical designs are oriented towards large machines
where accuracy and repeatability are not the main objectives.

The present work proposes the functional design of a Hexaglide manipulator aimed at precision
applications in the electronics and measurement sectors, with the aim of revealing a new potential use by
showing its kinematic performance when designed for carrying out microscale tasks. Therefore, the first
part of the paper is focused on the kinematics modeling of the manipulator, whereas the rest of the paper
proposes an optimization procedure that, starting from one of its multiple inverse kinematics solutions,
results in a functional design that fulfills the specifications set by an industrial manufacturer. Finally, a
prototype designed with the aforementioned procedure is shown. Such prototype is based on a different
inverse kinematics solution that is subject to a confidentiality agreement and currently cannot be disclosed.

2. Design Specifications

The design specifications of the Italian manufacturer concern the kinematic and static performance
required by the manipulator. They result from a market analysis in the microelectronics sector, as previously
indicated. These can be summarized as follows:

• overall dimensions of 350× 350× 225 mm (XYZ),
• translation of 125× 50× 25 mm along the x-, y- and z-directions, respectively,
• translation resolution of about 0.5 µm, repeatability of ±1 µm, maximum speed of 5 mm/s,
• rotation range of ±5◦ about x-, y- and z-axes,
• rotation resolution of about 2× 10−4◦, repeatability of ±2× 10−4◦,
• payload of 1.5 kg.

3. The Hexaglide Kinematics

As already mentioned in the previous sections, one of the most suitable kinematic architectures
that can meet such desired specifications is the Hexaglide. Six actuated sliders, equally oriented in a
given direction of the fixed base, provide the manipulator with a main direction of translation. A typical
configuration of the manipulator is obtained with six rigid legs of constant length, and a hexagonal or
triangular moving platform according to the connection of the legs in a 6-6 [19] or 6-3 scheme [20] by
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means of spherical joints, as shown in Figure 1. Six of the twelve spherical joints, the ones at the base or the
others at the moving platform, can be replaced by universal joints for a non-under-constrained version of
the manipulator, avoiding the spin of the legs about their axis. It is often preferred that there is a reduction
of the rails at the frame with three units, where two sliders move in pairs [21–23].

b)   6-3 Hexaglidea)   6-6 Hexaglide

Figure 1. Functional solutions for the Hexaglide manipulator.

3.1. Model Parametrization

The pose of the moving platform of a manipulator is typically defined by means of a homogeneous
transformation expressed in terms of a 4× 4 matrix, called 0

1T in the following. It involves the rotation
matrix 0

1R between the mobile reference system {1}, placed on the moving platform, and the fixed reference
system {0}, located at the base frame, and the relative position vector 0p1 amongst their origins. The two
reference systems and other important geometric data related to the Hexaglide are shown in Figure 2.
The rotation matrix 0

1R is also interpreted in this work as a sequence of roll, pitch, and yaw elemental
rotations, namely a matrix multiplication of the form 0

1R = Rz(θz)Ry(θy)Rx(θx), with obvious meanings
of terms. The well-established study’s parametrization can be conveniently used in the implementation of
calculation routines in order to avoid representation singularities for 0

1R:
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Figure 2. Kinematic scheme of the 6-PSS Hexaglide.
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The eight study parameters, here gathered in the vector x = [x0, x1, x2, x3, y0, y1, y2, y3]
T , are

constrained by the study quadric:

S : s = 0, (2)

with

s = x0y0 + x1y1 + x2y2 + x3y3. (3)

Moreover, the following constraint normalization equation must hold in order to avoid a
projective transformation:

N : n = 0, (4)

with

n = x2
0 + x2

1 + x2
2 + x2

3 − 1. (5)

The full inverse transformations are also given for the sake of completeness:

x3 =
1
2

√
0
1T1,1 +

0
1T2,2 +

0
1T3,3 + 1 y0 = −1

2
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)
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0
1T3,4x0

)
x1 =

0
1T1,3 − 0

1T3,1

4x3
y2 = −1

2
(0

1T1,4x1 − 0
1T2,4x0 +

0
1T3,4x3

)
x2 =

0
1T2,1 − 0

1T1,2

4x3
y3 = −1

2
(0

1T1,4x0 +
0
1T2,4x1 +

0
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)
, (6)

where 0
1Ti,j stands for the element of matrix 0

1T at the ith row and jth column.
The position of the lower spherical joints is parametrized as follows:

Si = S0,i + qisi, (7)

where Si is the variable position of the attachment point of the ith leg on the frame, corresponding to the
ith spherical joint center, driven by the actuated prismatic joints at the base, S0,i is the fixed point on each
slider that corresponds to Si when in the home position, si is the unit vector giving the direction of the
linear sliding, and qi is the ith actuated joint variable. All the qi can be gathered in the actuated joint vector
q = [q1, q2, q3, q4, q5, q6]

T . The generality of the expression can be noted, where si can still be different for
each prismatic joint.

The ith leg can be represented by vector Li whose expression is given by

Li = Pi − Si = Lili, (8)

where Li is its constant length and li is the unit vector giving its direction from Si to Pi.
Finally, the moving platform, whose geometric scheme is shown in Figure 3, is parametrized by

means of two parameters: r is the radius of a circle, on which the six centers of the upper spherical
joints lie, and ϕ is the semi-central angle of the circular sector between pairs of Pi points, namely
{P6, P1}, {P2, P3}, {P4, P5}. Such arrangement is motivated by the need to avoid the perfect hexagonal
symmetry of singular configurations inside the manipulator workspace, while maintaining a certain
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symmetry. Matrix 0
1T in (1) can be used to find the absolute coordinates of each point Pi in the fixed

reference frame {0} when the coordinates in the moving reference frame {1} are known:[
0Pi
1

]
= 0

1T

[
1Pi
1

]
. (9)

From here on, all vectors are considered written in the fixed frame, unless explicitly stated.
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Figure 3. Geometric scheme of the moving platform.

3.2. Inverse Position Kinematics (IPK)

The mapping from the pose coordinates of the moving platform to the actuated joint displacements
along the six linear axes can easily be obtained if the rigid body constraint is imposed to the length of the
legs of the manipulator. It consists of the following expression:

Ei : ei = 0, (10)

with
ei : (Pi − Si)

T (Pi − Si)− L2
i .

The subscript i is related to the ith leg according to the notation shown in Figure 4. The resulting
system of equations is given by as many constraints as the number of legs, with the addition of the study
quadric (S) and the normalization equation (N):

{E1 : E2 : E3 : E4 : E5 : E6 : S : N} . (11)

The expressions of points Si and Pi are given by Equations (7) and (9), respectively. As expected,
the system provides two inverse kinematics solutions for each leg, whose expression in compact form is
given by:

qi1,2 = sT
i ai ±

√(
sT

i ai
)2 − aT

i ai + L2
i , (12)
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where ai is the ith vector resulting from the following expression:

ai =
0 p1 +

0
1R1Pi − S0,i. (13)
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Figure 4. Constraint manifold of the ith leg.

Both solutions in Equation (12) are acceptable and provide 26 theoretical inverse kinematic solutions
for the Hexaglide, if all combinations are taken into account. Therefore, a selection routine for the best
solution that meets the design specifications, together with the best kinematic performance, is required.
Some geometrical and physical assumptions can be made: the zero configuration for each slider, namely
the absolute position of each point S0,i at the fixed base, can be associated to one end of the relative actuated
rail, whereas the other end corresponds to the maximum stroke qmax, providing an always positive or
at least null qi. Moreover, the legs of the manipulator must never reach a vertical configuration during
its operation. Such condition is required to avoid singularities, as shown in the following section about
differential kinematics. The foregoing assumptions are summarized as follows:

0 ≤ qi ≤ qmax (i = 1, . . . , 6) ∧ sT
i Si > sT

i Pi + ε (i = 1, 2, 6)
sT

i Si < sT
i Pi − ε (i = 3, 4, 5)

, (14)

with ε as large as desired and si directed along the x-axis of the fixed frame {0}.

3.3. Direct Position Kinematics (DPK)

The mapping from the actuated joint vector q to the pose coordinates of the moving platform
expressed by vector x, or analogously given by matrix 0

1T, is more complex than the inverse problem, as
expected for PKMs. It can be demonstrated that in this case such problem has 40 solutions and numerical
approaches are often preferred to closed-form models because of their easier software implementation.
Numerical solutions depend on initial conditions and it is not generally easy to converge to the right
solution among the many possibilities. As an initial condition, a matrix 0

1T0 based on an identity matrix
I3×3 and an arbitrary position vector 0p1,0 inside the manipulator workspace, or alternatively a starting
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Cartesian vector x0, is chosen. The algorithm conceived to solve the problem consists of the following
steps:

1. Input: vector q;
2. a discrete sequence of actuated joint vectors, regulated by the index k, is obtained by means of a linear

interpolation ranging from qin (= q0) to q f in (= q), with q0 resulting from the IPK of x0;
3. an iterative Newton–Raphson algorithm, this time regulated by the index i, is progressively used for

each qk of the sequence to evaluate the vector xk that verifies the constraint manifold in (11) with a
desired level of accuracy, each iteration starting from the previous solution xk−1;

4. Output: vector x of study parameters or directly 0
1T if a matrix form is preferred.

In more detail, at each iteration of step 3, a new estimate of the solution xk is sought by means of the
aforementioned Newton–Raphson algorithm:

xi+1 = xi − J−1
i vi, (15)

where vi and Ji are:

vi =


e1 : |P1(xi)− S1(qk)|2 − L2

1
...

...
e6 : |P6(xi)− S6(qk)|2 − L2

6
s : s(xi)

n : n(xi)

 , Ji =

∣∣∣∣∣∣∣∣∣∣∣∣
∂

∂xT
i


e1
...

e6

s
n



∣∣∣∣∣∣∣∣∣∣∣∣
8×8

. (16)

3.4. Differential Kinematics

The Jacobian matrix of the manipulator, which maps the Cartesian velocity vector ẋ of the moving
platform from the actuated joint velocity vector q̇, is presented in the classic partitioned form:

Jx ẋ = Jqq̇, (17)

where ẋ =
[
ωT , vT]T withω the angular velocity and v the linear velocity of the moving platform, and

q̇ = [q̇1, q̇2, q̇3, q̇4, q̇5, q̇6]
T . The expression of the matrices Jx and Jq, called respectively the geometric and

analytical Jacobians of the manipulator, are obtained by making use of kinematic torsors:

Jx =


$T

r,1
...

$T
r,6

 and Jq =


$T

r,1$1 · · · 0
...

. . .
...

0 · · · $T
r,6$6

 , (18)

where $i =
[
0T , sT

i
]T is the six-dimensional kinematic torsor related to the ith actuated prismatic joint and

$T
r,i =

[
(Pi × li)

T , lT
i

]
is the dual torsor to passive joints of each ith leg. When the square matrix Jx has full

rank, the full Jacobian matrix can be found as:

J = J−1
x Jq. (19)

A look at the components of the matrices Jx and Jq in (18) allows identification of the singular
configurations of the manipulator. The two matrices lose rank according to the following conditions:

• det(Jx) = 0 when any pair of reciprocal torsors $r,i and $r,j (with i 6= j) satisfies the relation $r,i ‖ $r,j;
• det(Jq) = 0 when li ⊥ si is verified at least for one of the ith legs.
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4. Optimization Problem

An objective function Φ is defined with the aim of maximizing the kinematic performance of the
manipulator, laying the foundation for a geometrical optimization. One of the most frequently used tools
in kinematic optimization problems is the condition number of the Jacobian matrix. However, besides
not being a finite index, it merges the kinematic characteristics of different natures when applied to full
motion manipulators. It follows that two sub-matrices extracted from matrix J related to angular and
linear velocities independently seem more suitable for a guided optimization, instead of using the full
Jacobian matrix [24]. Two indexes result from this partitioning:

cnω =

√
σmin

(
JωJT

ω

)
σmax (JωJT

ω)
and cnv =

√
σmin

(
JvJT

v
)

σmax (JvJT
v )

, (20)

where Jω is the 3× 6 matrix given by the first three rows of J and analogously Jv by the second three.
The terms σmin and σmax represent the minimum and maximum eigenvalues of the matrices inside the
round brackets. The two condition numbers in (20) are local indexes and have the property of being
confined in the range 0 ≤ cn ≤ 1, with isotropic and singular conditions revealed by the upper and
lower extremes respectively. Further useful indexes with global properties can be defined if the condition
numbers in (20) are integrated on the manipulator workspace W [25], where the latter in the present case
refers to the desired workspace defined in Section 2:

GCIω =

∫
W cnωdW∫

W dW
and GCIv =

∫
W cnvdW∫

W dW
. (21)

Finally, an objective function Φ based on (21) and tailored to meet the design specifications can be
defined as:

Φ (ph,λ) = 1− (kωGCIω + kvGCIv) , (22)

where the weights kω and kv are in the range [0, 1] and can be adjusted according to kinematic needs and
respecting the relationship kω + kv = 1, favoring translation over rotation performance if required, or
other combinations. As highlighted in (22), function Φ depends on ph = [yh, zh, θz]T , namely the y and
z coordinates of the relative position vector between frames {1} and {0} in the home configuration of
the manipulator, and the yaw rotation about the vertical z axis. The home configuration is defined as
the central configuration of the manipulator, from which the required translations and rotations can be
performed without incurring singularities, with a horizontal top surface of its moving platform. This latter
condition is assumed for practical reasons, in fact the top surface can be used as a horizontal support
plane, narrowing the study only to rotations about the z axis. At this stage of the study, the x coordinate
between frames {1} and {0} is arbitrary, therefore, a variability of xh is not taken into account. Finally,
the vector λ in (22) collects all the geometric parameters of the manipulator that a user wants to optimize.
In the present case, with reference to Section 3, it is defined as:

λ =
[
ϕ, r, L, S1,y, S3,y, S4,y, S6,y

]
, (23)

with the y-position of the ith slider with respect to the fixed frame {0} represented by Si,y and all the
legs considered with equal length Li = L. It can be noted that S2,y and S5,y do not participate in the
optimization process because the respective linear guides are the most external along the y-direction and
are confined within the maximum range of 350 mm already mentioned in Section 2.
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Geometric Optimization

A preliminary study about the expected overall size of the manipulator was carried out. The design
specifications of Section 2 allow limitation of the range of variability of some geometrical parameters, so
that optimization results are effectively constrained around an arbitrary initial configuration taken as a
first guess. Eventually, they are checked again after all parameters are optimized.

The maximum height of the moving reference frame {1} with respect to the fixed frame {0} is limited
to 200 mm, leaving the remaining millimeters to mechanically design the moving platform. According to
the results of the kinematic study in Section 3.4, a maximum tilt of 75◦ for each leg from the horizontal plane
is considered in order to be sufficiently far from singular configurations. It follows that a hypothesized
length for the legs is 210 mm, as shown in Figure 5a. In addition, the unit vectors li of the legs must be
as far as possible from being parallel, suggesting a staggered disposition of the linear guides at the base.
Their first attempt arrangement is shown in Figure 5b, with a distance of 300 mm between the external
guides in order to take into account their physical dimensions.
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Figure 5. Preliminary design: (a) side view, (b) top view.

The choice of a first guess value for the geometric parameters of the moving platform is due to
technical reasons: on the one hand, the maximization of the free surface where a load can be placed, and,
on the other hand, the need for enough space to realize a physical connection of the legs with the platform.
Their values are: ϕ0 = 10◦ and r0 = 75 mm, where the subscript 0 has the meaning of the initial value of
the optimization procedure.

As already mentioned, the home position of the sliders along the x-direction, corresponding to the
home configuration of the moving platform, is defined only after the optimization of the other geometric
parameters. In fact, the zero of each slider can be placed so that the actual home position falls in the center
of the available stroke of the sliders.

The objective function in (22) collects information from the robot about its whole required workspace
volume. However, as expected by virtue of the particular features of the Hexaglide along a specific
direction, the study of Φ is narrowed to a single cross-section of the workspace: without loss of generality
the condition x = 0 is chosen. This assumption is justified by the behavior of the manipulator that does not
depend on the translation in the x-direction, but only on the maximum dimension of the sliders and their
initial position. A range of ±25 mm and ±12.5 mm in the y- and z-directions, respectively, and rotations of
±5◦ about all Cartesian axes are considered (see Section 2).

The pre-sizing values of the optimization parameters, together with their assumed lower and upper
range limits, are shown in Table 1. Their values result from a preliminary analysis (a sort of Monte Carlo
method) of the objective function subject to discrete variations of the parameters in their admissible
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range. Values of the objective function above 0.7 allow a large number of combinations of parameters to
be excluded from the study. A further refinement around the most promising combinations allows the
choosing of the initial values gathered in Table 1, approximated to whole numbers, with a corresponding
Φ of about 0.51. Rotations greater than five degrees for θz in Table 1 are justified by the search of its home
configuration value, around which the required range of ±5◦ can be obtained with the best kinematic
performance. A similar approach is followed for the other design parameters.

Table 1. Initial values, lower and upper limits of the optimization parameters.

ϕ θz r L S1,y S3,y S4,y S6,y yh zh

[◦] [mm]
Init 10 0 75 210 10 100 −10 −100 0 70
Inf 5 −20 50 150 0 0 −60 −150 −100 50
Sup 15 20 100 250 60 150 0 0 100 200

The optimization procedure is repeated 10 times iteratively, each time providing the result obtained in
the previous step as starting point, in order to improve the local minimum point of the objective function.
This method is necessary because of the sensitivity of the problem to initial conditions.

5. Optimization Results

The geometrical parameters and the home position coordinates summarized in Table 1 are processed
by means of the Matlab Optimization Toolbox by MathWorks R©. A constrained minimization problem
is tackled in order to find the required optimal values according to the minimization of the function Φ
proposed in (22), with equal weights kω = kv = 0.5. Hard constraints are imposed on Equation (11), while
soft constraints are imposed on the variability of vector x, ensuring that Cartesian y and z translations
together with x and y rotations in their required ranges are satisfied. Another important soft constraint
ensures that none of the six legs exceeds the maximum tilt of 80◦, a less stringent condition with respect to
the one mentioned in the previous sections, in order to give more flexibility to the optimum search. Table 2
shows each calculation step progressively as rows increase. It is easy to verify that, after the first few steps,
the variability of parameters tends to decrease and results stabilize around some reference values, with
quite a small deviation. Finally, a Φ of about 0.48 is obtained, derived from a slow progressive increase at
each step of the optimization process.

Table 2. Optimized values of geometric parameters and home configuration.

ϕ θz r L S1,y S3,y S4,y S6,y yh zh Φ

Step [◦] [mm] –
0 10 0 75 210 10 100 −10 −100 0 70 0.512
1 9.99 −8.63 56.63 208.66 49.97 138.07 −3.28 −118.84 4.69 140.95 0.498
2 10.02 −9.41 59.90 239.33 57.48 135.60 −3.70 −116.95 46.54 146.15 0.497
3 10.12 −10.92 59.58 245.18 57.62 135.78 −3.65 −117.13 50.27 150.48 0.494
4 9.98 −11.68 57.82 249.86 59.89 148.93 −0.14 −118.10 50.83 155.30 0.493
5 10.05 −9.65 60.49 248.47 57.76 136.49 −3.72 −116.62 53.29 152.75 0.490
6 10.05 −9.92 57.80 249.97 59.97 149.72 −0.03 −118.08 50.92 155.44 0.490
7 9.98 −8.93 60.59 248.57 57.76 136.54 −3.72 −116.57 53.43 152.80 0.487
8 10.08 −9.88 58.13 249.32 59.49 145.60 −0.73 −117.93 50.99 154.60 0.486
9 10.04 −9.92 57.80 249.96 59.97 149.72 −0.03 −118.11 50.85 155.47 0.482

10 10.06 −10.24 61.14 248.53 57.79 136.80 −3.79 −116.27 54.00 152.58 0.478

Result 10 −10 60 250 60 140 0 −115 50 155 0.482



Robotics 2020, 9, 99 11 of 15

Resulting design values are highlighted in the last row of Table 2, where an approximation of figures
to average and more practical values is proposed, remembering that better conditions are associated
with smaller values of Φ. Some important information about the home configuration is already available
from the optimization procedure, for instance vector ph = [yh, zh, θz]T in (22) is now completely known.
However, the absolute position of the actuated carriages in the home configuration is only partially defined,
knowing their y and z components (see Figure 5, Table 2 with Si,z = 0 for i = 1, ..., 6). Their x components
can be obtained from the application of the inverse kinematics algorithm proposed in (12), where the
Cartesian pose of the moving platform is assigned: xh = 0, θx = θy = 0, together with the remaining
parameters in Table 2. A null value can be also assigned to the components of S0,i. Such choice allows the
absolute x position of the carriages to be found with respect to the fixed reference frame {0} when all the
linear guides at the platform base are perfectly side by side. Ultimately, the absolute coordinates of the Si
points, for i = 1, ..., 6, in the home configuration become:

S1 =

 0.2553
0.06

0

 ; S2 =

 0.1761
0.15

0

 ; S3 =

 −0.2182
0.14

0

 ;

S4 =

 −0.2384
0
0

 ; S5 =

 −0.1598
−0.15

0

 ; S6 =

 0.1850
−0.115

0

 ,

(24)

with values in meters. In (24) only the x coordinates result from a computation, and this justifies the figures
down to a tenth of a millimeter. In order to locate the points S0,i to their actual position and to maximize
the admissible travel in the x-direction, their zero position must be placed so that:

S0,i = Si −
qmax

2
si. (25)

6. Kinematic Performance

Once the optimal geometric dimensions are determined, a further step towards the definition of the
mechanical elements can be done by defining the linear modules at the fixed base. The Hercules Stages
HLS-M-185-DC-Arom1Vpp by Vacuum Fab Srl with a coreless DC motor, a linear optical scale with a
±50 nm resolution, a stroke of 185 mm, and an actuation force of 212 N are used. If an ultra-high vacuum
application is the target, RodRail eXtreme linear translation stages, produced by the same manufacturer,
with a stroke of 190 mm and a repeatability of 1 µm in a vacuum, can be used instead.

A map of the Cartesian positioning errors obtained by virtue of the nameplate data of the linear stages
is shown in Figure 6 on a vertical yz-plane (xh = 0), covering the manipulator workspace. The white dot
represents the Cartesian home configuration of the platform inside its workspace. A fixed orientation
is considered in all Cartesian positions, the same as the home configuration, namely θx = 0, θy = 0 and
θz = −10◦. The map in Figure 6 is coherent with the one of the determinants of the Jacobian matrix shown
in Figure 7, obtained by analyzing the expression in (19) inside the manipulator workspace. In fact, where
the value of the determinant is small, the manipulator in the relative Cartesian position is less prone to
errors due to uncertainties in the displacement of the linear modules.
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Figure 6. Map of the Cartesian positioning errors (fixed orientation: θx = 0, θy = 0, θz = −10◦).
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Figure 7. Map of the determinant of J (fixed orientation: θx = 0, θy = 0, θz = −10◦).

The maximum absolute value of positioning error obtained in the center of the workspace is about
0.6 µm. Such value is the worst possible considering every direction and any combination of errors for
the actuated carriages, but it significantly reduces according to the direction chosen, even by an order
of magnitude. If the first three rows of the Jacobian matrix are considered instead of the second three,
orientation errors can be investigated. Figure 8 shows a trend analogous to the other map, where an
error in the center of the workspace of about 3× 10−4 degrees can be read, related to the worst condition.
Other studies could be proposed taking into account a change of orientation of the moving platform with
a fixed Cartesian position, but results are quite similar to the ones already proposed and do not really add
more insight. Finally, a force polyhedron can be evaluated in static conditions to show if the manipulator
meets the requirement of a 1.5 kg payload. Figure 9 refers to the static performance in terms of Cartesian
forces in every direction when the manipulator is in its home configuration and no torques are provided at
the end effector. The maximum force magnitude is about 800 N, whereas the minimum is about 80 N, but
it is easy to verify that the highest performance is related to almost vertical directions, allowing the weight
of the mechanical parts of the manipulator to be borne as well as the required payload. Eventually, it can
be concluded that the obtained results almost entirely meet the specifications of Section 2.
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Figure 9. Static force performance in home configuration.

7. Conclusions

In this study we proposed a compact version of a Hexaglide parallel manipulator, commissioned by
an Italian company operating in the micro-positioning sector. The main feature of the manipulator is its
ability to exploit a Cartesian direction along which the entire mechanism can move without inner relative
motions, with the aim of serving a few stations arranged for different mechatronic tasks. All the steps
needed to functionally design a high-precision manipulator were addressed. The effect of commercial
linear modules on the Cartesian positioning errors of the manipulator were investigated. The resolution of
their sensors allows a high repeatability to be achieved along the sliding direction of the prismatic rails
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and high performance along the other directions, whose worst condition is still less than a micrometer for
translations and less than a thousandth of a degree for rotations. Tailored linear modules with a longer
stroke can be used to increase the workspace of the manipulator, while preserving the other kinetostatic
features. Finally, all key functional design information of the manipulator has been given to prototype a
compact Hexaglide.

An even more compact design can be obtained with a different leg tilt and similar stages with a
shorter stroke of 150 mm, as shown in Figure 10 for a prototype of another confidential version of the
Hexaglide by Vacuum Fab Srl. Figure 10 also shows the mechanical solution that can be used for the
twelve spherical joints, based on a magnetic principle with self-centering. Preliminary tests on such a
prototype have demonstrated a repeatability for linear and angular movements of about 0.2 µm and better
than 0.001◦, respectively.

Zero backlash 
magnetic ball
joints

HLS
linear
stages

Figure 10. Prototype of a more compact version of the Hexaglide manipulator with similar performance by
Vacuum Fab Srl.
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