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Topological phase transitions of non-Abelian charged nodal lines in spring-mass systems
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Although a large class of topological materials has uniformly been identified using symmetry properties of
wave functions, the past two years have seen the rise of multigap topologies beyond this paradigm. Given recent
reports of unexplored features of such phases, platforms that are readily implementable to realize them are
therefore desirable. Here we demonstrate that multigap topological phase transitions of non-Abelian charged
nodal lines arise in classical phonon waves. By adopting a simple spring-mass system, we construct nodal
lines of a three-band system. The braiding process of the nodal lines is readily performed by adjusting the
spring constants. The generation and annihilation of the nodal lines are then analyzed using the Euler class.
Finally, we retrieve topological transitions from trivial nodal lines to a nodal link. Our work provides a simple
platform that can offer diverse insights to not only theoretical but also experimental studies on multigap
topology.
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I. INTRODUCTION

The uncovering of topological insulators has opened an
active field of physics [1,2], and the past decades have seen
rapid progress on these effective topological phases. Topo-
logical classifications have in particular profited from the
interplay with space-group symmetries [3–20]. Beyond these
works on single-gap topologies, recent studies on the multi-
gap conditions are, however, steadily rising [21,22]. The crux
of these developments is the insight that degeneracies in
a multigap system may carry non-Abelian charges [23–25]
and that braiding a degeneracy around another in a differ-
ent gap can hence render a system with similarly valued
charges between two bands [23,24,26–28]. Such braiding
and stability/instability of band degeneracies can then be
described using Euler class [24,25,27–30], an integer-valued
multigap topological invariant that is calculated over the Bril-
louin zone or a patch thereof in momentum space. That
is, a nonzero integer-valued Euler class indicates that the
band touchings in the patch are topologically obstructed to
annihilate. Multigap topologies have been predicted to culmi-
nate in new effects such as specific monopole-antimonopole
generation [30] that was recently observed in trapped ion
experiments [31], as well as signatures in structural phase
transitions [32,33], strained and magnetic electronic systems
[24,34], and phononic systems [27,28,35–37].

Given these new features of non-Abelian charged degen-
eracies and multigap topological physics, a simple, intuitive,
and easily tuneable but experimentally viable system is of
interest. A highlight candidate in this regard is classical
spring-mass systems [38–45]. Especially because if a spring-
mass system is constituted in three-dimensional real space, it
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may exhibit nodal line degeneracies that can have an intricate
interplay with non-Abelian charges [22,26]. A nodal line is a
set of degeneracies in a one-dimensional curved shape formed
in three-dimensional momentum space [46]. Various types of
nodal lines, e.g., nodal rings [47,48], nodal chains [49–54],
nodal links [51–60], and nodal knots [58,59,61], have al-
ready been reported using metals [23,49,57], semimetals
[51,52,56,59,61,62], electrical circuits [58], photonic media
[48,50,54,55,63–65], and phononic crystals [36,47,60,66,67].
In addition, the non-Abelian multigap charges, or frame
rotation charges [23,24,27,28], in three-band systems are
especially insightful and amount to quaternion numbers. Con-
sequently, if a simple phononic crystal having three bands
exhibits nodal lines, it acts as a good platform to observe
quaternion charges.

Here we predict phase transitions of multigap nodal lines
quantified by Euler class using a class of simple and eas-
ily realizable spring-mass systems. The non-Abelian charged
nodal lines are realized using phonon waves in a classical
spring-mass system [38–45,68–74]. A unit cell of our sys-
tem consists of only one mass and several springs, and the
system’s mechanical behavior is thus described by classical
mechanical equations of motion. Some springs concerning on-
site potentials [42–45,72–74] eliminate the degeneracy at the
� point and enable a three-band nodal link. This heuristically
amounts to removing the Nambu-Goldstone zero modes [37]
by having different on-site potential. By braiding one nodal
line around the other, we propose the principle of generating a
nodal link from a trivial state featuring nodal rings. The phase
transition is realized using the braiding process carried out
by tuning the spring constants. Subsequently, we apply Euler
class to characterize whether the nodal lines are topologically
stable or can be annihilated pairwise. We finally also discuss
the possible states and transitions of the nodal lines from the
Euler-class viewpoint.
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FIG. 1. A spring-mass phononic crystal. (a) Illustration of the
spring-mass system in an orthorhombic lattice system. The yellow
spheres have the mass m. The red and green are intersite springs that
connect the first and second nearest neighbors, respectively. Each
blue spring for the on-site potential connects a sphere (mass) and
the fixed support, the gray structure. The red and blue springs are set
to be parallel to each other along a2 and a3 directions. The intersite
springs pass through the holes of the support, while the on-site
springs are attached to the support. (b) The unit cell of (a) considered
in Eq. (1).

II. SPRING-MASS SYSTEM

We consider the spring-mass system in a simple or-
thorhombic lattice, where the unit cell consists of a single
mass and eleven springs, as shown in Fig. 1. We assume that
all masses of the springs are ignored and only the sphere’s
mass m is considered. Spring constants concerning intersite
energies are denoted by Ci j , where the subscripts i and j mean
the connection directions. A spring whose spring constant
is denoted by Cii connects the first-nearest-neighbor masses
along ai direction, where ai (i = 1, 2, 3) is the lattice vector.
Springs with Ci j (i �= j) connect the second-nearest-neighbor
masses along the ai ± a j direction. We also consider two
springs for the on-site potentials, and their spring constants are
denoted by K1 and K2 [see Fig. 1(b)]. While phononic crystals
generally exhibit the triple-point degeneracy at the � point,
these anisotropic on-site springs lift the degeneracy.

A unit cell in the three-dimensional array is denoted by
integer-valued [h1, h2, h3], where all subscripts correspond to
a1, a2, and a3 directions, respectively. The equation of mo-
tion for the displacement uh1,h2,h3 of a mass in the unit cell
[h1, h2, h3] is given by müh1,h2,h3 = ∑

n fn, where the right-
hand term is the summation of the spring force fn exerted
on the mass. The displacement vector can be expressed as
uh1,h2,h3 (x, t ) = ukeik·xe−iωt = ukeik·(h1a1+h2a2+h3a3 )e−iωt . Sub-
stituting this into the equation of motion leads to the following
eigenvalue problem:

2

m

[
3∑

i=1

Hii +
∑
i, j

Hi j + 1

2

∑
l

Kl (d̂l ⊗ d̂l )

]
uk = (ωk )2uk,

(1)

where Hii = Cii{1 − cos (k · ai )}âi ⊗ âi and Hi j = Ci j{1 −
cos (k · ai + k · a j )}âi j ⊗ âi j are the Hamiltonians for the
intersite interactions along the ai and ai ± a j directions, re-
spectively. âi, âi j , and âi j̄ are the unit vectors along ai, ai + a j ,

and ai − a j , respectively. In Hi j (i j = 12, 23, 31, 12̄, 23̄, 31̄),
if the subscript j is 1̄, 2̄, or 3̄, then k · a j is replaced with
−k · a j . The last term entails the on-site potential, and d̂l =
dl/|dl | is the unit vector along the on-site spring connection.
The detailed derivations are in Appendix A. Although Fig. 1
shows an orthorhombic unit cell and the intersite interac-
tions in Eq. (1) are only along the first and second nearest
neighbors, we can also consider unit cells in the other lattice
systems and the interactions between the third nearest neigh-
bors. Appendixes A and B also cover these general cases.

III. BRAIDING OF NON-ABELIAN CHARGED
NODAL LINES

The real-valued 3×3 Hamiltonian in Eq. (1) is symmet-
ric and positive definite for any wave vector k. Thus the
three eigenstates u1

k, u2
k, and u3

k form an SO(3) orthonormal
frame. Unless the degeneracies form an accidental triple point
[27,75], as enforced, e.g., by the Goldstone modes [36,37], the
generically stable band crossings in PT -symmetric systems
are nodal lines [76] formed by only two adjacent bands. The
non-Abelian frame charge for a nodal line is determined by
which bands are connected by the nodal line and which band is
gapped [23,24,26–28,37]. A closed loop that encloses a nodal
line is considered. Along this loop one obtains the resulting
frame charge by keeping track of the rotation of the orthonor-
mal frame {un

k}3
n=1 via parallel transport. The nodal lines of a

three-band system turn out to be characterized by the elements
of the quaternion group Q = {±i,± j,±k,−1,+1} [23,24].
The frame charge contains the information about which bands
form a nodal line in a multigap system. For example, the frame
charge of the nodal line formed by the first and second (by the
second and third) bands can be denoted as ±k (±i), as shown
in Fig. 2(a). The detailed explanations are in Appendix C. The
closed loop can also be set to encircle two or more nodal lines.
Its frame charge is expressed as the multiplication of the frame
charges of each nodal line, and it satisfies the anticommutation
relations of the quaternion charges.

Topological phase transitions can be achieved through
braiding of the frame charges, which flips their signs due
to their non-Abelian nature [23,24,26–28]. As mentioned in
the above, a closed loop can encircle two nodal lines. If the
two nodal lines are equivalently (oppositely) charged, the
frame charge is −1 (+1), meaning that they carry a nontrivial
(trivial) charge [23,24]. The resultant frame charge can vary
depending on the choice of the path [24]. Let us consider a
closed loop C that encircles both nodal lines L1 and L2 and
does not pass nodal rings R1 and R2 in Fig. 2(b). Here we
assume that the frame charge calculated along this loop is −1,
and thereby the frame charges of L1 and L2 are the same.
We braid P1 and P2 in Fig. 2(b) around Q1 and Q2, respec-
tively; they move under L1 [see Fig. 2(c)], then over L1 [see
Fig. 2(d)]. In Fig. 2(d), if the closed loop C passes through R1

(or R2), the frame charge becomes +1. The same explanation
can be applied to the nodal rings R1 and R2 in Figs. 2(b)–2(d).
In other words, after completing the braiding process of P1

and P2 around the Q1 and Q2, respectively, all their signs
are flipped [see Fig. 2(d)]. Because the frame charges of Q1

and Q3 (and Q2 and Q4) are trivial in Fig. 2(d), they can be
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FIG. 2. Schematics of braiding nodal lines. (a) Frame charges of
the nodal lines in a three-band system. The open and filled symbols
indicate opposite charges, and the circles and rectangles mean ±k
and ±i, respectively. (b)–(d) Braiding of P1 and P2 around Q1 and
Q2, respectively. After braiding, all these four points change their
signs. The dotted curves are the Dirac strings where [u1

k, u2
k] (b)–(c)

and [u2
k, u3

k] (d) flip their signs. (e) Phase transition between (d) and
(f). Q1 and Q3 that were in opposite frame charges in (d) are now
annihilated. Q2 and Q4 do the same. (f) Final formation of the nodal
link. The closed surfaces enclosing the rings R3 and R2 are denoted as
D12 and D23, respectively. In (b)–(f), red and blue arrows on the nodal
lines indicate their orientations deduced from their frame charges.

annihilated pairwise, as shown in Fig. 2(e). Finally, they reach
the nodal link in Fig. 2(f).

The stability of the nodal lines in the nodal link can be
characterized by the Euler class calculated on the closed patch
which nodal lines pass through [22,24]. If the Euler class
is zero (nonzero), the nodal lines in the patch are unstable
(stable) [24]. The surfaces D12 and D23 in Fig. 2(f) enclose
R3 and R2, respectively. In other words, through D12, only
nodal lines of R1 and R2 exit, and no other lines pierce D12.
Likewise, through D23 only the nodal lines of R3 and R4 pass.
If we observe the outward orientations at all four nodes where
R1 or R2 touch D12, as marked in Fig. 2(f), we infer that the
nodal lines of R1 and R2 are stable due to the nonzero Euler
class. On the other hand, the patch D23 has both inward and
outward nodal lines. Thus we expect the zero-valued Euler
class and unstable R3 and R4. This means that R3 and R4 can
be reversely transformed toward Figs. 2(e) and 2(d).

IV. PHASE TRANSITIONS IN SPRING-MASS SYSTEM

The phase transition from trivial nodal lines to a nodal
link can be realized in our spring-mass system. Equa-
tion (1) receives the lattice vectors and spring constants
as input parameters and outputs the eigenfrequencies ωn

k
and eigenstates un

k, where the superscript n is the band

(c) (d)

(b)(a)

b1

b3

b2

L1

R1 R2

L2

R1
R2

L1

L2

L1

L2

R1 R2
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FIG. 3. Evolution of nodal lines. The red and blue nodal lines
are degeneracies by ω2

k − ω1
k and ω3

k − ω2
k, respectively. (a) Trivial

state with �C12 = 42 and �C31 = 15. (b) Braided state after tuning
�C12 to 20. (c) Phase transition by �C31 to 10.06. Degeneracies by
ω3

k − ω2
k temporarily exhibit a nodal chain. (d) Nodal link by �C31

to 5. The parameters for the nodal link in (d) is listed in Table I of
Appendix B.

number (n = 1, 2, 3). We use the values listed in Table I
of Appendix B, except for C12, C12̄, C31, and C31̄. If
we write C12 = C0

12 + �C12, C12̄ = C0
12 − �C12, C31 = C0

31 +
�C31, and C31̄ = C0

31 − �C31 (where C0
12 = 75 and C0

31 = 35),
the four spring constants can be controlled by tuning only
�C12 and �C31. The degeneracies by ω2

k − ω1
k and ω3

k − ω2
k

are plotted as red and blue nodal lines, respectively, in Fig. 3.
Note that all the nodal lines are inversion symmetric about
the � point because Eq. (1) is T symmetric and P sym-
metric. We start with the trivial nodal lines [see Fig. 3(a)]
by selecting �C12 = 42 and �C31 = 15. The nodal lines L1

and L2 in Fig. 3(a) have the same orientations directing the
same boundary if the closed loop is placed like Fig. 2(b). We
change �C12 to 20, then the rings R1 and R2 become bigger,
as shown in Fig. 3(b). The frame charges of L1 and L2 are now
opposite if the closed loop’s path is set like Fig. 2(d). This
configuration enables the pairwise annihilation of L1 and L2

through the nodal rings R1 and R2, as shown in Fig. 3(c), by
decreasing �C31 to 10.06. Further decreasing �C31 to 5 makes
the final nodal link in Fig. 3(d). The frame charge analyses for
the situations in Fig. 3 are in Appendix C.

V. STABILITY AND INSTABILITY OF NODAL LINES

The Euler class [24,25,27,28,30] quantifies the pairwise
annihilation and stability of the nodal lines’ transition in
Fig. 3. We focus the discussions on the nodal link in Fig. 3(d).
Let us imagine a cube that encloses R3 and denote its surface
as D12 [refer Fig. 2(f)]. This D12 surface is pierced only by
R1 and R2, the degeneracies by ω1

k − ω2
k. The Euler class χ
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FIG. 4. Allowed transition of nodal lines L1 and L2 according to
the Euler class. L1 and L2 carry the same frame charge which gives
Euler class of +1 for D23.

calculated from u1
k and u2

k over D12, denoted by χ12(D12),
is +2. This indicates that the four nodal lines of R1 and R2

piercing through D12 are stable, and their orientations are
commonly outward of the surface. Any two of these four are
not annihilated on D12 until R3 and R4 are annihilated, like in
Figs. 3(a)–3(c).

Let us consider another cube that wraps R2 and name its
surface D23 [refer Fig. 2(f)]. R3 and R4 pass through the left
and right patches of D23, respectively, while R1 and R2 do
not touch D23. The total Euler class χ23(D23) is zero, and
this means that R3 and R4 can merge together. In detail, the
zero-valued total Euler class is due to the cancellation of the
Euler classes on the left and right patches of D23. The two
nodal lines’ orientations on the one boundary are inward, and
the other two are oriented outward on the opposite boundary.
Thus the annihilation of R3 and R4 can occur only by merging
two nodal lines respectively from R3 and R4 because their
orientations are opposite for the D23 surface. This corresponds
to the inverse process from Fig. 3(d) to 3(b). The detailed
process of calculating the Euler classes is in Appendix D.

Although the transition of nodal lines has been discussed
in Ref. [59], we consider this from the Euler class point of
view. Due to the nonzero Euler classes on the left and right
faces of D23 in Fig. 2(f), the nodal ring R3 cannot be separated
into two rings in the region between R1 and R2. Instead, two
nodal lines in R3 can touch each other while keeping their
orientations. The same explanation is also applied to R4. Let
us recall Fig. 2(e) and focus on the touching in R1. The two
nodal lines are heading towards the junction, while the others
are departing from the junction. Then we infer a transition
that two nodal lines heading in the same direction change
their connectivity through nodal chain while keeping the same
Euler class, as illustrated in Fig. 4. In this case, the nodal chain
where the nodal lines intersect each other can be considered
as the critical state. The detailed discussions and results are in
Appendix E.

Our spring-mass system is T -symmetric, thereby the band
structure is inversion symmetric about the � point throughout

the momentum space. Thus we note that the L1 and L2 in
Fig. 4 cannot be transformed into a double helix [59,77–81],
and R1 and R2 in Fig. 3 cannot form a simple Hopf link
[26,51,52,58,82] or an ∞-shaped structure twisted from a
single loop, because these structures do not have an inversion
symmetry.

VI. CONCLUSIONS

We show that recently predicted multigap topologies and
the relation with the stability of nodal lines become of im-
portance in an easily implementable class of spring-mass
systems. The on-site springs in our classical system make it
possible to generate a nodal link in three-dimensional mo-
mentum space. Tuning the intersite spring constants drives
the braiding and phase transition of the nodal lines. Finally,
the nonzero (zero) Euler class calculated over a patch indi-
cates that the nodal lines in the patch are stable (unstable).
Our system thus provides a platform for these novel pursuits.
Indeed, we note that a spring-mass system with two masses in
a unit cell, which has six bands, can be a good platform for
four-band models [21,22], allowing for more diverse braiding
processes and multigap topologies. Furthermore, adjusting
spring constants is easier than selecting materials with appro-
priate elastic moduli in a continuum scale problem because
a spring constant is simply determined by material properties
and geometrical factors. Therefore we hope that our system
can give an impetus to further explore experimental realiza-
tion of multigap topologies.
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APPENDIX A: 3×3 EIGENVALUE PROBLEM
FOR SPRING-MASS SYSTEM

1. Spring forces for spring-mass system

In this section the general form of the Hamiltonian for the
three-dimensional spring-mass system is derived. The unit cell
of our spring-mass system for phononic modes consists of one
mass m and several massless springs, as displayed in Fig. 5(a).
The type of the lattice system, i.e., whether it is triclinic, mon-
oclinic, orthorhombic, tetragonal, rhombohedral, hexagonal,
or cubic, is determined by the lattice vectors, a1, a2, and a3.
The springs are classified as two groups: intersite and on-site.
The intersite springs connect the masses in adjacent unit cells.
Their spring constants are denoted as Cii, Ci j , and Ci jk , as illus-
trated in Figs. 5(b)–5(e). The subscript ii means that the spring
is placed along ai so that it connects the first-nearest-neighbor
masses. The subscript i j (i j = 12, 23, 31, 12̄, 23̄, 31̄) indi-
cates the second-nearest-neighbor connection along ai + a j

(if j > 0) or ai − a j (if j < 0) [see Figs. 5(b)–5(d)]. C123,
C1̄23, C12̄3, and C123̄ indicate the spring constants of the
springs that connect the third-nearest-neighbor masses along
the directions a1 + a2 + a3, −a1 + a2 + a3, a1 − a2 + a3, and
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FIG. 5. Generalized spring-mass system. (a) Unit cell containing a mass and all springs dealt in the generalized 3 × 3 matrix. (b)–(d) Mass
and springs on the red, green, and blue planes in (a), respectively. (e) Mass and springs along the diagonal directions of the unit cell.
(f) Schematic figure of the spring concerning on-site potential.

a1 + a2 − a3, respectively [see Fig. 5(e)]. The on-site springs
connect the mass and a nonvibrating fixed point. Their spring
constants are denoted by Kl (l = 1, 2, . . . , N), and the number
of the on-site springs has no limit in our model. We use N = 2
throughout this study.

To derive the equation of motion for three-dimensional infi-
nite array, we denote a particular unit cell by an integer-valued
vector [h1, h2, h3], where each component is the index along
a1, a2, and a3 directions, respectively. Then, for instance,
a unit cell [h1, h2, h3 + 1] means the next cell to the cell
[h1, h2, h3] along the a3 direction. For the mass’s displacement
uh1,h2,h3 in the current unit cell, the equation of motion is

müh1,h2,h3 =
3∑

i=1

f1st
i +

∑
i, j

f2nd
i j +

∑
i, j,k

f3rd
i jk +

∑
l

f0
l , (A1)

where f1st
i , f2nd

i j , and f3rd
i jk are the spring forces between the

first, second, and third-nearest-neighbors, respectively, and f0
l

is the spring force for the on-site energy. We assume that all
spring forces are proportional to the distance change between
two masses where each spring connects. The direction of each
spring force is assumed to be the same as the initial direction
of the spring.

Next we consider three cells [h1 − 1, h2, h3], [h1, h2, h3],
and [h1 + 1, h2, h3]. The distance change between the
last two and first two cells are respectively expressed
as (uh1+1,h2,h3 − uh1,h2,h3 ) · â1 and (uh1−1,h2,h3 − uh1,h2,h3 ) · â1,
where âi is the unit vector in ai direction. The net spring
force between the first nearest neighbors in â1 direction
is

f1st
1 = {

C11
(
uh1+1,h2,h3 − uh1,h2,h3

) · â1
}
â1 + {

C11
(
uh1−1,h2,h3 − uh1,h2,h3

) · â1
}
â1. (A2a)

Likewise, the net spring forces between the first-nearest-neighbors along â2 and â3 directions are respectively expressed as

f1st
2 = {

C22
(
uh1,h2+1,h3 − uh1,h2,h3

) · â2
}
â2 + {

C22
(
uh1,h2−1,h3 − uh1,h2,h3

) · â2
}
â2

f1st
3 = {

C33
(
uh1,h2,h3+1 − uh1,h2,h3

) · â3
}
â3 + {

C33
(
uh1,h2,h3−1 − uh1,h2,h3

) · â3
}
â3. (A2b)

For the second-nearest-neighbors, we should consider six directions, â12, â12̄, â23, â23̄, â31, and â31̄, where âi j and âi j̄ are the
unit vectors in ai + a j and ai − a j directions, respectively. Then the spring forces between the second-nearest-neighbors f2nd

i j are
given by

f2nd
12 = {

C12
(
uh1+1,h2+1,h3 − uh1,h2,h3

) · â12
}
â12 + {

C12
(
uh1−1,h2−1,h3 − uh1,h2,h3

) · â12
}
â12 (A2c)

f2nd
12̄ = {

C12̄

(
uh1+1,h2−1,h3 − uh1,h2,h3

) · â12̄

}
â12̄ + {

C12̄

(
uh1−1,h2+1,h3 − uh1,h2,h3

) · â12̄

}
â12̄ (A2d)

f2nd
23 = {

C23
(
uh1,h2+1,h3+1 − uh1,h2,h3

) · â23
}
â23 + {

C23
(
uh1,h2−1,h3−1 − uh1,h2,h3

) · â23
}
â23 (A2e)
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f2nd
23̄ = {

C23̄

(
uh1,h2+1,h3−1 − uh1,h2,h3

) · â23̄

}
â23̄ + {

C23̄

(
uh1,h2−1,h3+1 − uh1,h2,h3

) · â23̄

}
â23̄ (A2f)

f2nd
31 = {

C31
(
uh1+1,h2,h3+1 − uh1,h2,h3

) · â31
}
â31 + {

C31
(
uh1−1,h2,h3−1 − uh1,h2,h3

) · â31
}
â31 (A2g)

f2nd
31̄ = {

C31̄

(
uh1−1,h2,h3+1 − uh1,h2,h3

) · â31̄

}
â31̄ + {

C31̄

(
uh1+1,h2,h3−1 − uh1,h2,h3

) · â31̄

}
â31̄. (A2h)

There are four directions connecting the third-nearest-neighbors, â123, â1̄23, â12̄3, and â123̄, which are the unit vectors along
the directions a1 + a2 + a3, −a1 + a2 + a3, a1 − a2 + a3, and a1 + a2 − a3, respectively. Then the spring forces between the
third nearest neighbors f3rd

i jk are written as

f3rd
123 = {

C123
(
uh1+1,h2+1,h3+1 − uh1,h2,h3

) · â123
}
â123 + {

C123
(
uh1−1,h2−1,h3−1 − uh1,h2,h3

) · â123
}
â123 (A2i)

f3rd
1̄23 = {

C1̄23

(
uh1−1,h2+1,h3+1 − uh1,h2,h3

) · â1̄23

}
â1̄23 + {

C1̄23

(
uh1+1,h2−1,h3−1 − uh1,h2,h3

) · â1̄23

}
â1̄23 (A2j)

f3rd
12̄3 = {

C12̄3

(
uh1+1,h2−1,h3+1 − uh1,h2,h3

) · â12̄3

}
â12̄3 + {

C12̄3

(
uh1−1,h2+1,h3−1 − uh1,h2,h3

) · â12̄3

}
â12̄3 (A2k)

f3rd
123̄ = {

C123̄

(
uh1+1,h2+1,h3−1 − uh1,h2,h3

) · â123̄

}
â123̄ + {

C123̄

(
uh1−1,h2−1,h3+1 − uh1,h2,h3

) · â123̄

}
â123̄. (A2l)

We also describe the spring force corresponding to the on-
site energy. By considering the current cell [h1, h2, h3] only,
the spring force f0

l in Eq. (A1) is written as

f0
l = −Kl (d̂l ⊗ d̂l )uh1,h2,h3 , (A2m)

where d̂l = dl/|dl | is the unit vector along the spring connec-
tion, and ⊗ is the outer product.

Equations (A2) are summed to give the summations in
Eq. (A1):

3∑
i=1

f1st
i = f1st

1 + f1st
2 + f1st

3 (A3a)

∑
i, j

f2nd
i j = f2nd

12 + f2nd
12̄ + f2nd

23 + f2nd
23̄ + f2nd

31 + f2nd
31̄ (A3b)

∑
i, j,k

f3rd
i jk = f3rd

123 + f3rd
1̄23 + f3rd

12̄3 + f3rd
123̄ (A3c)

∑
l

f0
l = f0

1 + f0
2 + · · · . (A3d)

2. Derivation of the Hamiltonian for spring-mass system

Owing to translation symmetry, the displacement vec-
tor can be expressed as uh1,h2,h3 (x, t ) = ukeik·xe−iωt =

ukeik·(h1a1+h2a2+h3a3 )e−iωt . We substitute this into the following
equation, which is just oppositely signed of Eq. (A1):

−müh1,h2,h3 = −
3∑

i=1

f1st
i −

∑
i, j

f2nd
i j −

∑
i, j,k

f3rd
i jk −

∑
l

f0
l .

(A4)
The left-hand side becomes

−müh1,h2,h3 = mω2ukeik·xe−iωt . (A5)

To get the results for the first three terms in the right-hand side,
we input the above uh1,h2,h3 (x, t ) into Eqs. (A2). For example,
−f1st

1 becomes

−f1st
1 = −{

C11
(
uh1+1,h2,h3 + uh1−1,h2,h3 − 2uh1,h2,h3

) · â1
}
â1

= −{
C11

(
eik·a1 + e−ik·a1 − 2

)
uh1,h2,h3 · â1

}
â1eik·xe−iωt

= 2C11{1 − cos (k · a1)}(uk · â1)â1eik·xe−iωt . (A6)

Using (uk · â1)â1 = (â1 ⊗ â1)uk (which results from the vec-
tor identity (v · w)w = viwiw j = w jwivi = (w ⊗ w)v), the
above equation becomes

−f1st
1 = 2C11{1 − cos (k · a1)}(â1 ⊗ â1)ukeik·xe−iωt . (A7a)

We also convert the other spring forces in Eqs. (A2) as fol-
lows:

−f1st
2 = 2C22{1 − cos (k · a2)}(â2 ⊗ â2)ukeik·xe−iωt (A7b)

−f1st
3 = 2C33{1 − cos (k · a3)}(â3 ⊗ â3)ukeik·xe−iωt (A7c)

−f2nd
12 = 2C12{1 − cos (k · a1 + k · a2)}(â12 ⊗ â12)ukeik·xe−iωt (A7d)

−f2nd
12̄ = 2C12̄{1 − cos (k · a1 − k · a2)}(â12̄ ⊗ â12̄ )ukeik·xe−iωt (A7e)

−f2nd
23 = 2C23{1 − cos (k · a2 + k · a3)}(â23 ⊗ â23)ukeik·xe−iωt (A7f)

−f2nd
23̄ = 2C23̄{1 − cos (k · a2 − k · a3)}(â23̄ ⊗ â23̄ )ukeik·xe−iωt (A7g)

−f2nd
31 = 2C31{1 − cos (k · a3 + k · a1)}(â31 ⊗ â31)ukeik·xe−iωt (A7h)

−f2nd
31̄ = 2C31̄{1 − cos (k · a3 − k · a1)}(â31̄ ⊗ â31̄ )ukeik·xe−iωt (A7i)

−f0
l = −Kl (d̂l ⊗ d̂l )ukeik·xe−iωt . (A7j)
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TABLE I. Parameter sets to realize the nodal links shown in Fig. 6. The mass m in Eq. (A8b) is set as 1.

Lattice system Parameter sets

Triclinic a1 = [1, 0, 0], a2 = [−0.5, 1.0825, 0], a3 = [−0.3, −0.2, 1]
C11 = 30, C22 = 110, C33 = 280
C12 = 95, C12̄ = 55, C23 = 62, C23̄ = 42, C31 = 40, C31̄ = 30
C123 = 50, C1̄23 = 0, C12̄3 = 30, C123̄ = 0
K1 = 40, d1 = a1

K2 = 180, d2 = 0.3924a1 + 0.1848a2 + 1.0a3

Monoclinic a1 = [1, 0, 0], a2 = [0, 1.2, 0], a3 = [0,−0.2, 1]
C11 = 30, C22 = 110, C33 = 280
C12 = 95, C12̄ = 55, C23 = 62, C23̄ = 42, C31 = 40, C31̄ = 30
C123 = 0, C1̄23 = 0, C12̄3 = 0, C123̄ = 20
K1 = 40, d1 = a1

K2 = 180, d2 = 0.1667a2 + 1.0a3

Orthorhombic a1 = [1, 0, 0], a2 = [0, 1.1, 0], a3 = [0, 0, 1.2]
C11 = 30, C22 = 110, C33 = 280
C12 = 95, C12̄ = 55, C23 = 26, C23̄ = 26, C31 = 40, C31̄ = 30
C123 = 0, C1̄23 = 0, C12̄3 = 0, C123̄ = 0
K1 = 40, d1 = a2

K2 = 160, d2 = a3

Tetragonal a1 = [1, 0, 0], a2 = [0, 1, 0], a3 = [0, 0, 1.2]
C11 = 30, C22 = 110, C33 = 280
C12 = 95, C12̄ = 55, C23 = 52, C23̄ = 52, C31 = 40, C31̄ = 30
C123 = 0, C1̄23 = 0, C12̄3 = 0, C123̄ = 0
K1 = 40, d1 = a2

K2 = 160, d2 = a3

Rhombohedral a1 = [1, 0, 0.438], a2 = [−1/2,
√

3/2, 0.438], a3 = [−1/2, −√
3/2, 0.438]

C11 = 30, C22 = 110, C33 = 280
C12 = 95, C12̄ = 55, C23 = 85, C23̄ = 35, C31 = 40, C31̄ = 30
C123 = 70, C1̄23 = 0, C12̄3 = 25, C123̄ = 0
K1 = 40, d1 = a2 − a3

K2 = 160, d2 = a1 + a2 + a3

Hexagonal a1 = [1/2, −√
3/2, 0], a2 = [1/2,

√
3/2, 0], a3 = [0, 0, 1.5]

C11 = 30, C22 = 110, C33 = 280
C12 = 95, C12̄ = 55, C23 = 26, C23̄ = 26, C31 = 40, C31̄ = 30
C123 = 35, C1̄23 = 10, C12̄3 = 0, C123̄ = 65
K1 = 260, d1 = a1 + a2

K2 = 160, d2 = a3

Cubic a1 = [1, 0, 0], a2 = [0, 1, 0], a3 = [0, 0, 1]
C11 = 30, C22 = 110, C33 = 280
C12 = 80, C12̄ = 80, C23 = 26, C23̄ = 26, C31 = 40, C31̄ = 30
C123 = 35, C1̄23 = 10, C12̄3 = 0, C123̄ = 65
K1 = 60, d1 = a2

K2 = 240, d2 = a3

By replacing all terms in Eq. (A4) as Eqs. (A7) and dropping eik·xe−iωt , we finally get

Huk = ω2uk. (A8a)

Here, the real-valued 3 × 3 Hamiltonian H is given by

H = 2

m

[
C11{1 − cos (k · a1)}â1 ⊗ â1 + C22{1 − cos (k · a2)}â2 ⊗ â2 + C33{1 − cos (k · a3)}â3 ⊗ â3

+ C12{1 − cos (k · a1 + k · a2)}â12 ⊗ â12 + C12̄{1 − cos (k · a1 − k · a2)}â12̄ ⊗ â12̄

+ C23{1 − cos (k · a2 + k · a3)}â23 ⊗ â23 + C23̄{1 − cos (k · a2 − k · a3)}â23̄ ⊗ â23̄

+ C31{1 − cos (k · a3 + k · a1)}â31 ⊗ â31 + C31̄{1 − cos (k · a3 − k · a1)}â31̄ ⊗ â31̄
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+ C123{1 − cos (k · a1 + k · a2 + k · a3)}â123 ⊗ â123 + C1̄23{1 − cos (−k · a1 + k · a2 + k · a3)}â1̄23 ⊗ â1̄23

+ C12̄3{1 − cos (k · a1 − k · a2 + k · a3)}â12̄3 ⊗ â12̄3 + C123̄{1 − cos (k · a1 + k · a2 − k · a3)}â123̄ ⊗ â123̄

+ 1

2

∑
l

Kl (d̂l ⊗ d̂l )

]
. (A8b)

All terms in the right-hand side of the above equation are written as n ⊗ n form. Thus, Hamiltonian H is symmetric and
positive definite for any wave vector k. Its eigenstates u1

k, u2
k, and u3

k form an SO(3) orthonormal frame.
The orthorhombic system in the main text does not have Hi jk because all the spring constants C123, C1̄23, C12̄3, and C123̄ are

zero, as shown in Table I.

APPENDIX B: NODAL LINKS IN SEVEN
LATTICE SYSTEMS

In this section the seven lattice systems containing a single
mass in a unit cell are considered. The input parameters for
Eq. (A8) are lattice vectors [see Fig. 5(a)], 13 intersite spring
constants [see Figs. 5(b)–5(e)], and information of on-site
springs including the spring constants Kl and the directions
d̂l [see Fig. 5(f)]. For each lattice system defined by a1, a2,
and a3, the parameter sets to realize the nodal links are listed
in Table I. The real space systems by those parameters and the
resulting nodal links in momentum space are shown in the left
and right figures in each panel of Fig. 6. The red and blue
nodal lines are the degeneracies by ω2

k − ω1
k and ω3

k − ω2
k,

respectively. In all cases, the blue-colored nodal rings encircle
the � point, the other blue-colored nodal rings span the first
Brillouin boundaries, two red-colored nodal rings exist around
the � point, and these red and blue nodal rings are infinitely
connected to reveal the nodal links.

All the seven cases have two on-site springs. In each case,
the two constants K1 and K2 of these springs are different.
These make the eigenfrequencies of the 3 × 3 Hamiltonian H
[Eq. (A8b)] different at the � point. Two nodal rings R1 and
R2 do not intersect each other at this point, and the triple-point
degeneracy is also not observed here.

The triclinic, monoclinic, rhombohedral, hexagonal, and
cubic cases have at least one spring for the third-nearest-
neighbor springs, and their values in each case are different
(see Table I). Furthermore, in all cases except the cubic lattice,
C12 and C12̄ are different, and C31 and C31̄ also have different
values. These spring constants make the lattice have no rota-
tion or mirror symmetries. They preserve P symmetry and T
symmetry only.

APPENDIX C: FRAME CHARGES

1. Charges ±k and ±i of nodal lines

In the main text, the frame charge of the nodal line by the
first and second (by the second and third) bands were denoted
as ±k (±i) among Q = {±i,± j,±k,−1,+1}. In this sec-
tion we see how they can be achieved and briefly review the
frame charge [21–24,26]. We select the orthorhombic system
shown in the main text [or in Fig. 6(c)] as an example. First
we investigate the frame charge of the nodal ring R2. We
consider a closed loop parametrized by α ∈ [0, 2π ] encircling
R2, as shown in the right inset of Fig. 7(a). Along the loop,
the eigenstates u1

k, u2
k, and u3

k are calculated [see Fig. 7(b)]
where the superscripts are the band numbers. The tails of
all the eigenstates are collected at the origin of an arbitrary

orthogonal coordinate system, for example, the u1
k0

-u2
k0

-u3
k0

coordinate system [see Fig. 7(c)]. The eigenstates reveal that
all the u3

ks for α ∈ [0, 2π ] are fixed along one direction
while u1

k and u2
k exhibit +π rotations. The rotation matrix

for these behaviors is R12(α) = e(α/2)L3 , where (Li ) jk = −εi jk .
Rewriting R12(α) by its lift in the double cover Spin(3) gives
R̄12(α) = e−i(α/2)(σ3/2) with α ∈ [0, 4π ] [23,55]. Therefore,
R̄12(α = 2π ) = −iσ3, and the frame charge of Figs. 7(b)–7(c)
is the quaternion number k [23,54,55]. The same analysis can
be used to the loop that encloses R3 in Fig. 7(a). After calculat-
ing the eigenstates along the loop [see Fig. 7(d)], the rotation
matrix for the results in Fig. 7(e) is R23(α) = e(α/2)L1 , and lift-
ing in the double cover Spin(3) gives R̄23(α) = e−i(α/2)(σ1/2).
Therefore we get R̄23(α = 2π ) = −iσ1, indicating the frame
charge i [23,54,55].

The results on the frame charges ±k and ±i [shown in
Figs. 7(c) and 7(e)] show that the eigenstates of the adjacent
two bands concerning the nodal line commonly show the π

disclination, that is, the signs of the eigenstates at k(α = 0)
and k(α = 2π ) are opposite. The eigenstates of the remaining
bands do not exhibit π disclination. Then we observe the
rotation of the former two sets of the eigenstates by π around
the latter sets of the eigenstates. As already mentioned, the
frame charges are determined by which bands show the π

disclinations and which band is fixed.

2. Stability/instability of nodal lines, and their braiding

In this section we analyze the behavior of nodal lines in
Fig. 3 in the main text using the frame charges. The following
discussions provide further insight in understanding Figs. 2
and 3 in the main text.

The frame charges −1 and +1 provide useful infor-
mation on the stability/instability of nodal lines, as the
Euler class does [23,26]. To characterize nodal lines’
stability/instability, a closed loop that encircles even number
of nodal lines is placed. We suppose the right-handed rule;
if one nodal line’s frame charge is positive, its orientation
is the thumb’s direction when we grab the line along the
closed loop’s direction. The same (opposite) frame charges
indicate that the total frame charge is −1 (+1), their orien-
tations are the same (opposite), and they are stable (can be
pair-annihilated).

The frame charge calculated along the loop C1 in Fig. 8(a)
is −1, meaning that L1 and L2 have the same orientations. C1

is not placed through R1 and R2. If R1 and R2 grow as shown in
Fig. 3(b) in the main text, and if C1 still does not pass through
these two rings (or C1 detours the rings), the frame charge
remains −1. However, if the closed loop C1 is set as shown in
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a1

a3

a2

b1

b3

b2

b1

b3

b2

Orthorhombic system Tetragonal system

a1

a3

a2

Hexagonal system

a1

a3

a2

b1

b3

b2

Triclinic system

a1

a3

a2

b1

b3

b2

Monoclinic system

a1

a3

a2

b1

b3

b2

Cubic system

b2
b3

b1

a1

a3

a2

a1

a3

a2

b1b3
b2

Rhombohedral system

(a) (b)

(c) (d)

(e) (f)

(g)

FIG. 6. Seven lattice systems and their nodal links. The left figures in each panel are the real space plots according to Table I. The spring
whose spring constant is zero is not plotted. The right figures in each panel are the resulting nodal links in the first Brillouin zones. The red
and blue nodal lines are by ω2

k − ω1
k and ω3

k − ω2
k, respectively. The light blue nodal lines around boundaries mean that they are outside the

current Brillouin zone. (c) is equivalent to Fig. 3(d) in the main text.

Fig. 8(b) [as illustrated in Fig. 2(d) in the main text], the frame
charge becomes +1, the trivial case, so that they can transform
into the nodal chain and nodal link in Figs. 3(c) and 3(d) in the
main text.

Meanwhile, we investigate the frame charge of R2. For the
loop C2 in Fig. 8(c), the frame charge is +1, so that R2 can

be deformed to shrink and disappear if it follows the path
drawn by C2, like Fig. 8(a). However, if we consider a loop C3

that detours both L1 and L2 [see Fig. 8(d)], the frame charge
becomes −1: R2 cannot be deformed to disappear if it follows
the path by C3. After deforming L1 and L2 into R3 and R4, the
relation between C3 and R2 remains [see Fig. 8(e)]. Thus the
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R2
R3

(c) (e)

(b)

(a)

(d)

R2 R3

FIG. 7. Frame charges k and i of the orthorhombic system.
(a) Closed loops that encircle the nodal rings R2 and R3, respectively.
(b), (d) Eigenstates u1

k, u2
k, and u3

k on the loops in (a), respectively,
in an arbitrary coordinate system. (c), (e) Eigenstates whose tails are
gathered at the origin. In (c), the dark-red and -green curved arrows
mean the traces of the eigenstates u1

k and u2
k rotating around u3

k,
respectively. In (f) the dark-green and -blue curved arrows mean the
traces of the eigenstates u2

k and u3
k rotating around u1

k, respectively.

frame charge is −1, and R2 becomes stable. The frame charge
of R1 can be explained in the same manner.

3. Consistency between frame charges and Euler
classes of the nodal link

This section discusses the stability and instability of the
nodal rings R1-R2 and R3-R4 using the frame charges. Results
generated in this section are consistent with the analyses using
Euler classes that will be mentioned in Secs. D 2 and D 3. First
we set a loop C4 tying R1 and R2, as shown in Fig. 8(f). The
frame charge calculated along C4 is −1. This means that the
orientations of both R1 and R2 are the right-handed outward
directions of the C4 surface. As already mentioned regarding
Fig. 8(e), two nodal lines of R2 are outward of the C3 surface.
The situation of R1 is the same. Therefore all four nodal lines
of R1 and R2 apart from the � point are commonly outward.

The situation of the nodal rings R3 and R4 is different. The
charges along both C5 and C6 in Fig. 8(g) are −1; thus the
same charges are generated in each ring R3 and R4. However,
on the surface of the loop C7 in Fig. 8(h), the orientations of R3

and R4 are opposite because the frame charge obtained along
C7 is +1. Therefore R3 and R4 are not stable regarding the C7

connection.

(c)

(a) (b)

(d)

(e) (f)

R1

R2

L1

L2

R1
R2

L1

L2C1

C2

C1

C3

C3

R1

R2

C4
R4

R3

R1
R2

L1

L2

R1
R2

L1

L2

R1

R2

R4

R3

(g) (h)

R1

R2

C4
R4

R3

C5 C6

C7

R1

R2

R4

R3

n(C1) = –1 n(C1) = +1

n(C2) = +1 n(C3) = –1

n(C3) = –1 n(C4) = –1

n(C5) = n(C6) = –1 n(C7) = +1

FIG. 8. Nodal lines and closed loops for frame charge charac-
terizations. Nodal lines in (a), (b)–(d), and (e)–(f) correspond to
Figs. 3(a), 3(b) and 3(d), respectively. Frame charges n(Ci ) calculated
on each loop Ci are also denoted. Note that the open and solid
symbols (circles and rectangles) do not mean the absolute frame
charge of each nodal line, but they are shown to illustrate the same or
opposite orientations between two nodal lines enclosed by a closed
loop.

APPENDIX D: EULER CLASS

1. Euler form and Euler class

For real eigenstates |um
k 〉 and |un

k〉 of any two adjacent bands
m and n, the Euler form is given by

Eumn (k) = 〈∇kum
k | × | ∇kun

k

〉
. (D1)

The Euler class, an integer topological invariant, is given by
[24,25,27–30]

χmn(D) = 1

2π

[∫
D

Eumn dkadkb −
∮

∂D
a(k) · dk

]
, (D2)

where a(k) = 〈um
k | ∇kun

k〉 is the Euler connection. The Euler
class is the difference between the surface integral of the
Euler form over a patch D and the boundary integral of the
Euler connection. If there is no nodal line passing through the
patch, this surface can be filled with smooth |um

k 〉. By Stokes’
theorem, Eq. (D2) becomes zero. If the patch is pierced by a
nodal line, the intersecting point becomes a singularity, and
Eq. (D2) is not zero.
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R3R3RR

(b)(a)

b1

b3

b2

R2

R1

R4

Face 2Face 2 Face 3Face 3

Face 1Face 1

Min Max0
ka

kb

Face 5Face 5

FIG. 9. Calculation of Euler class χ12(D12). (a) Patch D12

pierced by R1 and R2. Local coordinates ka and kb for each face are
also marked as red and blue arrows. ka × kb is always outward of
the box. The integral of Euler connection is performed along the
counterclockwise direction of each boundary, as displayed by the
green dotted arrows. (b) Euler form numerically calculated over face
2 of D12. The red dots indicate the nodal lines, and the dotted lines
are the Dirac strings. The yellowish region is a result of the region
being near the curved section of R1, as shown in (a). Face 5’s Euler
form is the same. On the other faces, the surface integral of Euler
form and boundary integral of Euler connection are canceled out.

2. Euler class for R1 and R2 in the nodal link

In the momentum space of our orthorhombic spring-mass
system, two nodal rings R1 and R2, degeneracies by ω2

k − ω1
k,

are generated, as shown in Fig. 3 in the main text. To calculate
the Euler class, we set a cubic patch centered on the � point,
denoted by D12 [see Fig. 9(a)]. The patch completely encloses
R3, degeneracies by ω3

k − ω2
k. In other words, there is no nodal

line by ω3
k − ω2

k passing the D12 surface. Only R1 and R2

intersect this surface.
We divide D12 into six square faces. To calculate the sur-

face integral of Eq. (D2) for each face, ka and kb in Eq. (D2)
are set such that ka × kb is outward of the cube. Each face
contains zero or even number of nodal line piercings. If a
face contains the piercings, (i) we skip calculating Eq. (D2)
around the nodal lines where the eigenstates are not suffi-
ciently continuous, and (ii) the eigenstates’ gauge are adjusted
to make them smooth across Dirac string. We also calculate
the boundary integral in Eq. (D2). The summation of the
boundary integral for all the edges of the cube should be zero
because all the paths in Fig. 9(a) are canceled out. By using
this we adjust the signs of Euler classes over the six faces to
make the boundary integral summation zero.

The Euler form for Face 2 in Fig. 9(a) is shown in Fig. 9(b).
Face 2 has two piercings, and its Euler class is +1. Thus the
two nodal lines are stable, and they have the same orientations.
Face 5 exhibits the same results. For Faces 1 and 3, Euler
classes, the sum of the surface integral of the Euler form and
boundary integral of the Euler connection are zero. Thus the
overall result χ12(D12) becomes +2.

The above analysis only reveals the summation of Euler
classes over D12’s six faces; it does not show a direct result
of Euler class by R1 and R2. Thus we lower Face 1’s position
along the −b3 direction to make it contain two nodal lines by
R1 and R2, respectively. In this case, the Euler class calculated
over Face 1 is +1, and we can ensure that all the nodal lines of

(d)

ka

kb

(b)(a)

b1

b3

b2

R1

Min Max0

R4R2

R4R
RR22RR

Face 3Face 3Face 2Face 2

Face 1Face 1

R3

ka

kb

(c)

R3R3RR

R2R2RR

R1

R4

b1

b2

b3

Face 5Face 5

Face 6Face 6

FIG. 10. Calculation of Euler class χ23(D23). (a), (c) Patch D23

pierced by R3 and R4. (b), (d) Euler form numerically calculated over
faces 2 and 5 of D23, respectively. The blue dots indicate the nodal
lines, and the dotted line is the Dirac string. On the other faces of
D23, the surface integral of Euler form and boundary integral of the
Euler connection are canceled out.

R1 and R2 are outward of D12. All the results in this section are
consistent with Figs. 8(e) and 8(f) in Sec. C 2.

3. Euler class for R3 and R4 in the nodal link

The nodal link mentioned in the previous section also re-
veals the nodal rings R3 and R4, degeneracies by ω3

k − ω2
k. We

set a box D23 that contains R2. Only R3 and R4 intersect this
patch through Faces 2 and 5 [see Figs. 10(a) and 10(c)]. We
calculate the Euler class in Eq. (D2) for all six faces of the
box by considering the same things as in the previous section.
Euler classes for Faces 2 and 5 are +1 and −1, respectively.
Another four faces exhibit the zero-valued Euler class. Thus
the total result χ23(D23) is 0, and therefore the transition
between Figs. 3(c) and 3(d) is possible.

Because both Euler classes calculated over Faces 2 and 5
are nonzero, the two nodal lines of a single ring escaping the
same face of the box cannot be annihilated. Thus the transition
of R3 and R4 to nodal lines L1 and L2 in Fig. 3(c) in the main
text is done by annihilation of each strand of R3 and R4. This
can be more clearly seen if we pull Face 6 in Fig. 10(c) (the
face parallel to b1 and b3) along b2 direction so that it contains
totally two degeneracies that respectively belong to R3 and R4;
its Euler class is zero. All these discussions are consistent with
Figs. 8(g) and 8(h) in Sec. C 2.
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(b)

(a) N columns of rectangular meshes

N
 row

s of rectangular m
eshes

i ka

kb

j

P1 P2

P4 P3

P12

P23

P34

P14

1 2

34

(i, j)

dka

dkb

FIG. 11. Schematics of calculating Euler class. (a) Discretized
domain to calculate the Euler class. This domain consists of N2 rect-
angular meshes. Eigenfrequencies and eigenstates are calculated at
red dots and meshes’ vertices, respectively. Meshes that contain band
degeneracies are marked as red rectangles. The thick dotted black
path means the Dirac string. Each mesh is indexed by (i, j). Eigen-
states smoothing on the boundary and Euler connection integral are
performed along the thick green arrow direction. (b) Enlarged cell
(i, j). P12, P23, P34, and P14 are midpoints of each edge.

4. Numerical calculation of the Euler class

Throughout this study we use a two-dimensional surface
as a domain to calculate the Euler class Eq. (D2). We assume
that a domain contains zero or two degeneracies, and we also
suppose that we already know whether the domain has degen-
eracies from a plot of nodal lines. Thus the rough positions of
degeneracies are given input parameters. The degeneracies are
by ωn

k − ωm
k (n > m), and there are not any other degeneracies

by ωm
k − ωm−1

k or ωn+1
k − ωn

k. As Eq. (D2) consists of a surface
and boundary integrals, we also divide the numerical process
into two parts: numerical calculation over the surface and
along the boundary.

To perform the surface integral, we prepare N × N rect-
angular meshes on the domain, as shown in Fig. 11(a). On

the domain we can think of two sets of points: one group of
vertices of the meshes, and the other group of the meshes’
central points marked as red dots in Fig. 11(a). The number
of points in the first and second groups are (N + 1)2 and N2,
respectively.

Next we calculate eigenfrequencies using Eq. (A8) at the
red dots of Fig. 11(a) to search which meshes have the band
degeneracies. The aforementioned input parameters, the de-
generacies’ rough positions, are used here. We regard that
a degeneracy is in a mesh if the mesh is around one of the
degeneracies’ rough position, and if �ωmn = ωn

k − ωm
k at the

mesh is minimum compared to surrounding meshes. After
determining two meshes of degeneracies, we define a Dirac
string that connects the two meshes [see the dotted path in
Fig. 11(a)]. The Dirac string can take various routes, but we
use the simple path that bends one time at most.

The eigenstates u1
k, u2

k, and u3
k of Eq. (A8) are then cal-

culated at the vertices of all the meshes. At each point the
eigenstates should satisfy the right-handed rule u1

k · (u2
k ×

u3
k ) = +1. Practically, we use the condition u1

k · (u2
k × u3

k ) �
0 considering the numerical errors.

All the eigenstates should be smoothened by adjusting
their gauges (determining their signs). First we make them
continuous along the boundary in the counterclockwise di-
rections, as marked with the green arrow in Fig. 11(a). Then
the smoothing process is carried out from the boundary to the
inner regions of the domain. This smoothing should not go
across the Dirac string. Thus all the smoothing processes stop
in the vicinity of the Dirac string.

To calculate the Euler form in Eq. (D1), we mark four
vertices of a mesh as P1, P2, P3, P4, as shown in Fig. 11(b).
In the previous steps the eigenstates um

k and un
k at these points

are already prepared. Let us denote um
k as UP1, UP2, UP3, and

UP4. Likewise, un
k is also rewritten as VP1, VP2, VP3, and VP4.

If the current mesh is on the Dirac string, the eigenstates at
P2, P3, P4 should be smoothened using the eigenstates at P1.
On each edge of the mesh, we set midpoints P12, P23, P34,
P14, as denoted in Fig. 11(b). The eigenstates U and V at each
midpoint are obtained from their averages at both ends of the
edge. The Euler form in Eq. (D1) is now rewritten as

Eu = UP23 − UP14

dka
· VP34 − VP12

dkb

− UP34 − UP12

dkb
· VP23 − VP14

dka
, (D3)

where dka = |P23 − P14| and dkb = |P34 − P12| are the edges’
lengths of the mesh. With the mesh’s area dA = |P2 −
P1||P4 − P1|, we sum up all the Euler form in Eq. (D3) as
follows: ∫

D
Eu dkadkb =

∑
i, j

Eui j dAi j, (D4)

where i and j are each mesh’s indices from the left to right
and bottom to top in Fig. 11(a), respectively. If the current
mesh has a degeneracy or is around a degeneracy where the
eigenstates are ill defined (that is, if at least one pair among
UP1 to UP4 has the inner product below the tolerance 0.99),
Eui j in this mesh is not summed to the above equation by
assigning zero to Eui j .
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FIG. 12. Allowed transition of nodal lines and nodal rings between (a), (d), (g) and (c), (f), (i), through (b), (e), (h). Schematics (a)–(c) are
about the transition of nodal lines L1 and L2. Schematics (d)–(f) display the transition of R1 and R2 on the zone boundary. If R2 is in the current
zone, R1 is in the next zone. (g)–(i) Realization of (a)–(c) and (d)–(f) using the spring-mass system. The transition is performed by decreasing
�C31 from 2 (g) through 0 (h) to −2 (i), with setting K1 = 140 and keeping the other variables in Table I.

Meanwhile, we use the smoothened eigenstates on the
boundary to calculate the boundary integral of Eq. (D2). We
rewrite the boundary integral as follows:∮

∂D

〈
um

k

∣∣∇kun
k

〉 · dk =
∮

∂D
U · ∂V

∂k
∂k. (D5)

The boundary has four vertices. At any points except for
those on the vertices, ∂V/∂k = DV is performed by the two-
or four-point central difference method, i.e., DVi = (Vi+1 −
Vi−1)/h or DVi = (−Vi+2 + 8Vi+1 − 8Vi−1 + Vi−2)/12h,
respectively, where h is the spacing between adjacent points.
At the beginning and finishing vertices, marked as 1 in
Fig. 11(a), the three-point forward and backward differ-
ences are used, respectively, i.e., DVi = (−3Vi + 4Vi+1 −
Vi+2)/2h and DVi = (Vi−2 − 4Vi−1 + 3Vi )/2h, respectively.
At vertices 2, 3, and 4, both three-point forward and backward
differences are calculated followed by averaging them. Then
the integral in Eq. (D5) becomes∮

∂D
U · ∂V

∂k
∂k =

∑
i

Ui · DVih. (D6)

Thus the difference between Eqs. (D4) and (D6) generates the
final result of the Euler class:

χ = 1

2π

[∑
i, j

Eui j dAi j −
∑

i

Ui · DVih

]
. (D7)

We set N = 600 throughout this study, that is, a domain con-
sists of 600 × 600 meshes. The eigenstates are calculated at
601 × 601 vertices of meshes.

APPENDIX E: TRANSITION FROM NODAL LINK

In the main text we infer the allowed transition, that is,
two nodal lines heading the same direction [L1 and L2 in
Fig. 12(a)] can change their connectivity with keeping the +1
Euler class. During this transition from Figs. 12(a)–12(c), a
critical state is given by a nodal chain, as shown in Fig. 12(b).

Similar predictions can be made for the nodal rings R1 and
R2. At the Brillouin zone boundary, R2 in the current zone
and R1 in the next zone are getting closer, like Fig. 12(d).
The Euler class χ (D12) over the marked patch in Fig. 12(d)
is +1. While this condition is satisfied, the nodal rings
can be deformed to Figs. 12(e) and 12(f). Here the nodal
chain in Fig. 12(e) is the critical state between Figs. 12(d)
and 12(f).

Based on the above prediction, we realize these transitions
by tuning the spring constants in the spring-mass system.
First, from the nodal link in Fig. 3(d) in the main text [or in
Fig. 6(c) with Table I], we increase the on-site potential spring
K1 to 140 and decrease �C31 to 2 (where �C31 is for control
of C31 and C31̄ by C31 = C0

31 + �C31, C31̄ = C0
31 − �C31, and

C0
31 = 35) to prepare Fig. 12(g). Now we decrease �C31 to

zero. Then the spring constants become C31 = C31̄, and we
have Fig. 12(h). This critical state exhibits two nodal chains
formed by L1-L2 around the � point and R1-R2 on the zone
boundary. Because we have C23 = C23̄ and the two on-site
springs’ directions are respectively the same as a2 and a3, this
spring-mass system is in 2/m (C2h) symmetry. After further
decreasing �C31 to −2, the nodal chains by L1-L2 and R1-R2

are separated into two nodal lines and nodal rings, respectively
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[Fig. 12(i)]. Compared to Fig. 12(g), the connectivity between
L1 and L2 are exchanged. In addition, R2 was placed at higher

position along the b3 direction than R1 in Fig. 12(g), and this
is now reversed.
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