JAMA Pediatrics | Original Investigation

Geographical Differences and Temporal Improvements in Forced Expiratory Volume in 1 Second of Preterm-Born Children A Systematic Review and Meta-analysis

Sarah J. Kotecha, PhD; James T. D. Gibbons, MBBS; Christopher W. Course, MBBCh; Emily E. Evans, MBBCh; Shannon J. Simpson, PhD; W. John Watkins, PhD; Sailesh Kotecha, MD, PhD

IMPORTANCE Although preterm birth is associated with later deficits in lung function, there is a paucity of information on geographical differences and whether improvements occur over time, especially after surfactant was introduced.

OBJECTIVE To determine deficits in percentage predicted forced expiratory volume in 1 second (%FEV₁) in preterm-born study participants, including those with bronchopulmonary dysplasia (BPD) in infancy, when compared with term-born control groups.

DATA SOURCES Eight databases searched up to December 2021.

STUDY SELECTION Studies reporting spirometry for preterm-born participants with or without a term-born control group were identified.

DATA EXTRACTION AND SYNTHESIS Data were extracted and quality assessed by 1 reviewer and checked by another. Data were pooled using random-effects models and analyzed using Review Manager and the R metafor package.

MAIN OUTCOMES AND MEASURES Deficits in %FEV₁ between preterm-born and term groups. Associations between deficits in %FEV₁ and year of birth, age, introduction of surfactant therapy, and geographical region of birth and residence were also assessed.

RESULTS From 16 856 titles, 685 full articles were screened: 86 with and without term-born control groups were included. Fifty studies with term controls were combined with the 36 studies from our previous systematic review, including 7094 preterm-born and 17700 term-born participants. Of these studies, 45 included preterm-born children without BPD, 29 reported on BPD28 (supplemental oxygen dependency at 28 days), 26 reported on BPD36 (supplemental oxygen dependency at 36 weeks' postmenstrual age), and 86 included preterm-born participants. Compared with the term-born group, the group of all preterm-born participants (all preterm) had deficits of %FEV₁ of -9.2%; those without BPD had deficits of -5.8%, and those with BPD had deficits of approximately -16% regardless of whether they had BPD28 or BPD36. As year of birth increased, there was a statistically significant narrowing of the difference in mean %FEV₁ between the preterm- and term-born groups for the all preterm group and the 3 BPD groups but not for the preterm-born group without BPD. For the all BPD group, when compared with Scandinavia, North America and western Europe had deficits of -5.5% (95% CI, -10.7 to -0.3; P = .04) and -4.1% (95% CI, -8.8 to 0.5; P = .08), respectively.

CONCLUSIONS AND RELEVANCE Values for the measure $\%FEV_1$ were reduced in preterm-born survivors. There were improvements in $\%FEV_1$ over recent years, but geographical region had an association with later $\%FEV_1$ for the BPD groups.

JAMA Pediatr. doi:10.1001/jamapediatrics.2022.1990 Published online June 27. 2022. Supplemental content

Author Affiliations: Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom (S. J. Kotecha, Course, Watkins, S. Kotecha); Children's Lung Health, Wal-yan Respiratory Research Centre, Telethon Kid's Institute, Perth, Australia (Gibbons, Simpson); Department of Respiratory Medicine, Perth Children's Hospital, Perth. Australia (Gibbons); Department of Paediatrics. Cardiff and Vale University Health Board, Cardiff, United Kingdom (Evans); School of Allied Health, Curtin University, Perth, Australia (Gibbons, Simpson).

Corresponding Author: Sailesh Kotecha, MD, PhD, Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom (kotechas@cardiff.ac.uk).

s survival rates of preterm-born babies improve, especially among those born at extremes of prematurity, longer-term outcomes to ensure good quality of life are increasingly important. Our previous systematic review, which included publications up to 2011, demonstrated that survivors of preterm-birth, with and without the neonatal chronic lung disease called bronchopulmonary dysplasia (BPD), have deficits of 7.2% and 16.2%, respectively, for forced expiratory volume in 1 second (FEV₁) compared with term-born controls. However, the previous review included cohorts predominantly born before the introduction of surfactant. Subsequent individual studies of preterm-born cohorts in the postsurfactant era also show deficits, 2-4 but whether the degree of deficits is comparable with the presurfactant era is unclear. It is also unclear whether there are geographical differences or whether the deficits change with age. The previous systematic review was largely limited to the diagnosis of BPD defined as supplemental oxygen dependency at 28 days of age (BPD28) rather than the potentially more useful outcome of supplemental oxygen dependency at 36 weeks' corrected gestation (BPD36).

Therefore, we updated the previous systematic review for the preterm group with and without BPD28 or BPD36 to (1) address if deficits in %FEV $_1$ continue to be observed in those born preterm, including those who had either BPD28 or BPD36 in infancy; (2) describe change in %FEV $_1$ over time; (3) report if %FEV $_1$ changes with age; (4) identify changes in %FEV $_1$ before and after introduction of surfactant; and (5) identify geographical differences where practices in the management of preterm-born infants may vary, when compared with termborn infants.

Methods

The previous search strategy was used again¹ (eAppendix 1 in the Supplement). Articles identified previously up to October 2011 using the databases CINAHL, Embase, HMIC Health Management Consortium, Medline, Scopus, Open-SIGLE, and Web of Knowledge (Science Citation Index Expanded, Social Science Citation Index, ISI proceedings) were searched from 2011 to December 2021. The review was not registered. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines were followed.⁵ Ethics approval was not required because only published data were used.

Eligibility Criteria and Outcome Measures

Studies that compared %FEV $_1$ or FEV $_1$ z scores in later life for preterm-born infants with and without BPD with a contemporaneous term-born population were eligible for inclusion. Prematurity was defined as birth at less than 37 weeks' gestation and term as gestation of 37 weeks or longer. If results were not presented in either of those formats, or where results for a mixed preterm- and term-born group were presented, the authors were contacted for clarification to enable data inclusion. As previously, we included studies recruiting

Key Points

Question What is the lung function, as indicated by percentage predicted forced expiratory volume in 1 second (%FEV₁), of preterm-born participants, including those who had bronchopulmonary dysplasia (BPD) in infancy, when compared with term-born participants?

Findings This systematic review and meta-analysis showed decreased %FEV₁ in preterm-born survivors, especially in the BPD group, when compared with children in the term-born control group. Values for %FEV₁ improved over time, but geographical region affected later %FEV₁ in the BPD group.

Meaning Although decreased %FEV₁ values improved over time, geographical region affected %FEV₁ in the BPD group.

participants based on their birth weight; however, studies had to report $\%FEV_1$ and gestation, ie, for preterm infants. Bronchopulmonary dysplasia was defined as BPD28 or BPD36. Studies in all languages and from all countries were included.

The main outcome measure was mean $\%FEV_1$. Associations between deficits in $\%FEV_1$ and year of birth, age, introduction of surfactant therapy, and geographical region of birth and residence were also assessed.

Study Selection

Each reference title and, where available, abstract was independently screened by 2 of 4 reviewers (S.J.K., J.T.D.G., C.W.C., and E.E.E.) using the inclusion criteria given in the protocol (eAppendix 1 in the Supplement). Full manuscripts were obtained for titles and abstracts that met the inclusion criteria. Two reviewers then screened the full manuscripts, and 1 (S.K.) mediated any disagreements.

Data Collection Process

Data were manually extracted by a reviewer (S.J.K. or J.T.D.G.) and entered into a database (REDCap; Telethon Kids Institute); data were checked for accuracy by another (C.W.C. or E.E.E.). ^{6,7} One of us (S.J.K.) contacted the authors if the data extraction was not possible (eg, combined data). For multiple publications of the same cohorts, 2 of us (S.K. and S.J.K.) reviewed each article to include the one with the most comprehensive data. For studies including a term-born control group, preterm and term data were entered for meta-analyses and meta-regression.

Assessment of Study Quality and Risk of Bias

We used the same methodology as previously to assess the study quality (eAppendix 2 in the Supplement). Each study was assessed for quality by 2 reviewers (J.T.D.G. or S.J.K.) and checked by a different reviewer (C.W.C. or E.E.E.). The minimum and maximum possible scores were 6 and 20.

Statistical Analysis

Review Manager version 5.4 and the R package metafor version $3.0-2^8$ were used to perform statistical analysis. *P* values less than .05 were considered significant. Medians were

converted to means using the method of Wan et al. Data presented graphically were extracted independently by 2 reviewers. Data presented for different groups of preterm-born or term-born children in 1 article were combined where appropriate using Review Manager. We converted z scores of FEV_1 to percentage predicted FEV_1 by using graphical relationships between z scores and FEV_1 derived from local cohorts of the Avon Longitudinal Study of Parents and Children (ALSPAC), Respiratory Health Outcomes in Neonates (RHiNO), and West Australian Lung Health in Prematurity (WALHIP).

Data from the previous systematic review¹ and the current update were combined. Because heterogeneity was high in the majority of the forest plots, we used random effects to provide a pooled estimate of the mean difference in %FEV₁ between preterm-born and term-born participants. The following groups were compared with reported term-born controls:

- All preterm-born participants (including those with and without BPD).
- Preterm-born participants without BPD.
- All-BPD group (including those with BPD28 and BPD36).
- BPD28.
- BPD36.

Studies without a term-born control group were excluded but are given as descriptive results. Studies that presented FEV₁ results not expressed as percentage predicted or z scores (eg, raw values) were excluded unless authors provided further information. If the results for %FEV₁ or z scores were not presented as means (or median) and SD (or ranges, IQRs), they were excluded unless conversion to means and SD was possible. Publication bias was investigated using a funnel plot that plotted effect size against standard error.

To examine the association of factors of interest with the difference in $\% FEV_1$ between each group above and termborn infants, meta-regressions were conducted. For each comparison, $\% FEV_1$ was modeled on the individual factors for just the preterm-born group, the term-born group, and then the difference between the preterm and term groups. For each of the 5 groups above, we investigated the association between the mean difference in $\% FEV_1$ between the preterm-born participants and term-born participants and 4 factors: year of birth, age at time of lung function, surfactant usage, and geographical region of birth or residence (region).

In studies recruiting participants over a range of ages or years of birth, the midpoint was used. Because surfactant use was not often reported, we assumed that those preterm-born participants born in 1990 or earlier did not receive routine surfactant and that surfactant use was gradually introduced for those born in 1993 or later. ¹³⁻¹⁶ Geographical region was defined from the region of birth or residence or the geographical location of the majority of authors if no such information was stated. Given the several favorable outcomes from the Scandinavian countries for several perinatal conditions, Europe was classified into western Europe, eastern Europe, and Scandinavia to enable geographical comparison between the different regions, with Scandinavia as the reference population.

Results

Study Selection

The current searches identified 16 856 titles and abstracts; after screening, 685 full articles were identified, and 86 met the inclusion criteria (eFigure 1 in the Supplement). Of these 86 articles, 504,12,17-65 were combined with the 36 studies from the previous systematic review, 66-102 resulting in 86 included studies representing 7094 preterm-born and 17700 termborn participants (eTables 4, 5, and 6 in the Supplement). Some studies were included in more than 1 analysis. Eighty-six studies compared all preterm-born participants (including some with BPD) with term controls. 4,12,17-100 Forty-five studies compared a preterm-born group who did not have BPD^{4,12,17,18,24,} 26,30,32,33,36,38,39,41,43,44,47,50-52,57,58,60,63-66,68,79,83-96,98-100 55 compared an all BPD group, 4, 12, 17, 18, 20, 24-26, 30-33, 36, 38, 39, $^{41\text{-}45,47,50\text{-}52,57,60,63\text{-}66,68,79\text{-}102}$ 29 with a BPD28 group $^{12,18,24\text{-}26,}$ 31, 32, 38, 41, 45, 47, 50, 80-85, 88, 91, 94, 96-102; and 26 with a BPD36 group. 4,17,20,26,30,36,39,41,43,45,51,57,60,63-66,68,79,86,87,89,90,92,

Study Characteristics

The characteristics of the studies included in the previous systematic review have already been reported. Included participants were born between 1961 and 2017. Gestation at birth ranged from 22 to 36 weeks and age from approximately 3 to 52 years for the preterm-born participants. The rates of ventilation and reported surfactant administration varied widely (eTables 4, 5, and 6 in the Supplement).

Risk of Bias Across Studies and Publication Bias

The mean quality scores for the 86 studies was 13.5 and ranged from 6 to 19 (eTables 4, 5, and 6 in the Supplement). Many studies did not provide description for some domains, so computing a score for potential risk of bias was not possible for these domains. Publication bias was investigated and only observed in the all preterm-born group (eFigure 6 in the Supplement).

Synthesis of Results

The comparisons between the preterm- and term-born groups are shown in Figure 1; eFigures 2, 3, and 4 in the Supplement; and Table 1. A mean difference for %FEV₁ of -9.2% (95% CI, -10.4% to -8.0%) was noted when all preterm-born participants, including those with BPD, were compared with termborn controls (eFigure 2 in the Supplement). The comparison between the preterm-born group without BPD and the termborn group showed a mean difference of -5.8% (95% CI, -7.1% to -4.5%) in %FEV₁ (eFigure 3 in the Supplement). The comparisons between the BPD and term-born groups showed greater but largely similar mean differences in %FEV₁ of -15.9% (95% CI, -17.6% to -14.2%), -16.0% (95% CI, -18.7% to -13.3%), and -16.1% (95% CI, -17.9% to -14.4%) for the all BPD (eFigure 4 in the Supplement), BPD28 (Figure 1A), and the BPD36 groups (Figure 1B), respectively. All differences between the preterm and term control groups were statistically significant (all P < .001).

Figure 1. Percentage Predicted Forced Expiratory Volume in 1 Second (%FEV₁) for All Preterm-Born Participants With Bronchopulmonary Dysplasia Defined as Supplemental Oxygen Dependency at Age 28 Days (BPD28) and 36 Weeks' Postmenstrual Age (BPD36) Compared With Term-Born Control Group

BP		PD28		Term born			Weight.	Mean difference in	
Source	Mean	SD	Total	Mean	SD	Total	weight, %	%FEV ₁ (95% CI)	
Abreu et al, 99 2007	99	12	13	102	15	17	3.0	-3.00 (-12.66 to 6.66)	
Ahrens et al, 102 1991	77.11	12.42	19	78	20	9	2.1	-0.89 (-15.10 to 13.32)	
Bader et al,82 1987	73	19	10	93	11.3	8	2.1	-20.00 (-34.14 to -5.86)	
Baraldi et al, ⁹¹ 2005	77.8	12.8	31	100.1	12.8	31	3.9	-22.30 (-28.67 to -15.93)	
Barker et al,98 2003	90	14	13	106	11	13	3.0	-16.00 (-25.68 to -6.32)	
Bozzetto et al, ³¹ 2016	76.6	16.5	27	108.2	10.6	27	3.6	-31.60 (-39.00 to -24.20)	
Cazzato et al, ³² 2012	83.98	9.1	22	102.17	10.51	46	4.3	-18.19 (-23.06 to -13.32)	
de Kleine et al, ⁸⁴ 1990	73	17	11	95	12	39	2.8	-22.00 (-32.73 to -11.27)	
Doyle et al, 83 2001	88.5	18.2	39	104.6	13.2	39	3.7	-16.10 (-23.16 to -9.04)	
Gough et al, 38 2014	81.89	15.9	56	101.16	11.4	55	4.2	-19.27 (-24.41 to -14.13)	
Hakulinen et al,85 1996	87.5	11.24	20	101.25	8.3	20	4.0	-13.75 (-19.87 to -7.63)	
Karila et al,81 2008	79.1	19.3	20	106.3	11.3	18	3.0	-27.20 (-37.14 to -17.26)	
Kennedy et al,88 2000	78.4	17	26	102.1	10.2	82	3.8	-23.70 (-30.60 to -16.80)	
Mitchell and Teague, 96 1998	78	21	10	91	14	10	1.9	-13.00 (-28.64 to 2.64)	
Molgat-Seon et al, 50 2019	82	4	25	103	2	20	4.9	-21.00 (-22.80 to -19.20)	
Narayanan et al, ⁴⁷ 2013	94.07	11.56	18	101.82	10.74	61	4.0	-7.75 (-13.73 to -1.77)	
Nordlund et al, 45 2017	84.7	10.7	13	84.1	10.9	30	3.7	0.60 (-6.40 to 7.60)	
Northway et al,80 1990	74.8	14.5	25	100.4	10.9	53	3.9	-25.60 (-32.00 to -19.20)	
Pianosi and Fisk,94 2000	86	14	17	90	8	15	3.5	-4.00 (-11.79 to 3.79)	
Ronkainen et al, ⁴¹ 2015b	85.2	10	30	94.9	10.1	88	4.5	-9.70 (-3.85 to -5.55)	
Santuz et al, 101 1995	83	13	12	100	8	16	3.4	-17.00 (-25.33 to -8.67)	
Simpson et al, 103 2017	87.62	12.85	79	100.53	10.62	48	4.5	-12.91 (-17.04 to -8.78)	
Sørenson et al, 18 2018	87.5	13.91	42	102.76	12.38	38	4.1	-15.26 (-21.02 to -9.50)	
Um-Bergström et al, ²⁴ 2019	89.8	13.88	26	107.57	11.35	24	3.7	-17.77 (-24.78 to -10.76)	
Vardar-Yagli et al, ²⁵ 2015	78	21.2	18	98	11.7	20	2.7	-20.00 (-31.05 to -8.95)	
Vollsaeter et al, ²⁶ 2013a	91.26	8.19	14	99.43	8.74	35	4.2	-8.17 (-13.35 to -2.99)	
Vollsaeter et al, ²⁶ 2013d	85.51	14.79	24	102.64	15.08	46	3.6	-17.13 (-24.48 to -9.78)	
Vrijlandt et al, ⁹⁷ 2006	90.1	19.8	8	109.6	13.4	48	2.1	-19.50 (-33.73 to -5.27)	
Wheeler at al, 100 1984	82	20	11	104	16	11	1.9	-22.00 (-37.14 to -6.86)	
Total (95% CI)			679			967	100	-15.97 (-18.66 to -13.28)	

Heterogeneity: τ^2 = 37.72; χ^2 = 139.81, df = 28 (P<.001); I^2 = 80% Test for overall effect: z = 11.64 (P<.001)

BPD36

B Preterm-born infants with BPD36 compared with term control group

_		BPD36		Term born			Weight,	Mean difference in	
Source	Mean	SD	Total	Mean	SD	Total	%	%FEV ₁ (95% CI)	
Arigliana et al, ⁵⁷ 2020	86.21	10.04	17	103.11	9.8	60	4.5	-16.90 (-22.28 to -11.52)	
Doyle et al, ⁷⁹ 2006	81.1	13.7	89	97.9	11.8	208	6.2	-16.80 (-20.07 to -13.53)	
Durlak et al, ⁶⁴ 2021	86.56	13.2	6	100.76	10.04	30	1.9	-14.20 (-25.36 to -3.04)	
Fawke et al, ⁹² 2010	80	13	129	100	12	161	6.5	-20.00 (-22.91 to -17.09)	
Di Filippo et al, ⁶⁵ 2021	101.23	3 12.97	5	108.28	10.62	55	1.7	-7.05 (-18.76 to 4.66)	
Fortuna et al, ³⁶ 2016	85.2	12.9	28	105.8	9.6	27	4.1	-20.60 (-26.60 to -14.60)	
Giacoia et al, ⁶⁸ 1997	72.7	21.13	12	97.2	15.93	12	1.2	-24.50 (-39.47 to -9.53)	
Gross et al, ⁶⁶ 1998	83	17	43	97	12	108	4.4	-14.00 (-19.56 to -8.44)	
Hacking et al, ⁶⁰ 2013	86.09	14.73	56	102.5	15.4	149	5.1	-16.41 (-20.99 to -11.83)	
Hadchouel et al, ³⁹ 2018	83.63	14.14	49	98.89	11.8	44	4.6	-15.26 (-20.54 to -9.98)	
Jacob et al, 86,87 1998, 1997	63.6	20.6	15	94.3	8.3	13	1.8	-30.70 (-42.06 to -19.34)	
Joshi et al, ⁶³ 2013	81.9	12.62	29	97.5	11.78	30	3.9	-15.60 (-21.83 to -9.37)	
Kilbride et al,89 2003	72	15	16	91	9	25	2.9	-19.00 (-27.15 to -10.85)	
Korhonen et al, ⁹⁰ 2004	82	13	10	99	11	34	2.6	-17.00 (-25.87 to -8.13)	
MacLean et al, ⁵¹ 2016	89.26	16.02	47	101.12	11.91	64	4.5	-11.86 (-17.29 to -6.43)	
Mieskonen et al,93 2002	73.5	12	9	101.7	8.4	14	2.5	-28.20 (-37.19 to -19.21)	
Nordlund et al, 45 2017	70.94	8.28	17	84.1	10.9	30	4.4	-13.16 (-18.70 to -7.62)	
Palta et al, 95 2007	78	13	59	97	12	360	6.0	-19.00 (-22.54 to -15.46)	
Praprotnik et al,43 2015	75.3	10.7	23	91.1	9.5	33	4.5	-15.80 (-21.24 to -10.36)	
Ronkainen et al, ⁴¹ 2015c	82.9	13.7	19	94.9	10.1	88	3.8	-12.00 (-18.51 to -5.49)	
Ruf et al, ¹⁷ 2019	83	22	9	105	8	15	1.2	-22.00 (-36.93 to -7.07)	
Thunqvist et al, ²⁰ 2018	91.28	14.39	82	104.87	11.8	98	5.7	-13.59 (-17.48 to -9.70)	
Vollsaeter et al, ²⁶ 2013	83.51	8	12	99.43	8.74	35	4.5	-15.92 (-21.29 to -10.55)	
Vollsaeter et al, ²⁶ 2013e	84.1	14.04	13	102.64	15.08	46	2.6	-18.54 (-27.33 to -9.75)	
Vollsaeter et al, ²⁶ 2015	91.49	11.58	31	96.42	11.67	54	4.7	-4.93 (-10.06 to 0.20)	
Yang et al, 30 2020	84.33	16.61	46	98.53	13.79	100	4.4	-14.20 (-19.71 to -8.69)	
Total (95% CI)			871			1893	100	-16.13 (-17.886 to -14.39	
Heterogeneity: $\tau^2 = 9.87 \cdot v^2 =$	56 N2 d	f-25 (F	2 nn1	1. 12 - 559	_				

Term born

Heterogeneity: $\tau^2 = 9.87$; $\chi^2 = 56.08$, df = 25 (P < .001); $I^2 = 55\%$ Test for overall effect: z = 18.20 (P < .001)

BPD28 term born -50 -25 50 Mean difference in %FEV₁ (95% CI)

Favors

Favors

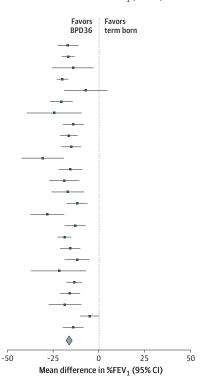


Table 1. Results of Meta-analyses of %FEV, of the Different Preterm-Born Groups Compared With a Term-Born Control Group

Group compared with term-born participants	No. of studies	No. of preterm-born participants	No. of term-born participants	Mean difference, % (95% CI)	P value	l ^{2a}
All preterm-born participants	86	7094	17 700	-9.2 (-10.4 to -8.0)	<.001	87
Preterm-born, no BPD	45	2133	2562	-5.8 (-7.1 to -4.5)	<.001	66
Preterm-born, BPD	55	1736	2827	-15.9 (-17.6 to -14.2)	<.001	76
Preterm-born, BPD28	29	679	967	-16.0 (-18.7 to -13.3)	<.001	80
Preterm-born, BPD36	26	871	1893	-16.1 (-17.9 to -14.4)	<.001	55

Abbreviations: BPD, bronchopulmonary dysplasia; BPD28, BPD defined as supplemental oxygen dependency at 28 days of age; BPD36, BPD defined as supplemental oxygen dependency at 36 weeks' postmenstrual age; %FEV₁,

percentage predicted forced expiratory volume in 1 second.

Additional Analysis

Year of Birth

There was a statistically significant decrease in the difference for mean %FEV₁ between the preterm- and term-born groups for the all preterm and the 3 BPD groups. However, this was not the case for the preterm-born group without BPD as year of birth increased (**Figure 2**).

Age at Time of Lung Function Testing

Age at time of spirometry did not have a significant association with the difference between the preterm- and term-born groups in mean $\%FEV_1$ for any of the groups (Figure 2). Although the mean difference between the BPD28 and termborn groups appeared to be associated with an increase, albeit not a statistically significant one, $\%FEV_1$ increased with age for the term-born group, and $\%FEV_1$ in the BPD28 group did not decline with age (eFigure 5 in the Supplement).

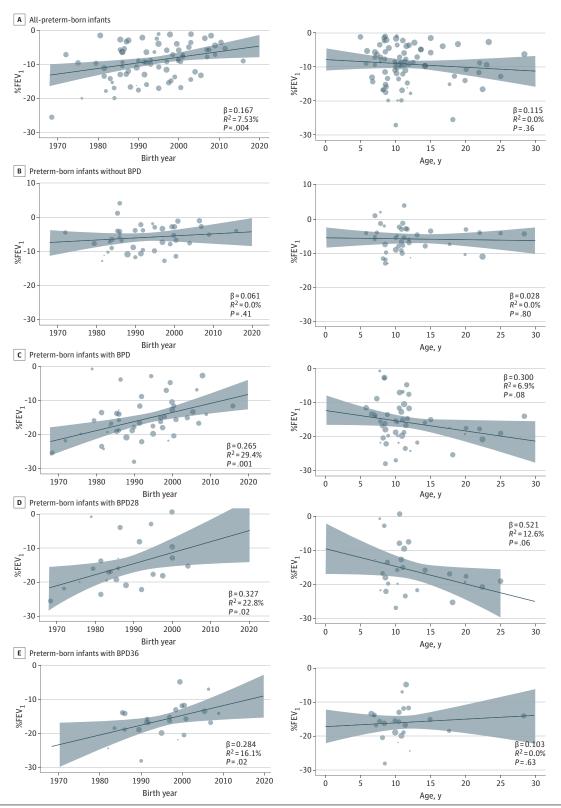
Surfactant Usage

Surfactant usage, taken with several other improvements in managing sick newborn preterm infants over time, resulted in improvements in the difference between the preterm- and term-born groups for mean %FEV₁ for the all BPD, BPD28, and BPD36 groups but not for all-preterm group or for the pretermborn group without BPD (**Table 2** and eTable 1 in the Supplement). These results should be treated with caution because surfactant usage was defined crudely as being introduced in or after 1993 and not being generally available before or in 1990.

Geographical Region of Birth or Residence

For preterm-born participants without BPD, similar degrees of differences were seen between the preterm-born and termborn groups for all geographical regions, with the largest differences observed by the Australasian studies and smallest by the 1 South American study (Table 3). Because Scandinavia has the lowest morbidity for many perinatal conditions, we compared western Europe, North America, and Australasia with Scandinavia as the reference region (since sufficient numbers of participants were available for study). There were no statistical differences for the preterm without BPD group between these geographical regions (eTables 2 and 3 in the Supplement). For the preterm with BPD (both BPD28 and BPD36) group, the difference between the preterm and term groups ranged from -3% for the 1 South American study and -18.1% for North America (Table 3). When North America, west-

ern Europe, and Australasia were compared with Scandinavia as the reference region, differences for %FEV₁ between the preterm group with BPD and term group were -5.5% (95% CI, -10.7 to -0.3; P=.04) for North America, -4.1% (95% CI, -8.8 to 0.5; P=.08) for western Europe, and -3.9 (95% CI, -9.8 to 2.1; P=.20) for Australasia.


Discussion

The current systematic review extends the previous review¹ by including a larger body of evidence relevant to the contemporary neonatal era and addresses several questions that were not previously possible to address. The preterm group had deficits of %FEV¹ of -9.2% while those without BPD had deficits of -5.8% and those with BPD had deficits of approximately -16% regardless of whether they had BPD28 or BPD36. Over the last 3 decades, %FEV¹ values have improved; we speculate that part of these improvements followed the introduction of surfactant in the early 1990s. There did not appear to be a change in %FEV¹ in childhood or in young adulthood. Further, we noted that when compared with data from the Scandinavian countries, %FEV¹ decrements were greater in studies from North America and western Europe, which have similar levels of economic development.

Overall, in the preterm group, %FEV₁ was decreased by -9.2%, from which -5.8% can possibly be attributed to preterm-born participants without BPD and approximately -16% to the BPD group, regardless of the definition used to report BPD. For the preterm-born group without BPD, there was no change over time, measured by year of birth. This is to be expected because the majority of infants born at more than 32 weeks' gestation do not require such medical interventions as mechanical ventilation and supplemental oxygen. Thus, the degree of difference between the term and preterm populations is likely to remain static over time as improvements in health due to socioeconomic factors, nutrition, antenatal medical care, etc, will benefit both populations, with the relative difference likely to remain largely unchanged. In contrast, medical interventions are likely to be common in the BPD group with the prevailing interventions likely to affect lung function outcomes. Regardless of definition of BPD, %FEV1 appears to have improved significantly over time (Figure 2). One factor that may explain this improvement is the introduction of exogeneous surfactant treatment in the early 1990s.

^a All P values for heterogeneity test results were <.001.

 $Figure \ 2. \ Differences in Percentage \ Predicted \ Forced \ Expiratory \ Volume \ in \ 1 Second \ (\% FEV_1) \ Between \ Preterm-Born \ Groups \ and \ Term-Born \ Control \ Groups \ by \ Birth \ Year \ and \ Age$

BPD indicates bronchopulmonary dysplasia; BPD28, BPD defined as supplemental oxygen dependency at 28 days of age; BPD36, BPD defined as supplemental oxygen dependency at 36 weeks' postmenstrual age.

Table 2. Difference in FEV₁ Between Preterm-Born and Term-Born Groups Modeled on Surfactant (\leq 1990 vs \geq 1993)

Group compared with term-born participants	No. of studies	β (95% CI)	P value
All preterm-born participants	70	2.638 (0.204 to 5.073)	.03
Preterm-born, no BPD	37	0.813 (-1.774 to 3.400)	.54
Preterm-born, BPD	45	4.907 (1.611 to 8.204)	.004
Preterm-born, BPD28	22	5.864 (0.257 to 11.472)	.04
Preterm-born, BPD36	22	4.775 (0.373 to 9.178)	.04

Abbreviations: BPD, bronchopulmonary dysplasia; BPD28, BPD defined as supplemental oxygen dependency at 28 days of age; BPD36, BPD defined as supplemental oxygen dependency at 36 weeks' postmenstrual age; %FEV₁, percentage predicted forced expiratory volume in 1 second.

Table 3. %FEV₁ by Geographical Region for Preterm-Born Population With and Without BPD Compared With Term-Born Control Group

	No. of	No. of	No. of term-born			Heterogeneity	
	studies	preterm-born participants	participants	Mean difference (95% CI)	P value	l ²	P value
Preterm without BPD							
Europe	26	924	1162	-5.5 (-6.9 to -4.0)	<.001	30	.07
Western Europe	15	658	723	-6.5 (-8.4 to -4.6)	<.001	31	.12
Eastern Europe	2	55	63	-2.59 (-6.7 to 1.5)	.22	0	.38
Scandinavia	8	168	314	-5.0 (-7.1 to -2.8)	<.001	0	.45
North America	11	488	728	-5.5 (-8.6 to -2.4)	<.001	80	<.001
South America	1	10	17	-2.0 (-13.2 to 9.2)	.73	NA	NA
Asia	1	30	29	-4.1 (-11.0 to 2.8)	.24	NA	NA
Australasia	6	681	626	-6.9 (-9.4 to -4.4)	<.001	67	.01
Preterm with BPD							
Europe	33	994	1401	-15.4 (-17.7 to -13.1)	<.001	77	<.001
Western Europe	21	626	895	-16.8 (-19.9 to -13.7)	<.001	78	<.001
Eastern Europe	2	29	63	-15.5 (-20.4 to -10.6)	<.001	0	<.001
Scandinavia	10	339	443	-12.4 (-15.6 to -9.2)	<.001	68	.001
North America	13	321	734	-18.1 (-21.3 to -14.9)	<.001	68	<.001
South America	1	13	17	-3.00 (-12.7 to 6.6)	.54	NA	NA
Asia	1	55	29	-11.7 (17.8 to -5.7)	<.001	NA	NA
Australasia	6	335	626	-16.2 (-18.7 to -13.7)	<.001	34	.18

 $Abbreviations: BPD, bronchopul monary \ dysplasia; \% FEV_1, percentage \ predicted \ forced \ expiratory \ volume \ in 1 second; \ NA, \ not \ applicable.$

Therefore, we compared those born before or in the year 1990 with those born in and after 1993, assuming most infants born thereafter will be treated with surfactant initially as rescue therapy and then prophylactically in more recent cohorts. In addition to surfactant treatment, which increased gradually throughout the 1990s, other contributions to improvements in neonatal care include the routine use of antenatal maternal corticosteroid administration from the mid 1990s, improved nutrition, gentler ventilation techniques, and permissive hypercarbia; decreased maternal smoking due to antismoking legislature will also have contributed to these improvements.

It is interesting to note that the deficits in %FEV₁ were similar between the BPD28 and BPD36 groups. The former group will have included participants with both mild and moderate/severe BPD while the latter will have included only those with moderate/severe BPD. Because we were unable to separate the severity of BPD in the majority of publications, we were not able to separately report on participants with mild or moderate/severe BPD. Increasingly, it is recognized that BPD is a poor predictor of low lung function in childhood, and it has also recently been reported that gestation and intrauterine growth

restriction are better associated with low lung function in child-hood than BPD in fully adjusted models.⁶²

For all the groups we studied, there did not appear to be any change in %FEV₁ with increasing age, in childhood or young adulthood, except for the all BPD and BPD28 populations. This latter observation can be explained by the increasing %FEV₁ in the term-born control group over time rather than any changes in the preterm-born population (eFigure 5 in the Supplement). When this anomaly of increasing %FEV₁ over time in the term population is taken into account, it appears that the preterm group with BPD28 probably does not change with increasing age. This is an important observation as there is concern that there may be some deterioration in lung function with increasing age, 103,104 although several other longitudinal publications do not report any deterioration but support the concept of "lung tracking." 26,105 Nevertheless, adequately powered longitudinal studies of lung function for this population from infancy are necessary to delineate this observation further.

There is limited information on how regional differences in health care are associated with BPD outcomes, so we compared data from similarly economically developed geographical regions. For the preterm population without BPD, the findings for %FEV₁ deficits when compared with the term population were largely similar between the regions when Scandinavia was used as the reference population. However, for the group of all participants with BPD, there were differences between the Scandinavian population and those in North America (-5.5%; 95% CI, -10.7 to -0.3; P = .04) and western Europe (-4.1%; 95% CI, -8.8 to 0.5; P = .08) but not those in Australasia (-3.9; 95% CI, -9.8 to 2.1; P = .20). We choose Scandinavia as the reference population because it has superior outcomes for several perinatal conditions, including stillbirth and neonatal mortality,106 when compared with populations from similarly economically developed countries. It is unknown whether these differences are due to genetic or environmental factors, but clearly understanding and investigating potential environmental factors, especially differences in clinical care of babies at risk of BPD, may reveal areas of global improvement.

As expected, publication bias was observed for the all preterm-born group, which was a disparate group. It was not observed in any of the other groups we studied. There was a range of quality scores with some studies having low scores. This can partially be explained by the lack of information available to enable us to fully score the quality in several articles.

Strengths and Limitations

There are several strengths and weaknesses. We have identified the largest group of participants thus far studied, including 7094 preterm-born and 17700 term-born participants. We were not able to include a significant number of studies because they did not include a term-born reference population. The deterioration in %FEV $_1$ in the BPD28 group was likely due to increases in %FEV $_1$ for the term-born reference popula-

tion, clearly demonstrating why a local term-born population should be included to reflect local socioeconomic, health, and genetic factors. We were limited by the information reported; we especially wanted to report outcomes for late preterm infants but were unable to do so, representing a deviation from our original protocol. Data from 1 excellent study was included in the main analysis but not in the additional analyses (associations between year of birth, age of participants, surfactant usage, and region) because the participants studied were born well before BPD was described and the age of the population would have skewed the analyses. We focused only on FEV₁ as it is more reliable and reproducible lot than the other spirometry measures. Importantly, it is associated not only with lung health but also with cardiovascular outcomes and all-cause mortality. 108,109

Conclusions

This comprehensive systematic review, which has collated $\% FEV_1$ data from a large number of preterm- and term-born participants, noted deficits in $\% FEV_1$ for preterm-born participants when compared with term-born participants. Decrements were larger for the preterm-born participants who had BPD. Improvements in $\% FEV_1$ were noted over time, especially for the BPD groups, possibly due to the introduction of surfactant and improvement in early-life therapies. Differences were also observed for $\% FEV_1$ when geographical areas were compared with Scandinavian countries. These results emphasize the importance of being aware of the potential deficits 11 when treating preterm-born survivors and of finding suitable treatments for the deficits observed in $\% FEV_1$.

ARTICLE INFORMATION

Accepted for Publication: April 13, 2022.

Published Online: June 27, 2022. doi:10.1001/jamapediatrics.2022.1990

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2022 Kotecha SJ et al. *JAMA Pediatrics*.

Author Contributions: Dr S. Kotecha had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: S. J. Kotecha, Gibbons, Simpson, S. Kotecha.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: S. J. Kotecha, Gibbons, S. Kotecha.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: S. J. Kotecha, Course, Watkins, S. Kotecha.

Administrative, technical, or material support: Gibbons, Simpson, S. Kotecha. Supervision: Simpson, S. Kotecha.

Conflict of Interest Disclosures: Dr Simpson reported grants from Australian National Health and Medical Research Council, European Respiratory Society, and Western Australian Child Health Research Fund outside the submitted work. Dr S. Kotecha reported grants from the Medical Research Council (MR/MO22552/1) during the conduct of the study and grants from Health Technology Assessment program of the National Institute for Health and Care Research and Aspire Pharma outside the submitted work. No other disclosures were reported.

Additional Contributions: We thank the following authors of identified publications who supplied unpublished data. For Turner et al, 23 we thank Stephen Turner, University of Aberdeen, Scotland. For Devakumar et al,³⁴ we thank Delanjathan Devakumar, University College London (UCL), London, England, who supplied data; the principal investigators of the trial were David Osrin, UCL; Dharma S. Manandhar, Mother and Infant Research Activities: and Anthony Costello, UCL, For Konefał et al, ^{55,78} we thank Beata Czeszyńska, Department of Neonatology, Pomeranian Medical University, Szczecin, Poland. For Bui et al, 61 we thank D.S. Bui and S.C. Dharmage, University of Melbourne, Melbourne, Australia. No compensation was received for their contributions.

REFERENCES

1. Kotecha SJ, Edwards MO, Watkins WJ, et al. Effect of preterm birth on later FEV1: a systematic

review and meta-analysis. *Thorax*. 2013;68(8): 760-766. doi:10.1136/thoraxjnl-2012-203079

- 2. Doyle LW, Adams AM, Robertson C, et al; Victorian Infant Collaborative Study Group. Increasing airway obstruction from 8 to 18 years in extremely preterm/low-birthweight survivors born in the surfactant era. *Thorax*. 2017;72(8):712-719. doi:10.1136/thoraxinl-2016-208524
- **3**. Simpson SJ, Hall GL, Wilson AC. Lung function following very preterm birth in the era of 'new' bronchopulmonary dysplasia. *Respirology*. 2015;20 (4):535-540. doi:10.1111/resp.12503
- 4. Vollsæter M, Skromme K, Satrell E, et al. Children born preterm at the turn of the millennium had better lung function than children born similarly preterm in the early 1990s. *PLoS One*. 2015;10(12):e0144243. doi:10.1371/journal.pone.
- **5.** Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372 (71):n71. doi:10.1136/bmj.n71
- **6**. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap): a metadata-driven methodology and workflow process for providing translational research informatics support. *J Biomed Inform*. 2009;42(2):377-381. doi:10.1016/j.jbi.2008.08.010

- 7. Harris PA, Taylor R, Minor BL, et al; REDCap Consortium. The REDCap consortium: building an international community of software platform partners. *J Biomed Inform*. 2019;95:103208. doi:10. 1016/j.jbi.2019.103208
- **8**. Viechtbauer W. Conducting meta-analyses in R with the metafor package. *J Stat Software*. 2010;36 (3):1-48.
- **9**. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. *BMC Med Res Methodol*. 2014;14:135. doi:10. 1186/1471-2288-14-135
- 10. Boyd A, Thomas R, Hansell AL, et al. Data resource profile: the ALSPAC birth cohort as a platform to study the relationship of environment and health and social factors. *Int J Epidemiol*. 2019; 48(4):1038-1039k. doi:10.1093/ije/dyz063
- 11. Goulden N, Cousins M, Hart K, et al. Inhaled corticosteroids alone and in combination with long-acting β -2 receptor agonists to treat reduced lung function in preterm-born children: a randomized clinical trial. *JAMA Pediatr.* 2022;176 (2):133-141. doi:10.1001/jamapediatrics.2021.5111
- 12. Simpson SJ, Logie KM, O'Dea CA, et al. Altered lung structure and function in mid-childhood survivors of very preterm birth. *Thorax*. 2017;72(8): 702-711. doi:10.1136/thoraxjnl-2016-208985
- 13. Phibbs RH, Ballard RA, Clements JA, et al. Initial clinical trial of EXOSURF, a protein-free synthetic surfactant, for the prophylaxis and early treatment of hyaline membrane disease. *Pediatrics*. 1991;88 (1):1-9.
- **14.** Early versus delayed neonatal administration of a synthetic surfactant--the judgment of OSIRIS: the OSIRIS Collaborative Group (open study of infants at high risk of or with respiratory insufficiency: the role of surfactant). *Lancet*. 1992;340(8832): 1363-1369. doi:10.1016/0140-6736(92)92557-V
- **15.** Collaborative European Multicenter Study Group. Surfactant replacement therapy for severe neonatal respiratory distress syndrome: an international randomized clinical trial. *Pediatrics*. 1988;82(5):683-691. doi:10.1542/peds.82.5.683
- **16.** Egberts J, de Winter JP, Sedin G, et al. Comparison of prophylaxis and rescue treatment with Curosurf in neonates less than 30 weeks' gestation: a randomized trial. *Pediatrics*. 1993;92 (6):768-774. doi:10.1542/peds.92.6.768
- 17. Ruf K, Thomas W, Brunner M, Speer CP, Hebestreit H. Diverging effects of premature birth and bronchopulmonary dysplasia on exercise capacity and physical activity: a case control study. Respir Res. 2019;20(1):260. doi:10.1186/s12931-019-1238-0
- **18**. Sørensen JK, Buchvald F, Berg AK, Robinson PD, Nielsen KG. Ventilation inhomogeneity and NO and CO diffusing capacity in ex-premature school children. *Respir Med*. 2018;140:94-100. doi:10.1016/j.rmed. 2018.06.006
- **19**. Teig N, Allali M, Rieger C, Hamelmann E. Inflammatory markers in induced sputum of school children born before 32 completed weeks of gestation. *J Pediatr*. 2012;161(6):1085-1090. doi:10.1016/j.jpeds.2012.06.007
- **20**. Thunqvist P, Tufvesson E, Bjermer L, et al. Lung function after extremely preterm birth: a population-based cohort study (EXPRESS).

- Pediatr Pulmonol. 2018;53(1):64-72. doi:10.1002/ppul.23919
- 21. Thunqvist P, Gustafsson PM, Schultz ES, et al. Lung function at 8 and 16 years after moderate-to-late preterm birth: a prospective cohort study. *Pediatrics*. 2016;137(4):e20152056. doi:10.1542/peds.2015-2056
- 22. Tukova J, Smisek J, Zlatohlavkova B, Plavka R, Markova D. Early inhaled budesonide in extremely preterm infants decreases long-term respiratory morbidity. *Pediatr Pulmonol*. 2020;55(5):1124-1130. doi:10.1002/ppul.24704
- 23. Turner S, Prabhu N, Danielan P, et al. First- and second-trimester fetal size and asthma outcomes at age 10 years. *Am J Respir Crit Care Med*. 2011;184 (4):407-413. doi:10.1164/rccm.201012-2075OC
- 24. Um-Bergström P, Hallberg J, Pourbazargan M, et al. Pulmonary outcomes in adults with a history of bronchopulmonary dysplasia differ from patients with asthma. *Respir Res.* 2019;20(1):102. doi:10. 1186/s12931-019-1075-1
- **25.** Vardar-Yagli N, Inal-Ince D, Saglam M, et al. Pulmonary and extrapulmonary features in bronchopulmonary dysplasia: a comparison with healthy children. *J Phys Ther Sci.* 2015;27(6): 1761-1765. doi:10.1589/jpts.27.1761
- **26.** Vollsæter M, Røksund OD, Eide GE, Markestad T, Halvorsen T. Lung function after preterm birth: development from mid-childhood to adulthood. *Thorax*. 2013;68(8):767-776. doi:10. 1136/thoraxinl-2012-202980
- **27.** Vrijlandt EJLE, Reijneveld SA, Aris-Meijer JL, Bos AF. Respiratory health in adolescents born moderately-late preterm in a community-based cohort. *J Pediatr*. 2018;203:429-436. doi:10.1016/j.jpeds.2018.07.083
- **28**. Winck AD, Heinzmann-Filho JP, Schumann D, et al. Growth, lung function, and physical activity in schoolchildren who were very-low-birth-weight preterm infants. *J Bras Pneumol*. 2016;42(4): 254-260. doi:10.1590/s1806-37562015000000159
- 29. Yaacoby-Bianu K, Plonsky MT, Gur M, Bar-Yoseph R, Kugelman A, Bentur L. Effect of late preterm birth on lung clearance index and respiratory physiology in school-age children. *Pediatr Pulmonol*. 2019;54(8):1250-1256. doi:10. 1002/ppul.24357
- **30**. Yang J, Kingsford RA, Horwood J, et al. Lung function of adults born at very low birth weight. *Pediatrics*. 2020;145(2):e20192359. doi:10.1542/peds. 2019-2359
- **31**. Bozzetto S, Carraro S, Tomasi L, Berardi M, Zanconato S, Baraldi E. Health-related quality of life in adolescent survivors of bronchopulmonary dysplasia. *Respirology*. 2016;21(6):1113-1117. doi:10. 1111/resp.12811
- **32**. Cazzato S, Ridolfi L, Bernardi F, Faldella G, Bertelli L. Lung function outcome at school age in very low birth weight children. *Pediatr Pulmonol*. 2013;48(8):830-837. doi:10.1002/ppul.22676
- **33**. Chang HY, Chang JH, Chi H, et al. Reduced lung function at preschool age in survivors of very low birth weight preterm infants. *Front Pediatr*. 2020;8: 577673. doi:10.3389/fped.2020.577673
- **34.** Devakumar D, Stocks J, Ayres JG, et al. Effects of antenatal multiple micronutrient supplementation on lung function in mid-childhood: follow-up of a double-blind randomised controlled trial in Nepal. *Eur Respir J*.

- 2015;45(6):1566-1575. doi:10.1183/09031936. 00188914
- **35.** Flahault A, Paquette K, Fernandes RO, et al; HAPI collaborating group*. Increased incidence but lack of association between cardiovascular risk factors in adults born preterm. *Hypertension*. 2020; 75(3):796-805. doi:10.1161/HYPERTENSIONAHA. 119.14335
- **36**. Fortuna M, Carraro S, Temporin E, et al. Mid-childhood lung function in a cohort of children with "new bronchopulmonary dysplasia". *Pediatr Pulmonol*. 2016;51(10):1057-1064. doi:10.1002/ppul. 23422
- **37.** Gaffin JM, Hauptman M, Petty CR, et al. Differential effect of school-based pollution exposure in children with asthma born prematurely. *Chest.* 2020;158(4):1361-1363. doi:10.1016/j.chest. 2020.05.533
- **38**. Gough A, Linden M, Spence D, Patterson CC, Halliday HL, McGarvey LP. Impaired lung function and health status in adult survivors of bronchopulmonary dysplasia. *Eur Respir J.* 2014;43 (3):808-816. doi:10.1183/09031936.00039513
- **39.** Hadchouel A, Rousseau J, Rozé JC, et al; EPIPAGEADO study group. Association between asthma and lung function in adolescents born very preterm: results of the EPIPAGE cohort study. *Thorax*. 2018;73(12):1174-1176. doi:10.1136/thoraxjnl-2017-211115
- **40**. Hamon I, Varechova S, Vieux R, et al. Exercise-induced bronchoconstriction in school-age children born extremely preterm. *Pediatr Res*. 2013;73(4 pt 1):464-468. doi:10.1038/pr.2012.202
- 41. Ronkainen E, Dunder T, Peltoniemi O, Kaukola T, Marttila R, Hallman M. New BPD predicts lung function at school age: follow-up study and meta-analysis. *Pediatr Pulmonol*. 2015;50(11): 1090-1098. doi:10.1002/ppul.23153
- **42**. Prenzel F, Vogel M, Siekmeyer W, Körner A, Kiess W, Vom Hove M. Exercise capacity in children with bronchopulmonary dysplasia at school age. *Respir Med*. 2020;171:106102. doi:10.1016/j.rmed. 2020;106102
- **43**. Praprotnik M, Stucin Gantar I, Lučovnik M, Avčin T, Krivec U. Respiratory morbidity, lung function and fitness assessment after bronchopulmonary dysplasia. *J Perinatol*. 2015;35 (12):1037-1042. doi:10.1038/jp.2015.124
- **44.** Panagiotounakou P, Sokou R, Gounari E, et al. Very preterm neonates receiving "aggressive" nutrition and early nCPAP had similar long-term respiratory outcomes as term neonates. *Pediatr Res.* 2019;86(6):742-748.
- doi:10.1038/s41390-019-0514-5
- **45**. Nordlund B, James A, Ebersjö C, Hedlin G, Broström EB. Differences and similarities between bronchopulmonary dysplasia and asthma in schoolchildren. *Pediatr Pulmonol*. 2017;52(9): 1179-1186. doi:10.1002/ppul.23741
- **46**. Näsänen-Gilmore P, Sipola-Leppänen M, Tikanmäki M, et al. Lung function in adults born preterm. *PLoS One*. 2018;13(10):e0205979. doi:10. 1371/journal.pone.0205979
- **47**. Narayanan M, Beardsmore CS, Owers-Bradley J, et al. Catch-up alveolarization in ex-preterm children: evidence from (3)He magnetic resonance. *Am J Respir Crit Care Med*. 2013;187(10):1104-1109. doi:10.1164/rccm.201210-1850OC

- **48**. Morsing E, Gustafsson P, Brodszki J. Lung function in children born after foetal growth restriction and very preterm birth. *Acta Paediatr*. 2012;101(1):48-54. doi:10.1111/j.1651-2227.2011.02435.x
- **49**. Morata-Alba J, Romero-Rubio MT, Castillo-Corullón S, Escribano-Montaner A. Respiratory morbidity, atopy and asthma at school age in preterm infants aged 32-35 weeks. *Eur J Pediatr*. 2019;178(7):973-982. doi:10.1007/s00431-
- **50**. Molgat-Seon Y, Dominelli PB, Peters CM, et al. Analysis of maximal expiratory flow-volume curves in adult survivors of preterm birth. *Am J Physiol Regul Integr Comp Physiol*. 2019;317(4):R588-R596. doi:10.1152/ajpregu.00114.2019
- **51.** MacLean JE, DeHaan K, Fuhr D, et al. Altered breathing mechanics and ventilatory response during exercise in children born extremely preterm. *Thorax*. 2016;71(11):1012-1019. doi:10.1136/thoraxjnl-2015-207736
- **52.** Landry JS, Tremblay GM, Li PZ, Wong C, Benedetti A, Taivassalo T. Lung function and bronchial hyperresponsiveness in adults born prematurely: a cohort study. *Ann Am Thorac Soc.* 2016;13(1):17-24. doi:10.1513/AnnalsATS.201508-5530C
- **53.** Kwinta P, Lis G, Klimek M, et al. The prevalence and risk factors of allergic and respiratory symptoms in a regional cohort of extremely low birth weight children (<1000 g). *Ital J Pediatr*. 2013; 39:4. doi:10.1186/1824-7288-39-4
- **54.** Kotecha SJ, Watkins WJ, Paranjothy S, Dunstan FD, Henderson AJ, Kotecha S. Effect of late preterm birth on longitudinal lung spirometry in school age children and adolescents. *Thorax*. 2012; 67(1):54-61. doi:10.1136/thoraxjnl-2011-200329
- **55.** Konefał H, Czeszyńska MB, Merritt TA. School-age spirometry in survivors of chronic lung disease of prematurity in the surfactant era. *Ginekol Pol.* 2013;84(4):286-292. doi:10.17772/gp/1578
- **56.** Kilbride H, Dinakar C, Carver T, et al. Pulmonary function, oxygen consumption, and exhaled nitric oxide measures for extremely low birth weight, heavier preterm, and term children. *J Investig Med*. 2012;60(1):239.
- **57.** Arigliani M, Valentini E, Stocco C, et al. Regional ventilation inhomogeneity in survivors of extremely preterm birth. *Pediatr Pulmonol*. 2020;55(6): 1366-1374. doi:10.1002/ppul.24742
- **58.** Vrijlandt E, Reijneveld S, Aris-Meijer J, Bos A. Few symptoms, almost normal lung function and good exercise capacity in adolescents born moderately preterm: findings from a community-based cohort. *Pediatr Pulmonol*. 2018; 53(suppl 1):5131-5132.
- **59**. Karnaushkina MA, Strutinskaya AD, Ovsyannikov DY. Prematurity and early childhood infection of lower respiratory tract as risk factors of developing chronic obstructive bronchopulmonary pathology in adults. *Sovrem Tekhnologii Med*. 2017;9(1):129-134. doi:10.17691/stm2017.9.1.17
- **60**. Hacking DF, Gibson AM, Robertson C, Doyle LW; Victorian Infant Collaborative Study Group (VICS). Respiratory function at age 8-9 after extremely low birthweight or preterm birth in Victoria in 1997. *Pediatr Pulmonol*. 2013;48(5): 449-455. doi:10.1002/ppul.22619

- **61**. Bui DS, Perret JL, Walters EH, et al. Association between very to moderate preterm births, lung function deficits, and COPD at age 53 years: analysis of a prospective cohort study. *Lancet Respir Med*. 2022;10(5):478-484. doi:10.1016/S2213-2600(21)00508-7
- **62**. Hart K, Cousins M, Watkins WJ, Kotecha SJ, Henderson AJ, Kotecha S. Association of early-life factors with prematurity-associated lung disease: prospective cohort study. *Eur Respir J.* 2022;59(5): 2101766. doi:10.1183/13993003.01766-2021
- **63**. Joshi S, Powell T, Watkins WJ, Drayton M, Williams EM, Kotecha S. Exercise-induced bronchoconstriction in school-aged children who had chronic lung disease in infancy. *J Pediatr*. 2013; 162(4):813-818.e1. doi:10.1016/j.jpeds.2012.09.040
- **64**. Durlak W, Klimek M, Wroński M, Trybulska A, Kwinta P. Multimodal longitudinal respiratory function assessment in very low birth weight 7-year-old children. *Adv Med Sci.* 2021;66(1):81-88. doi:10.1016/j.advms.2020.12.006
- **65**. Di Filippo P, Giannini C, Attanasi M, et al. Pulmonary outcomes in children born extremely and very preterm at 11 years of age. *Front Pediatr*. 2021;9:635503. doi:10.3389/fped.2021.635503
- **66**. Gross SJ, Iannuzzi DM, Kveselis DA, Anbar RD. Effect of preterm birth on pulmonary function at school age: a prospective controlled study. *J Pediatr*. 1998;133(2):188-192. doi:10.1016/S0022-3476(98) 70219-7
- **67**. Bertrand JM, Riley SP, Popkin J, Coates AL. The long-term pulmonary sequelae of prematurity: the role of familial airway hyperreactivity and the respiratory distress syndrome. *N Engl J Med*. 1985; 312(12):742-745. doi:10.1056/NEJM198503213121202
- **68**. Giacoia GP, Venkataraman PS, West-Wilson KI, Faulkner MJ. Follow-up of school-age children with bronchopulmonary dysplasia. *J Pediatr*. 1997;130 (3):400-408. doi:10.1016/S0022-3476(97)70231-2
- **69**. Siltanen M, Savilahti E, Pohjavuori M, Kajosaari M. Respiratory symptoms and lung function in relation to atopy in children born preterm. *Pediatr Pulmonol*. 2004;37(1):43-49. doi:10.1002/ppul.10402
- **70**. Smith LJ, van Asperen PP, McKay KO, Selvadurai H, Fitzgerald DA. Reduced exercise capacity in children born very preterm. *Pediatrics*. 2008;122(2):e287-e293. doi:10.1542/peds.2007-3657
- 71. von Mutius E, Nicolai T, Martinez FD. Prematurity as a risk factor for asthma in preadolescent children. *J Pediatr*. 1993;123(2): 223-229. doi:10.1016/S0022-3476(05)81692-0
- **72.** Odberg MD, Sommerfelt K, Markestad T, Elgen IB. Growth and somatic health until adulthood of low birthweight children. *Arch Dis Child Fetal Neonatal Ed.* 2010;95(3):F201-F205. doi:10.1136/adc.2009.160614
- **73.** Mai XM, Gäddlin PO, Nilsson L, et al. Asthma, lung function and allergy in 12-year-old children with very low birth weight: a prospective study. *Pediatr Allergy Immunol.* 2003;14(3):184-192. doi:10.1034/j.1399-3038.2003.00045.x
- **74.** Galdès-Sebaldt M, Sheller JR, Grogaard J, Stahlman M. Prematurity is associated with abnormal airway function in childhood. *Pediatr Pulmonol*. 1989;7(4):259-264. doi:10.1002/ppul. 1950070412

- **75.** Evensen KA, Steinshamn S, Tjønna AE, et al. Effects of preterm birth and fetal growth retardation on cardiovascular risk factors in young adulthood. *Early Hum Dev.* 2009;85(4):239-245. doi:10.1016/j.earlhumdev.2008.10.008
- **76.** Burns YR, Danks M, O'Callaghan MJ, et al. Motor coordination difficulties and physical fitness of extremely-low-birthweight children. *Dev Med Child Neurol.* 2009;51(2):136-142. doi:10.1111/j.1469-8749.2008.03118.x
- **77**. Anand D, Stevenson CJ, West CR, Pharoah PO. Lung function and respiratory health in adolescents of very low birth weight. *Arch Dis Child*. 2003;88 (2):135-138. doi:10.1136/adc.88.2.135
- **78.** Konefał H, Czeszyńska Maria B, Sardesai S, Durand M, Miazgowski T. Pulmonary function in school-aged children with mild to moderate infant respiratory distress syndrome requiring nasal continuous positive airway pressure. *Ginekol Pol.* 2010;81(10):768-773.
- **79**. Doyle LW; Victorian Infant Collaborative Study Group. Respiratory function at age 8-9 years in extremely low birthweight/very preterm children born in Victoria in 1991-1992. *Pediatr Pulmonol*. 2006;41(6):570-576. doi:10.1002/ppul.20412
- **80**. Northway WH Jr, Moss RB, Carlisle KB, et al. Late pulmonary sequelae of bronchopulmonary dysplasia. *N Engl J Med*. 1990;323(26):1793-1799. doi:10.1056/NEJM199012273232603
- **81.** Karila C, Saulnier JP, Elie C, et al. [Exercise alveolar hypoventilation in long-term survivors of bronchopulmonary dysplasia]. Article in French. *Rev Mal Respir.* 2008;25(3):303-312. doi:10.1016/S0761-8425(08)71549-3
- **82.** Bader D, Ramos AD, Lew CD, Platzker AC, Stabile MW, Keens TG. Childhood sequelae of infant lung disease: exercise and pulmonary function abnormalities after bronchopulmonary dysplasia. *J Pediatr*. 1987;110(5):693-699. doi:10.1016/S0022-3476(87)80004-5
- **83**. Doyle LW, Cheung MM, Ford GW, Olinsky A, Davis NM, Callanan C. Birth weight <1501 g and respiratory health at age 14. *Arch Dis Child*. 2001;84 (1):40-44. doi:10.1136/adc.84.1.40
- **84**. de Kleine MJ, Roos CM, Voorn WJ, Jansen HM, Koppe JG. Lung function 8-18 years after intermittent positive pressure ventilation for hyaline membrane disease. *Thorax*. 1990;45(12): 941-946. doi:10.1136/thx.45.12.941
- **85.** Hakulinen AL, Järvenpää AL, Turpeinen M, Sovijärvi A. Diffusing capacity of the lung in school-aged children born very preterm, with and without bronchopulmonary dysplasia. *Pediatr Pulmonol*. 1996;21(6):353-360. doi:10.1002/(SICI) 1099-0496(199606)21:6<353::AID-PPUL2>3.0. CO;2-M
- **86**. Jacob SV, Coates AL, Lands LC, et al. Long-term pulmonary sequelae of severe bronchopulmonary dysplasia. *J Pediatr*. 1998;133(2):193-200. doi:10. 1016/S0022-3476(98)70220-3
- **87**. Jacob SV, Lands LC, Coates AL, et al. Exercise ability in survivors of severe bronchopulmonary dysplasia. *Am J Respir Crit Care Med*. 1997;155(6): 1925-1929. doi:10.1164/ajrccm.155.6.9196097
- **88**. Kennedy JD, Edward LJ, Bates DJ, et al. Effects of birthweight and oxygen supplementation on lung function in late childhood in children of very low birth weight. *Pediatr Pulmonol*. 2000;30(1):

32-40. doi:10.1002/1099-0496(200007)30:1<32:: AID-PPUL6>3.0.CO:2-9

- **89.** Kilbride HW, Gelatt MC, Sabath RJ. Pulmonary function and exercise capacity for ELBW survivors in preadolescence: effect of neonatal chronic lung disease. *J Pediatr*. 2003;143(4):488-493. doi:10. 1067/S0022-3476(03)00413-X
- **90**. Korhonen P, Laitinen J, Hyödynmaa E, Tammela O. Respiratory outcome in school-aged, very-low-birth-weight children in the surfactant era. *Acta Paediatr*. 2004;93(3):316-321. doi:10.1111/j. 1651-2227.2004.tb02954.x
- **91.** Baraldi E, Bonetto G, Zacchello F, Filippone M. Low exhaled nitric oxide in school-age children with bronchopulmonary dysplasia and airflow limitation. *Am J Respir Crit Care Med*. 2005;171(1):68-72. doi:10.1164/rccm.200403-2980C
- **92.** Fawke J, Lum S, Kirkby J, et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. *Am J Respir Crit Care Med.* 2010;182(2):237-245. doi:10.1164/rccm.200912-1806OC
- **93**. Mieskonen ST, Malmberg LP, Kari MA, et al. Exhaled nitric oxide at school age in prematurely born infants with neonatal chronic lung disease. *Pediatr Pulmonol*. 2002;33(5):347-355. doi:10. 1002/ppul.10084
- **94.** Pianosi PT, Fisk M. High frequency ventilation trial: nine year follow up of lung function. *Early Hum Dev.* 2000;57(3):225-234. doi:10.1016/S0378-3782(00)00052-9
- **95**. Palta M, Sadek-Badawi M, Madden K, Green C. Pulmonary testing using peak flow meters of very low birth weight children born in the perisurfactant era and school controls at age 10 years. *Pediatr Pulmonol*. 2007;42(9):819-828. doi:10.1002/ppul.

- **96**. Mitchell SH, Teague WG. Reduced gas transfer at rest and during exercise in school-age survivors of bronchopulmonary dysplasia. *Am J Respir Crit Care Med*. 1998;157(5 pt 1):1406-1412. doi:10.1164/ajrccm.157.5.9605025
- **97.** Vrijlandt EJ, Gerritsen J, Boezen HM, Grevink RG, Duiverman EJ. Lung function and exercise capacity in young adults born prematurely. *Am J Respir Crit Care Med*. 2006;173(8):890-896. doi:10.1164/rccm.200507-1140OC
- **98**. Barker M, Merz U, Hertl MS, Heimann G. School-age lung function and exercise capacity in former very low birth weight infants. *Pediatr Exerc Sci.* 2003;15(1):44-55. doi:10.1123/pes.15.1.44
- **99**. Abreu LR, Costa-Rangel RCA, Gastaldi AC, et al. Cardio-respiratory capacity assessment in children with bronchopulmonary dysplasia. Article in English and Portuguese. *Rev Bras Fisioter*. 2007;11(2):95-100.
- **100**. Wheeler WB, Castile RG, Brown ER, et al. Pulmonary function in survivors of prematurity. *Am Rev Respir Dis.* 1984;129:a218.
- **101**. Santuz P, Baraldi E, Zaramella P, Filippone M, Zacchello F. Factors limiting exercise performance in long-term survivors of bronchopulmonary dysplasia. *Am J Respir Crit Care Med*. 1995;152(4 pt 1):1284-1289. doi:10.1164/ajrccm.152.4.7551383
- **102**. Ahrens P, Zielen S, Stöver B, von Loewenich V, Hofmann D. [Pulmonary sequelae of long-term ventilation of very low birth weight premature infants: results of a follow-up study of 6-to-9-year-old children]. Article in German. *Klin Padiatr*. 1991;203(5):366-371. doi:10.1055/s-2007-1025455
- **103**. Simpson SJ, Turkovic L, Wilson AC, et al. Lung function trajectories throughout childhood in

- survivors of very preterm birth: a longitudinal cohort study. *Lancet Child Adolesc Health*. 2018;2 (5):350-359. doi:10.1016/S2352-4642(18)30064-6
- **104.** Doyle LW, Irving L, Haikerwal A, Lee K, Ranganathan S, Cheong J. Airway obstruction in young adults born extremely preterm or extremely low birth weight in the postsurfactant era. *Thorax*. 2019;74(12):1147-1153. doi:10.1136/thoraxjnl-2019-213757
- **105.** Filippone M, Sartor M, Zacchello F, Baraldi E. Flow limitation in infants with bronchopulmonary dysplasia and respiratory function at school age. *Lancet*. 2003;361(9359):753-754. doi:10.1016/S0140-6736(03)12633-5
- **106.** Crump C, Sundquist J, Winkleby MA, Sundquist K. Gestational age at birth and mortality from infancy into mid-adulthood: a national cohort study. *Lancet Child Adolesc Health*. 2019;3(6): 408-417. doi:10.1016/S2352-4642(19)30108-7
- **107**. Loeb JS, Blower WC, Feldstein JF, Koch BA, Munlin AL, Hardie WD. Acceptability and repeatability of spirometry in children using updated ATS/ERS criteria. *Pediatr Pulmonol*. 2008; 43(10):1020-1024. doi:10.1002/ppul.20908
- **108**. Wan ES, Balte P, Schwartz JE, et al. Association between preserved ratio impaired spirometry and clinical outcomes in US adults. *JAMA*. 2021;326(22):2287-2298. doi:10.1001/jama. 2021.20939
- **109**. Marott JL, Ingebrigtsen TS, Çolak Y, Vestbo J, Lange P. Trajectory of preserved ratio impaired spirometry: natural history and long-term prognosis. *Am J Respir Crit Care Med*. 2021;204(8): 910-920. doi:10.1164/rccm.202102-0517OC