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Abstract. We present an application of relation algebra to measure players’ ‘strength’ in a social
network with influence between players. In particular, we deal with power, success, and influence of
a player as measured by the Hoede-Bakker index, its generalization and modifications, and by the
influence indices. We also apply relation algebra to determine followers of a coalition and the kernel of
an influence function. This leads to specifications, which can be executed with the help of the BDD-
based tool RelView after a simple translation into the tool’s programming language. As an example
we consider the present Dutch parliament.
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follower, kernel

Corresponding author: Agnieszka Rusinowska

1 Introduction

In order to measure players’ (or agents’) ‘strength’ in a voting situation, a lot of power indices have
been proposed in the course of more than fifty years (see, for instance, [1, 12, 13, 14, 18, 26, 27, 28,
29, 35, 36, 46], see also [20, 31, 33, 48] for an extensive analysis of most of the power indices). In
the voting power literature, one may find theoretical analysis (which includes both the axiomatic
and probabilistic approaches to power indices) as well as applications of power indices (especially
to decision-making in the European Union and the national parliaments).

Coming from a different direction is an approach proposed in [25], where a social network
with players who are to make a ‘yes’-‘no’ decision is considered. In this framework, a decisional
power (the Hoede-Bakker) index has been introduced. The essential feature of this framework is
the distinction between the inclination of a player (to say ‘yes’ or ‘no’) and the final decision of the
player, which can be different from his initial inclination, due to influences of others in the network.
Such an influence is formally represented by an influence function. The Hoede-Bakker index has been
recently studied in [40, 41, 42, 43]. In [42] the authors introduce and investigate a generalization and
some modifications of the Hoede-Bakker index in a social network that coincide with some standard
power indices, like the Penrose measure (also called the absolute or non-normalized Banzhaf index),
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the Coleman indices, and the König-Bräuninger index. Moreover, ‘Success’, ‘Luck’, ‘Failure’ and
‘Decisiveness’ of a player in a social network with influence between players were defined (for
an analysis of success and decisiveness of a player in voting situations, see e.g. [30]). As shown
in [40, 42], the generalized Hoede-Bakker index measures a kind of ’net Success’, i.e., ‘Success -
Failure’, but if all inclination vectors are equally probable, this index coincides with the measure
of ‘Decisiveness’.

Although the Hoede-Bakker index has been defined in the framework of influence, in fact it
does not measure the influence between players. Influence indices, influence functions, and some
other concepts related to influence (like the concepts of follower of a coalition, and of kernel of an
influence function) have been investigated in [21, 22, 23, 24].

Since more than two decades, relation algebra is used successfully for formal problem specifi-
cation, prototyping, and algorithm development, see e.g., [11, 47, 49]. Relations are well suited for
modeling and reasoning about many discrete structures (like graphs, games, Petri nets, orders and
lattices) and, due to the easy and/or efficient mechanization using, for instance, Boolean matrices,
successor lists or binary decision diagrams (BDDs), also for computations on them. RelView (see
[4, 2, 9]) is a BDD-based tool for the visualization and manipulation of relations and for prototyping
and relational programming. In [7, 8, 45] relation algebra and RelView have been successfully ap-
plied to compute the set of all feasible stable governments in a coalition formation model introduced
in [44]. In the present paper we like to apply the same approach, but now to calculate measures
of parties’ ‘strength’ in a social network. Determining such measures can become quite complex
and requires a lot of computations. Hence, using a computer program to calculate the measures
is extremely useful for real life applications of the concepts in question. To be more precise, the
aim of this paper is to apply relation algebra and RelView to compute the Hoede-Bakker index,
its modifications, and the influence indices, and to determine the followers of a coalition and the
kernel of an influence function.

The structure of the paper is the following. Section 2 introduces the framework of influence
and measures of players’ strength in a social network. In Section 3 we present the facts on relation
algebra that are necessary to deliver the relation-algebraic specifications and algorithms of the key
concepts of Section 2. In this section we also briefly describe the RelView tool. How to translate
the concepts of Section 2 into relation-algebraic specifications and RelView-code is demonstrated
in Section 4. In order to illustrate the usefulness of the approach applied in this paper, we present
in Section 5 an example based on the real structure of the present Dutch Parliament. Doing so,
we also refer to the concepts of dominant and central players. Finally, we present some concluding
remarks in Section 6.

2 Measures of Players’ ‘Strength’ in a Social Network

The framework studied in the paper is the following. We consider a social network with the set
of all players (voters) denoted by P := {1, ..., n}. The players make a certain acceptance-rejection
decision. Each player has an inclination either to say ‘yes’ (denoted by 1) or ‘no’ (denoted by 0). A
Boolean inclination vector, denoted by i = (i1, ..., in), indicates the inclinations of all players. All
inclination vectors are assumed to be equally probable. Let I := {0, 1}n be the set of all inclination
vectors. It is assumed that players may influence each other, and due to the influences in the
network, the final decision of a player may be different from his original inclination. In other words,
each inclination vector i ∈ I is transformed into a decision vector Bi, where B : I → I with i 7→ Bi
is the influence function, and the decision vector Bi = ((Bi)1, ..., (Bi)n) indicates the final decisions
made by all players. The set of all influence functions will be denoted by B. Let B(I) be the set of
all decision vectors under B. Furthermore, we assume a group decision function gd : B(I) → {0, 1},
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having the value 1 if the group decision is ‘yes’, and the value 0 if the group decision is ‘no’. The
set of all group decision functions will be denoted by G.

2.1 The Hoede-Bakker index and its modifications

In this section we recapitulate the original Hoede-Bakker index as introduced in [25], and its gen-
eralization and modifications given in [42]. First, we introduce some notations. Given an influence
function B ∈ B and a group decision function gd ∈ G, we define the two subsets I+(B, gd) and
I−(B, gd) of the set I of all inclination vectors as follows:

I+(B, gd) := {i ∈ I | gd(Bi) = 1}

I−(B, gd) := {i ∈ I | gd(Bi) = 0}

I+(B, gd) (respectively I−(B, gd)) is the set of inclination vectors leading to the group decision
‘yes’ (respectively ‘no’). Depending on the functions B and gd, we now introduce for each player
k ∈ P four decisive sets by the following definitions:

I++
k (B, gd) := {i ∈ I | ik = 1 ∧ gd(Bi) = 1}

I+−
k (B, gd) := {i ∈ I | ik = 1 ∧ gd(Bi) = 0}

I−+
k (B, gd) := {i ∈ I | ik = 0 ∧ gd(Bi) = 1}

I−−
k (B, gd) := {i ∈ I | ik = 0 ∧ gd(Bi) = 0}

I++
k (B, gd) is the set of inclination vectors with inclination ‘yes’ of player k that lead to the group

decision ‘yes’, I+−
k (B, gd) is the set of inclination vectors with inclination ‘yes’ of player k that

lead to the group decision ‘no’, I−+
k (B, gd) is the set of inclination vectors with inclination ‘no’ of

player k that lead to the group decision ‘yes’, and I−−
k (B, gd) is the set of inclination vectors with

inclination ‘no’ of player k that lead to the group decision ‘no’. When clear from the context, we will
skip ‘(B, gd)’ in the expressions above; so, for instance, we may write I+−

k instead of I+−
k (B, gd).

In order to measure the strength of the players in a voting situation of a social network, where the
inclination of a player may be different from its final decision due to influences from other players,
the subsequent definition has been introduced in [25] (note, that n is the number of players):

Definition 2.1.1 Given B ∈ B and gd ∈ G, the decisional power (the Hoede-Bakker index) of a
player k ∈ P is defined as follows:

HBk(B, gd) :=
|I++

k | − |I+−
k |

2n−1
(1)

The definition of the original Hoede-Bakker index assumes for the used influence function B ∈ B
the following axiom to be satisfied:

∀ i ∈ I : gd(B( i )) = ¬gd(Bi)

In this formula, the Boolean vector i is the complement of the inclination vector i and is obtained
from i by component-wise negation, i.e., by interchanging all 1’s with 0’s, and ¬gd(Bi) is the
negation of the Boolean value gd(Bi). According to this axiom, changing all inclinations leads to a
change of the group decision. Hence, given player k ∈ P , when calculating the value of HBk(B, gd),
only inclination vectors with positive inclination of k may be considered.

Since the definition of the decisional power under the assumption of the above axiom is quite
restrictive (for instance, a game with a veto player cannot be analyzed with this condition), in [42]
a generalization of the Hoede-Bakker index (1) has been proposed, in which all inclination vectors
are taken into account. In the following definition, n denotes again the number of players in the
social network.
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Definition 2.1.2 Given B ∈ B and gd ∈ G, the generalized Hoede-Bakker index of a player k ∈ P
is defined as follows:

GHBk(B, gd) :=
|I++

k | − |I−+
k | + |I−−

k | − |I+−
k |

2n
(2)

The value of GHBk(B, gd) measures a kind of ‘net’ Success, i.e., Success − Failure, where by a
successful player, given i ∈ I, B ∈ B and gd ∈ G, we mean a player k ∈ P whose inclination
ik coincides with the group decision gd(Bi). In [42] we show that if all inclination vectors are
equally probable, then the generalized Hoede-Bakker index coincides with the Penrose measure
(the absolute Banzhaf index), i.e., it measures ‘Decisiveness’. A decisive player is a player who is
successful and changing his inclination causes a change of the group decision. In [42] we define for
n players also several modifications of the generalized Hoede-Bakker index that coincide with other
standard power indices.

Definition 2.1.3 Given B ∈ B and gd ∈ G, for each player k ∈ P we define modifications of the
generalized Hoede-Bakker index as follows:

M1GHBk(B, gd) :=
|I++

k | − |I−+
k |

|I+|
(3)

M2GHBk(B, gd) :=
|I−−

k | − |I+−
k |

|I−|
(4)

M3GHBk(B, gd) :=
|I++

k | + |I−−
k |

2n
(5)

M4GHBk(B, gd) :=
|I++

k |

|I+|
(6)

Furthermore, we define independently of k:

MGHB(B, gd) :=
|I+|

2n
(7)

It has been proved that the modifications M1GHB, M2GHB, M3GHB and M4GHB, coincide with
the Coleman’s index ‘to prevent action’, Coleman’s index ‘to initiate action’, the Rae index, and
the König-Bräuninger index, respectively. MGHB coincides with Coleman’s ‘power of a collectivity
to act’. Note that the modification M3GHB (the Rae index) measures Success of a player in such
a social network.

2.2 The influence indices and followers

In [23] some concepts to measure influence between players in the presented framework have been
introduced. Before formalizing these concepts, we introduce several notations for convenience. We
omit braces for sets, e.g., {k, m}, P \ {j}, S ∪ {j} will be written as km, P \ j, S ∪ j, respectively.
We also introduce for any S ⊆ P such that |S| ≥ 2 the set IS of all inclination vectors under which
all members of S have the same inclination, i.e.,

IS := {i ∈ I | ∀ k, j ∈ S : ik = ij}

and define Ik := I for all k ∈ P . For all inclination vectors i ∈ IS we denote by iS the value ik
for some player k ∈ S. Due to the definition of the set IS , the Boolean value iS ∈ {0, 1} does not
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depend on the choice of k. Based on these notions, let for each subset S ⊆ P of players (that is
regarded as a coalition) and each player j ∈ P the following sets be introduced:

IS→j := {i ∈ IS | ij = ¬iS}

I∗S→j(B) := {i ∈ IS→j | (Bi)j = iS}

In words, IS→j and I∗S→j(B) denote the set of all inclination vectors of potential influence of coalition
S on player j, and the set of all inclination vectors of influence of S on j under the given influence
function B ∈ B, respectively.

In [23] the so-called influence indices have been defined. The general idea is to compute the
weighted number of times coalition S makes a player j ∈ P change his decision. Two particular ways
of weighting lead to the possibility influence index d(B, S → j) and to the certainty influence index
d(B, S → j). The possibility index d(B, S → j) measures the degree of influence, coalition S has on
player j, taking into account any possibility of influence. We check therefore how many inclination
vectors of potential influence of coalition S on player j are indeed vectors of influence of S on j.
We do not verify here the inclinations of the players outside S ∪ j. Switching to another extreme
way of calculating the influence degree gives us the definition of d(B, S → j), which measures the
degree of influence, coalition S has on player j, in another way. We take now into account only
those situations in which all players outside S ∪ j have an inclination different from the inclination
of S. Formal definitions of these influence indices are given below.

Definition 2.2.1 Given B ∈ B, for each coalition S ⊆ P of players and each player j ∈ P \S, the
possibility influence index of coalition S on player j is defined as follows:

d(B, S → j) :=
|I∗S→j(B)|

|IS→j |
(8)

Furthermore, by the subsequent equation the certainty influence index of coalition S on player j is
defined:

d(B, S → j) :=
|{i ∈ I∗S→j(B) | ∀ k /∈ S : ik = ¬iS}|

2
(9)

A natural concept related to influence between players is the concept of follower. By a follower of
a given coalition of players we mean a voter who always decides according to the inclination of the
coalition in question. The next definition formally introduces the set of all followers.

Definition 2.2.2 Let ∅ 6= S ⊆ P be a coalition of players and B ∈ B. Then the set of followers of
S under the influence function B is defined as follows:

FB(S) := {j ∈ P | ∀ i ∈ IS : (Bi)j = iS} (10)

Furthermore, it is worth mentioning the concept of a kernel of an influence function B. The kernel
of B is the following collection of sets:

K(B) := {S ∈ 2P | FB(S) 6= ∅ ∧ ∀S′ ∈ 2S \ S : FB(S′) = ∅} (11)

Hence, the kernel of an influence function is the set of the ‘true’ (minimal) influential coalitions.



6 Rudolf Berghammer, Agnieszka Rusinowska and Harrie de Swart

2.3 Majority and influence by trend-setters

In the preceding two subsections we have defined the different indices and notions dealing with
coalitions, influence and followers with respect to an arbitrary influence function B ∈ B and an
arbitrary group decision function gd ∈ G. In practice, however, only a very small number of such
functions is used.

Group decisions almost always are based on majority. This means that for each inclination
vector i ∈ I and each influence function B ∈ B, the output of gd : B(I) → {0, 1} for the decision
vector Bi as input is 1 if the size of the set {j ∈ P | (Bi)j = 1} is at least [n

2 ]+1, where [x] denotes
the least natural number greater than or equal to x. In the remaining cases, gd(Bi) yields 0 as
result. Instead of this so-called simple majority, in specific cases also other majority rules are used,
e.g., 2

3 -majority or even 3
4 -majority.

Influences in a social network essentially are based on dependency relationships, which ade-
quately can be modeled by a dependency graph. The vertices of such a directed loop-free graph are
the players. For different players j, k ∈ P there is an arc from j to k iff j is a so-called trend-setter
for k, that is, the vote of k may be influenced by the inclination of j. Then k is called a depen-
dent player. Players without trend-setters (in terms of graph theory: the sources) are said to be
independent.

Example 2.3.1. To give a concrete example, the following picture (generated with the help of
RelView) shows the dependency graph of a social network with a set P of six players 1, 2, 3, 4, 5
and 6, where the vertex with label ‘k’ corresponds to player k, 1 ≤ k ≤ 6. Since in Sections 3 and
4 we will use this social network as running example to illustrate the developed relation-algebraic
specifications, in the dependency graph also a coalition S consisting of the three players 2, 3, 5 is
indicated by black vertices.

As one can see from the directed arcs of the graph, the independent players are 1, 5 and 6 (no
ingoing arcs), and the dependent players are 2, 3 and 4. The vote of player 2 depends on its three
trendsetters (graph-theoretic predecessors) 1, 5 and 6, the vote of player 3 depends on its unique
trend-setter 2, and the vote of player 4 depends on its two trend-setters 2 and 5.

Now, assume i ∈ I to be an inclination vector and we want to define the decision vector Bi in
terms of the dependency graph. Of course, for an independent player k ∈ P we are allowed to define
(Bi)k := ik, i.e., to presume that he does not change his vote. On the other hand, a dependent
player k ∈ P will always follow his sole trend-setter j ∈ P if there is exactly one. In this case,
hence, we put (Bi)k := ij . It is reasonable to generalize this in such a way that a dependent player
always follows his trend-setters if they have the same inclination. However, a problem appears if
there are at least two trend-setters player k ∈ P depends on, and they have different inclinations.
Which trend-setter should the dependent player k follow? There are several possibilities to define
the influence function in such a case. Usually two possibilities are considered:

- Following only unanimous trend-setters: Here the vote of player k is equal to the inclination of
his trend-setters if they all have the same inclination. Otherwise, player k votes according to
his own inclination.
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- Following a majority of trend-setters: Here k votes as the inclination of the majority of his
trend-setters is. Assuming that player k has t trend-setters, this means that if there are at
least [ t

2 ] + 1 trend-setters of k with the same inclination, k votes according to this inclination.
Otherwise, k follows his own inclination.

As in the case of group decisions, also in the second specification of the influence function via trend-
setters, simple majority may be replaced by other majority rules. In the remainder of this paper,
however, we restrict our analysis to simple majority in the case of the influence rule ‘following a
majority of trend-setters’.

3 Relation Algebra and Modeling of Inclination Vectors

In the first part of this section we present the facts on relation algebra that are necessary to deal
with the relation-algebraic specifications and algorithms of the key concepts of Section 2. For more
details on relations and relation algebra, see e.g., [47] or [11]. Next we model inclination vectors
and sets of inclination vectors within relation algebra. In the last part of this section we briefly
describe the RelView tool.

3.1 Relational preliminaries

If X and Y are sets, then a subset R of the Cartesian product X × Y is called a (binary) relation
with domain X and range Y . We denote the set (in this context also called type) of all relations
with domain X and range Y by [X ↔Y ] and write R : X ↔Y instead of R ∈ [X ↔Y ]. If X
and Y are finite sets of size m and n respectively, then we may consider a relation R : X ↔Y
as a Boolean matrix with m rows and n columns and entries from {0, 1}. The Boolean matrix
interpretation of relations is well suited for many purposes. For instance, it is used as one of the
graphical representations of relations within the RelView tool, and it is in line with the Boolean
vector approach of Section 2. Therefore, in this paper we often use Boolean matrix terminology
and notation. In particular, we speak about columns, rows and entries of a relation and write Rx,y

instead of 〈x, y〉 ∈ R or x R y.

We assume the reader to be familiar with the basic operations on relations, viz. RT (transposi-
tion, conversion), R (complement, negation), R ∪ S (union, join), R ∩ S (intersection, meet), RS
(composition, multiplication), and the special relations O (empty relation), L (universal relation),
and I (identity relation). If R is included in S we write R ⊆ S, and equality of R and S is denoted
as R = S.

The expression syq(R, S) := RT S ∩ R
T
S is by definition the symmetric quotient syq(R, S) :

Y ↔Z of two relations R : X ↔Y and S : X ↔Z. Many properties of this construct can be found,
for example, in [47]. In the present paper, we will only use that for all y ∈ Y and z ∈ Z the
relationship syq(R, S)y,z holds iff for all x ∈ X the equivalence Rx,y ↔ Sx,z is valid, i.e., if the
y-column of R and the z-column of S coincide.

Given a Cartesian product X × Y of two sets X and Y , there are two projection functions
which decompose a pair u = (u1, u2) into its first component u1 and its second component u2. For
a relation-algebraic approach it is useful to consider instead of these functions the corresponding
projection relations π : X×Y ↔X and ρ : X×Y ↔Y such that for all pairs u ∈ X × Y and
elements x ∈ X and y ∈ Y we have πu,x iff u1 = x and ρu,y iff u2 = y. Projection relations enable
us to describe the well-known pairing operation of functional programming relation-algebraically as
follows: For relations R : Z ↔X and S : Z ↔Y we define their pairing (frequently also called fork or
tupling) [R, S] : Z ↔X×Y by [R, S] := RπT∩SρT. Then for all z ∈ Z and pairs u = (u1, u2) ∈ X×Y
a simple reflection shows that [R, S]z,u iff Rz,u1

and Sz,u2
.
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3.2 Modeling inclination vectors and sets of inclination vectors

Relation algebra offers some simple and elegant ways to describe subsets of a given set. For modeling
influence vectors, decision vectors, and sets of followers, we will use column vectors. Following [47],
these are relations v (analogously to linear algebra we use lower-case letters to denote vectors) with
v = vL. As for a column vector the range is irrelevant, we consider in the following only vectors
v : X ↔1 with a specific singleton set 1 := {⊥} as range. A column vector v : X ↔1 can be
considered as a Boolean matrix with exactly one column, i.e., as a Boolean column vector, and it
describes (or: is a description of) the subset {x ∈ X | vx,⊥} of its domain X. A non-empty column
vector v is a column point if vvT ⊆ I, i.e., it is injective in the relational sense. This means that it
represents a singleton subset of its domain or an element from it, if we identify a singleton set {x}
with the element x. In the Boolean matrix model, hence, a column point v : X ↔1 is a Boolean
column vector in which exactly one entry is 1.

Vectors also allow to formalize the notions of y-columns and x-rows. E.g., for a relation R :
X ↔Y and y ∈ Y , the column vector v : X ↔1 equals the y-column of R if for all x ∈ X we have
vx,⊥ iff Rx,y.

For modeling kernels and subsets of the sets I and B(I), where the influence function B is given
by one of the rules ‘following only unanimous trend-setters’ and ‘following a majority of trend-
setters’ of Subsection 2.3, we will use row vectors. These relations are defined as the transposes of
column vectors. Again we only will need row vectors v of the specific type [1↔Y ] that correspond
to Boolean row vectors. Then v describes the subset {y ∈ Y | v⊥,y} of its range Y . The distinction
between column vectors and row vectors is not essential. In the context of this paper, however, it
is very helpful for the visualization of results of relational computations. This, hopefully, becomes
clear by the subsequent continuation of our running example.

Example 3.2.1. In Example 2.3.1 we have introduced a social network with a set P of six players
1, 2, 3, 4, 5 and 6. The following picture shows the membership relation1 M : P ↔ 2P between P and
its powerset 2P as 6 × 64 Boolean RelView-matrix, where a black square means a 1-entry (i.e.,
the relationship holds) and a white square means a 0-entry (i.e., the relationship does not hold).

If we consider inclination vectors as relational column vectors, then this membership relation
column-wisely enumerates the set I of all inclination vectors, since its 64 columns exactly cor-
respond to the 64 possible inclination vectors of the six players, and these again exactly correspond
to the 64 possible subsets of the set of players. For instance, the first column corresponds to the
inclination vector where each player has the inclination ‘no’, and the fourth column corresponds
to the inclination vector where the players 5 and 6 have the inclination ‘yes’ and the remaining
players have the inclination ‘no’.

In the same way, we can obtain a 6 × 64 Boolean RelView-matrix showing decisions of the
players, where the X-column corresponds to the decision vector obtained from the X-column of M

representing the inclination vector. Suppose, for instance, that all players are independent, that is,
that we deal with the identity function, Bi = i for each i ∈ I.

The next RelView-picture shows a row vector m : 1↔ 2P with 64 columns that describes a
subset of the powerset 2P , i.e., a subset of the set I if we identify X ∈ 2P with the inclination
vector i ∈ I where exactly the players of X vote ‘yes’.

1 A membership relation M : X ↔ 2X relates x ∈ X and Y ∈ 2X iff x ∈ Y . It should be emphasized that binary
decision diagrams allow a very efficient implementation of M that uses in the worst case 3|X| + 1 BDD-vertices
only. This implementation is part of RelView; see [5].



Applying Relation Algebra and RelView to Measures in a Social Network 9

This row vector describes the set of the inclination vectors where the majority of the players votes
‘yes’. This becomes clear if we compare the columns of both RelView-pictures. Doing so, we obtain
that for all X ∈ 2P the relationship m⊥,X holds iff the number of 1-entries in the X-column of M

is strictly larger than the number of 0-entries in the X-column of M.

Besides column vectors, row vectors and membership relations, injective (embedding) mappings
are another way of modeling sets. Given a relation ı : Z ↔X, that is, an injective mapping in
the relational sense of [47], Z may be regarded as a subset of X by identifying it with its image
under ı. Then the column vector ıTL : X ↔1 describes Z in the above sense. By removing all pairs
(x, x) with x /∈ Z from the identity relation I : X ↔X, the transition in the other direction is also
possible, that is, the construction of a relation inj (v) : Z ↔X from a given column vector v : X ↔1

describing Z in such a way that inj (v)z.x holds iff z = x for all z ∈ Z and x ∈ X. Such a relation
is called the injective embedding generated by v and is also used in our applications. Namely, if
the row vector v : 1↔ 2P describes a subset S of 2P in the sense above, and M : P ↔ 2P is the

membership relation, then for all x ∈ X and Y ∈ S we get the equivalence of (M inj (vT)
T
)x,Y and

x ∈ Y . This means that the elements of S are described precisely by the columns of the relation

M inj (vT)
T

: X ↔S.

3.3 The Kiel RelView tool

Relation algebra has a fixed and surprisingly small set of constants and operations which (in the
case of finite carrier sets) can be implemented very efficiently. Since 1993, at Kiel University we have
developed a computer system for the visualization and manipulation of relations and for relational
prototyping and programming, called RelView. The tool is written in the C programming language
and makes full use of the X-windows graphical user interface. Details and applications can be found,
for instance, in [4, 2, 9].

RelView is an interactive and graphic-oriented tool. In it all data are represented as rela-
tions which the system visualizes in two different ways. First, for relations, for which domain and
range coincide, it offers a representation as directed graphs as already shown in Example 2.3.1.
This includes sophisticated algorithms for drawing graphs nicely. Alternatively, as already shown
in Example 3.2.1, arbitrary relations may be depicted as Boolean matrices (with, if desired, row
and column labels for explanatory purposes). This second representation is very useful for visually
editing and also for discovering various structural properties that are not evident from a represen-
tation of relations as directed graphs. Because RelView computations frequently use very large
relations, for instance, membership relations, the system uses a very efficient implementation of
relations via reduced ordered binary decision diagrams. See [5] for its description.

The RelView tool can manage as many relations simultaneously as memory allows and the
user can manipulate and analyse them by pre-defined operations, tests and user-defined relational
functions and relational programs. The pre-defined operations on relations include, for instance, ^,
-, &, |, and * for transposition, complement, intersection, union, and composition; the relational
tests include, for instance, incl, eq, and empty for testing inclusion, equality, and emptiness of
relations. All that can be accessed through a lot of command buttons and simple mouse-clicks. But
the usual way is to use the pre-defined operations and tests to construct relational functions and
relational programs and next to evaluate the relation-algebraic expressions that are built from the
relations of RelView’s workspace using the tool’s programming language.

Relational functions are defined as it is customary in mathematics, i.e., by a function name, a
list of parameters and a relation-algebraic expression. A relational program is much like a function
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procedure in the programming languages Pascal or Modula 2, except that it only uses relations as
data type. It starts with a head line containing the program name and the formal parameters. Then
the declaration of the local relational domains, functions, and variables follows. Domain declarations
can be used to introduce projection relations and pairings of relations in the case of Cartesian
products, and injection relations and sums of relations in the case of disjoint unions, respectively.
The third part of a program is the body, a while-program over relations. As a program computes a
value, finally, its last part consists of a return-clause, which is a relation-algebraic expression whose
value after the execution of the body is the result. The following example of a RelView-program
Classes (formally developed in [3]) computes for an equivalence relation R : X ↔X with a set C
of equivalence classes the canonical epimorphism from X to C as a relation Φ : X ↔C.

Classes(R)

DECL Phi, v, p

BEG Phi = R*point(Ln1(R));

v = -Phi;

WHILE -empty(v) DO

p = point(v);

Phi = (Phi^ + (R*p)^)^;

v = v & -(R*p) OD

RETURN Phi

END.

Since Φ is the relational version of the canonical epimorphism, we have for all x ∈ X and C ∈ C
that Φx,C iff x belongs to C. Hence, if we consider the columns of the result of the RelView-
program Classes as single vectors, then these vectors are pair-wise disjoint and precisely describe
the elements of the set C in the sense explained above.

4 Relation-algebraic Description of Measures in a Social Network

In this section we show how the concepts introduced in Section 2 can be transformed into relation-
algebraic specifications that immediately lead to RelView-code. This allows to compute power
indices, influence indices, sets of followers and kernels by means of the tool. We demonstrate this
by depicting some of the RelView-matrices and -vectors that we have obtained for our running
example.

4.1 Computing decision vectors and group decisions

We assume a social network with a set P of players. Let D : P ↔P be the relation of the dependency
graph of the network. The latter property means that there is an arc from a player j ∈ P to a
player k ∈ P iff Dj,k holds. Then the set of the dependent players relation-algebraically is described
by the column vector

depend(D) := DT
L (12)

of type [P ↔1], where the used L has type [P ↔1], too.
In Subsection 3.2 we have shown that the set I of all inclination vectors immediately can be

modeled by the columns of the membership relation M : P ↔ 2P . Due to this fact, in the remainder
of this section we regard inclination vectors and the corresponding decision vectors as relational
column vectors i : P ↔1 and Bi : P ↔1, respectively. Our first goal is to develop a column-wise
enumeration of the set B(I) of decision vectors with relation-algebraic means, where the influence
function B is given by the rule ‘following only unambiguous trend-setters’. As a preparatory step,
we treat the transformation from i to Bi for a single inclination vector i within relation algebra.
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Theorem 4.1.1 For each inclination vector i : P ↔1, the decision vector Bi : P ↔1 under the
influence rule ‘following only unambiguous trend-setters’ is given by

Bi = (i ∩ ( d ∪ (d ∩ DTi ∩ DT i ))) ∪ (d ∩ DT i ),

where d := depend(D).

Proof Let k ∈ P be an arbitrary player. Using the description (12) of the dependent players
and d as abbreviation for depend(D), a formalization of the assumed rule leads to the following
specification of (Bi)k,⊥:

(Bi)k,⊥ =











ik,⊥ : d k,⊥ ∨ (dk,⊥ ∧ ∃ j ∈ P : Dj,k ∧ ij,⊥ ∧ ∃ j ∈ P : Dj,k ∧ i j,⊥)

1 : dk,⊥ ∧ ∀ j ∈ P : Dj,k → ij,⊥

0 : dk,⊥ ∧ ∀ j ∈ P : Dj,k → i j,⊥

If we replace logical constructions by their corresponding relational counter-parts, we obtain the
subsequent equivalent specification:

(Bi)k,⊥ =











ik,⊥ : ( d ∪ (d ∩ DTi ∩ DT i ))k,⊥

Lk,⊥ : (d ∩ DT i )k,⊥

Ok,⊥ : (d ∩ DTi )k,⊥

Next, we transform the case distinction in the usual way with the help of disjunctions and conjunc-
tions into a logical formula, viz.:

(ik,⊥ ∧ ( d ∪ (d ∩ DTi ∩ DT i ))k,⊥) ∨ (Lk,⊥ ∧ (d ∩ DT i )k,⊥) ∨ (Ok,⊥ ∧ (d ∩ DTi )k,⊥)

Since the relationship Lk,⊥ is true and the relationship Ok,⊥ is false, this formula is equivalent to
the following one:

(ik,⊥ ∧ ( d ∪ (d ∩ DTi ∩ DT i ))k,⊥) ∨ ((d ∩ DT i )k,⊥)

Now, we again replace in this formula logical constructions by their corresponding relational
counter-parts. This yields:

((i ∩ ( d ∪ (d ∩ DTi ∩ DT i ))) ∪ (d ∩ DT i ))k,⊥

If we use this formula as the right-hand side of the original specification, the definition of relational
equality shows the claim. �

The relation-algebraic expression (i∩( d ∪(d∩DTi∩DT i )))∪(d∩ DT i ) is built from i using unions,
intersections, complements and left-compositions with constants (i.e., with relation-algebraic ex-
pressions free of i) only. Hence (see, for example, [6]), if we replace in it the column vector i : P ↔1

by the membership relation M : P ↔ 2P that column-wisely enumerates all inclination vectors and
adopt simultaneously the type [P ↔1] of d to the type [P ↔ 2P ] of M by a right-composition with
the universal row vector L : 1↔ 2P , we get (with d := depend(D)) the relation

Dvec(D) := (M ∩ ( dL ∪ (dL ∩ DT
M ∩ DT

M ))) ∪ (dL ∩ DT M ) (13)

of type [P ↔ 2P ] that column-wisely enumerates the set B(I) of decision vectors. The latter property
means: For all X ∈ 2P , if the X-column of M equals i : P ↔1 then, under the assumed rule, the
X-column of Dvec(D) equals Bi : P ↔1.
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Having obtained a relation-algebraic specification for the column-wise enumeration of the de-
cision vectors, our next goal is to obtain with the help of (13) a relation-algebraic specification of
the group decisions under majority as decision rule via a row vector. To reach the goal, we assume
that a row vector m : 1↔ 2P is available such that for all X ∈ 2P we have m⊥,X iff |X| ≥ [ |P |

2 ] + 1.
In RelView such a vector can be easily obtained with the help of the base operation cardfilter2 as

m := cardfilter(L, w)
T

, (14)

where the first argument L : 2P ↔1 describes the entire powerset 2P , and the second argument
w : W ↔1 determines the threshold for majority by its length, i.e., fulfils |W | = [ |P |

2 ] + 1. Based
on (14), we can specify the desired row vector as shown now.

Theorem 4.1.2 Let, based on the specifications (13) and (14), the row vector gdv(D) of type
[1↔ 2P ] be defined by

gdv(D) := m syq(M,Dvec(D)),

where M : P ↔ 2P is the membership relation. Then we have for all X ∈ 2P : If the decision vector
Bi : P ↔1 equals the X-column of Dvec(D), then gdv(D)⊥,X holds iff the number of 1-entries in

Bi is at least [ |P |
2 ] + 1.

Proof We calculate as given below, where the assumption that the X-column of Dvec(D) equals
Bi is used in the last step, and the inclination vector i(Y ) introduced in this step coincides with
the Y -column of M.

gdv(D)⊥,X ⇐⇒ (m syq(M,Dvec(D)))⊥,X

⇐⇒ ∃Y ∈ 2P : m⊥,Y ∧ syq(M,Dvec(D))Y,X

⇐⇒ ∃Y ∈ 2P : m⊥,Y ∧ (∀ k ∈ P : Mk,Y ↔ Dvec(D)k,X)

⇐⇒ ∃Y ∈ 2P : |Y | ≥ [ |P |
2 ] + 1 ∧ (∀ k ∈ P : Mk,Y ↔ Dvec(D)k,X)

⇐⇒ ∃Y ∈ 2P : |Y | ≥ [ |P |
2 ] + 1 ∧ i(Y ) = Bi

Now the claim follows from the simple fact that the number of 1-entries in the column vector i(Y )

equals |Y |. �

Summing up, we have for the influence function B defined by the rule ‘following only unambiguous
trend-setters’ and for the group decision function gd defined by simple majority: If the inclination
vector i : P ↔1 is given by the X-column of the membership relation M : P ↔ 2P , then the
corresponding decision vector Bi : P ↔1 is given by the X-column of the relation Dvec(D) : P ↔ 2P

and, furthermore, gd(Bi) = 1 iff gdv(D)⊥,X holds.

Example 4.1.1. We have transformed the above relation-algebraic specifications into RelView-
code. To give examples how such programs look like, we present in the following the code for both
specifications. In the following RelView-programs Dvec and gdv the calls epsi(O(D)) of the pre-
defined operation epsi compute the membership relation M : P ↔ 2P , and the calls L1n(M) of the

2 If v : 2M ↔1 represents the subset S of 2M and the size of the domain of w : W ↔1 is at most |M |+1, then for all
X ∈ 2M we have cardfilter(v, w)X,⊥ iff X ∈ S and |X| < |W |. Hence, the complement of cardfilter(L, w) represents
the subset of 2M whose elements have at least size |W |.
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pre-defined operation L1n yield the row vector L : 1↔ 2P .3

Dvec(D)

DECL M, d

BEG M = epsi(O(D));

d = D^*L1n(M)

RETURN (M & (-d | (d & D^*M & D^*-M))) | (d & -(D^*-M))

END.

gdv(D,w)

DECL M, m

BEG M = epsi(O(D));

m = -cardfilter(L1n(M)^,w)^

RETURN m*syq(M,Dvec(D))

END.

Applied to the relation D of our running example and a column vector w of length 4 (the
threshold of majority) in the case of the second program, we obtained by their means the following
results for Dvec(D) and gdv(D). The 64 columns of the 6 × 64 RelView-matrix represent the 64
decision vectors obtained from the 64 inclination vectors, and the entries of the 1 × 64 row vector
below this matrix indicate the group decision for each decision vector.

Let us explain these results by the specific inclination vectors treated in Example 3.2.1. For the first
column of the membership relation M of Example 3.2.1, where each player votes ‘no’, we obtain ‘no’
also as decision of each player as well as of the entire group. The same is the case if the inclination
of the players 5 and 6 is ‘yes’ and that of the remaining players is ‘no’; cf. the fourth columns of
M, Dvec(D) and gdv(D).

We also have developed a RelView-program that computes the column-wise enumeration of the
decision vectors under ‘following a majority of the trend-setters’ as the influence rule by handling
one after another the columns of the membership relation via a loop. If we use this program in
the case of our running example, we obtain the following RelView-matrix and row vector for the
decision vectors and the group decisions, respectively.

In contrast with the influence rule ‘following only unambiguous trend-setters’, now the inclinations
‘yes’ of the players 5 and 6 and ‘no’ of the remaining players yield a decision, where player 2 changes

3 We need n and 1 in the pre-defined RelView-operations for typing. If R : X ↔Y is a relation, then L(R) yields the
universal relation L of type [X ↔Y ], Ln1(R) yields the universal column vector L of type [X ↔1], and L1n(R) yields
the universal row vector L of type [1↔Y ]. Hence, in the RelView-programs L1n(M) is the universal row vector
of type [1↔ 2P ] and so its transposition the universal column vector of type [2P ↔1]. The RelView-operation
cardfilter works on column-vectors; that is the only reason for the transposition here.
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his opinion from ‘no’ to ‘yes’, because of the ‘yes’-vote of the majority of the trend-setters player 2
depends on. In spite of this change, the group’s decision remains ‘no’.

An example where the different influence rules yield different group decisions for the same
inclination vector is given by the 8th columns of the matrices and row vectors, respectively. If the
inclination of the players 4, 5 and 6 is ‘yes’ and that of the remaining players is ‘no’, then ‘following
only unambiguous trend-setters’ implies ‘inclination equals decision’ and the group decision ‘no’.
Nevertheless, ‘following a majority of the trend-setters’ implies that also player 2 finally votes ‘yes’,
so that the collective vote becomes ‘yes’, too.

As we can see from the matrices of this example, within the column-wise enumeration of the
decision vectors E := Dvec(D) some columns may occur several times. But it is very easy to obtain
a representation without multiple columns. We only have to compute the canonical epimorphism Φ
of the equivalence relation syq(E, E) via the relational program Classes of Subsection 3.3. Then
EΦ yields the desired result.

4.2 Computing power indices

Now, we demonstrate how to compute the indices presented in Subsection 2.1 with relation-algebraic
means. The main steps are to determine four row vectors of type [1↔ 2P ] which describe the four
sets I++

k , I+−
k , I−+

k and I−−
k , respectively. Since RelView yields for each computed relation also the

number of its 1-entries (i.e., its set-theoretic size), from the vector descriptions we get the numbers
|I++

k |, |I+−
k |, |I−+

k | and |I−−
k |, and from these also the various power indices using straightforwardly

their specifications of Subsection 2.1. Note, that the set I+ used in the definition of the indices
M1GHBk, M4GHBk and MGHB is already described by the row vector gdv(D) of Theorem 4.1.2
or its analogon in the case of the rule ‘following a majority of the trend-setters’.

We assume that the player k ∈ P , on which the four sets I++
k , I+−

k , I−+
k and I−−

k depend,
is described by a column point p : P ↔1 in the relational sense. As the definitions of the sets
also use the values gd(Bi) for i ∈ I, we assume, furthermore, that the group decision row vector
g := gdv(D) is at hand (where the influence rule used for its computation is arbitrary). Then we
are able to prove the following result.

Theorem 4.2.1 Let, depending on the column point p : P ↔1 and the row vector g : 1↔ 2P , the
four vectors ipp(p, g), ipm(p, g), imp(p, g) and imm(p, g) of type [1↔ 2P ] be defined as follows,
where M : P ↔ 2P is the membership relation:

ipp(p, g) := pTM ∩ g ipm(p, g) := pTM ∩ g

imp(p, g) := pT M ∩ g imm(p, g) := pT M ∩ g

Then we have for all X ∈ 2P : If the X-column of M equals the inclination vector i : P ↔1, then
we have that ipp(p, g)⊥,X holds iff i ∈ I++

k , ipm(p, g)⊥,X holds iff i ∈ I+−
k , imp(p, g)⊥,X holds iff

i ∈ I−+
k , and imm(p, g)⊥,X holds iff i ∈ I−−

k .

Proof The first claim follows from

ipp(p, g)⊥,X ⇐⇒ (pTM ∩ g)⊥,X

⇐⇒ ∃ j ∈ P : pj,⊥ ∧ Mj,X ∧ g⊥,X

⇐⇒ ∃ j ∈ P : j = k ∧ Mj,X ∧ g⊥,X p describes k

⇐⇒ Mk,X ∧ g⊥,X gd(Bi) = 1 iff gdv(D)⊥,X

⇐⇒ ik,⊥ ∧ gd(Bi) = 1 assumption

⇐⇒ i ∈ I++
k
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since the relationship ik,⊥ is nothing else than ik = 1 for the k-component of a Boolean vector in
the sense of Section 2. In the same way the remaining equivalences can be calculated. �

Due to this theorem, the row vector ipp(p, g) precisely designates those columns of the membership
relation M which belong to the set I++

k , and the remaining three row vectors of the theorem do
the same for the three sets I+−

k , I−+
k and I−−

k , respectively. Once more it is very easy to translate
the relation-algebraic specifications of Theorem 4.2.1 into the programming language of RelView.
Subsequently, we show some results for our running example. We restrict our analysis to the Hoede-
Bakker index defined in (1).

Example 4.2.1. In the following, we concentrate on player 2 which is influenced by the three
trend-setters 1, 5 and 6. Using ‘following only unambiguous trend-setters’ as influence rule, the
first row of the following 2 × 64 RelView-matrix depicts the row vector ipp(p, g), i.e., precisely
designates those columns of the membership relation M : P ↔ 2P that belong to the set I++

2 . The
second row of the matrix does the same for I+−

2 .

Counting the 1-entries of the single rows, we obtain that in 24 cases the inclination ‘yes’ of player
2 coincides with the group decision ‘yes’, and in 8 cases the inclination ‘yes’ of player 2 is opposed
to the group decision ‘no’. Hence, in the social network of the example, the Hoede-Bakker index
for player 2 is 1

32(24 − 8) = 0.5.
The next picture shows, again by means of one matrix, the RelView-representations of the two

sets I++
2 (first row) and I+−

2 (second row) of the inclination vectors with ‘following the majority of
the trend-setters’ as the influence rule.

Counting the 1-entries of the single rows, we obtain here that in 16 cases player 2’s inclination and
the group vote are ‘yes’, and in the same number of cases player 2 has the inclination ‘yes’, but
the group says ‘no’. Under this rule, hence, we have 1

32(16− 16) = 0 as the Hoede-Bakker index for
player 2.

We have also computed the Hoede-Bakker indices for the other players. In the case of the influence
rule ‘following only unambiguous trend-setters’, we have obtained that not an independent player,
but player 2 is the most powerful player of the network in our running example. For the independent
players we have obtained (in the case of both rules) the Hoede-Bakker indices 0.125 (players 1
and 6) and 0.25 (player 5). This result agrees with observations that frequently can be made in
practice, e.g., if the network is given by a hierarchic administration structure. If players may obtain
instructions from more than one ‘superior’ player, then not the independent players (the big bosses)
are the most powerful ones, but those in the middle of the hierarchy.

4.3 Computing influence indices, followers and kernels

In the following, we assume a coalition S of players to be described by a column vector s : P ↔1,
and a single player j ∈ P to be described by a column point p : P ↔1. We want to compute the
possibility influence index of S on player j. Since it is defined by means of the sizes of the sets IS→j

and I∗S→j(B), our task is to describe these sets within relation algebra. A translation of the results
into RelView-code then allows to proceed exactly as in the case of the power indices.

Both, IS→j and I∗S→j(B) are subsets of IS . Therefore, as a preparatory step we describe the
latter set of inclination vectors with relation-algebraic means. Doing so, projection relations and
the pairing operation come into the play.
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Theorem 4.3.1 Assume s : P ↔1 as description of the coalition S ⊆ P and the row vector is(s)
of type [1↔ 2P ] to be defined as

is(s) := [sT, sT] (πM ∪ ρM) ∩ ( ρM ∪ πM) ,

where M : P ↔ 2P is the membership relation, and π : P×P ↔P and ρ : P×P ↔P are the
projection relations in the sense of Subsection 3.1. Then we have for all X ∈ 2P : If the X-column
of M equals the inclination vector i : P ↔1, then is(s)⊥,X holds iff i ∈ IS.

Proof Since the X-column of M equals i, we have for all pairs u = (u1, u2) ∈ P×P the following
equivalence:

iu1,⊥ = iu2,⊥ ⇐⇒ Mu1,X ↔ Mu2,X

⇐⇒ (πM)u,X ↔ (ρM)u,X

⇐⇒ ((πM)u,X → (ρM)u,X) ∧ ((ρM)u,X → (πM)u,X)

⇐⇒ (πM u,X ∨ (ρM)u,X) ∧ ( ρM u,X ∨ (πM)u,X)

⇐⇒ ((πM ∪ ρM) ∩ ( ρM ∪ πM))u,X

From this result and since s describes S, we obtain

is(s)⊥,X ⇐⇒ ([sT, sT] (πM ∪ ρM) ∩ ( ρM ∪ πM) )⊥,X

⇐⇒ ∃u ∈ P×P : [sT, sT]⊥,u ∧ (πM ∪ ρM) ∩ ( ρM ∪ πM) u,X

⇐⇒ ∀u ∈ P×P : [sT, sT]⊥,u → ((πM ∪ ρM) ∩ ( ρM ∪ πM))u,X

⇐⇒ ∀u ∈ P×P : su1,⊥ ∧ su2,⊥ → (iu1,⊥ = iu2,⊥)

⇐⇒ ∀u ∈ P×P : u1 ∈ S ∧ u2 ∈ S → (iu1,⊥ = iu2,⊥)

The latter formula of this calculation exactly says that i ∈ IS . �

Hence, the row vector is(s) precisely designates those columns of the membership relation M which
belong to the set IS . Next, we attack the relation-algebraic specification of the set IS→j , where
j ∈ P is described by the column point p : P ↔1. In the following theorem we relation-algebraically
specify a row vector that precisely designates those columns of M which are inclination vectors of
potential influence of S on j.

Theorem 4.3.2 Assume s : P ↔1 to describe the coalition S ⊆ P , the column point p : P ↔1

to describe the player j ∈ P , the column point q ⊆ s to describe some player k ∈ S, and the row
vector potinf (s, p) of type [1↔ 2P ] to be defined as

potinf (s, p) := ((r ∪ r′) ∩ r ∩ r′ ) inj (is(s)T),

where r := pTM inj (is(s)T)
T

and r′ := qTM inj (is(s)T)
T

with M : P ↔ 2P as membership relation.
Then we have for all X ∈ 2P : If the X-column of M equals the inclination vector i : P ↔1, then
potinf (s, p)⊥,X holds iff i ∈ IS→j.

Proof From Theorem 4.3.1 we know that the row vector is(s) describes the subset S of 2P that
consists of those sets Y ∈ 2P for which the Y -column of M is, considered as inclination vector,
a member of IS . Furthermore, inj (is(s)T) : S ↔ 2P is the relational description of the identity
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mapping from S to 2P ; see Subsection 3.2. Using these facts and the assumption that the X-
column of M equals i, we get

potinf (s, p)⊥,X ⇐⇒ (((r ∪ r′) ∩ r ∩ r′ ) inj (is(s)T))⊥,X

⇐⇒ ∃Y ∈ S : ((r ∪ r′) ∩ r ∩ r′ )⊥,Y ∧ inj (is(s)T)Y,X

⇐⇒ ∃Y ∈ S : ((r ∪ r′) ∩ r ∩ r′ )⊥,Y ∧ Y = X

⇐⇒ X ∈ S ∧ ((r ∪ r′) ∩ r ∩ r′ )⊥,X

⇐⇒ i ∈ IS ∧ ((r ∪ r′) ∩ r ∩ r′ )⊥,X

Next, we apply that the column point p describes the player j ∈ P , again we apply the assumption
and get in the case X ∈ S the equivalence

r⊥,X ⇐⇒ ∃ l ∈ P : pl,⊥ ∧ Ml,X ⇐⇒ ∃ l ∈ P : j = l ∧ l ∈ X ⇐⇒ j ∈ X ⇐⇒ ij,⊥.

In the same way4 from the description of k ∈ P by the column vector q and the assumption we
obtain that r′⊥,X is equivalent to ik,⊥, i.e., to the k-entry of i to be 1. The latter fact implies
the equivalence of r′⊥,X and iS = 1 for the Boolean value iS used in the specification of IS→j . A
consequence of the just shown properties is

((r ∪ r′) ∩ r ∩ r′ )⊥,X ⇐⇒ (r⊥,X ∨ r′⊥,X) ∧ ¬(r⊥,X ∧ r′⊥,X)

⇐⇒ (ij,⊥ ∨ iS = 1) ∧ ¬(ij,⊥ ∧ iS = 1)

⇐⇒ (ij,⊥ ↔ ¬(iS = 1))

⇐⇒ (ij = ¬iS)

since again the relationship ij,⊥ is nothing else than the validity of ij = 1 in the sense of Section 2.
Now, a combination of this fact with the result of the above calculation yields

potinf (s, p)⊥,X ⇐⇒ i ∈ IS ∧ (ij = ¬iS)

and this, finally, shows the claim. �

To obtain a row vector inf (s, p, D) of type [1↔ 2P ] that precisely designates those columns of the
membership relation M : P ↔ 2P which are inclination vectors of influence of S on j, i.e., members
of I∗S→j(B), we use the equation

I∗S→j(B) = IS→j ∩ {i ∈ IS | (Bi)j = iS}.

The definition of the set {i ∈ IS | (Bi)j = iS} is rather similar to that of the set IS→j ; cf. Subsection
2.2. Compared with the latter one, only the expressions Bi and iS are used instead of i and ¬iS .
This immediately leads to the relation-algebraic specification of the set I∗S→j(B) by the row vector

inf (s, p, D) := potinf (s, p) ∩ (r ∪ r′) ∩ r ∩ r′ inj (is(s)T) (15)

with now r and r′ given by r := pTDvec(D) inj (is(s)T)
T

and r′ := qTM inj (is(s)T)
T

(see Theorem
4.3.2). This is due to the fact that the decision vectors column-wisely are enumerated via the
relation Dvec(D) : P ↔ 2P (where the concrete influence rule is irrelevant) and, for the inclination
vector i : P ↔1 being the X-column of the membership relation M : P ↔ 2P , the relationship
((r ∪ r′) ∩ r ∩ r′ )⊥,X does not hold iff ij,⊥ and iS = 1 are equivalent.

In the following, we demonstrate by means of our running example how results of the Rel-

View-programs look like that immediately are obtained from the just developed relation-algebraic
specifications by writing them in the programming language of the tool.

4 In terms of matrices, r equals the j-row of M inj (is(s)T)
T

and r′ the k-row of the same relation.
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Example 4.3.1. Let us consider the coalition S with players 2, 3 and 5, that is in the depen-
dency graph of Example 2.3.1 indicated by black vertices. For this coalition, the set IS contains
16 inclination vectors. This follows from the following two RelView-pictures. The first one shows
again the membership relation M : P ↔ 2P of Example 3.2.1 and the second one the row vector
is(s) : 1↔ 2P , where the column vector s : P ↔1 describes S.

The row vector precisely designates those columns of the matrix where the entries 2, 3 and 5 have
the same colour.

Below we show the RelView-representations of the sets IS→j and I∗S→j(B) for those players j
which are not contained in the coalition S. The first row of the following 2 × 64 RelView-matrix
indicates the columns of the membership relation M which are inclination vectors from set IS→1,
and the second row indicates the inclination vectors that belong to I∗S→1(B), where ‘following only
unambiguous trend-setters’ is the influence rule. The next two RelView-matrices do the same for
the sets IS→4 and I∗S→4(B) and the sets IS→6 and I∗S→6(B), respectively. From the three pictures
we obtain that, under the assumed rule, the possibility influence indices of S on the players 1 and
6 are 0, and the possibility influence index of S on the player 4 is 1.

The next three RelView-matrices are analogous to the just presented ones, however, with ‘follow-
ing the majority of the trend-setters’ as influence rule for the computation of the decision vectors.

Comparing these matrices with the above ones, we get that in the case of our running example
both influence rules lead to the same sets and, hence, the same indices.5 In words, the results say:
Whatever of the two influence rules is applied, the coalition S is without any influence on the
players 1 and 6 and in the case of player 4 there is a possibility of influence of S on 4 and it is even
maximal.

From I∗S→1(B) = I∗S→6(B) = ∅ in the case of both influence rules we immediately get that
the certainty influence index of S on player 1 as well as on player 6 is 0. The next RelView-
picture shows the column-wise enumeration of the set I∗S→4(B) (which is equal under both rules)
as computed by the tool. To enhance readability, the used column labels correspond to the column
labels of the above membership relation.

5 It should be mentioned that the equal results for player k := 4 in our running example are caused by the fact that
it has exactly two trend-setters. In such a case the value (Bi)k computed from i via ‘following only unambiguous
trend-setters’ is the same as that computed via ‘following the majority of the trend-setters’. To give an example
where both rules lead to different results, we want to mention that, for S′ := {3, 5} and player 2, we get |IS′→2| = 16
and |I∗

S′→2(B)| = 4 if B is given by ‘following only unambiguous trend-setters’, respectively |I∗

S′→2(B)| = 12 if B

is given by ‘following the majority of the trend-setters’.
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Under both rules for S and player 4 exactly 2 of the eight inclination vectors i ∈ I∗S→4(B) fulfil the
property ik = ¬iS for all players k not from S. The first one is labeled with 27 (here iS = 1 and
ik = 0 for k = 1, 4, 6), and the second one is labeled with 38 (and is the complement of the first
one). Hence, the certainty influence index d(B, {2, 3, 5} → 4) is 1.

The relation-algebraic treatment of the certainty influence index is rather similar to that of the
possibility influence index. However, we do not want to go into more details here, and we switch
directly to followers.

The next theorem shows how sets of followers can be described relation-algebraically by means of
column vectors in the sense of Subsection 3.2. In it, the relations R and Q column-wisely enumerate
the sets IS and B(IS), respectively, and the column point q again is used for specifying for i ∈ IS the
specific Boolean value iS . Once more it is arbitrarily which influence rule is used for the definition
of the influence function B.

Theorem 4.3.3 Assume s : P ↔1 to describe the coalition S ⊆ P , and the column point q ⊆ s to
describe some player k ∈ S. Furthermore, let M : P ↔ 2P be the membership relation. If the column
vector follow(D, s) of type [P ↔1] is defined as

follow(D, s) := syq(QT, RTq)

with relations R := M inj (is(s)T)
T

and Q := Dvec(D) inj (is(s)T)
T

, then for all j ∈ P we have
follow(D, s)j,⊥ iff j ∈ FB(S).

Proof As in the proof of Theorem 4.3.2, we denote the subset of 2P that is described by the row
vector is(s) : 1↔ 2P with S. Then both R and Q have the type [P ↔S]. Furthermore, we are able
to calculate as given below:

follow(D, s)j,⊥ ⇐⇒ syq(QT, RTq)j,⊥

⇐⇒ ∀X ∈ S : QT

X,j ↔ (RTq)X,⊥

⇐⇒ ∀X ∈ S : Qj,X ↔ (qTR)⊥,X

⇐⇒ ∀ i ∈ IS : (Bi)j,⊥ ↔ iS = 1
⇐⇒ j ∈ FS(B)

The fourth step of this calculation uses that there is a one-to-one corrrespondence between the sets
2P and I, that X ∈ 2P belongs to S iff the corresponding inclination vector i ∈ I belongs to IS ,
that Dvec(D) column-wisely enumerates the decision vectors Bi and that (qTR)⊥,X iff iS = 1 (see
the proof of Theorem 4.3.2). �

Let us again demonstrate what the RelView-program obtained from this theorem yields in the
case of our running example with the coalition S consisting of the players 2, 3 and 5.

Example 4.3.2. In the following two RelView-pictures two column vectors are depicted which
describe two subsets of the set P . The left column vector describes the set of followers of S under
the influence rule ‘following only unambiguous trend-setters’ and the right column vector does the
same with ‘following the majority of the trend-setters’.
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So, the followers of S under the first rule are 2, 3, 4 and 5 and those under the second rule are 3, 4
and 5.

Having a RelView-program at hand for computing sets of followers, it is an easy task to implement
another one that computes the kernel of an influence function by applying the former program to
all subsets of P . Applied to our running example, the second program proved that there is no
difference whether the influence function B is defined via the rule ‘following only unambiguous
trend-setters’ or the rule ‘following the majority of the trend-setters’. Both rules yield the same
result, viz. {{6}, {5}, {2}, {1}}. Of course, this is a special case. Experiments with RelView showed
that, in general, the kernels of both rules we have introduced in this paper turn out to be different.

5 The Dutch Parliament Example

In the last section, we have used an artificial running example to illustrate our relation-algebraic
approach to measure players’ ‘strength’ in a social network. In the following we present another
application of RelView. It stems from the real world and is based on the structure of the Second
Chamber (Tweede Kamer) of the present Dutch Parliament.

5.1 The present Dutch parliament

There are presently ten parties in the Dutch parliament, viz. (in alphabetic order) the parties CDA -
Christen-Democratisch Appel (Christian Democrats), CU - Christen Unie (Christian Union), D66 -
Democraten66 (Democrats 66), GL - GroenLinks (Green Left), PvdA - Partij van de Arbeid (Labor
Party), PvdD - Partij voor de Dieren (Animal Party), PVV - Partij voor de Vrijheid (Party for
Freedom), SGP - Staatkundig Gereformeerde Partij (Political Reformed Party), SP - Socialistische
Partij (Socialist Party), and VVD - Volkspartij voor Vrijheid en Democratie (People’s Party for
Freedom and Democracy). Hence, we have

P := {CDA, CU, D66, GL, PvdA, PvdD, PVV, SGP, SP, VVD}.

In the following table the Dutch parties of the present parliament are shown (k ∈ P ), placed in a
specific order, together with the numbers of seats (wk), where the total number of seats is equal
to 150. The specific placement of the parties from GL to PVV is based on a left-right scale for the
postwar period in the Netherlands, developed in [32] (see also [39]).

k ∈ P GL SP PvdA D66 PvdD CDA VVD CU SGP PVV

wk 7 25 33 3 2 41 22 6 2 9

We like to mention two concepts developed within the framework of simple games, that can be
applied to measure the ‘strength’ of political parties, i.e., the concepts of a dominant player ([34],
see also [15, 17]) and a central player [16, 17, 19]. For an empirical analysis of the effect of dominant
and central parties on cabinets in Western multiparty democracies, see e.g., [37, 38, 39], and also
[41]. A player k is said to be a dominant player if there are coalitions A, B, such that A ∩ B = ∅,
k /∈ A ∪ B, A ∪ B is not a winning coalition, but A ∪ k and B ∪ k are winning coalitions. The
dominant player is a ‘policy blind’ or ‘office seeking’ concept. In contrast to the dominant player,
the concept of central player is a ‘policy oriented’ or ‘policy seeking’ one. Let players be ordered on
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a policy dimension. Player k is said to be a central player if the connected coalition to the left of k
as well as the connected coalition to the right of k can turn into a winning coalition only when k
joins this coalition.

Let us apply the concepts of dominant and central players to the present Dutch parliament. A
winning coalition in this Dutch example is a coalition with at least 76 seats in the parliament. One
may easily check that CDA is both the dominant and central player in the Dutch parliament. Indeed,
none of the two disjoint coalitions PvdA-D66 and VVD-CU-PVV is winning, PvdA-D66-VVD-
CU-PVV is not winning either, but both PvdA-D66-CDA and VVD-CU-PVV-CDA are winning.
Furthermore, both GL-SP-PvdA-D66-PvdD (i.e., the connected coalition to the left of CDA) and
VVD-CU-SGP-PVV (i.e., the connected coalition to the right of CDA) can turn into a winning
coalition when CDA joins.

The three parties CDA, CU and PvdA are presently forming the Dutch cabinet. We may assume
that PvdA is a trend-setter for the two parties D66 and GL: the latter parties usually follow
the former one. Furthermore, we assume that PVV is a trend-setter for VVD. This may be only
partially true, but we assume it as hypothesis for our computations. Apart from that, we assume
more influence relationships, which display both office seeking and policy seeking motivations of
the Dutch parties.6 Let us assume that for some of the parties, the stronger (direct) neighbour on
the left-right scale is a trend-setter of the party if this neighbour has more seats than the party in
question. So, apart from being the trend-setter for D66, the party PvdA is assumed to be also the
trend-setter for SP. The dominant and central party CDA is the trend-setter for VVD and PvdD
(hence, VVD is assumed to have two trend-setters, PVV and CDA).

5.2 Results of computations

We have used the RelView-versions of the relation-algebraic specifications of Section 4 to deter-
mine by means of the tool for this quasi-realistic example all the concepts mentioned in Section
2. Since each party has at most two trend-setters, both influence rules of Subsection 2.3 lead
to the same description of the influence function B. We have for each inclination vector i that
(Bi)D66 = (Bi)SP = (Bi)GL = iPvdA, (Bi)PvdD = iCDA, (Bi)VVD depends on the inclinations iCDA

and iPVV and (Bi)j = ij for j being PvdA, CDA, CU, SGP, PVV. Please note that with the
influence relationships we adopt in this example, no party in the Dutch cabinet has a trend-setter.
As example for a coalition S we have taken the three parties which form the present Dutch cabinet,
i.e., S := {CDA, CU, PvdA}. Here is the RelView-representation of the dependency relation and
the coalition S.

There are situations where parties decide without taking their numbers of seats into account, for
instance, in parliamentary committees with one representative per party. In such situations the
group decision gd is given by simple majority of the number of parties. For each Dutch party

6 We have also investigated the Dutch parliament example only with the trend-setter relationships PvdA-D66 and
PvdA-GL. But we think that the inclusion of more relationships makes it more interesting.
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k ∈ P , we determined the Hoede-Bakker index HBk(B, gd), the generalized Hoede-Bakker index
GHBk(B, gd) and its modifications. Moreover, for each party outside the cabinet, that is, for all
j ∈ P \S, we have calculated the possibility and certainty influence indices of the cabinet on j, i.e.,
d(B, S → j) and d(B, S → j), as well as the set of followers of the cabinet FB(S) under B, and the
kernel K(B) of B. Here are some results. Because of their sizes we are not able to present the cor-
responding RelView-matrices. We only present the decisive numbers that, as already mentioned,
either are directly delivered by RelView as numbers of 1-entries of computed results or can be
easily computed from these numbers.

Let us start with the power indices. In the following table we listen for the Dutch parliament
example the sizes of the sets underlying their definitions as computed by RelView using the
relation-algebraic specifications of the Subsections 4.1 and 4.2.

k ∈ P GL SP PvdA D66 PvdD CDA VVD CU SGP PVV

|I++
k | 216 216 400 216 216 288 224 256 256 272

|I+−
k | 296 296 112 296 296 224 288 256 256 240

|I−+
k | 216 216 32 216 216 144 208 176 176 160

|I−−
k | 296 296 480 296 296 368 304 336 336 352

From these numbers and the fact that |I+| = 432 and |I−| = 1024 − 432 = 592, we immediately
are able to compute all power indices introduced in Subsection 2.1. In the following table we show
the values for the two power indices HBk and GHBk only.

k ∈ P GL SP PvdA D66 PvdD CDA VVD CU SGP PVV

HBk −0.16 −0.16 0.56 −0.16 −0.16 0.12 −0.12 0 0 0.06
GHBk 0 0 0.72 0 0 0.28 0.03 0.16 0.16 0.22

In their paper Hoede and Bakker have proven that if, first, changing all inclinations leads to a
change of the group decisions and, second, the decision function gd is monotone, then the value of
HBk(B, gd) belongs to the interval [0, 1] of the real numbers. The reason that we obtain negative
values for the Hoede-Bakker index is that the first axiom of [25] does not hold for the Dutch
parliament example. With the help of RelView we obtained that from the possible 1024 inclination
vectors exactly 160 inclination vectors i do not fulfil the equation gd(B( i )) = ¬gd(Bi). An example
is the following one:

iGL = iSP = iPvdA = iD66 = iPvdD = iVVD = iCU = 0 iCDA = iSGP = iPVV = 1

Here the influences given by the above graph only change the inclinations ‘no’ of the parties PvdD
and VVD to the decision ‘yes’, the rest remains unchanged. With five ‘yes’ decisions the group
decision is ‘no’. In the case of the complement of i we get now for exactly the same parties a change
of the inclinations ‘yes’ to the decisions ‘no’ and again the rest remains unchanged. This also leads
to ‘no’ as group decision.

The reason for the introduction of the generalized Hoede-Bakker index in [42] was to avoid the
first axiom of Hoede and Bakker. It is not satisfied if there is a vetoer in the social network (as
already mentioned in Subsection 2.1) and also causes serious problems with an even number of
players in the social network, as in our Dutch parliament example. If five of the Dutch parties vote
‘yes’ and the remaining five parties vote ‘no’, then the axiom does not hold. Instead of the first
axiom of Hoede and Bakker for the generalized Hoede-Bakker index it suffices to demand that the
inclination vector (1, . . . , 1) (in terms of relation algebra: the universal column vector L) leads to the
group decision ‘yes’ and the inclination vector (0, . . . , 0) (the empty column vector O, respectively)
leads to the group decision ‘no’.

Since the specification of the row vector gdv(D) : 1↔ 2P of Theorem 4.1.2 bases on ‘simple
majority of number of parties’ as group decision function gd, in our concrete example meaning that
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gd(Bi) = 1 iff the size of the set {j ∈ P | (Bi)j = 1} is at least 6, in the above results all parties are
treated as if they have exactly one seat. However, in plenary meetings of the Dutch parliament the
number of seats is decisive. Here a proposal is accepted by the parliament iff more than 75 seats
vote ‘yes’.7 As a consequence, the majority-of-parties-based definition of gd we have used so far
may lead to wrong results, if, e.g., 5 parties with few seats vote ‘no’ while the proposal is accepted
because more than 75 seats vote ‘yes’. An example for this is:

iCDA = iSGP = iPVV = 0 ij = 1 for j /∈ {CDA, SGP, PVV}

The influences given by the above graph changes the inclinations ‘yes’ of the two parties PvdD and
VVD to the decision ‘no’, the remaining parties vote according to their inclinations. With five ‘no’
and five ’yes’ the majority-of-parties-based definition of gd leads to group decision ‘no’. But the
parliament votes ‘yes’ due to the 2 + 41 + 22 + 2 + 9 = 76 seats of the five parties PvdD, CDA,
VVD, SGP and PVV together.

If we assume that each party votes as a block, then the following alternative definition of the
group decision function precisely describes how the Dutch parliament makes a decision:

gd(Bi) = 1 ⇐⇒
∑

k∈P+

i

wk > 75, (16)

where P+
i := {j ∈ P | (Bi)j = 1} is the set of parties which vote ‘yes’ under inclination vector i

and wk denotes the number of seats of party k ∈ P according to the table of Subsection 5.1.
To obtain a relation-algebraic specification of the row vector gdv(D) : 1↔ 2P also for the

majority-of-seats-based group decision function introduced by (16), we assume N to be the set of
the 150 Dutch parliament seats and the distribution of the seats over the parties to be given by a
relation W : N ↔P such that

Wn,k ⇐⇒ n is ownded by k

for all n ∈ N and k ∈ P . The relation W is a mapping in the relational sense and for each
k ∈ P the k-column of W consists of wk 1-entries and 150 − wk 0-entries. Now, let i : P ↔1

be an arbitrary inclination vector and Bi : P ↔1 the corresponding decision vector (as relation-
algebraically specified in Theorem 4.1.1). Then we have for all n ∈ N the equivalence

(WBi)n,⊥ ⇐⇒ ∃ k ∈ P : Wn,k ∧ (Bi)k,⊥ ⇐⇒ ∃ k ∈ P+
i : Wn,k

such that the column vector WBi : N ↔1 describes the set of seats N+
i ∈ 2N which are owned

by a party that votes ‘yes’ under inclination vector i. Since the relation-algebraic expression that
specifies the column vector Bi is built from i using unions, intersections, complements and left-
compositions with constants only, the same holds for the expression WBi. Hence, a replacement
of Bi in the latter by the column-wise enumeration of all decision vectors, i.e., by the relation
Dvec(D) : P ↔ 2P of (13), leads to the column-wise enumeration of all sets N+

i . With respect to
the row vector gdv(D) we are looking for, this means that for the relation WDvec(D) : N ↔ 2P

and for all sets X ∈ 2P the following property has to hold: If the inclination vector i : P ↔1 equals
the X-column of the membership relation M : P ↔ 2P , then

gdv(D)⊥,X ⇐⇒ the X-column of WDvec(D) contains at least 76 1-entries. (17)

From (17) a relation-algebraic specification of gdv(D) can be obtained exactly as in the case of
Theorem 4.1.2 for the majority-of-parties-based group decision function, i.e., by using a threshold
vector, the operation cardfilter and a symmetric quotient construction. Here is the corresponding

7 Of course, this only holds if each member attends the House.
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RelView-code, where, compared with the program of Subsection 4.1, W is an additional argument
and again the argument w determines the threshold for majority of seats by its length, now 76.

gdv(D,W,w)

DECL M, m

BEG M = epsi(O(W));

m = -cardfilter(L1n(M)^,w)^

RETURN m*syq(M,W*Dvec(D))

END.

If we use this version of gdv instead of the version of Subsection 4.1, then we obtain the following
sizes of the sets underlying the definitions of the various power indices.

k ∈ P GL SP PvdA D66 PvdD CDA VVD CU SGP PVV

|I++
k | 256 256 416 256 256 352 256 288 288 352

|I+−
k | 256 256 96 256 256 160 256 224 224 160

|I−+
k | 256 256 96 256 256 160 256 224 224 160

|I−−
k | 256 256 416 256 256 352 256 288 288 352

Since for all k ∈ P we have |I++
k | = |I−−

k | and |I+−
k | = |I−+

k |, now the values HBk and GHBk

coincide. In this new case |I+| = |I−| = 512 and thus from the values of the table above also all
other power indices of Subsection 2.1 can be obtained. In the following table we show the values
for the power index GHBk.

k ∈ P GL SP PvdA D66 PvdD CDA VVD CU SGP PVV

GHBk 0 0 0.62 0 0 0.37 0 0.12 0,12 0.37

Comparing this table with the table presenting GHBk for the previous case, we see that in case of
the two largest parties PvdA (33 seats) and CDA (41 seats), the net Success of PvdA (measured
by GHBPvdA) increases but the net Success of CDA decreases if decisions are transfered from the
plenum to parliamentary commissions.

We have used the above RelView-program gdv and the RelView-program gdv of Subsec-
tion 4.1 also to find all inclination vectors for which majority-of-seats-based decision differs from
majority-of-parties-based decision. RelView delivered the following result: If the majority-of-
parties-based decision is ‘yes’, then the same holds for the majority-of-seats-based decision. The
other direction does not hold. There are exactly 80 inclination vectors which lead to ‘yes’ if the
decision bases on the majority of seats and to ‘no’ if it bases on the majority of parties. In each of
these cases the inclination of PVV is ‘yes’.

Having discussed power indices in great detail, let us now present the RelView results con-
cerning the two influence indices, sets of followers and kernels. Note that for computing these values
the group decision function gd does not play a role.

The next table shows for all Dutch parties not being part of the coalition S = {CDA, CU, PvdA}
(the present Dutch cabinet) the sizes of the sets defining the possibility influence indices d(B, S → j)
as computed by RelView.

j /∈ S GL SP D66 PvdD VVD SGP PVV

|IS→j | 128 128 128 128 128 128 128
|I∗S→j | 128 128 128 128 64 0 0

Hence, the possibility influence index of S on GL, SP, D66 and PvdD is 1 (denoting maximal
influence), the possibility influence index of S on VVD is 0.5 and the possibility influence index of
S on SGP and PVV is 0 (denoting no influence).
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The results for the certainty influence indices of the present cabinet on the remaining parties
are as follows. For j being GL, SP, D66 or PvdD, from the 128 inclination vectors of I∗S→j exactly
two show for all parties outside S an inclination that is different from the inclination of S. Hence,
in these cases the certainty influence index is 1. None of the 64 inclination vectors of I∗

S→VVD has
this property, so the certainty influence index of S on VVD is 0. That the certainty influence index
of S on the remaining parties SGP and PVV is 0 follows from |I∗S→j | = 0 for j ∈ {SGP, PVV}.

Let us, finally, present the results concerning the set of followers and kernels. We obtained with
the help of the RelView tool that

{GL,SP,PvdA,D66,PvdD,CDA,CU}

is the set of the seven followers of the present cabinet S, and that the set of singleton sets

{{PvdA}, {CDA}, {CU}, {SGP}, {PVV}}

is the kernel of the influence function induced by the above dependency graph and both influence
rules we have considered in Subsection 2.3.

6 Conclusions

The present paper disseminates part of our results on applications of relation algebra and the Kiel
RelView tool to Game Theory and Social Choice Theory. In our previous works [7, 8], we presented
such applications to coalition formation, where with the help of relation algebra and RelView the
set of all feasible stable governments has been determined. In the present paper, we apply relation
algebra and RelView to network formation, i.e., to compute some measures of players’ strength,
like power, success, and influence, in a network.

What we particularly like in this approach is its usefulness with respect to applying the tools to
organizations and trend-setter structures with a larger number of players. One of the straightforward
ideas is to apply the measures calculated by RelView to parliaments. This is what we presented
in the previous section, where an application of the tools in question to the Dutch parliament
is delivered. For networks with more than, say 5 or 6 players, where some of the players have
trend-setters that they follow, calculating the measures and concepts of influence, like the Hoede-
Bakker index, its generalization and modifications, the set of followers and the kernel of an influence
function, is far too complicated to be done by hand due to the sizes of the sets I of inclinations. In
case of networks with, say, 25 players, even a naive Boolean vector approach within a conventional
programming language like C or Java leads to serious difficulties. It is hardly to imagine to generate
all the 225 = 33.554.432 Boolean column vectors of length 25 one after another and to transform
them into the corresponding decision vectors within reasonable time. Due to the very efficient BDD-
implementation of relations, the RelView tool allows to do this in a very efficient and elegant
way in many cases, viz. if programs essentially are described by relation-algebraic expressions and
do not use loops that range over huge sets. To give an impression of the amazing power of the
BDD-implementation of relations, we want to mention that RelView needs on a Sun Fire-280R
workstation (750 MHz, 4 GByte main memory, running Solaris) only 0.04 seconds to compute the
group decision vector using the program gdv of Subsection 5.2. Note that the symmetric quotient
syq(M, WDvec(D)) used in gdv has type [2N ↔ 2N ]. Regarded as a Boolean matrix, this means
that it has 2150 rows and columns.

Of course, we also are not able to compute within reasonable time with RelView the kernel of
an influence function in the case of, say again, 25 players, if we apply the program for computing
sets of followers to all subsets of P , i.e., all possible column vectors Mp : P ↔1 with p : 1↔ 2P

being a row point, via a simple loop. A strategy that may help in such a situation is to estimate the
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sizes of the sets of the kernel. If we are able to show by an analysis of the dependency relationships,
for instance, that each set of the kernel consists of at most 3 players, then we can use the base-
operation cardfilter to obtain a row vector v : 1↔ 2P that represents the set {X ∈ 2P | |X| ≤ 3}.
In the case of 25 players, instead of all 33.554.432 column vectors Mp : P ↔1 we then only have to
loop through the

∑3
m=0

(

25
m

)

= 14.426 possible row vectors Mp with the row point p contained in v.
A further advantage of the approach of the present paper is that, because of the concise form of

the RelView-programs and the expressiveness of the relation-algebraic language, the combination
of both tools additionally allows to experiment with given concepts and concepts being still under
development without having a large overhead and, furthermore, to animate computations and
to visualize their results. There are many more possibilities to combine relation algebra and Rel-

View to investigate and solve problems from Game Theory and Social Choice Theory. One of them
could be an application of the tools in question to bargaining theory, in particular, to determining
solutions of bargaining games.
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